This file is indexed.

/usr/include/linbox/ffpack/ffpack.h is in liblinbox-dev 1.1.6~rc0-4.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
/* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */

/* ffpack.h
 * Copyright (C) 2005 Clement Pernet
 *
 * Written by Clement Pernet <Clement.Pernet@imag.fr>
 *
 * See COPYING for license information.
 */

#ifndef __FFPACK_H
#define __FFPACK_H

#ifdef _LINBOX_LINBOX_CONFIG_H
#include "linbox/fflas/fflas.h"
#else
#include "fflas.h"
#endif

#include <list>
#include <vector>

#ifdef _LINBOX_LINBOX_CONFIG_H
namespace LinBox{
#endif

// The use of the small size LQUP is currently disabled:
// need for a better handling of element base (double, float, generic) combined
// with different thresholds.
// TransPosed version has to be implemented too.
#define __FFPACK_LUDIVINE_CUTOFF 0
	
#define __FFPACK_CHARPOLY_THRESHOLD 30

	/**
	 * \brief Set of elimination based routines for dense linear algebra
	 * with matrices over finite prime field of characteristic less than 2^26.
	 *
	 *  This class only provides a set of static member functions.
	 *  No instantiation is allowed.
	 *
	 * It enlarges the set of BLAS routines of the class FFLAS, with higher 
	 * level routines based on elimination.
	 \ingroup ffpack
	 */

class FFPACK : public FFLAS {
	
	
public:
	enum FFPACK_LUDIVINE_TAG { FfpackLQUP=1,
				   FfpackSingular=2};
	
	enum FFPACK_CHARPOLY_TAG { FfpackLUK=1,
				   FfpackKG=2,
				   FfpackHybrid=3,
				   FfpackKGFast=4,
				   FfpackDanilevski=5,
				   FfpackArithProg=6,
				   FfpackKGFastG=7};
	
	class CharpolyFailed{};
	
	enum FFPACK_MINPOLY_TAG { FfpackDense=1,
				  FfpackKGF=2};

	/** 
	 * Computes the rank of the given matrix using a LQUP factorization.
	 * The input matrix is modified.
	 * @param M row dimension of the matrix
	 * @param N column dimension of the matrix
	 * @param A input matrix
	 * @param lda leading dimension of A
	 */
	/// using LQUP factorization.
	template <class Field>
	static size_t 
	Rank( const Field& F, const size_t M, const size_t N,
	      typename Field::Element * A, const size_t lda)
	{
		size_t *P = new size_t[N];
		size_t *Q = new size_t[M];
		size_t R = LUdivine (F, FflasNonUnit, FflasNoTrans, M, N,
				     A, lda, P, Q, FfpackLQUP);
		delete[] Q;
		delete[] P;
		return R;
 	}

	/**
	 * Returns true if the given matrix is singular.
	 * The method is a block elimination with early termination
	 * The input matrix is modified. 
	 * @param M row dimension of the matrix
	 * @param N column dimension of the matrix
	 * @param A input matrix
	 * @param lda leading dimension of A
	 */
	/// using LQUP factorization  with early termination. 
	template <class Field>
	static bool 
	IsSingular( const Field& F, const size_t M, const size_t N,
		    typename Field::Element * A, const size_t lda)
	{
		size_t *P = new size_t[N];
		size_t *Q = new size_t[M];
		bool singular  = !LUdivine (F, FflasNonUnit, FflasNoTrans, M, N,
					    A, lda, P, Q, FfpackSingular);
		
		delete[] P;
		delete[] Q;
		return singular;
 	}
	
	/**
	 * Returns the determinant of the given matrix.
	 * The method is a block elimination with early termination
	 * The input matrix is modified. 
	 * @param M row dimension of the matrix
	 * @param N column dimension of the matrix
	 * @param A input matrix
	 * @param lda leading dimension of A
	 */
	///  using LQUP factorization  with early termination. 
	template <class Field>
	static typename Field::Element
	Det( const Field& F, const size_t M, const size_t N,
	     typename Field::Element * A, const size_t lda){
		
		typename Field::Element det;
		bool singular;
		size_t *P = new size_t[N];
		size_t *Q = new size_t[M];
		singular  = !LUdivine (F, FflasNonUnit, FflasNoTrans,  M, N,
				       A, lda, P, Q, FfpackSingular);
		if (singular){
			F.init(det,0.0);
			delete[] P;
			delete[] Q; 
			return det;
		}
		else{
			F.init(det,1.0);
			typename Field::Element *Ai=A;
			for (; Ai < A+ M*lda+N; Ai+=lda+1 )
				F.mulin( det, *Ai );
			int count=0;
			for (size_t i=0;i<N;++i)
				if (P[i] != i) ++count;
				
			if ((count&1) == 1)
				F.negin(det);
		}
		delete[] P; 
		delete[] Q; 
		return det;
 	}

	/**
	 * Solve the system A X = B or X A = B, using the LQUP decomposition of A
	 * already computed inplace with LUdivine(FflasNoTrans, FflasNonUnit).
	 * Version for A square.
	 * If A is rank deficient, a solution is returned if the system is consistent,
	 * Otherwise an info is 1
	 * 
	 * @param Side Determine wheter the resolution is left or right looking.
	 * @param M row dimension of B
	 * @param N col dimension of B
	 * @param R rank of A
	 * @param A input matrix
	 * @param lda leading dimension of A
	 * @param P column permutation of the LQUP decomposition of A
 	 * @param Q column permutation of the LQUP decomposition of A
	 * @param B Right/Left hand side matrix. Initially stores B, finally stores the solution X.
	 * @param ldb leading dimension of B
	 * @info Succes of the computation: 0 if successfull, >0 if system is inconsistent
	 */
	template <class Field>
	static void
	fgetrs (const Field& F,
		const FFLAS_SIDE Side,
		const size_t M, const size_t N, const size_t R,
		typename Field::Element *A, const size_t lda,
		const size_t *P, const size_t *Q,
		typename Field::Element *B, const size_t ldb,
		int * info){

		static typename Field::Element zero, one, mone;
		F.init (zero, 0.0);
		F.init (one, 1.0);
		F.neg(mone, one);
		*info =0;
		if (Side == FflasLeft) { // Left looking solve A X = B
			
			solveLB2 (F, FflasLeft, M, N, R, A, lda, Q, B, ldb);

			applyP (F, FflasLeft, FflasNoTrans, N, 0, R, B, ldb, Q);

			bool consistent = true;
			for (size_t i = R; i < M; ++i)
				for (size_t j = 0; j < N; ++j)
					if (!F.isZero (*(B + i*ldb + j)))
						consistent = false;
			if (!consistent) {
				std::cerr<<"System is inconsistent"<<std::endl;
				*info = 1;
			}
			// The last rows of B are now supposed to be 0
			//			for (size_t i = R; i < M; ++i)
			// 				for (size_t j = 0; j < N; ++j)
			// 					*(B + i*ldb + j) = zero;

			ftrsm (F, FflasLeft, FflasUpper, FflasNoTrans, FflasNonUnit, 
			       R, N, one, A, lda , B, ldb);
			
			applyP (F, FflasLeft, FflasTrans, N, 0, R, B, ldb, P);
			
