This file is indexed.

/usr/include/linbox/ffpack/ffpack_charpoly.inl is in liblinbox-dev 1.1.6~rc0-4.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
/* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */

/* ffpack/ffpack_charpoly.inl
 * Copyright (C) 2005 Clement Pernet
 *
 * Written by Clement Pernet <Clement.Pernet@imag.fr>
 *
 * See COPYING for license information.
 */

template <class Field, class Polynomial>
std::list<Polynomial>&
FFPACK::CharPoly (const Field& F, std::list<Polynomial>& charp, const size_t N,
		  typename Field::Element * A, const size_t lda,
		  const FFPACK_CHARPOLY_TAG CharpTag){
	switch (CharpTag) {
	case FfpackLUK:{
		typename Field::Element * X = new typename Field::Element[N*(N+1)];
		LUKrylov (F, charp, N, A, lda, X, N);
		delete[] X;
		return charp;
	}
	case FfpackKG:{
		return KellerGehrig (F, charp, N, A, lda);
		break;
	}
	case FfpackDanilevski:{
		return Danilevski (F, charp, N, A, lda);
		break;
	}
	case FfpackKGFast:{
		size_t mc, mb, j;
		if (KGFast (F, charp, N, A, lda, &mc, &mb, &j)){
			std::cerr<<"NON GENERIC MATRIX PROVIDED TO KELLER-GEHRIG-FAST"<<std::endl;
		}
		return charp;
		break;
	}
 	case FfpackKGFastG:{
 		return KGFast_generalized (F, charp, N, A, lda);
	}
	case FfpackHybrid:{
		typename Field::Element * X = new typename Field::Element[N*(N+1)];
		LUKrylov_KGFast (F, charp, N, A, lda, X, N);
		delete[] X;
		return charp;
	}
	case FfpackArithProg:{
		size_t attempts=0;
		bool cont = false;
		FFLAS_INT_TYPE p;
		F.characteristic(p);
		// Heuristic condition (the pessimistic theoretical one being p<2n^2.
		if ((unsigned long) (p) < N)
			return CharPoly (F, charp, N, A, lda, FfpackLUK);

		do{
			try {
				CharpolyArithProg (F, charp, N, A, lda, __FFPACK_CHARPOLY_THRESHOLD);
			}
			catch (CharpolyFailed){
				if (attempts++ < 2)
					cont = true;
				else
					return CharPoly(F, charp, N, A, lda, FfpackLUK);
				
			}
		} while (cont);
		return charp;
	}
	default:{
		typename Field::Element * X = new typename Field::Element[N*(N+1)];
		LUKrylov (F, charp, N, A, lda, X, N);
		delete[] X;
		return charp;
	}
	}
}

template <class Field, class Polynomial>
std::list<Polynomial>&
FFPACK::LUKrylov (const Field& F, std::list<Polynomial>& charp, const size_t N,
		 typename Field::Element * A, const size_t lda,
		 typename Field::Element * X, const size_t ldx){
	
	typedef typename Field::Element elt;
	elt* Ai, *Xi, *X2=X;
	static elt Mone, one, zero;
	F.init(zero,0.0);
	F.init(one, 1.0);
	F.neg(Mone,one);
	int Ncurr=N;
	charp.clear();
	int nbfac = 0;
	while (Ncurr > 0){
		size_t P[Ncurr];
		Polynomial minP;//=new Polynomial();
		MinPoly (F, minP, Ncurr, A, lda, X2, ldx, P);
		int k = minP.size()-1; // degre of minpoly
		if ((k==1) && F.isZero ((minP)[0])){ // minpoly is X
			Ai = A;
			int j = Ncurr*Ncurr;
			while (j-- && F.isZero(*(Ai++)));
			if (!j){ // A is 0, CharPoly=X^n
				minP.resize(Ncurr+1);
				(minP)[1] = zero;
				(minP)[Ncurr] = one;
				k=Ncurr;
			}
		}
		nbfac++;
		charp.push_front (minP);
		if (k==Ncurr){
			return charp;
		}
		size_t Nrest = Ncurr-k;
		elt * X21 = X2 + k*ldx;
		elt * X22 = X21 + k;
		// Compute the n-k last rows of A' = PA^tP^t in X2_
		// A = A . P^t
		applyP (F, FflasRight, FflasTrans, Ncurr, 0, k, A, lda, P);
		// Copy X2_ = (A'_2)^t
		for (Xi = X21, Ai = A+k; Xi != X21 + Nrest*ldx; Ai++, Xi+=ldx-Ncurr)
			for (size_t jj=0; jj<Ncurr*lda; jj+=lda)
				*(Xi++) = *(Ai+jj);
		// A = A . P : Undo the permutation on A
		applyP (F, FflasRight, FflasNoTrans, Ncurr, 0, k, A, lda, P);
		// X2_ = X2_ . P^t (=  (P A^t P^t)2_) 
		applyP (F, FflasRight, FflasTrans, Nrest, 0, k, X21, ldx, P);
		// X21 = X21 . S1^-1
		ftrsm(F, FflasRight, FflasUpper, FflasNoTrans, FflasUnit, Nrest, k,
		      one, X2, ldx, X21, ldx); 
		// Creation of the matrix A2 for recurise call 
		for (Xi = X22, Ai = A;
		     Xi != X22 + Nrest*ldx;
		     Xi += (ldx-Nrest), Ai += (lda-Nrest))
			for (size_t jj=0; jj<Nrest; ++jj)
				*(Ai++) = *(Xi++);
		fgemm (F, FflasNoTrans, FflasNoTrans, Nrest, Nrest, k, Mone,
		       X21, ldx, X2+k, ldx, one, A, lda);
		X2 = X22;
		Ncurr = Nrest;
	}
	return charp;
}

