This file is indexed.

/usr/include/linbox/blackbox/diagonal.h is in liblinbox-dev 1.1.6~rc0-4.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
/* -*- mode: C++; tab-width: 4; indent-tabs-mode: t; c-basic-offset: 4 -*- */

/* linbox/blackbox/diagonal.h
 * Copyright (C) 1999-2001 William J Turner,
 *               2001 Bradford Hovinen
 *
 * Written by William J Turner <wjturner@math.ncsu.edu>,
 *            Bradford Hovinen <hovinen@cis.udel.edu>
 *
 * ------------------------------------
 * Modified by Dmitriy Morozov <linbox@foxcub.org>. May 28, 2002.
 *
 * Added parametrization of VectorCategory tags by VectorTraits. See 
 * vector-traits.h for more details.
 * 
 * ------------------------------------
 *
 * See COPYING for license information.
 */
#ifndef __DIAGONAL_H
#define __DIAGONAL_H

#include <vector>
#include "linbox/vector/vector-traits.h"
#include "linbox/util/debug.h"
#include "linbox/linbox-config.h"
#include "linbox/field/hom.h"

// Namespace in which all LinBox library code resides
namespace LinBox
{

	/** 
	 * \brief Random diagonal matrices are used heavily as preconditioners.

	 * This is a class of n by n diagonal matrices templatized by the 
	 * field in 
	 * which the elements reside.  The class conforms to the 
	 * BlackboxArchetype.
	 *
	 * The matrix itself is not stored in memory.  Rather, its <tt>apply</tt>
	 * methods use a vector of field elements, which are 
	 * used to "multiply" the matrix to a vector.
	 * 
	 * This class has two template parameters.  The first is the field in 
	 * which the arithmetic is to be done.  
	 * The second is the vector trait indicating dense or 
	 * sparse vector interface (dense by default).
	 * This class is then specialized for dense and sparse vectors.
	 * 
	 * The default class is not implemented.  It's functions should never
	 * be called because partial template specialization should always be
	 * done on the vector traits.
	 * \ingroup blackbox
	 * @param Field \ref LinBox field
	 * @param Trait  Marker whether to use dense or sparse LinBox vector 
	 *               implementation.  This is chosen by a default parameter 
	 *               and partial template specialization.
	 */
	template <class Field,
		  class Trait = typename VectorTraits<typename LinBox::Vector<Field>::Dense>::VectorCategory>
	class Diagonal
	{
	    private:
		Diagonal () {}
	};
	
 
	/** diagonal.h linbox/blackbox/diagonal.h 
	\brief Specialization of Diagonal for application to dense vectors
	 */
	template <class _Field>
	class Diagonal<_Field, VectorCategories::DenseVectorTag>
	{
            typedef Diagonal<_Field, VectorCategories::DenseVectorTag> Self_t;
	    public:

		typedef _Field Field;
		typedef typename Field::Element    Element;

		/// \brief cstor from vector of elements
		Diagonal(const Field F, const std::vector<typename Field::Element>& v);

        // construct random nonsingular n by n diagonal matrix.
		Diagonal(const Field F, const size_t n, bool nonsing=true);

		Diagonal(const Field F, const size_t n, typename Field::RandIter& iter);

		template <class OutVector, class InVector>
		OutVector &apply (OutVector &y, const InVector &x) const;

		template <class OutVector, class InVector>
		OutVector &applyTranspose (OutVector &y, const InVector &x) const { return apply (y, x); }

		size_t rowdim(void) const { return _n; } 

		size_t coldim(void) const { return _n; } 

		void random();
		void randomNonsingular();

		/// \brief the field of the entries
		const Field& field() const{ return _F; }

                /** Get an entry and store it in the given value
                 * This form is more in the Linbox style and is provided for interface
                 * compatibility with other parts of the library
                 * @param x Element in which to store result
                 * @param i Row index
                 * @param j Column index
                 * @return Reference to x
                 */
            Element &getEntry (Element &x, size_t i, size_t j) const {
                return (i==j?_F.assign(x,_v[i]):_F.init(x,0));
            }
                    

            template<typename _Tp1>
            struct rebind
            { typedef Diagonal<_Tp1, VectorCategories::DenseVectorTag> other; 

                void operator() (other *& Ap, const Self_t& A, const _Tp1& F) 
                    {
                        
