This file is indexed.

/usr/include/linbox/algorithms/block-massey-domain.h is in liblinbox-dev 1.1.6~rc0-4.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
/* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */

/* linbox/algorithms/block-massey-domain.h
 * Copyright (C) 2002 Pascal Giorgi
 *
 * Written by Pascal Giorgi pascal.giorgi@ens-lyon.fr
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 02111-1307, USA.
 */



#ifndef __MASSEY_BLOCK_DOMAIN_H
#define __MASSEY_BLOCK_DOMAIN_H

#include <vector>
#include <iostream>
#include <iomanip>

#include <linbox/util/commentator.h>
#include <linbox/util/timer.h>
#include <linbox/blackbox/dense.h>
#include <linbox/field/unparametric.h>
#include <linbox/matrix/matrix-domain.h>
#include <linbox/matrix/blas-matrix.h>
#include <linbox/matrix/factorized-matrix.h>
#include <linbox/algorithms/blas-domain.h>

#include <linbox/util/timer.h>

//#define  __CHECK_RESULT
//#define __DEBUG_MAPLE
//#define __CHECK_LOOP
//#define __PRINT_MINPOLY
//#define __CHECK_DISCREPANCY
//#define __CHECK_TRANSFORMATION
//#define __CHECK_SIGMA_RESULT
//#define __PRINT_SEQUENCE
#define _BM_TIMING

namespace LinBox 
{


#define DEFAULT_EARLY_TERM_THRESHOLD 20


	/** 
	    \brief Compute the linear generator of a sequence of matrices

	    * Giorgi, Jeannerod Villard algorithm from ISSAC'03
	    * This class encapsulates the functionality required for computing 
	    * the block minimal polynomial of a matrix.
	    */
	template<class _Field, class _Sequence>
	class BlockMasseyDomain {

	public:
		typedef _Field                           Field;
		typedef typename Field::Element        Element;
		typedef _Sequence                     Sequence;
		typedef BlasMatrix<Element>        Coefficient;
		
		
	private:
		Sequence                          *_container;
		Field                                      _F;
		BlasMatrixDomain<Field>                  _BMD;
		MatrixDomain<Field>                       _MD;
		unsigned long            EARLY_TERM_THRESHOLD;
		

	public:

#ifdef _BM_TIMING
		mutable Timer   
		        ttGetMinPoly,      tGetMinPoly,
		        ttNewDiscrepancy,  tNewDiscrepancy,
			ttShiftSigma,      tShiftSigma,
			ttApplyPerm,       tApplyPerm, 
			ttUpdateSigma,     tUpdateSigma,
			ttInverseL,        tInverseL,
			ttGetPermutation,  tGetPermutation,
			ttLQUP,            tLQUP,
			ttDiscrepancy,     tDiscrepancy,
			ttGetCoeff,        tGetCoeff,
			ttCheckSequence,   tCheckSequence,
			ttSetup,           tSetup,
			ttMBasis,          tMBasis,
			ttUpdateSerie,     tUpdateSerie,
			ttBasisMultiplication, tBasisMultiplication,
			ttCopyingData,     tCopyingData,
			Total;

		void clearTimer() {
			 ttGetMinPoly.clear();     
			 ttNewDiscrepancy.clear(); 
			 ttShiftSigma.clear();     
			 ttApplyPerm.clear();      
			 ttUpdateSigma.clear();    
			 ttInverseL.clear();       
			 ttGetPermutation.clear(); 
			 ttLQUP.clear();           
			 ttDiscrepancy.clear();    
			 ttGetCoeff.clear();       
			 ttCheckSequence.clear();  
			 ttSetup.clear();   
			 ttMBasis.clear();
			 ttUpdateSerie.clear();
			 ttBasisMultiplication.clear();
			 ttCopyingData.clear(),
			 Total.clear();
		}
		
		void print(Timer& T, const  char* timer, const char* title) {
			if (&T != &Total)
				Total+=T;
			if (T.count() > 0) {
				std::cout<<title<<": "<<timer;
				for (int i=strlen(timer); i<28; i++) 
					std::cout << ' ';
				std::cout<<T<<std::endl;
			}
		}

