/usr/include/linbox/ring/givaro-polynomial.h is in liblinbox-dev 1.1.6~rc0-4.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 | /* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */
/* linbox/ring/givaro-polynomial.h
* Written by
* Clement Pernet
*
* See COPYING for license information.
*/
#ifndef __GIVAROPOLYNOMIAL_H
#define __GIVAROPOLYNOMIAL_H
#include <iostream>
#include "givaro/givpoly1.h"
#include "givaro/givpoly1factor.h"
#include "linbox/integer.h"
#include "linbox/field/unparametric.h"
#include "linbox/element/givaro-polynomial.h"
// Namespace in which all LinBox code resides
namespace LinBox
{
/** \brief polynomials with coefficients modulo some power of two
\ingroup ring
*
* @param Polynomial type, e.g. std::vector<Field::Element>
*/
template <class Domain, class StorageTag>
class GivPolynomialRing : public Poly1Dom<Domain,StorageTag>
{
public:
// using Poly1Dom<Domain,StorageTag>::eval;
typedef GivPolynomial<typename Domain::Element> Element;
typedef Element Polynomial;
GivPolynomialRing () {}
GivPolynomialRing (const Domain& D)
: Poly1Dom<Domain,StorageTag>(D, Indeter()){}
template<class PolyCont>
PolyCont& factor (PolyCont& factors,
std::vector<unsigned long>& exp,
const Polynomial& P);
};
#ifdef __LINBOX_HAVE_NTL
}
#include "linbox/field/ntl-ZZ.h"
#include "NTL/ZZXFactoring.h"
namespace LinBox{
template <>
template <>
std::vector<GivPolynomial<integer>* >&
GivPolynomialRing<UnparametricField<integer>,Dense>::factor (std::vector<GivPolynomial<integer>* >& factors,
std::vector<unsigned long>& exp,
const GivPolynomial<integer> &P)
{
NTL::ZZXFac_InitNumPrimes = 1;
NTL::ZZX f;
for (size_t i = 0; i < P.size(); ++i){
NTL::SetCoeff (f, i, NTL::to_ZZ((std::string( P[i] )).c_str()) );
}
NTL::vec_pair_ZZX_long ntlfactors;
NTL::ZZ c;
NTL::factor (c, ntlfactors, f);
NTL::ZZ t;
NTL_ZZ NTLIntDom;
factors.resize(ntlfactors.length());
exp.resize(ntlfactors.length());
for (int i= 0; i<ntlfactors.length(); ++i) {
factors[i] = new GivPolynomial<integer>( deg(ntlfactors[i].a)+1 );
for(int j = 0; j <= deg(ntlfactors[i].a); ++j) {
NTL::GetCoeff(t,ntlfactors[i].a,j);
NTLIntDom.convert( factors[i]->operator[](j), t );
}
exp[i] = ntlfactors[i].b;
}
return factors;
}
#include <linbox/field/PID-integer.h>
template <>
template <>
std::vector<GivPolynomial<integer>* >&
GivPolynomialRing<PID_integer,Dense>::factor<std::vector<GivPolynomial<integer>* > > (std::vector<GivPolynomial<integer>* >& factors,
std::vector<unsigned long>& exp,
const GivPolynomial<integer> &P)
{
NTL::ZZXFac_InitNumPrimes = 1;
NTL::ZZX f;
for (size_t i = 0; i < P.size(); ++i){
NTL::SetCoeff (f, i, NTL::to_ZZ((std::string( P[i] )).c_str()) );
}
NTL::vec_pair_ZZX_long ntlfactors;
NTL::ZZ c;
NTL::factor (c, ntlfactors, f);
NTL::ZZ t;
NTL_ZZ NTLIntDom;
factors.resize(ntlfactors.length());
exp.resize(ntlfactors.length());
for (int i= 0; i<ntlfactors.length(); ++i) {
factors[i] = new GivPolynomial<integer>( deg(ntlfactors[i].a)+1 );
for(int j = 0; j <= deg(ntlfactors[i].a); ++j) {
NTL::GetCoeff(t,ntlfactors[i].a,j);
NTLIntDom.convert( factors[i]->operator[](j), t );
}
exp[i] = ntlfactors[i].b;
}
return factors;
}
template <>
template <>
std::vector<GivPolynomial<NTL::ZZ>* >&
GivPolynomialRing< NTL_ZZ , Dense>::factor<std::vector<GivPolynomial<NTL::ZZ>* > > (std::vector<GivPolynomial<NTL::ZZ>* >& factors,
std::vector<unsigned long>& exp,
const GivPolynomial<NTL::ZZ> &P)
{
NTL::ZZXFac_InitNumPrimes = 1;
NTL::ZZX f;
for (size_t i = 0; i < P.size(); ++i){
NTL::SetCoeff (f, i, P[i]);
}
NTL::vec_pair_ZZX_long ntlfactors;
NTL::ZZ c;
NTL::factor (c, ntlfactors, f);
NTL::ZZ t;
factors.resize(ntlfactors.length());
exp.resize(ntlfactors.length());
for (int i= 0; i<ntlfactors.length(); ++i) {
factors[i] = new GivPolynomial<NTL::ZZ>( deg(ntlfactors[i].a)+1 );
for(int j = 0; j <= deg(ntlfactors[i].a); ++j) {
NTL::GetCoeff( factors[i]->operator[](j),ntlfactors[i].a,j);
}
exp[i] = ntlfactors[i].b;
}
return factors;
}
#endif
template <>
template <>
std::vector<GivPolynomial<double> *>&
GivPolynomialRing<Modular<double>,Dense>::factor (std::vector<GivPolynomial<double>* > & factors,
std::vector<unsigned long>& exp,
const GivPolynomial<double>& P)
{
integer charac;
_domain.characteristic(charac);
double p = charac;
Poly1FactorDom<Modular<double>,Dense, Modular<double>::RandIter> PFD(*this, Modular<double>::RandIter(_domain));
std::vector<givvector<double> > factors2;
PFD.CZfactor ( factors2, exp, static_cast<givvector<double> >(P),p);
//std::cerr<<"factorization done"<<std::endl;
factors.resize(factors2.size());
std::vector<GivPolynomial<double>* >::iterator itf = factors.begin();
std::vector<givvector<double> >::const_iterator itf2 = factors2.begin();
for (; itf2 != factors2.end();++itf,++itf2){
*itf = new GivPolynomial<double>(*itf2);
//std::cerr<<"converting factor"<<(*itf)<<std::endl;
for (size_t i=0; i< (*itf)->size();++i)
_domain.divin((*itf)->operator[](i),(*itf)->operator[]((*itf)->size()-1));
_domain.assign((*itf)->operator[]((*itf)->size()-1),1.0);
}
return factors;
}
} // namespace LinBox
#endif // __GIVAROPOLYNOMIAL_H
|