		} else { // Right Looking X A = B

			applyP (F, FflasRight, FflasTrans, M, 0, R, B, ldb, P);
			
			ftrsm (F, FflasRight, FflasUpper, FflasNoTrans, FflasNonUnit, 
			       M, R, one, A, lda , B, ldb);

			fgemm (F, FflasNoTrans, FflasNoTrans, M, N-R, R, one,
			       B, ldb, A+R, lda, mone, B+R, ldb);

			bool consistent = true;
			for (size_t i = 0; i < M; ++i)
				for (size_t j = R; j < N; ++j)
					if (!F.isZero (*(B + i*ldb + j)))
						consistent = false;
			if (!consistent) {
				std::cerr<<"System is inconsistent"<<std::endl;
				*info = 1;
			}
			// The last cols of B are now supposed to be 0

			applyP (F, FflasRight, FflasNoTrans, M, 0, R, B, ldb, Q);

			solveLB2 (F, FflasRight, M, N, R, A, lda, Q, B, ldb);
		}
	}
	
	/**
	 * Solve the system A X = B or X A = B, using the LQUP decomposition of A
	 * already computed inplace with LUdivine(FflasNoTrans, FflasNonUnit).
	 * Version for A rectangular.
	 * If A is rank deficient, a solution is returned if the system is consistent,
	 * Otherwise an info is 1
	 * 
	 * @param Side Determine wheter the resolution is left or right looking.
	 * @param M row dimension of A
	 * @param N col dimension of A
	 * @param NRHS number of columns (if Side = FflasLeft) or row (if Side = FflasRight) of the matrices X and B
	 * @param R rank of A
	 * @param A input matrix
	 * @param lda leading dimension of A
	 * @param P column permutation of the LQUP decomposition of A
 	 * @param Q column permutation of the LQUP decomposition of A
	 * @param X solution matrix
	 * @param ldx leading dimension of X
	 * @param B Right/Left hand side matrix. 
	 * @param ldb leading dimension of B
	 * @param info Succes of the computation: 0 if successfull, >0 if system is inconsistent
	 */
	template <class Field>
	static typename Field::Element *
	fgetrs (const Field& F,
		const FFLAS_SIDE Side,
		const size_t M, const size_t N, const size_t NRHS, const size_t R,
		typename Field::Element *A, const size_t lda,
		const size_t *P, const size_t *Q,
		typename Field::Element *X, const size_t ldx,
		const typename Field::Element *B, const size_t ldb,
		int * info) {

		static typename Field::Element zero, one, mone;
		F.init (zero, 0.0);
		F.init (one, 1.0);
		F.neg(mone, one);
		*info =0;
		
		typename Field::Element* W;
		size_t ldw;

		if (Side == FflasLeft) { // Left looking solve A X = B

			// Initializing X to 0 (to be optimized)
			for (size_t i = 0; i <N; ++i)
				for (size_t j=0; j< NRHS; ++j)
					F.assign (*(X+i*ldx+j), zero);

			if (M > N){ // Cannot copy B into X
				W = new typename Field::Element [M*NRHS];
				ldw = NRHS;
				for (size_t i=0; i < M; ++i)
					fcopy (F, NRHS, W + i*ldw, 1, B + i*ldb, 1);
			       
				solveLB2 (F, FflasLeft, M, NRHS, R, A, lda, Q, W, ldw);
				
				applyP (F, FflasLeft, FflasNoTrans, NRHS, 0, R, W, ldw, Q);

				bool consistent = true;
				for (size_t i = R; i < M; ++i)
					for (size_t j = 0; j < NRHS; ++j)
						if (!F.isZero (*(W + i*ldw + j)))
							consistent = false;
				if (!consistent) {
					std::cerr<<"System is inconsistent"<<std::endl;
					*info = 1;
					delete[] W;
					return X;
				}
				// Here the last rows of W are supposed to be 0
				
				ftrsm (F, FflasLeft, FflasUpper, FflasNoTrans, FflasNonUnit, 
				       R, NRHS, one, A, lda , W, ldw);
			
				for (size_t i=0; i < R; ++i)
					fcopy (F, NRHS, X + i*ldx, 1, W + i*ldw, 1);

				delete[] W;
				applyP (F, FflasLeft, FflasTrans, NRHS, 0, R, X, ldx, P);
				
			} else { // Copy B to X directly
				for (size_t i=0; i < M; ++i)
					fcopy (F, NRHS, X + i*ldx, 1, B + i*ldb, 1);
				
				solveLB2 (F, FflasLeft, M, NRHS, R, A, lda, Q, X, ldx);
				
				applyP (F, FflasLeft, FflasNoTrans, NRHS, 0, R, X, ldx, Q);

				bool consistent = true;
				for (size_t i = R; i < M; ++i)
					for (size_t j = 0; j < NRHS; ++j)
						if (!F.isZero (*(X + i*ldx + j)))
							consistent = false;
				if (!consistent) {
					std::cerr<<"System is inconsistent"<<std::endl;
					*info = 1;
					return X;
				}
				// Here the last rows of W are supposed to be 0
								
				ftrsm (F, FflasLeft, FflasUpper, FflasNoTrans, FflasNonUnit, 
				       R, NRHS, one, A, lda , X, ldx);
			
				applyP (F, FflasLeft, FflasTrans, NRHS, 0, R, X, ldx, P);
			}
			return X;
			
		} else { // Right Looking X A = B

			for (size_t i = 0; i <NRHS; ++i)
				for (size_t j=0; j< M; ++j)
					F.assign (*(X+i*ldx+j), zero);

			if (M < N) {
				W = new typename Field::Element [NRHS*N];
				ldw = N;
				for (size_t i=0; i < NRHS; ++i)
					fcopy (F, N, W + i*ldw, 1, B + i*ldb, 1);

				applyP (F, FflasRight, FflasTrans, NRHS, 0, R, W, ldw, P);
			
				ftrsm (F, FflasRight, FflasUpper, FflasNoTrans, FflasNonUnit, 
				       NRHS, R, one, A, lda , W, ldw);
				
				fgemm (F, FflasNoTrans, FflasNoTrans, NRHS, N-R, R, one,
				       W, ldw, A+R, lda, mone, W+R, ldw);

				bool consistent = true;
				for (size_t i = 0; i < NRHS; ++i)
					for (size_t j = R; j < N; ++j)
						if (!F.isZero (*(W + i*ldw + j)))
							consistent = false;
				if (!consistent) {
					std::cerr<<"System is inconsistent"<<std::endl;
					*info = 1;
					delete[] W;
					return X;
				}
				// The last N-R cols of W are now supposed to be 0
				for (size_t i=0; i < NRHS; ++i)
					fcopy (F, R, X + i*ldx, 1, W + i*ldb, 1);
				delete[] W;
				applyP (F, FflasRight, FflasNoTrans, NRHS, 0, R, X, ldx, Q);

				solveLB2 (F, FflasRight, NRHS, M, R, A, lda, Q, X, ldx);
				
			} else {
				for (size_t i=0; i < NRHS; ++i)
					fcopy (F, N, X + i*ldx, 1, B + i*ldb, 1);
				
				applyP (F, FflasRight, FflasTrans, NRHS, 0, R, X, ldx, P);
			
				ftrsm (F, FflasRight, FflasUpper, FflasNoTrans, FflasNonUnit, 
				       NRHS, R, one, A, lda , X, ldx);
				
				fgemm (F, FflasNoTrans, FflasNoTrans, NRHS, N-R, R, one,
				       X, ldx, A+R, lda, mone, X+R, ldx);

				bool consistent = true;
				for (size_t i = 0; i < NRHS; ++i)
					for (size_t j = R; j < N; ++j)
						if (!F.isZero (*(X + i*ldx + j)))
							consistent = false;
				if (!consistent) {
					std::cerr<<"System is inconsistent"<<std::endl;
					*info = 1;
					return X;
				}
				// The last N-R cols of W are now supposed to be 0

				applyP (F, FflasRight, FflasNoTrans, NRHS, 0, R, X, ldx, Q);
				
				solveLB2 (F, FflasRight, NRHS, M, R, A, lda, Q, X, ldx);
				