		void printTimer() {
			print(ttSetup, "Setup", "direct");
			print(ttCheckSequence, "Rank of Seq[0]", "direct");
			print(ttGetCoeff, "Compute sequence", "direct");
			print(ttDiscrepancy, "Compute Discrepancy", "direct");
			print(ttLQUP, "LQUP","direct");
			print(ttGetPermutation, "Compute Permutation", "direct");
			print(ttApplyPerm, "Apply Permutation", "direct");
			print(ttInverseL, "Inverse of L", "direct");
			print(ttUpdateSigma, "Update Sigma", "direct");
			print(ttShiftSigma, "Shift Sigma by x", "direct");
			print(ttNewDiscrepancy, "Keep half Discrepancy", "direct");
			print(ttMBasis, "MBasis computation", "recursive");
			print(ttUpdateSerie, "Updating Power Serie", "recursive");
			print(ttBasisMultiplication, "Basis Multiplication", "recursive");
			print(ttCopyingData, "Copying Data", "recursive");
			print(Total, "Total", "");
			std::cout<<std::endl<<std::endl;
		}
#endif
	

		BlockMasseyDomain (const BlockMasseyDomain<Field, Sequence> &M, unsigned long ett_default = DEFAULT_EARLY_TERM_THRESHOLD) 
			: _container(M._container), _F(M._F), _BMD(M._F), _MD(M._F),  EARLY_TERM_THRESHOLD (ett_default) {
#ifdef _BM_TIMING
			clearTimer();
#endif			
		}

		BlockMasseyDomain (Sequence *D, unsigned long ett_default = DEFAULT_EARLY_TERM_THRESHOLD) 
			: _container(D), _F(D->getField ()), _BMD(D->getField ()), _MD(D->getField ()), EARLY_TERM_THRESHOLD (ett_default) {
#ifdef _BM_TIMING
			clearTimer();
#endif
		}
  
			
		// field of the domain
		const Field &getField    () const { return _F; }
		
		// sequence of the domain
		Sequence *getSequence () const { return _container; }

		// left minimal generating polynomial of the sequence
		void left_minpoly  (std::vector<Coefficient> &P) { 
			masseyblock_left(P);
		}
		
		void left_minpoly_rec  (std::vector<Coefficient> &P) { 
			masseyblock_left_rec(P);
		}


		// left minimal generating polynomial  of the sequence, keep track on degree
		void left_minpoly (std::vector<Coefficient> &phi, std::vector<size_t> &degree) {
			degree = masseyblock_left(phi);
		}		
		
		void left_minpoly_rec  (std::vector<Coefficient> &P, std::vector<size_t> &degree) { 
			degree = masseyblock_left_rec(P);
		}


		// right minimal generating polynomial of the sequence
		void right_minpoly (std::vector<Coefficient> &P) { masseyblock_right(P);}
		
		
	private:
		
		template<class Field>
		void write_maple(const Field& F, const std::vector<Coefficient> & P) {
			std::cout<<"Matrix([";
			for (size_t i=0;i< P[0].rowdim();++i){
				std::cout<<"[";
				for (size_t j=0;j< P[0].coldim();++j){
					F.write(std::cout,P[0].getEntry(i,j));
					for (size_t k=1;k<P.size();++k){
						std::cout<<"+ x^"<<k<<"*";
						F.write(std::cout,P[k].getEntry(i,j));
					}
					if (j != P[0].coldim()-1)
						std::cout<<",";
				}
				if (i != P[0].rowdim()-1)
					std::cout<<"],";
				else
					std::cout<<"]";						
			}
			std::cout<<"]);\n";
		}


		std::vector<size_t> masseyblock_left (std::vector<Coefficient> &P) {
			
#ifdef _BM_TIMING
			tSetup.clear();
			tSetup.start();
#endif			
			const size_t length = _container->size ();
		
			const size_t m = _container->rowdim();
			const size_t n = _container->coldim();
		
			// ====================================================
			// Sequence and iterator initialization
			// ====================================================
		
			// Initialization of the sequence iterator
			typename Sequence::const_iterator _iter (_container->begin ());