                        std::vector<typename _Tp1::Element> nv(A._v.size());
                        Hom<typename Self_t::Field, _Tp1> hom(A.field(), F);

                        typename std::vector<typename _Tp1::Element>::iterator nit = nv.begin();
                        typename std::vector<Element>::const_iterator oit = A._v.begin();
                        for( ; nit != nv.end() ; ++nit, ++oit)
                            hom.image (*nit, *oit);
                        Ap = new other(F, nv);
                    }
 
            };

		std::ostream& write(std::ostream& out)
		{	out << "diag(";
		 	for (typename std::vector<Element>::iterator p = _v.begin(); p != _v.end(); ++p)
				_F.write(out, *p) << ", ";
			return out << "\b\b)";
		}

	    private:

		// Field for arithmetic
		Field _F;

		// Number of rows and columns of square matrix.
		size_t _n;

		// STL vector of field elements used in applying matrix.
		std::vector<Element> _v;
    
	}; // template <Field, Vector> class Diagonal<DenseVectorTag>
   
	// Specialization of diagonal for LinBox sparse sequence vectors
	/** 
	\brief Specialization of Diagonal for application to sparse sequence vectors
	 */
	template <class Field>
	class Diagonal<Field, VectorCategories::SparseSequenceVectorTag >
	{
            typedef Diagonal<Field, VectorCategories::SparseSequenceVectorTag > Self_t;
	    public:

		typedef typename Field::Element    Element;

		Diagonal(const Field F, const std::vector<typename Field::Element>& v);

		Diagonal(const Field F, const size_t n, typename Field::RandIter& iter);
		
		template<class OutVector, class InVector>
		OutVector& apply(OutVector& y, const InVector& x) const;

		template<class OutVector, class InVector>
		OutVector& applyTranspose(OutVector& y, const InVector& x) const { return apply(y, x); }

		size_t rowdim(void) const { return _n; } 
		size_t coldim(void) const { return _n; } 
		const Field& field() const {return _F;}
                /** Get an entry and store it in the given value
                 * This form is more in the Linbox style and is provided for interface
                 * compatibility with other parts of the library
                 * @param x Element in which to store result
                 * @param i Row index
                 * @param j Column index
                 * @return Reference to x
                 */
            Element &getEntry (Element &x, size_t i, size_t j) const {
                return (i==j?_F.assign(x,_v[i]):_F.init(x));
            }
                    


            template<typename _Tp1>
            struct rebind
            { typedef Diagonal<_Tp1, VectorCategories::SparseSequenceVectorTag> other; 
                void operator() (other *& Ap, const Self_t& A, const _Tp1& F) 
                    {
                        
                        std::vector<typename _Tp1::Element> nv(A._v.size());
                        Hom<typename Self_t::Field, _Tp1> hom(A.field(), F);

                        typename std::vector<typename _Tp1::Element>::iterator nit = nv.begin();
                        typename std::vector<Element>::const_iterator oit = A._v.begin();
                        for( ; nit != nv.end() ; ++nit, ++oit)
                            hom.image (*nit, *oit);
                        Ap = new other(F, nv);
                    }
 
            };



	    private:

		// Field for arithmetic
		Field _F;

		// Number of rows and columns of square matrix.
		size_t _n;

		// STL vector of field elements used in applying matrix.
		std::vector<Element> _v;
    
	}; // template <Field, Vector> class Diagonal<SparseSequenceVectorTag>

	// Specialization of diagonal for LinBox sparse associative vectors
	/** 
	\brief Specialization of Diagonal for application to sparse associative vectors
	 */
	template <class Field>
	class Diagonal<Field, VectorCategories::SparseAssociativeVectorTag >
	{
            typedef Diagonal<Field, VectorCategories::SparseAssociativeVectorTag > Self_t;
	    public:


		typedef typename Field::Element    Element;