			}
			return X;
		}
	}
	/**
	 * @brief Square system solver
	 * @param Field The computation domain
	 * @param Side Determine wheter the resolution is left or right looking
	 * @param M row dimension of B
	 * @param N col dimension of B
	 * @param A input matrix
	 * @param lda leading dimension of A
	 * @param P column permutation of the LQUP decomposition of A
 	 * @param Q column permutation of the LQUP decomposition of A
	 * @param B Right/Left hand side matrix. Initially contains B, finally contains the solution X.
	 * @param ldb leading dimension of B
	 * @param info Success of the computation: 0 if successfull, >0 if system is inconsistent
 	 * @return the rank of the system
 	 * 
	 * Solve the system A X = B or X A = B.
	 * Version for A square.
	 * If A is rank deficient, a solution is returned if the system is consistent,
	 * Otherwise an info is 1
	 */
	template <class Field>
	static size_t 
	fgesv (const Field& F,
	       const FFLAS_SIDE Side,
	       const size_t M, const size_t N,
	       typename Field::Element *A, const size_t lda,
	       typename Field::Element *B, const size_t ldb,
	       int * info){

		size_t Na;
		if (Side == FflasLeft)
			Na = M;
		else
			Na = N;
		
		size_t* P = new size_t[Na];
		size_t* Q = new size_t[Na];

		size_t R = LUdivine (F, FflasNonUnit, FflasNoTrans, Na, Na, A, lda, P, Q, FfpackLQUP);

		fgetrs (F, Side, M, N, R, A, lda, P, Q, B, ldb, info);
		
		delete[] P;
		delete[] Q;

		return R;
	}
	
	/**
	 * @brief Rectangular system solver
	 * @param Field The computation domain
	 * @param Side Determine wheter the resolution is left or right looking
	 * @param M row dimension of A
	 * @param N col dimension of A
	 * @param NRHS number of columns (if Side = FflasLeft) or row (if Side = FflasRight) of the matrices X and B
	 * @param A input matrix
	 * @param lda leading dimension of A
	 * @param P column permutation of the LQUP decomposition of A
 	 * @param Q column permutation of the LQUP decomposition of A
	 * @param B Right/Left hand side matrix. Initially contains B, finally contains the solution X.
	 * @param ldb leading dimension of B
	 * @info Success of the computation: 0 if successfull, >0 if system is inconsistent
 	 * @return the rank of the system
 	 * 
	 * Solve the system A X = B or X A = B.
	 * Version for A square.
	 * If A is rank deficient, a solution is returned if the system is consistent,
	 * Otherwise an info is 1
	 */
	template <class Field>
	static size_t 
	fgesv (const Field& F,
	       const FFLAS_SIDE Side,
	       const size_t M, const size_t N, const size_t NRHS,
	       typename Field::Element *A, const size_t lda,
	       typename Field::Element *X, const size_t ldx,
	       const typename Field::Element *B, const size_t ldb,
	       int * info){

		size_t Nb,Mb;
		if (Side == FflasLeft){Nb = NRHS; Mb = N;}
		else {Nb = M; Mb = NRHS;}
		
		size_t* P = new size_t[N];
		size_t* Q = new size_t[M];

		size_t R = LUdivine (F, FflasNonUnit, FflasNoTrans, M, N, A, lda, P, Q, FfpackLQUP);

		fgetrs (F, Side, M, N, NRHS, R, A, lda, P, Q, X, ldx, B, ldb, info);
		
		delete[] P;
		delete[] Q;

		return R;
	}
	
	/**
	 * Solve the system Ax=b, using LQUP factorization and
	 * two triangular system resolutions.
	 * The input matrix is modified. 
	 * @param M row dimension of the matrix
	 * @param A input matrix
	 * @param lda leading dimension of A
	 * @param x solution vector
	 * @param incX increment of x
	 * @param b right hand side vector
	 * @param incB increment of b
	 */
	/// Solve linear system using LQUP factorization. 
	template <class Field>
	static typename Field::Element*
	Solve( const Field& F, const size_t M,
	       typename Field::Element * A, const size_t lda,
	       typename Field::Element * x, const int incx,
	       const typename Field::Element * b, const int incb ){
		typename Field::Element one, zero;
		F.init(one,1.0);
		F.init(zero,0.0);

		size_t *P = new size_t[M];
		size_t *rowP = new size_t[M];
		
		if (LUdivine( F, FflasNonUnit, FflasNoTrans, M, M, A, lda, P, rowP, FfpackLQUP) < M){
			std::cerr<<"SINGULAR MATRIX"<<std::endl;
			delete[] P; 
			delete[] rowP; 
			return x;
		}
		else{
			fcopy( F, M, x, incx, b, incb );
			
			ftrsv(F,  FflasLower, FflasNoTrans, FflasUnit, M, 
			      A, lda , x, incx);
			ftrsv(F,  FflasUpper, FflasNoTrans, FflasNonUnit, M, 
			      A, lda , x, incx);
			applyP( F, FflasRight, FflasTrans, M, 0, M, x, incx, P );
			delete[] rowP; 
			delete[] P; 

			return x;
		
		}
 	}
	
	/**
	 * Invert the given matrix in place
	 * or computes its nullity if it is singular.
	 * An inplace 2n^3 algorithm is used.
	 * @param M order of the matrix
	 * @param A input matrix
	 * @param lda leading dimension of A
	 * @param nullity dimension of the kernel of A
	 */
	/// Invert a matrix or return its nullity
	template <class Field>
	static typename Field::Element*
	Invert (const Field& F, const size_t M,
		typename Field::Element * A, const size_t lda,
		int& nullity){

		size_t * P = new size_t[M];
		size_t * Q = new size_t[M];
		size_t R =  ReducedColumnEchelonForm (F, M, M, A, lda, P, Q);
		nullity = M - R;
		applyP (F, FflasLeft, FflasTrans, M, 0, R, A, lda, P); 
		delete [] P;
		delete [] Q;
		return A;
	}

	template <class Field>
	static typename Field::Element*
	Invert (const Field& F, const size_t M,
		typename Field::Element * A, const size_t lda,
		typename Field::Element * X, const size_t ldx,
		int& nullity){
		
		Invert (F,  M, A, lda, nullity);
		for (size_t i=0; i<M; ++i)
			fcopy (F, M, X+i*ldx, 1, A+i*lda,1);
		return X;
		
	}
	/**
	 * Invert the given matrix or computes its nullity if it is singular.
	 * An 2n^3 algorithm is used.
	 * The input matrix is modified. 
	 * @param M order of the matrix
	 * @param A input matrix
	 * @param lda leading dimension of A
	 * @param X inverse of A
	 * @param ldx leading dimension of X
	 * @param nullity dimension of the kernel of A
	 */
	/// Invert a matrix or return its nullity
	template <class Field>
	static typename Field::Element*
	Invert2( const Field& F, const size_t M,
		 typename Field::Element * A, const size_t lda,
		 typename Field::Element * X, const size_t ldx,
		 int& nullity){
		
		typename Field::Element one, zero;
		F.init(one,1.0);
		F.init(zero,0.0);

		size_t *P = new size_t[M];
		size_t *rowP = new size_t[M];
		