			// Reservation of memory for the entire sequence
			std::vector<Coefficient> S (length); //,Coefficient(m,n));
					
			Coefficient Unit(m+n,m);
			const Coefficient Zero(m+n,m);
			Element one,zero,mone;
			_F.init(one,1L);
			_F.init(zero,0L);
			_F.init(mone,-1L);
			for (size_t i=0;i<m;i++) 			
				Unit.setEntry(i,i,one);							
			size_t min_mn=(m <n)? m :n;
	
			

			// initialization of discrepancy
			Coefficient Discrepancy(m+n,n);
			for (size_t i=0;i<n;i++)
				Discrepancy.setEntry(i+m,i,one);

			
			// initialization of sigma base
			std::vector<Coefficient> SigmaBase(length);
			SigmaBase.resize(1);
			SigmaBase[0]=Unit;
								
			// initialization of order of sigma base's rows
			std::vector<long> order(m+n,1);
			for (size_t i=0;i<m;++i)
				order[i]=0;

			// initialisation of degree of sigma base's rows
			std::vector<long> degree(m+n,0);
			for (size_t i=0;i<m;++i)
				degree[i]=0;
#ifdef _BM_TIMING
			tSetup.stop();
			ttSetup += tSetup;
			tCheckSequence.clear();
			tCheckSequence.start();
#endif		



			// The first sequence element should be of full rank
			// this is due to the strategy which say that we can compute 
			// only the first column of the approximation of [ S(x) Id]^T
			// since the other colums have always lower degree.			
			if (_BMD.rank(*_iter)< min_mn) 
				throw PreconditionFailed (__FUNCTION__, __LINE__, "Bad random Blocks, abort\n");
			//	cerr<<"\n**************************************************\n";
			//	cerr<<"*** THE FIRST ELEMENT OF SEQUENCE IS SINGULAR  ***\n";
			//	cerr<<"***            ALGORTIHM ABORTED               ***\n";
			//	cerr<<"**************************************************\n";
			//}
			
		
#ifdef _BM_TIMING
			tCheckSequence.stop();
			ttCheckSequence += tCheckSequence;
#endif

			unsigned long early_stop=0;
			long N;
		
			for (N = 0; (N < (long)length) && (early_stop < EARLY_TERM_THRESHOLD) ; ++N, ++_iter) {
									
				// Get the next coefficient in the sequence
				S[N]=*_iter;													
			
#ifdef  _BM_TIMING
				if (N != 0){
					tGetCoeff.stop();
					ttGetCoeff += tGetCoeff;
				}

				tDiscrepancy.clear();
				tDiscrepancy.start();
#endif				

				/*	
				 * Compute the new discrepancy (just updating the first m rows)					
				 */				
				// view of m first rows of SigmaBasis[0]
				Coefficient Sigma(SigmaBase[0],0,0,m,m);
				
				// view of m first rows of Discrepancy
				Coefficient Discr(Discrepancy,0,0,m,n);
								
				_BMD.mul(Discr,Sigma,S[N]);
				for (size_t i=1;i<SigmaBase.size();i++){
					Coefficient  Sigmaview(SigmaBase[i],0,0,m,m);
					_BMD.axpyin(Discr,Sigmaview,S[N-i]);
				}
					
#ifdef _BM_TIMING
				tDiscrepancy.stop();
				ttDiscrepancy += tDiscrepancy;				
#endif	
				
				typename Coefficient::RawIterator _iter_Discr = Discr.rawBegin();

				while ((_F.isZero(*_iter_Discr) && _iter_Discr != Discr.rawEnd()))
					++_iter_Discr;
					
				// maybe there is something to do here
				// increase the last n rows of orders
				// multiply by X the last n rows of SigmaBase
				if (_iter_Discr != Discr.rawEnd())
					early_stop=0;
				else {
					early_stop++;
				}
					