template <class Field, class Polynomial>
std::list<Polynomial>&
FFPACK::LUKrylov_KGFast (const Field& F, std::list<Polynomial>& charp, const size_t N,
			 typename Field::Element * A, const size_t lda,
			 typename Field::Element * X, const size_t ldx){
	
	typedef typename Field::Element elt;
	
	static elt Mone, one, zero;
	F.init(zero,0.0);
	F.init(one, 1.0);
	F.neg(Mone,one);
	size_t kg_mc, kg_mb, kg_j;
	
	if (!KGFast (F, charp, N, A, lda, &kg_mc, &kg_mb, &kg_j))
		return charp;
	else{// Matrix A is not generic
		Polynomial *minP = new Polynomial();
		const elt* Ai;
		elt* A2i, *Xi;
		size_t *P = new size_t[N];

		MinPoly (F, *minP, N, A, lda, X, ldx, P, FfpackKGF, kg_mc, kg_mb, kg_j);
		size_t k = minP->size()-1; // degre of minpoly
		if ((k==1) && F.isZero ((*minP)[0])){ // minpoly is X
			Ai = A;
			int j = N*N;
			while (j-- && F.isZero(*(Ai++)));
			if (!j){ // A is 0, CharPoly=X^n
				minP->resize(N+1);
				(*minP)[1] = zero;
				(*minP)[N] = one;
				k=N;
			}
		}
		
		if (k==N){
			charp.clear();
			charp.push_front(*minP); // CharPoly = MinPoly
			delete[] P;
			return charp;
		}

		size_t Nrest = N-k;
		elt * X21 = X + k*ldx;
		elt * X22 = X21 + k;
		
		// Creates the matrix A
		size_t lambda = MAX(0,N - kg_mc*(kg_j+1) - kg_mb); 
		size_t imax = kg_mc+kg_mb;
		// First Id
		for (size_t j = 0; j < lambda; ++j){
			for (size_t i=0; i<imax; ++i)
				F.assign (*(A+j+i*lda), zero);
			F.assign (*(A+j+imax*lda), one);
			for (size_t i=imax+1; i<N; ++i)
				F.assign (*(A+j+i*lda), zero);
			++imax;
		}
		// Column block B
		for (typename Field::Element* Ai=A; Ai<A+N*lda; Ai+=lda)
			fcopy (F, kg_mb, Ai+lambda, 1, Ai+N-kg_mc-kg_mb, 1);

		// Second Id block
		imax = N- kg_j*kg_mc;
		for (size_t j = 0; j< kg_j*kg_mc; ++j){
			for (size_t i = 0; i<imax; ++i)
				F.assign (*(A+lambda+kg_mb+j+i*lda), zero);
			F.assign (*(A+lambda+kg_mb+j+imax*lda), one);
			for (size_t i = imax+1; i<N; ++i)
				F.assign (*(A+lambda+kg_mb+j+i*lda), zero);
			++imax;
		}
		
		// Compute the n-k last rows of A' = PA^tP^t in X2_
		
		// A = P . A 
		applyP (F, FflasLeft, FflasNoTrans, N, 0, k, 
			const_cast<typename Field::Element* &>(A), lda, P);
		
		// Copy X2_ = (A'2_)
		for (Xi = X21, Ai = A+k*lda; Xi != X21 + Nrest*ldx; Ai+=lda-N, Xi+=ldx-N){
			for (size_t jj=0; jj<N; ++jj){
				*(Xi++) = *(Ai++);
			}
		}

		// A = P^t . A : Undo the permutation on A
		applyP (F, FflasLeft, FflasTrans, N, 0, k, 
			const_cast<typename Field::Element* &>(A), lda, P);
	
		// X2_ = X2_ . P^t (=  (P A P^t)2_) 
		applyP (F, FflasRight, FflasTrans, Nrest, 0, k, X21, ldx, P);

		// X21 = X21 . S1^-1
		ftrsm(F, FflasRight, FflasUpper, FflasNoTrans, FflasUnit, Nrest, k,
		      one, X, ldx, X21, ldx);  
	
		// Creation of the matrix A2 for recurise call 
		elt * A2 = new elt[Nrest*Nrest];
	
		for (Xi = X22, A2i = A2;
		     Xi != X22 + Nrest*ldx;
		     Xi += (ldx-Nrest)){
			for (size_t jj=0; jj<Nrest; ++jj){
				*(A2i++) = *(Xi++);
			}
		}
		fgemm (F, FflasNoTrans, FflasNoTrans, Nrest, Nrest, k, Mone,
		       X21, ldx, X+k, ldx, one, A2, Nrest);
	
		// Recursive call on X22
		LUKrylov_KGFast (F, charp, Nrest, A2, Nrest, X22, ldx);
		charp.push_front (*minP);
		delete[] P;
		delete[] A2;
		return charp;
	}
}