		// Timer t1;
// 		t1.clear();
// 		t1.start();

		nullity = M - LUdivine( F, FflasNonUnit, FflasNoTrans, M, M, A, lda, P, rowP, FfpackLQUP);

// 		t1.stop();
		//cerr<<"LU --> "<<t1.usertime()<<endl;
		
		if (nullity > 0){
			delete[] P;
			delete[] rowP; 
			return NULL;
		} else {
			// Initializing X to 0
// 			t1.clear();
// 			t1.start();
			for (size_t i=0; i<M; ++i)
				for (size_t j=0; j<M;++j)
					F.assign(*(X+i*ldx+j), zero);

			// X = L^-1 in n^3/3
 			ftrtri (F, FflasLower, FflasUnit, M, A, lda);
			for (size_t i=0; i<M; ++i){
				for (size_t j=i; j<M; ++j)
					F.assign(*(X +i*ldx+j),zero);
				F.assign (*(X+i*(ldx+1)), one);
			}
			for (size_t i=1; i<M; ++i)
 				fcopy (F, i, (X+i*ldx), 1, (A+i*lda), 1);
// 			t1.stop();
			//cerr<<"U^-1 --> "<<t1.usertime()<<endl;

			//invL( F, M, A, lda, X, ldx );
		       // X = Q^-1.X is not necessary since Q = Id
			
 			// X = U^-1.X
// 			t1.clear();
//			t1.start();
			ftrsm( F, FflasLeft, FflasUpper, FflasNoTrans, FflasNonUnit, 
			       M, M, one, A, lda , X, ldx);
//			t1.stop();
			//cerr<<"ftrsm --> "<<t1.usertime()<<endl;

			// X = P^-1.X
			applyP( F, FflasLeft, FflasTrans, M, 0, M, X, ldx, P ); 
			
			delete[] P;
			delete[] rowP;
			return X;
		}	
 	}

	/** RowRankProfile
	 * Computes the row rank profile of A.
	 *
	 * @param A: input matrix of dimension 
	 * @param rklprofile: return the rank profile as an array of row indexes, of dimension r=rank(A)
	 *
	 * rkprofile is allocated during the computation.
	 * Returns R
	 */
	template <class Field>
	static size_t RowRankProfile (const Field& F, const size_t M, const size_t N,
				      typename Field::Element* A, const size_t lda, size_t* rkprofile){
		size_t *P = new size_t[N];
		size_t *Q = new size_t[M];
		size_t R;

		R = LUdivine (F, FflasNonUnit, FflasNoTrans, M, N, A, lda, P, Q);
		rkprofile = new size_t[R];

		for (size_t i=0; i<R; ++i)
			rkprofile[i] = Q[i];
		delete[] P;
		delete[] Q;
		return R;
	}

	/** ColumnRankProfile
	 * Computes the column rank profile of A.
	 *
	 * @param A: input matrix of dimension 
	 * @param rklprofile: return the rank profile as an array of row indexes, of dimension r=rank(A)
	 *
	 * A is modified 
	 * rkprofile is allocated during the computation.
	 * Returns R
	 */
	template <class Field>
	static size_t ColumnRankProfile (const Field& F, const size_t M, const size_t N,
					 typename Field::Element* A, const size_t lda, size_t* rkprofile){
		size_t *P = new size_t[N];
		size_t *Q = new size_t[M];
		size_t R;

		R = LUdivine (F, FflasNonUnit, FflasTrans, M, N, A, lda, P, Q);
		rkprofile = new size_t[R];

		for (size_t i=0; i<R; ++i)
			rkprofile[i] = Q[i];
		delete[] P;
		delete[] Q;
		return R;
	}

	/** RowRankProfileSubmatrixIndices
	 * Computes the indices of the submatrix r*r X of A whose rows correspond to
	 * the row rank profile of A.
	 *
	 * @param A: input matrix of dimension 
	 * @param rowindices: array of the row indices of X in A
	 * @param colindices: array of the col indices of X in A
	 *
	 * rowindices and colindices are allocated during the computation. 
	 * A is modified 
	 * Returns R
	 */
	template <class Field>
	static size_t RowRankProfileSubmatrixIndices (const Field& F,
						      const size_t M, const size_t N,
						      typename Field::Element* A,
						      const size_t lda,
						      size_t*& rowindices,
						      size_t*& colindices,
						      size_t& R){
		size_t *P = new size_t[N];
		size_t *Q = new size_t[M];

		R = LUdivine (F, FflasNonUnit, FflasNoTrans, M, N, A, lda, P, Q);
		rowindices = new size_t[M];
		colindices = new size_t[N];
		for (size_t i=0; i<R; ++i){
			rowindices [i] = Q [i];
		}
		for (size_t i=0; i<N; ++i)
			colindices [i] = i;
		size_t tmp;
		for (size_t i=0; i<R; ++i){
			if (i != P[i]){
				tmp = colindices[i];
				colindices[i] = colindices[P[i]];
				colindices[P[i]] = tmp;
			}
		}
				
		delete[] P;
		delete[] Q;

		return R;
	}

	/** ColRankProfileSubmatrixIndices
	 * Computes the indices of the submatrix r*r X of A whose columns correspond to
	 * the column rank profile of A.
	 *
	 * @param A: input matrix of dimension 
	 * @param rowindices: array of the row indices of X in A
	 * @param colindices: array of the col indices of X in A
	 *
	 * rowindices and colindices are allocated during the computation. 
	 * A is modified 
	 * Returns R
	 */
	template <class Field>
	static size_t ColRankProfileSubmatrixIndices (const Field& F,
						      const size_t M, const size_t N,
						      typename Field::Element* A,
						      const size_t lda,
						      size_t*& rowindices,
						      size_t*& colindices,
						      size_t& R){
		size_t *P = new size_t[M];
		size_t *Q = new size_t[N];

		R = LUdivine (F, FflasNonUnit, FflasTrans, M, N, A, lda, P, Q);
		rowindices = new size_t[M];
		colindices = new size_t[N];
		for (size_t i=0; i<R; ++i)
			colindices [i] = Q [i];

		for (size_t i=0; i<N; ++i)
			rowindices [i] = i;

		size_t tmp;
		for (size_t i=0; i<R; ++i){
			if (i != P[i]){
				tmp = rowindices[i];
				rowindices[i] = rowindices[P[i]];
				rowindices[P[i]] = tmp;
			}
		}
		delete[] P;
		delete[] Q;

		return R;
	}

	/** RowRankProfileSubmatrix
	 * Compute the r*r submatrix X of A, by picking the row rank profile rows of A
	 * 
	 * @param A: input matrix of dimension M x N
	 * @param X: the output matrix
	 *
	 * A is not modified
	 * X is allocated during the computation.
	 * Returns R
	 */
	template <class Field>
	static size_t RowRankProfileSubmatrix (const Field& F,
					       const size_t M, const size_t N,
					       typename Field::Element* A,
					       const size_t lda,
					       typename Field::Element*& X, size_t& R){
		
		size_t * rowindices, * colindices;

		typename Field::Element * A2 = MatCopy (F, M, N, A, lda);
		