			
#ifdef _BM_TIMING
				tGetPermutation.clear();
				tGetPermutation.start();
#endif						 			
				// Computation of the permutation BPerm1 such that BPerm1.order is in increasing order.
				// order=Perm.order			   			
				std::vector<size_t> Perm1(m+n);			
				for (size_t i=0;i<m+n;++i)
					Perm1[i]=i;	
				if (N>=2) {
					for (size_t i=0;i<m+n;++i) {
						size_t idx_min=i;
						for (size_t j=i+1;j<m+n;++j) 
							if (order[j]< order[idx_min]) 
								idx_min=j;												
						std::swap(order[i],order[idx_min]);				
						Perm1[i]=idx_min;
					}	
				}
				BlasPermutation BPerm1(Perm1);
					
#ifdef _BM_TIMING
				tGetPermutation.stop();
				ttGetPermutation += tGetPermutation;
				tApplyPerm.clear();
				tApplyPerm.start();				
				
#endif		
				// Discrepancy= BPerm1.Discrepancy						
				_BMD.mulin_right(BPerm1,Discrepancy);

#ifdef _BM_TIMING
				tApplyPerm.stop();
				ttApplyPerm += tApplyPerm;
				tLQUP.clear();
				tLQUP.start();				
#endif

#ifdef __CHECK_DISCREPANCY
				std::cout<<"Discrepancy"<<N<<":=Matrix(";
				Discrepancy.write(std::cout,_F,true)<<");"<<std::endl;
#endif
			

				
				// Computation of the LQUP decomposition of the discrepancy
				Coefficient CopyDiscr;
				CopyDiscr=Discrepancy;
				LQUPMatrix<Field> LQUP(_F, CopyDiscr);
				
#ifdef _BM_TIMING
				tLQUP.stop();	
				ttLQUP += tLQUP;

#endif
				// Get the matrix L of LQUP decomposition
				TriangularBlasMatrix<Element> L(m+n,m+n, BlasTag::low, BlasTag::unit );
				LQUP.getL(L);
				
				// Get the tranposed  permutation of Q from LQUP
				BlasPermutation Qt=LQUP.getQ();
			

#ifdef _BM_TIMING
				tGetPermutation.clear();
				tGetPermutation.start();
#endif
				// Computation of permutations BPerm2 such that the last n rows of BPerm2.Qt.Discrepancy are non zero.
				std::vector<size_t> Perm2(m+n);	
				for (size_t i=0;i<n;++i)
					Perm2[i]=m+i;
				for (size_t i=n;i<m+n;++i)
					Perm2[i]=i;					
				BlasPermutation BPerm2(Perm2);			
				
#ifdef _BM_TIMING
				tGetPermutation.stop();
				ttGetPermutation += tGetPermutation;
				tInverseL.clear();
				tInverseL.start();
#endif			
				// compute the inverse of L
				TriangularBlasMatrix<Element> invL (m+n,m+n, BlasTag::low,BlasTag::unit); 
				FFPACK::trinv_left(_F,m+n,L.getPointer(),L.getStride(),invL.getWritePointer(),invL.getStride());

#ifdef _BM_TIMING
				tInverseL.stop();
				ttInverseL += tInverseL;
#endif					

#ifdef 	__CHECK_TRANSFORMATION
				std::cout<<"invL"<<N<<":=Matrix(";
				invL.write(std::cout,_F,true)<<");"<<std::endl;

#endif
				// SigmaBase =  BPerm2.Qt. L^(-1) . BPerm1 . SigmaBase
				for (size_t i=0;i<SigmaBase.size();i++) {
#ifdef _BM_TIMING
					tApplyPerm.clear();
					tApplyPerm.start();					
#endif
					_BMD.mulin_right(BPerm1,SigmaBase[i]);

#ifdef _BM_TIMING
					tApplyPerm.stop();					
					ttApplyPerm +=tApplyPerm;

					tUpdateSigma.clear();
					tUpdateSigma.start();					
#endif
					_BMD.mulin_right(invL,SigmaBase[i]);
#ifdef _BM_TIMING
					tUpdateSigma.stop();
					ttUpdateSigma += tUpdateSigma;
					tApplyPerm.clear();
					tApplyPerm.start(); 										
#endif
					_BMD.mulin_right(Qt,SigmaBase[i]);
					_BMD.mulin_right(BPerm2,SigmaBase[i]);
#ifdef _BM_TIMING
					tApplyPerm.stop(); 
					ttApplyPerm +=tApplyPerm;
#endif
				}							
		