		Diagonal(const Field F, const std::vector<typename Field::Element>& v);

		Diagonal(const Field F, const size_t n, typename Field::RandIter& iter);

		template<class OutVector, class InVector>
		OutVector& apply(OutVector& y, const InVector& x) const;

		template<class OutVector, class InVector>
		OutVector& applyTranspose(OutVector& y, const InVector& x) const { return apply(y, x); } 


		size_t rowdim(void) const { return _n; } 
		size_t coldim(void) const { return _n; } 
		const Field field() const { return _F; }
                /** Get an entry and store it in the given value
                 * This form is more in the Linbox style and is provided for interface
                 * compatibility with other parts of the library
                 * @param x Element in which to store result
                 * @param i Row index
                 * @param j Column index
                 * @return Reference to x
                 */
            Element &getEntry (Element &x, size_t i, size_t j) const {
                return (i==j?_F.assign(x,_v[i]):_F.init(x));
            }
                    


            template<typename _Tp1>
            struct rebind
            { typedef Diagonal<_Tp1, VectorCategories::SparseAssociativeVectorTag> other; 
                void operator() (other *& Ap, const Self_t& A, const _Tp1& F) 
                    {
                        
                        std::vector<typename _Tp1::Element> nv(A._v.size());
                        Hom<typename Self_t::Field, _Tp1> hom(A.field(), F);

                        typename std::vector<typename _Tp1::Element>::iterator nit = nv.begin();
                        typename std::vector<Element>::const_iterator oit = A._v.begin();
                        for( ; nit != nv.end() ; ++nit, ++oit)
                            hom.image (*nit, *oit);
                        Ap = new other(F, nv);
                    }
 
            };


	    private:

		// Field for arithmetic
		Field _F;

		// Number of rows and columns of square matrix.
		size_t _n;

		// STL vector of field elements used in applying matrix.
		std::vector<Element> _v;
    
	}; // template <Field, Vector> class Diagonal<SparseAssociativeVectorTag>


	// Method implementations for dense vectors
 
	template <class Field>
	inline Diagonal<Field, VectorCategories::DenseVectorTag >
		::Diagonal(const Field F, const std::vector<typename Field::Element>& v)
		: _F(F), _n(v.size()), _v(v)
	{}


	template <class _Field>
	inline Diagonal<_Field, VectorCategories::DenseVectorTag>
		::Diagonal(const Field F, const size_t n, bool nonsing)
	: _F(F), _n(n), _v(n)
	{   typename Field::RandIter r(F);
		typedef typename std::vector<typename Field::Element>::iterator iter;
		if (nonsing)
		randomNonsingular();
		//for (iter i = _v.begin(); i < _v.end(); ++i) 
		//	while (_F.isZero(r.random(*i)));
		else
		random();
		//for (iter i = _v.begin(); i < _v.end(); ++i) 
		//	r.random(*i);
	}


	template <class Field>
	inline Diagonal<Field, VectorCategories::DenseVectorTag >
		::Diagonal(const Field F, const size_t n, typename Field::RandIter& iter)
		: _F(F), _n(n), _v(n)
	{	//for (typename std::vector<typename Field::Element>::iterator 
		//		i = _v.begin(); i != _v.end(); ++i) 
		//	iter.random(*i); 
		random();
	}

	template <class _Field>
	inline void Diagonal<_Field, VectorCategories::DenseVectorTag>
		::random()
	{   typename Field::RandIter r(_F);
		typedef typename std::vector<typename Field::Element>::iterator iter;
		for (iter i = _v.begin(); i < _v.end(); ++i) 
			r.random(*i);
	}

	template <class _Field>
	inline void Diagonal<_Field, VectorCategories::DenseVectorTag>
		::randomNonsingular()
	{   typename Field::RandIter r(_F);
		typedef typename std::vector<typename Field::Element>::iterator iter;
		for (iter i = _v.begin(); i < _v.end(); ++i) 
			while (_F.isZero(r.random(*i)));
	}

	template <class Field>
	template <class OutVector, class InVector>
	inline OutVector &Diagonal<Field, VectorCategories::DenseVectorTag >
		::apply (OutVector &y, const InVector &x) const
	{
		linbox_check (_n == x.size ());
 