		RowRankProfileSubmatrixIndices (F, M, N, A2, N, rowindices, colindices, R);

		X = new typename Field::Element[R*R];
		for (size_t i=0; i<R; ++i)
			for (size_t j=0; j<R; ++j)
				F.assign (*(X + i*R + j), *(A + rowindices[i]*lda + colindices[j]));
		delete[] A2;
		delete[] rowindices;
		delete[] colindices;
		return R;
	}


	/** ColRankProfileSubmatrix
	 * Compute the r*r submatrix X of A, by picking the row rank profile rows of A
	 * 
	 * @param A: input matrix of dimension M x N
	 * @param X: the output matrix
	 *
	 * A is not modified
	 * X is allocated during the computation.
	 * Returns R
	 */
	
	template <class Field>
	static size_t ColRankProfileSubmatrix (const Field& F, const size_t M, const size_t N,
					       typename Field::Element* A, const size_t lda,
					       typename Field::Element*& X, size_t& R){
		
		size_t * rowindices, * colindices;
		
		typename Field::Element * A2 = MatCopy (F, M, N, A, lda);
		
		ColRankProfileSubmatrixIndices (F, M, N, A2, N, rowindices, colindices, R);
		
		X = new typename Field::Element[R*R];
		for (size_t i=0; i<R; ++i)
			for (size_t j=0; j<R; ++j)
				F.assign (*(X + i*R + j), *(A + rowindices[i]*lda + colindices[j]));
		delete[] A2;
		delete[] colindices;
		delete[] rowindices;
		return R;
	}

	
	/** 
	 * LQUPtoInverseOfFullRankMinor
	 * Suppose A has been factorized as L.Q.U.P, with rank r.
	 * Then Qt.A.Pt has an invertible leading principal r x r submatrix
	 * This procedure efficiently computes the inverse of this minor and puts it into X.
	 * NOTE: It changes the lower entries of A_factors in the process (NB: unless A was nonsingular and square)
	 *
	 * @param rank:       rank of the matrix.
	 * @param A_factors:  matrix containing the L and U entries of the factorization
	 * @param QtPointer:  theLQUP->getQ()->getPointer() (note: getQ returns Qt!)
	 * @param X:          desired location for output
	 */
	template <class Field>
	static typename Field::Element*
	LQUPtoInverseOfFullRankMinor( const Field& F, const size_t rank,
				      typename Field::Element * A_factors, const size_t lda,
				      const size_t* QtPointer,
				      typename Field::Element * X, const size_t ldx){
		
		typename Field::Element one, zero;
		F.init(one,1.0);
		F.init(zero,0.0);

		// upper entries are okay, just need to move up bottom ones
		const size_t* srcRow = QtPointer;
		for (size_t row=0; row<rank; row++, srcRow++) 
			if (*srcRow != row) {
				typename Field::Element* oldRow = A_factors + (*srcRow) * lda;
				typename Field::Element* newRow = A_factors + row * lda;
				for (size_t col=0; col<row; col++, oldRow++, newRow++) 
					F.assign(*newRow, *oldRow); 
			}
		
		// X <- (Qt.L.Q)^(-1)
		//invL( F, rank, A_factors, lda, X, ldx); 
		ftrtri (F, FflasLower, FflasUnit, rank, A_factors, lda);
		for (size_t i=0; i<rank; ++i)
			fcopy (F, rank, A_factors+i*lda, 1, X+i*ldx,1);
		
		// X = U^-1.X
		ftrsm( F, FflasLeft, FflasUpper, FflasNoTrans, 
		       FflasNonUnit, rank, rank, one, A_factors, lda, X, ldx); 

		return X;
		
 	}
	

	//---------------------------------------------------------------------
	// TURBO: rank computation algorithm 
	//---------------------------------------------------------------------
	template <class Field>
	static size_t 
	TURBO (const Field& F, const size_t M, const size_t N,
	       typename Field::Element* A, const size_t lda, size_t * P, size_t * Q, const size_t cutoff);
		
	/** 
	 * Compute the LQUP factorization of the given matrix using
	 * a block agorithm and return its rank. 
	 * The permutations P and Q are represented
	 * using LAPACK's convention.
	 * @param Diag  precise whether U should have a unit diagonal or not
	 * @param M matrix row dimension
	 * @param N matrix column dimension
	 * @param A input matrix
	 * @param lda leading dimension of A
	 * @param P the column permutation
	 * @param Qt the transpose of the row permutation Q
	 * @param LuTag flag for setting the earling termination if the matrix
	 * is singular
	 */
	/// LQUP factorization.	
	template <class Field>
	static size_t 
	LUdivine (const Field& F, const FFLAS_DIAG Diag,  const FFLAS_TRANSPOSE trans,
		  const size_t M, const size_t N,
		  typename Field::Element * A, const size_t lda,
		  size_t* P, size_t* Qt,
		  const FFPACK_LUDIVINE_TAG LuTag=FfpackLQUP,
		  const size_t cutoff=__FFPACK_LUDIVINE_CUTOFF);

	
	template<class Element>
	class callLUdivine_small;
	
	template <class Field>
	static size_t 
	LUdivine_small (const Field& F, const FFLAS_DIAG Diag,  const FFLAS_TRANSPOSE trans,
			const size_t M, const size_t N,
			typename Field::Element * A, const size_t lda,
			size_t* P, size_t* Q, const FFPACK_LUDIVINE_TAG LuTag=FfpackLQUP);

	template <class Field>
	static size_t
	LUdivine_gauss (const Field& F, const FFLAS_DIAG Diag,
			const size_t M, const size_t N,
			typename Field::Element * A, const size_t lda,
			size_t* P, size_t* Q, const FFPACK_LUDIVINE_TAG LuTag=FfpackLQUP);
       	


	/**
	 * Compute the inverse of a triangular matrix.
	 * @param Uplo whether the matrix is upper of lower triangular
	 * @param Diag whether the matrix if unit diagonal
	 * 
	 */
	 template<class Field>
	 static void
	 ftrtri (const Field& F, const FFLAS_UPLO Uplo, const FFLAS_DIAG Diag,
		 const size_t N, typename Field::Element * A, const size_t lda){

		 static typename Field::Element one;
		 static typename Field::Element mone;
		 F.init(one,1.0);
		 F.init(mone,-1.0);
		 if (N == 1){
			 if (Diag == FflasNonUnit)
				 F.invin (*A);
		 } else {
			 size_t N1 = N/2;
			 size_t N2 = N - N1;
			 ftrtri (F, Uplo, Diag, N1, A, lda);
			 ftrtri (F, Uplo, Diag, N2, A + N1*(lda+1), lda);
			 if (Uplo == FflasUpper){
				 ftrmm (F, FflasLeft, Uplo, FflasNoTrans, Diag, N1, N2,
					one, A, lda, A + N1, lda);
				 ftrmm (F, FflasRight, Uplo, FflasNoTrans, Diag, N1, N2,
					mone, A + N1*(lda+1), lda, A + N1, lda);
			 } else {
				 ftrmm (F, FflasLeft, Uplo, FflasNoTrans, Diag, N2, N1,
					one, A + N1*(lda+1), lda, A + N1*lda, lda);
				 ftrmm (F, FflasRight, Uplo, FflasNoTrans, Diag, N2, N1,
					mone, A, lda, A + N1*lda, lda);
			 }
		 }
	 }