#ifdef _BM_TIMING				
				tApplyPerm.clear();
				tApplyPerm.start();
#endif

				// Apply BPerm2 and Qt to the vector of order and increase by 1 the last n rows
				UnparametricField<long> UF;
				BlasMatrixDomain<UnparametricField<long> > BMDUF(UF);
				BMDUF.mulin_right(Qt,order);
				BMDUF.mulin_right(BPerm2,order);
				BMDUF.mulin_right(BPerm1,degree);
				BMDUF.mulin_right(Qt,degree);
				BMDUF.mulin_right(BPerm2,degree);				
				for (size_t i=m;i<m+n;++i){
					order[i]++;		
					degree[i]++;
				}

#ifdef _BM_TIMING
				tApplyPerm.stop();
				ttApplyPerm += tApplyPerm;
				tShiftSigma.clear();
				tShiftSigma.start();
#endif
				// Multiplying the last n row of SigmaBase by x.
				long max_degree=degree[m];
				for (size_t i=m+1;i<m+n;++i) {
					if (degree[i]>max_degree)
						max_degree=degree[i];
				}			
				size_t size=SigmaBase.size();			
				if (SigmaBase.size()<= (size_t)max_degree)
					{			
						SigmaBase.resize(size+1,Zero);					
						size++;
					}		
				for (int i= (int)size-2;i>=0;i--)
					for (size_t j=0;j<n;j++)
						for (size_t k=0;k<n;++k)
							_F.assign(SigmaBase[i+1].refEntry(m+j,k), SigmaBase[i].getEntry(m+j,k));			

				for (size_t j=0;j<n;j++)
					for (size_t k=0;k<n;++k)
						_F.assign(SigmaBase[0].refEntry(m+j,k),zero);


#ifdef _BM_TIMING
				tShiftSigma.stop();
				ttShiftSigma += tShiftSigma;
#endif


#ifdef __DEBUG_MAPLE	
				std::cout<<"\n\nSigmaBase"<<N<<":= ";
				write_maple(_F,SigmaBase);
				
				std::cout<<"order"<<N<<":=<";
				for (size_t i=0;i<m+n;++i){
					std::cout<<order[i];
					if (i!=m+n-1) std::cout<<",";					
				}
				std::cout<<">;"<<std::endl;
				std::cout<<"degree"<<N<<":=<";
				for (size_t i=0;i<m+n;++i){
					std::cout<<degree[i];
					if (i!=m+n-1) std::cout<<",";					
				}
				std::cout<<">;"<<std::endl;
				
#endif
			
#ifdef __CHECK_LOOP
				std::cout<<"\nCheck validity of current SigmaBase\n";
				std::cout<<"SigmaBase size: "<<SigmaBase.size()<<std::endl;
				std::cout<<"Sequence size:  "<<N+1<<std::endl;
				size_t min_t = (SigmaBase.size() > N+1)? N+1: SigmaBase.size();
				for (size_t i=min_t - 1 ; i<N+1; ++i){
					Coefficient Disc(m+n,n);
					_BMD.mul(Disc,SigmaBase[0],S[i]);
					for (size_t j=1;j<min_t -1;++j)
						_BMD.axpyin(Disc,SigmaBase[j],S[i-j]);
					Disc.write(std::cout,_F)<<std::endl;
				}				
#endif


#ifdef _BM_TIMING
				tNewDiscrepancy.clear();
				tNewDiscrepancy.start();
#endif		
				// Discrepancy= BPerm2.U.P from LQUP
				Coefficient U(m+n,n);
				TriangularBlasMatrix<Element> trU(U,BlasTag::up,BlasTag::nonunit);
				LQUP.getU(trU);	 
				Discrepancy=U;
				BlasPermutation P= LQUP.getP();
				_BMD.mulin_left(Discrepancy,P);
				_BMD.mulin_right(BPerm2,Discrepancy);

#ifdef _BM_TIMING
				tNewDiscrepancy.stop();
				ttNewDiscrepancy+=tNewDiscrepancy;

