This file is indexed.

/usr/include/linbox/solutions/smith-form.h is in liblinbox-dev 1.1.6~rc0-4.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
/* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */
/* linbox/solutions/smith-form.h
 */
#ifndef __SMITH_FORM_H
#define __SMITH_FORM_H

#include <list>
#include <vector>
#include <linbox/util/error.h>
#include <linbox/algorithms/matrix-hom.h>
#include <linbox/algorithms/smith-form-adaptive.h>
//#include <linbox/algorithms/smith-form.h>
//#include <linbox/algorithms/smith-form-local.h>

namespace LinBox
{
	template<class I1, class Lp>
	void distinct (I1 a, I1 b, Lp& c)
	{	typename I1::value_type e;
  		size_t count = 0;
  		if (a != b) {e = *a; ++a; count = 1;}
  		else return;
  		while (a != b)
  		{	if (*a == e) 
				++count;
     			else
     			{	c.push_back(typename Lp::value_type(e, count));
       				e = *a; count = 1;
     			}
     			++a;
  		}
  		c.push_back(typename Lp::value_type(e, count));
  		return;
	}


	/** Compute the Smith form of A
	 *
	 * The Smith form of a linear operator A, represented as a
	 * black box, is computed over a representation of Z or Z_m.
	 *
	 * @param Output S, a list of invariant/repcount pairs.
	 * @param A Matrix of which to compute the Smith form
	 * @param M may be a Method::Hybrid (default), which uses the 
	 algorithms/smith-form-adaptive.  
	 Other methods will be provided later.  For now see the examples/smith.C
	 for ways to call other smith form algorithms.
         \ingroup solutions
        */
    template <class Output, class Blackbox, class MyMethod>
    Output &smithForm(Output & S, 
		const Blackbox                              &A,
		const MyMethod                           &M) 
    {
	    smithForm(S, A, typename FieldTraits<typename Blackbox::Field>::categoryTag(), M);
	    return S;
    }

        // for specialization with respect to the DomainCategory
    template< class Output, class Blackbox, class SmithMethod, class DomainCategory>
    Output &smithForm(Output & S, 
                      const Blackbox        &A,
                      const DomainCategory  &tag,
                      const SmithMethod  &M)      
    {
        throw LinboxError( "Smith form solution implemented only for DenseMatrix<NTL_ZZ>");
    }

	// The smithForm with default Method 
    template<class Output, class Blackbox>
    Output &smithForm(Output& S, 
					  const Blackbox& A) {

        smithForm(S, A, Method::Hybrid());
		return S;
    }

#if 0
	// The smithForm for ModularTag 
    template<class Output, class Blackbox, class MyMethod>
    Output &smithForm(Output & S, 
        const Blackbox                            &A,
        const RingCategories::ModularTag          &tag,
		const MyMethod& M)
    {
		typename Blackbox::Field F = A.field();
		integer p, c; F.characteristic(p); F.cardinality(c);
		if (probab_prime(p) && p == c) 
		{	size_t r; rank(r, A);
			S.resize(0);
			size_t n = (A.rowdim() > A.coldim() ? A.coldim() : A.rowdim())-r;
			if (r > 0) S.push_back( std::pair<size_t, integer>(r, 1) );
			if (n > 0) S.push_back( std::pair<size_t, integer>(n, 0) );
		}
		else 
		{ 
			integr x; size_t c; 
			for(x = p, c = 0; divides(2, x); x /= 2, ++c);
		 
		 	if (x == 1 && c <= 32) // (a low power of 2) 
		  	{
		    	List L;
				LocalSmith<Local2_32> SmithForm;
				SmithForm( L, M, R );
				distinct(L.begin(), L.end(), S);

		  	}
		//  if (a odd prime power) call local-smith
		  	else 
			{
				IliopoulosElimination::smithIn (M);
				typedef std::list< PIR::Element > List;
				List L;
				for (size_t i = 0; i < M.rowdim(); ++i) L.push_back(M[i][i]);
				distinct(L.begin(), L.end(), S);
		  	}
		}
		  
		  return S;
    }
#endif

	// The smithForm with Hybrid Method 
    template<>
    std::list<std::pair<integer, size_t> > &smithForm(std::list<std::pair<integer, size_t> >& S, 
        const DenseMatrix<NTL_ZZ> 	&A,
        const RingCategories::IntegerTag          &tag,
		const Method::Hybrid& M)
    {
		std::vector<integer> v (A.rowdim() < A.coldim() ? A.rowdim() : A.coldim());
		SmithFormAdaptive::smithForm(v, A);
		distinct(v.begin(), v.end(), S);

		return S;
    }

#if 0
	// The smithForm with Elimination Method 
    template<class Output, class Ring>
    Output &smithForm(Output & S, 
		const DenseMatrix<Ring> &A,
		const RingCategories::IntegerTag          &tag,
		const Method::Elimination& M)
    {
		typename Ring::Element d;
		det(d, A, tag, M); // or just use default hybrid?  What does elim mean?
		integer D;
		A.field().convert(D, d);
		if (D < Modular<int>::MaxModulus)
		{  typedef Modular<int> Ring2;
			Ring2 R2(D);
			MatrixHom::map(B, A, R2);
	    	IliolopousElimination::smithIn(B);
        //return diagonal of B in Output object.
		}
		else
		{  typedef Modular<integer> Ring2;
			Ring2 R2(D);
			MatrixHom::map(B, A, R2);
	    	IliolopousElimination::smithIn(B);
        //return diagonal of B in Output object.
		}

    }
#endif

#if 0
	// The smithForm with BlackBox Method 
    template<class Output, class Blackbox>
    Output &smithForm(Output & S, 
		const Blackbox                      &A,
		const RingCategories::IntegerTag    &tag,
		const Method::Blackbox              &M)
    {
		// this will be binary search smith form (EGV')
    }
#endif
    

} // end of LinBox namespace
#endif // __SMITH_FORM_H