	/**
	 * Compute the product UL of the upper, resp lower triangular matrices U and L
	 * stored one above the other in the square matrix A.
	 * Diag == Unit if the matrix U is unit diagonal
	 * 
	 */
	template<class Field>
	static void
	ftrtrm (const Field& F, const FFLAS_DIAG diag, const size_t N,
		typename Field::Element * A, const size_t lda){
		
		typename Field::Element one;
		F.init(one,1.0);
		
		if (N == 1)
			return;
		size_t N1 = N/2;
		size_t N2 = N-N1;
		
		ftrtrm (F, diag, N1, A, lda);
		
		fgemm (F, FflasNoTrans, FflasNoTrans, N1, N1, N2, one,
		       A+N1, lda, A+N1*lda, lda, one, A, lda);
		
		ftrmm (F, FflasRight, FflasLower, FflasNoTrans, (diag == FflasUnit) ? FflasNonUnit : FflasUnit, N1, N2, one, A + N1*(lda+1), lda, A + N1, lda);
		
		ftrmm (F, FflasLeft, FflasUpper, FflasNoTrans, diag, N2, N1, one, A + N1*(lda+1), lda, A + N1*lda, lda);
		
		ftrtrm (F, diag, N2, A + N1*(lda+1), lda);
		
	}

	/**
	 * Compute the Column Echelon form of the input matrix in-place.
	 * 
	 * After the computation A = [ M \ V ] such that AU = C is a column echelon
	 * decomposition of A, with U = P^T [ V + Ir ] and C = M //+ Q [ Ir   ]
	 *                                  [ 0 In-r ]           //    [    0 ]
	 * Qt = Q^T
	 */
	template <class Field>
	static size_t
	ColumnEchelonForm (const Field& F, const size_t M, const size_t N,
			   typename Field::Element * A, const size_t lda,
			   size_t* P, size_t* Qt){

		typename Field::Element one, mone;
		F.init (one, 1.0);
		F.neg (mone, one);
		size_t r;

		// Timer t1;
// 		t1.clear();
// 		t1.start();
		r = LUdivine (F, FflasUnit, FflasNoTrans, M, N, A, lda, P, Qt);
		// t1.stop();
		//cerr<<"LU --> "<<t1.usertime()<<endl;
		
		// Timer t2;
// 		t2.clear();
// 		t2.start();
		ftrtri (F, FflasUpper, FflasUnit, r, A, lda);


		ftrmm (F, FflasLeft, FflasUpper, FflasNoTrans, FflasUnit, r, N-r,
		       mone, A, lda, A+r, lda);

		// t2.stop();
		//cerr<<"U^-1 --> "<<t2.usertime()<<endl;

		return r;
	}

	/**
	 * Compute the Row Echelon form of the input matrix in-place.
	 * 
	 * After the computation A = [ L \ M ] such that L A = R is a column echelon
	 * decomposition of A, with L =  [ L+Ir  0   ] P  and R = M
	 *                               [      In-r ]               
	 * Qt = Q^T
	 */
	template <class Field>
	static size_t
	RowEchelonForm (const Field& F, const size_t M, const size_t N,
			typename Field::Element * A, const size_t lda,
			size_t* P, size_t* Qt){

		typename Field::Element one, mone;
		F.init (one, 1.0);
		F.neg (mone, one);
		size_t r;

		// Timer t1;
// 		t1.clear();
// 		t1.start();
		r = LUdivine (F, FflasUnit, FflasTrans,  M, N, A, lda, P, Qt);
		// t1.stop();
		//cerr<<"LU --> "<<t1.usertime()<<endl;
		
		// Timer t2;
// 		t2.clear();
// 		t2.start();
		ftrtri (F, FflasLower, FflasUnit, r, A, lda);


		ftrmm (F, FflasRight, FflasLower, FflasNoTrans, FflasUnit, M-r, r,
		       mone, A, lda, A+r*lda, lda);

		// t2.stop();
		//cerr<<"U^-1 --> "<<t2.usertime()<<endl;

		return r;
	}

	/**
	 * Compute the Reduced Column Echelon form of the input matrix in-place.
	 * 
	 * After the computation A = [  V  ] such that AU = R is a reduced column echelon
	 *                           [ M 0 ]
	 * decomposition of A, where U = P^T [ V      ] and R = Q [ Ir   ]
	 *                                   [ 0 In-r ]           [ M  0 ]
	 * Qt = Q^T
	 */
	template <class Field>
	static size_t
	ReducedColumnEchelonForm (const Field& F, const size_t M, const size_t N,
				  typename Field::Element * A, const size_t lda,
				  size_t* P, size_t* Qt){
		
		typename Field::Element one, mone;
		F.init (one, 1.0);
		F.neg (mone, one);
		size_t r;

		r = ColumnEchelonForm (F, M, N, A, lda, P, Qt);
			
// 		Timer t1;
// 		t1.clear();
// 		t1.start();

		// M = Q^T M 
		for (size_t i=0; i<r; ++i){
			if ( Qt[i]> (size_t) i ){
				fswap( F, i+1, 
				       A + Qt[i]*lda, 1, 
				       A + i*lda, 1 );
			}
		}
		
		ftrtri (F, FflasLower, FflasNonUnit, r, A, lda);
		
		ftrmm (F, FflasRight, FflasLower, FflasNoTrans, FflasNonUnit, M-r, r,
		       one, A, lda, A+r*lda, lda);

		ftrtrm (F, FflasUnit, r, A, lda);
// 		t1.stop();
		//cerr<<"U^-1L^-1 --> "<<t1.usertime()<<endl;	   
		
		return r;

	}

	/**
	 * Compute the Reduced Row Echelon form of the input matrix in-place.
	 * 
	 * After the computation A = [  V  ] such that L A = R is a reduced row echelon
	 *                           [ M 0 ]
	 * decomposition of A, where L =  [ V      ] P^T and R =  [ Ir M  ] Q
	 *                                [ 0 In-r ]              [ 0     ]
	 * Qt = Q^T
	 */
	template <class Field>
	static size_t
	ReducedRowEchelonForm (const Field& F, const size_t M, const size_t N,
			       typename Field::Element * A, const size_t lda,
			       size_t* P, size_t* Qt){
		
		typename Field::Element one, mone;
		F.init (one, 1.0);
		F.neg (mone, one);
		size_t r;

		r = RowEchelonForm (F, M, N, A, lda, P, Qt);
			
// 		Timer t1;
// 		t1.clear();
// 		t1.start();
		// M = M Q^T 
		for (int i=0; i<r; ++i){
			if ( Qt[i]> (size_t) i ){
				fswap( F, i+1, 
				       A + Qt[i], lda, 
				       A + i, lda );
			}
		}
		
		ftrtri (F, FflasUpper, FflasNonUnit, r, A, lda);
		
		ftrmm (F, FflasLeft, FflasUpper, FflasNoTrans, FflasNonUnit, r, N-r,
		       one, A, lda, A+r, lda);
		
		ftrtrm (F, FflasNonUnit, r, A, lda);
		
// 		t1.stop();
		//cerr<<"U^-1L^-1 --> "<<t1.usertime()<<endl;	   
		
		return r;