				// timer in the loop 
				tGetCoeff.clear();	
				tGetCoeff.start();
#endif	

			}
			if ( early_stop == EARLY_TERM_THRESHOLD)
				std::cout<<"Early termination is used: stop at "<<N<<" from "<<length<<" iterations\n\n";
			
#ifdef __PRINT_SEQUENCE	
			std::cout<<"\n\nSequence:= ";
			write_maple(_F,S);
#endif

		

#ifdef __CHECK_SIGMA_RESULT
			std::cout<<"Check SigmaBase application\n";
			for (size_t i=SigmaBase.size()-1 ;i< length ;++i){
				Coefficient res(m+n,n);
				for (size_t k=0;k<SigmaBase.size();++k)
					_BMD.axpyin(res,SigmaBase[k],S[i-k]);
				res.write(std::cout,_F)<<std::endl;
			}

#endif

#ifdef _BM_TIMING
			tGetMinPoly.clear();
			tGetMinPoly.start();
#endif
			// Get the reverse matrix polynomial of the forst m rows of SigmaBase according to degree.
			degree=order;
			long max=degree[0];
			for (size_t i=1;i<m;i++) {
				if (degree[i]>max)
					max=degree[i];
			}
			P = std::vector<Coefficient> (max+1);
			Coefficient tmp(m,m);
			for (long i=0;i< max+1;++i)
				P[i]=tmp;
			
			for (size_t i=0;i<m;i++) 
				for (long j=0;j<=degree[i];j++) 
					for (size_t k=0;k<m;k++) 
						_F.assign(P[degree[i]-j].refEntry(i,k), SigmaBase[j].getEntry(i,k));
#ifdef _BM_TIMING
			tGetMinPoly.stop();
			ttGetMinPoly +=tGetMinPoly;
#endif


#ifdef __CHECK_RESULT
			std::cout<<"Check minimal polynomial application\n";
			bool valid=true;
			for (size_t i=0;i< N - P.size();++i){
				Coefficient res(m,n);
				_BMD.mul(res,P[0],S[i]);
				for (size_t k=1,j=i+1;k<P.size();++k,++j)
					_BMD.axpyin(res,P[k],S[j]);
				for (size_t j=0;j<m*n;++j)
					if (!_F.isZero(*(res.getPointer()+j)))
						valid= false;
				//res.write(std::cout,_F)<<std::endl;				
			}
			if (valid)
				std::cout<<"minpoly is correct\n";
			else
				std::cout<<"minpoly is wrong\n";
#endif

#ifdef __PRINT_MINPOLY
			std::cout<<"MinPoly:=";
			write_maple(_F,P);
			//Coefficient Mat(*_container->getBB());
			//std::cout<<"A:=Matrix(";
			//Mat.write(std::cout,_F,true);
#endif	       

			std::vector<size_t> deg(m);
			for (size_t i=0;i<m;++i)
				deg[i]=degree[i];

			return deg;
		}


		std::vector<size_t> masseyblock_left_rec (std::vector<Coefficient> &P) {

			// Get information of the Sequence (U.A^i.V)
			size_t length = _container->size();
			size_t m, n;
			m = _container->rowdim();
			n = _container->coldim();

			// Set some useful constant
			Element one;
			_F.init(one,1UL);
			const Coefficient Zero(2*m,2*m);

			// Make the Power Serie from  Sequence (U.A^i.V) and Identity
			_container->recompute(); // make sure sequence is already computed
			std::vector<Coefficient> PowerSerie(length);
			typename Sequence::const_iterator _iter (_container->begin ());
			for (size_t i=0;i< length; ++i, ++_iter){
				Coefficient value(2*m,n);
				PowerSerie[i] = value;	
				for (size_t j=0;j<m;++j)
					for (size_t k=0;k<n;++k)
						PowerSerie[i].setEntry(j,k, (*_iter).getEntry(j,k));
			}
			for (size_t j=0;j<n;++j)
				PowerSerie[0].setEntry(m+j, j, one);
#ifdef __PRINT_SEQUENCE	
			std::cout<<"PowerSerie:=";
			write_maple(_F,PowerSerie);		
#endif