		// Create iterators for input, output, and stored vectors
		typename std::vector<Element>::const_iterator v_iter;
		typename InVector::const_iterator x_iter;
		typename OutVector::iterator y_iter;
 
		// Start at beginning of _v and x vectors
		v_iter = _v.begin ();
		x_iter = x.begin ();

		// Iterate through all three vectors, multiplying input and stored
		// vector elements to create output vector element.
		for (y_iter = y.begin ();
		     y_iter != y.end ();
		     y_iter++, v_iter++, x_iter++)
			_F.mul (*y_iter, *v_iter, *x_iter);
 
		return y;
	} // Vector& Diagonal<DenseVectorTag>::apply(Vector& y, const Vector&) const
  
	// Method implementations for sparse sequence vectors
 
	template <class Field>
	inline Diagonal<Field, VectorCategories::SparseSequenceVectorTag >
		::Diagonal(const Field F, const std::vector<typename Field::Element>& v)
		: _F(F), _n(v.size()), _v(v)
	{}

	template <class Field>
	template<class OutVector, class InVector>
	inline OutVector &Diagonal<Field, VectorCategories::SparseSequenceVectorTag >
		::apply(OutVector& y, const InVector& x) const
	{
		linbox_check ((!x.empty ()) && (_n >= x.back ().first));

		y.clear (); // we'll overwrite using push_backs.

		// create field elements and size_t to be used in calculations
		size_t i;
		Element zero, entry;
		_F.init (zero, 0);
		_F.init (entry, 0);

		// Create iterators for input and stored vectors
		typename std::vector<Element>::const_iterator v_iter;
		typename InVector::const_iterator x_iter;
 
		// Start at beginning of _v vector
		v_iter = _v.begin ();
 
		// Iterator over indices of input vector.
		// For each element, multiply input element with corresponding element
		// of stored vector and insert non-zero elements into output vector
		for (x_iter = x.begin (); x_iter != x.end (); x_iter++) {
			i = (*x_iter).first;
			_F.mul (entry, *(v_iter + i), (*x_iter).second);
			if (!_F.isZero (entry)) y.push_back ( std::pair<size_t, Element>(i, entry));
		} // for (x_iter = x.begin (); x_iter != x.end (); x_iter++)

		return y;
	} // Vector& Diagonal<SparseSequenceVectorTag>::apply(Vector& y, const Vector&) const

	// Method implementations for sparse associative vectors
 
	template <class Field>
	inline Diagonal<Field, VectorCategories::SparseAssociativeVectorTag >
		::Diagonal(const Field F, const std::vector<typename Field::Element>& v)
		: _F(F), _n(v.size()), _v(v)
	{}

	template <class Field>
	template<class OutVector, class InVector>
	inline OutVector& Diagonal<Field, VectorCategories::SparseAssociativeVectorTag >
		::apply(OutVector& y, const InVector& x) const
	{
		linbox_check ((!x.empty ()) && (_n >= x.rbegin ()->first));

		y.clear (); // we'll overwrite using inserts

		// create field elements and size_t to be used in calculations
		size_t i;
		Element zero, entry;
		_F.init (zero, 0);
		_F.init (entry, 0);

		// Create iterators for input and stored vectors
		typename std::vector<Element>::const_iterator v_iter;
		typename InVector::const_iterator x_iter;
 
		// Start at beginning of _v vector
		v_iter = _v.begin ();
 
		// Iterator over indices of input vector.
		// For each element, multiply input element with corresponding element
		// of stored vector and insert non-zero elements into output vector
		for (x_iter = x.begin (); x_iter != x.end (); x_iter++)
		{
			i = x_iter->first;
			_F.mul (entry, *(v_iter + i), (*x_iter).second);
			if (!_F.isZero (entry)) y.insert (y.end (), std::pair<size_t, Element>(i, entry));
		}

		return y;
	} // Vector& Diagonal<SparseAssociativeVectorTag>::apply(...) const

	//@}



} // namespace LinBox

#endif // __DIAGONAL_H