/usr/include/linbox/fflas/fflas_bounds.inl is in liblinbox-dev 1.1.6~rc0-4.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 | /* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */
/* fflas/fflas_bounds.inl
* Copyright (C) 2008 Clement Pernet
*
* Written by Clement Pernet <Clement.Pernet@imag.fr>
*
* See COPYING for license information.
*/
#ifdef _LINBOX_LINBOX_CONFIG_H
#define FFLAS_INT_TYPE Integer
#else
#define FFLAS_INT_TYPE long unsigned int
#endif
/**
* MatMulParameters
*
* \brief Computes the threshold parameters for the cascade
* Matmul algorithm
*
*
* \param F Finite Field/Ring of the computation.
* \param k Common dimension of A and B, in the product A x B
* \param bet Computing AB + beta C
* \param delayedDim Returns the size of blocks that can be multiplied
* over Z with no overflow
* \param base Returns the type of BLAS representation to use
* \param winoRecLevel Returns the number of recursion levels of
* Strassen-Winograd's algorithm to perform
* \param winoLevelProvided tells whether the user forced the number of
* recursive level of Winograd's algorithm
*/
template <class Field>
inline void FFLAS::MatMulParameters (const Field& F,
const size_t k,
const typename Field::Element& beta,
size_t& delayedDim,
FFLAS_BASE& base,
size_t& winoRecLevel,
bool winoLevelProvided) {
// Strategy : determine Winograd's recursion first, then choose appropriate
// floating point representation, and finally the blocking dimension.
// Can be improved for some cases.
if (!winoLevelProvided)
winoRecLevel = WinoSteps (k);
base = BaseCompute (F, winoRecLevel);
delayedDim = DotProdBound (F, winoRecLevel, beta, base);
size_t n = k;
size_t winoDel = winoRecLevel;
// Computes the delayedDim, only depending on the recursive levels
// that must be performed over Z
while (winoDel > 0 && delayedDim < n) {
winoDel--;
delayedDim = DotProdBound (F, winoDel, beta, base);
n >>= 1;
}
delayedDim = MIN (n, delayedDim);
}
/**
* DotProdBound
*
* \brief computes the maximal size for delaying the modular reduction
* in a dotproduct
*
* This is the default version assuming a conversion to a positive modular representation
*
* \param F Finite Field/Ring of the computation
* \param winoRecLevel Number of recusrive Strassen-Winograd levels (if any, 0 otherwise)
* \param beta Computing AB + beta C
* \param base Type of floating point representation for delayed modular computations
*
*/
template <class Field>
inline size_t FFLAS::DotProdBound (const Field& F,
const size_t w,
const typename Field::Element& beta,
const FFLAS_BASE base) {
FFLAS_INT_TYPE p;
F.characteristic(p);
typename Field::Element mone;
F.init (mone, -1.0);
unsigned long mantissa =
(base == FflasDouble) ? DOUBLE_MANTISSA : FLOAT_MANTISSA;
if (p == 0)
return 1;
double kmax;
if (w > 0) {
double c = computeFactor (F,w);
double d = (double (1ULL << mantissa) /(c*c) + 1);
if (d < 2)
return 1;
kmax = floor (d * (1ULL << w));
} else {
////// A fixer: (p-1)/2 si balanced
double c = p-1;
double cplt=0;
if (!F.isZero (beta)){
if (F.isOne (beta) || F.areEqual (beta, mone)) cplt = c;
else cplt = c*c;
}
kmax = floor ( (double ((1ULL << mantissa) - cplt)) / (c*c));
if (kmax <= 1)
return 1;
}
//kmax--; // we computed a strict upper bound
return (size_t) MIN (kmax, 1ULL << 31);
}
/**
* Internal function for the bound computation
* Generic implementation for positive representations
*/
template <class Field>
inline double FFLAS::computeFactor (const Field& F, const size_t w){
FFLAS_INT_TYPE p;
F.characteristic(p);
size_t ex=1;
for (size_t i=0; i < w; ++i) ex *= 3;
return double(p - 1) * (1 + ex) / 2;
}
/**
* WinoSteps
*
* \brief Computes the number of recursive levels to perform
*
* \param m the common dimension in the product AxB
*
*/
inline size_t FFLAS::WinoSteps (const size_t m) {
size_t w = 0;
size_t mt = m;
while (mt >= WINOTHRESHOLD) {w++; mt >>= 1;}
return w;
}
/**
* BaseCompute
*
* \brief Determines the type of floating point representation to convert to,
* for BLAS computations