	}
	
	/** Apply a permutation submatrix of P (between ibeg and iend) to a matrix
	 * to (iend-ibeg) vectors of size M stored in A (as column for NoTrans 
	 * and rows for Trans)
	 * Side==FflasLeft for row permutation Side==FflasRight for a column 
	 * permutation
	 * Trans==FflasTrans for the inverse permutation of P
	 */
	template<class Field>
	static void 
	applyP( const Field& F, 
		const FFLAS_SIDE Side,
		const FFLAS_TRANSPOSE Trans,
		const size_t M, const int ibeg, const int iend,
		typename Field::Element * A, const size_t lda, const size_t * P ){
		
		if ( Side == FflasRight )
			if ( Trans == FflasTrans ){
				for ( size_t i=ibeg; i<(size_t) iend; ++i){
					if ( P[i]> i )
						fswap( F, M, 
						       A + P[i]*1, lda, 
						       A + i*1, lda );
				}
			}
			else{ // Trans == FflasNoTrans
				for (int i=iend-1; i>=ibeg; --i){
					if ( P[i]>(size_t)i ){
						fswap( F, M, 
						       A + P[i]*1, lda, 
						       A + i*1, lda );
					}
				}
			}
		else // Side == FflasLeft
			if ( Trans == FflasNoTrans ){
				for (size_t i=ibeg; i<(size_t)iend; ++i){
					if ( P[i]> (size_t) i )
						fswap( F, M, 
						       A + P[i]*lda, 1, 
						       A + i*lda, 1 );
				}
			}
			else{ // Trans == FflasTrans
				for (int i=iend-1; i>=ibeg; --i){
					if ( P[i]> (size_t) i ){
						fswap( F, M, 
						       A + P[i]*lda, 1, 
						       A + i*lda, 1 );
					}
				}
			}
			
	}
	
	/**
	 * Compute the characteristic polynomial of A using Krylov
	 * Method, and LUP factorization of the Krylov matrix
	 */
	template <class Field, class Polynomial>
	static std::list<Polynomial>&
	CharPoly( const Field& F, std::list<Polynomial>& charp, const size_t N,
		  typename Field::Element * A, const size_t lda,
		  const FFPACK_CHARPOLY_TAG CharpTag= FfpackLUK);
	
	/**
	 * Compute the minimal polynomial of (A,v) using an LUP 
	 * factorization of the Krylov Base (v, Av, .., A^kv)
	 * U,X must be (n+1)*n
	 * U contains the Krylov matrix and X, its LSP factorization
	 */
	template <class Field, class Polynomial>
	static Polynomial&
	MinPoly( const Field& F, Polynomial& minP, const size_t N,
		 const typename Field::Element *A, const size_t lda,
		 typename Field::Element* X, const size_t ldx, size_t* P,
		 const FFPACK_MINPOLY_TAG MinTag,
		 const size_t kg_mc, const size_t kg_mb, const size_t kg_j );


	// Solve L X = B or X L = B in place
	// L is M*M if Side == FflasLeft and N*N if Side == FflasRight, B is M*N.
	// Only the R non trivial column of L are stored in the M*R matrix L
	// Requirement :  so that L could  be expanded in-place
	template<class Field>
	static void
	solveLB( const Field& F, const FFLAS_SIDE Side,
		 const size_t M, const size_t N, const size_t R, 
		 typename Field::Element * L, const size_t ldl, 
		 const size_t * Q,
		 typename Field::Element * B, const size_t ldb ){
		
		typename Field::Element one, zero;
		F.init(one, 1.0);
		F.init(zero, 0.0);
		size_t LM = (Side == FflasRight)?N:M;
		for (int i=R-1; i>=0; --i){
			if (  Q[i] > (size_t) i){
				//for (size_t j=0; j<=Q[i]; ++j)
				//F.init( *(L+Q[i]+j*ldl), 0 );
				//std::cerr<<"1 deplacement "<<i<<"<-->"<<Q[i]<<endl;
				fcopy( F, LM-Q[i]-1, L+Q[i]*(ldl+1)+ldl,ldl, L+(Q[i]+1)*ldl+i, ldl );
				for ( size_t j=Q[i]*ldl; j<LM*ldl; j+=ldl)
					F.assign( *(L+i+j), zero );
			}
		}
		ftrsm( F, Side, FflasLower, FflasNoTrans, FflasUnit, M, N, one, L, ldl , B, ldb);
		//write_field(F,std::cerr<<"dans solveLB "<<endl,L,N,N,ldl);
		// Undo the permutation of L
		for (size_t i=0; i<R; ++i){
			if ( Q[i] > (size_t) i){
				//for (size_t j=0; j<=Q[i]; ++j)
				//F.init( *(L+Q[i]+j*ldl), 0 );
				fcopy( F, LM-Q[i]-1, L+(Q[i]+1)*ldl+i, ldl, L+Q[i]*(ldl+1)+ldl,ldl );
				for ( size_t j=Q[i]*ldl; j<LM*ldl; j+=ldl)
					F.assign( *(L+Q[i]+j), zero );
			}
		} 
	}
	
	// Solve L X = B in place
	// L is M*M or N*N, B is M*N.
	// Only the R non trivial column of L are stored in the M*R matrix L
	template<class Field>
	static void
	solveLB2( const Field& F, const FFLAS_SIDE Side,
		  const size_t M, const size_t N, const size_t R, 
		  typename Field::Element * L, const size_t ldl, 
		  const size_t * Q,
		  typename Field::Element * B, const size_t ldb ){
		

		
		typename Field::Element Mone, one;
		F.init( Mone, -1.0 );
		F.init( one, 1.0 );
		typename Field::Element * Lcurr,* Rcurr,* Bcurr;
		size_t ib,  Ldim;
		int k;
		if ( Side == FflasLeft ){
			size_t j = 0;
			while ( j<R ) {
				k = ib = Q[j];
				while ((j<R) && ( (int) Q[j] == k)  ) {k++;j++;}
				Ldim = k-ib;
				Lcurr = L + j-Ldim + ib*ldl;
				Bcurr = B + ib*ldb;
				Rcurr = Lcurr + Ldim*ldl;

				ftrsm( F, Side, FflasLower, FflasNoTrans, FflasUnit, Ldim, N, one,
				       Lcurr, ldl , Bcurr, ldb );

				fgemm( F, FflasNoTrans, FflasNoTrans, M-k, N, Ldim, Mone,
				       Rcurr , ldl, Bcurr, ldb, one, Bcurr+Ldim*ldb, ldb);
			}
		}
		else{ // Side == FflasRight
			int j=R-1;
			while ( j >= 0 ) {
				k = ib = Q[j];
				while ( (j >= 0) &&  ( (int)Q[j] == k)  ) {--k;--j;}
				Ldim = ib-k;
				Lcurr = L + j+1 + (k+1)*ldl;
				Bcurr = B + ib+1;
				Rcurr = Lcurr + Ldim*ldl;

				fgemm (F, FflasNoTrans, FflasNoTrans, M,  Ldim, N-ib-1, Mone,
				       Bcurr, ldb, Rcurr, ldl,  one, Bcurr-Ldim, ldb);

				ftrsm (F, Side, FflasLower, FflasNoTrans, FflasUnit, M, Ldim, one,
				       Lcurr, ldl , Bcurr-Ldim, ldb );
			}
		}
	}


	template<class Field>
	static void trinv_left( const Field& F, const size_t N, const typename Field::Element * L, const size_t ldl,
				typename Field::Element * X, const size_t ldx ){
		for (size_t i=0; i<N; ++i)
			fcopy (F, N, X+i*ldx, 1, L+i*ldl, 1);
		ftrtri (F, FflasLower, FflasUnit, N, X, ldx);
		//invL(F,N,L,ldl,X,ldx);
	}
	