* \param F Finite Field/Ring of the computation
* \param w Number of recursive levels in Winograd's algorithm
*
*/
template <class Field>
inline FFLAS::FFLAS_BASE FFLAS::BaseCompute (const Field& F, const size_t w){
FFLAS_INT_TYPE pi;
F.characteristic(pi);
FFLAS_BASE base;
switch (w) {
case 0: base = (pi < FLOAT_DOUBLE_THRESHOLD_0)? FflasFloat : FflasDouble;
break;
case 1: base = (pi < FLOAT_DOUBLE_THRESHOLD_1)? FflasFloat : FflasDouble;
break;
case 2: base = (pi < FLOAT_DOUBLE_THRESHOLD_2)? FflasFloat : FflasDouble;
break;
default: base = FflasDouble;
break;
}
return base;
}
/*************************************************************************************
* Specializations for ModularPositive and ModularBalanced over double and float
*************************************************************************************/
template <class Element>
inline double computeFactor (const ModularBalanced<Element>& F, const size_t w){
FFLAS_INT_TYPE p;
F.characteristic(p);
size_t ex=1;
for (size_t i=0; i < w; ++i) ex *= 3;
return (p - 1) * ex / 2;
}
template <>
inline FFLAS::FFLAS_BASE FFLAS::BaseCompute (const Modular<double>& F,
const size_t w){
return FflasDouble;
}
template <>
inline FFLAS::FFLAS_BASE FFLAS::BaseCompute (const Modular<float>& F,
const size_t w){
return FflasFloat;
}
template <>
inline FFLAS::FFLAS_BASE FFLAS::BaseCompute (const ModularBalanced<double>& F,
const size_t w){
return FflasDouble;
}
template <>
inline FFLAS::FFLAS_BASE FFLAS::BaseCompute (const ModularBalanced<float>& F,
const size_t w){
return FflasFloat;
}
/**
* TRSMBound
*
* \brief computes the maximal size for delaying the modular reduction
* in a triangular system resolution
*
* This is the default version over an arbitrary field.
* It is currently never used (the recursive algorithm is run until n=1 in this case)
*
* \param F Finite Field/Ring of the computation
*
*/
template <class Field>
inline size_t FFLAS::TRSMBound (const Field& F) {
return 1;
}
/**
* Specialization for positive modular representation over double
* Computes nmax s.t. (p-1)/2*(p^{nmax-1} + (p-2)^{nmax-1}) < 2^53
* See [Dumas Giorgi Pernet 06, arXiv:cs/0601133]
*/
template<>
inline size_t FFLAS::TRSMBound (const Modular<double>& F){
FFLAS_INT_TYPE pi;
F.characteristic(pi);
FFLAS_INT_TYPE p = pi, p1 = 1, p2 = 1;
size_t nmax = 0;
FFLAS_INT_TYPE max = ( (FFLAS_INT_TYPE)(1ULL << (DOUBLE_MANTISSA + 1) ) / (p - 1));
while ( (p1 + p2) < max ){
p1*=p;
p2*=p-2;
nmax++;
}
return nmax;
}
/**
* Specialization for positive modular representation over float
* Computes nmax s.t. (p-1)/2*(p^{nmax-1} + (p-2)^{nmax-1}) < 2^24
* See [Dumas Giorgi Pernet 06, arXiv:cs/0601133]
*/
template<>
inline size_t FFLAS::TRSMBound (const Modular<float>& F){
FFLAS_INT_TYPE pi;
F.characteristic(pi);
FFLAS_INT_TYPE p = pi, p1 = 1, p2 = 1;
size_t nmax = 0;
FFLAS_INT_TYPE max = ( (FFLAS_INT_TYPE)(1ULL << (FLOAT_MANTISSA + 1) ) / (p - 1));
while ( (p1 + p2) < max ){
p1*=p;
p2*=p-2;
nmax++;
}
return nmax;
}
/**
* Specialization for balanced modular representation over double
* Computes nmax s.t. (p-1)/2*(((p+1)/2)^{nmax-1}) < 2^53
* See [Dumas Giorgi Pernet 06, arXiv:cs/0601133]
*/
template<>
inline size_t FFLAS::TRSMBound (const ModularBalanced<double>& F){
FFLAS_INT_TYPE pi;
F.characteristic (pi);
FFLAS_INT_TYPE p = (pi + 1) / 2, p1 = 1;
size_t nmax = 0;
FFLAS_INT_TYPE max = ((FFLAS_INT_TYPE)(1ULL << (DOUBLE_MANTISSA + 1)) / ((FFLAS_INT_TYPE)(p - 1)));
while (p1 < max){
p1 *= p;
nmax++;
}
return nmax;
}
/**
* Specialization for balanced modular representation over float
* Computes nmax s.t. (p-1)/2*(((p+1)/2)^{nmax-1}) < 2^24
* See [Dumas Giorgi Pernet 06, arXiv:cs/0601133]
*/
template<>
inline size_t FFLAS::TRSMBound (const ModularBalanced<float>& F){
FFLAS_INT_TYPE pi;
F.characteristic (pi);
FFLAS_INT_TYPE p = (pi + 1) / 2, p1 = 1;
size_t nmax = 0;
FFLAS_INT_TYPE max = ((FFLAS_INT_TYPE)(1ULL << (FLOAT_MANTISSA + 1)) / ((FFLAS_INT_TYPE) (pi - 1)));
while (p1 < max){
p1 *= p;
nmax++;
}
return nmax;
}
|