	template <class Field>
	static size_t KrylovElim( const Field& F, const size_t M, const size_t N,		
				  typename Field::Element * A, const size_t lda, size_t*P, 
				  size_t *Q, const size_t deg, size_t *iterates, size_t * inviterates, const size_t maxit,size_t virt);

	template <class Field>
	static size_t  SpecRankProfile (const Field& F, const size_t M, const size_t N,
					typename Field::Element * A, const size_t lda, const size_t deg, size_t *rankProfile);
	template <class Field, class Polynomial>
	static std::list<Polynomial>&
	CharpolyArithProg (const Field& F, std::list<Polynomial>& frobeniusForm, 
			   const size_t N, typename Field::Element * A, const size_t lda, const size_t c);

	template <class Field>
	static void CompressRows (Field& F, const size_t M,
				  typename Field::Element * A, const size_t lda,
				  typename Field::Element * tmp, const size_t ldtmp,
				  const size_t * d, const size_t nb_blocs);

	template <class Field>
	static void CompressRowsQK (Field& F, const size_t M,
				  typename Field::Element * A, const size_t lda,
				  typename Field::Element * tmp, const size_t ldtmp,
				  const size_t * d,const size_t deg, const size_t nb_blocs);

	template <class Field>
	static void DeCompressRows (Field& F, const size_t M, const size_t N,
					    typename Field::Element * A, const size_t lda,
					    typename Field::Element * tmp, const size_t ldtmp,
					    const size_t * d, const size_t nb_blocs);
	template <class Field>
	static void DeCompressRowsQK (Field& F, const size_t M, const size_t N,
					    typename Field::Element * A, const size_t lda,
					    typename Field::Element * tmp, const size_t ldtmp,
					    const size_t * d, const size_t deg, const size_t nb_blocs);
	
	template <class Field>
	static void CompressRowsQA (Field& F, const size_t M,
					    typename Field::Element * A, const size_t lda,
					    typename Field::Element * tmp, const size_t ldtmp,
					    const size_t * d, const size_t nb_blocs);
	template <class Field>
	static void DeCompressRowsQA (Field& F, const size_t M, const size_t N,
					      typename Field::Element * A, const size_t lda,
					      typename Field::Element * tmp, const size_t ldtmp,
					      const size_t * d, const size_t nb_blocs);
	

protected:
	
	
	// Subroutine for Keller-Gehrig charpoly algorithm
	// Compute the new d after a LSP ( d[i] can be zero )
	template<class Field>
	static size_t 
	newD( const Field& F, size_t * d, bool& KeepOn,
	      const size_t l, const size_t N, 
	      typename Field::Element * X,
	      const size_t* Q,
	      std::vector<std::vector<typename Field::Element> >& minpt);

	template<class Field>
	static size_t
	updateD(const Field& F, size_t * d, size_t k,
		std::vector<std::vector<typename Field::Element> >& minpt );
	
	//---------------------------------------------------------------------
	// RectangleCopyTURBO: Copy A to T, with respect to the row permutation 
	//                     defined by the lsp factorization of located in 
	//                     A-dist2pivot
	//---------------------------------------------------------------------
	template <class Field>
	static void
	RectangleCopyTURBO( const Field& F, const size_t M, const size_t N, 
		       const size_t dist2pivot, const size_t rank,
		       typename Field::Element * T, const size_t ldt, 
		       const typename Field::Element * A, const size_t lda ){

		const typename Field::Element * Ai = A;
		typename Field::Element * T1i = T, T2i = T + rank*ldt;
		size_t x = dist2pivot;
		for (; Ai<A+M*lda; Ai+=lda){
			while ( F.isZero(*(Ai-x)) ) { // test if the pivot is 0
				fcopy( F, N, T2i, 1, Ai, 1);
				Ai += lda;
				T2i += ldt;
			}
			fcopy( F, N, T1i, 1, Ai, 1);
			T1i += ldt;
			x--;
		}
	}

	

	//---------------------------------------------------------------------
	// LUdivine_construct: (Specialisation of LUdivine)
	// LUP factorisation of X, the Krylov base matrix of A^t and v, in A.
	// X contains the nRowX first vectors v, vA, .., vA^{nRowX-1}
	// A contains the LUP factorisation of the nUsedRowX first row of X.
	// When all rows of X have been factorized in A, and rank is full,
	// then X is updated by the following scheme: X <= ( X; X.B ), where
	// B = A^2^i.
	// This enables to make use of Matrix multiplication, and stop computing
	// Krylov vector, when the rank is not longer full.
	// P is the permutation matrix stored in an array of indexes
	//---------------------------------------------------------------------
	
	template <class Field>
	static size_t
	LUdivine_construct( const Field& F, const FFLAS_DIAG Diag,
			    const size_t M, const size_t N,
			    const typename Field::Element * A, const size_t lda,
			    typename Field::Element * X, const size_t ldx,
			    typename Field::Element * u, size_t* P,
			    bool computeX, const FFPACK_MINPOLY_TAG MinTag,
			    const size_t kg_mc, const size_t kg_mb, const size_t kg_j );
		
	template <class Field, class Polynomial>
	static std::list<Polynomial>&
	KellerGehrig( const Field& F, std::list<Polynomial>& charp, const size_t N,
		      const typename Field::Element * A, const size_t lda );

	template <class Field, class Polynomial>
	static int
	KGFast ( const Field& F, std::list<Polynomial>& charp, const size_t N,
		 typename Field::Element * A, const size_t lda, 
		 size_t * kg_mc, size_t* kg_mb, size_t* kg_j );

	template <class Field, class Polynomial>
	static std::list<Polynomial>&
	KGFast_generalized (const Field& F, std::list<Polynomial>& charp, 
			    const size_t N,
			    typename Field::Element * A, const size_t lda);


	template<class Field>
	static void 
	fgemv_kgf( const Field& F,  const size_t N, 
		   const typename Field::Element * A, const size_t lda,
		   const typename Field::Element * X, const size_t incX,
		   typename Field::Element * Y, const size_t incY, 
		   const size_t kg_mc, const size_t kg_mb, const size_t kg_j );

	template <class Field, class Polynomial>
	static std::list<Polynomial>& 
	LUKrylov( const Field& F, std::list<Polynomial>& charp, const size_t N,
		  typename Field::Element * A, const size_t lda,
		  typename Field::Element * U, const size_t ldu);
	
	template <class Field, class Polynomial>
	static std::list<Polynomial>&
	Danilevski (const Field& F, std::list<Polynomial>& charp, 
		    const size_t N, typename Field::Element * A, const size_t lda);
		
	template <class Field, class Polynomial>
	static std::list<Polynomial>&
	LUKrylov_KGFast( const Field& F, std::list<Polynomial>& charp, const size_t N,
			 typename Field::Element * A, const size_t lda,
			 typename Field::Element * X, const size_t ldx);
};

#include "ffpack_ludivine.inl"
#include "ffpack_minpoly.inl"
#include "ffpack_charpoly_kglu.inl"
#include "ffpack_charpoly_kgfast.inl"
#include "ffpack_charpoly_kgfastgeneralized.inl"
#include "ffpack_charpoly_danilevski.inl"
#include "ffpack_charpoly.inl"
#include "ffpack_krylovelim.inl"
#include "ffpack_frobenius.inl"
#ifdef _LINBOX_LINBOX_CONFIG_H
}
#endif
#endif // __FFPACK_H