			
			// Set the defect to [0 ... 0 1 ... 1]^T
			std::vector<size_t> defect(2*m,0);
			for (size_t i=m;i< 2*m;++i)
				defect[i]=1;
									
			// Prepare SigmaBase
			std::vector<Coefficient> SigmaBase(length,Zero);
			
			// Compute Sigma Base up to the order length - 1
			PM_Basis(SigmaBase, PowerSerie, length-1, defect);
		
			// take the m rows which have lowest defect
			// compute permutation such that first m rows have lowest defect						
			std::vector<size_t> Perm(2*m);			
			for (size_t i=0;i<2*m;++i)
				Perm[i]=i;			
			for (size_t i=0;i<2*m;++i) {
				size_t idx_min=i;
				for (size_t j=i+1;j<2*m;++j) 
					if (defect[j]< defect[idx_min]) 
						idx_min=j;												
				std::swap(defect[i],defect[idx_min]);				
				Perm[i]=idx_min;
			}	
			BlasPermutation BPerm(Perm);
			
			// Apply BPerm to the Sigma Base
			for (size_t i=0;i<SigmaBase.size();++i)
				_BMD.mulin_right(BPerm,SigmaBase[i]);
			
			//std::cout<<"SigmaBase:=";
			//write_maple(_F,SigmaBase);
						
			// Compute the reverse polynomial of SigmaBase according to defect of each row
			size_t max=defect[0];
			for (size_t i=0;i<m;++i)
				if (defect[i] > max)
					max=defect[i];
			
			P = std::vector<Coefficient> (max+1);
			Coefficient tmp(m,m);
			for (size_t i=0;i< max+1;++i)
				P[i]=tmp;
			for (size_t i=0;i<m;i++) 
				for (size_t j=0;j<=defect[i];j++) 
					for (size_t k=0;k<m;k++) 
						_F.assign(P[defect[i]-j].refEntry(i,k), SigmaBase[j].getEntry(i,k));

#ifdef __CHECK_RESULT
			std::cout<<"Check minimal polynomial application\n";
			_container->recompute();
			typename Sequence::const_iterator _ptr (_container->begin ());
			for (size_t i=0;i< length; ++i, ++_ptr){				
				PowerSerie[i] = *_ptr;	
			}			
			bool valid=true;
			for (size_t i=0;i< length - P.size();++i){
				Coefficient res(m,n);
				Coefficient Power(PowerSerie[i],0,0,m,n);
				_BMD.mul(res,P[0],Power);
				for (size_t k=1,j=i+1;k<P.size();++k,++j){
					Coefficient Powerview(PowerSerie[j],0,0,m,n);
					_BMD.axpyin(res,P[k],Powerview);
				}
				for (size_t j=0;j<m*n;++j)
					if (!_F.isZero(*(res.getPointer()+j)))
						valid= false;
				//res.write(std::cout,_F)<<std::endl;				
			}
			if (valid)
				std::cout<<"minpoly is correct\n";
			else
				std::cout<<"minpoly is wrong\n";
#endif

#ifdef __PRINT_MINPOLY
			std::cout<<"MinPoly:=";
			write_maple(_F,P);
			//Coefficient Mat(*_container->getBB());
			//std::cout<<"A:=Matrix(";
			//Mat.write(std::cout,_F,true);
#endif		
			std::vector<size_t> degree(m);
			for (size_t i=0;i<m;++i)
				degree[i] = defect[i];
			return degree;
		}

		
		// Computation of a minimal Sigma Base of a Power Serie up to a degree
		// according to a vector of defect.
		// algorithm is from Giorgi, Jeannerod and Villard  ISSAC'03
		//
		// SigmaBase must be already allocated with degree+1 elements
		
		void PM_Basis(std::vector<Coefficient>     &SigmaBase,
			      std::vector<Coefficient>    &PowerSerie, 
			      size_t                           degree, 
			      std::vector<size_t>             &defect) {
						
			size_t m,n;
			m = PowerSerie[0].rowdim();
			n = PowerSerie[0].coldim();
			Element one;
			_F.init(one,1UL);
			const Coefficient ZeroSigma(m,m);
			const Coefficient ZeroSerie(m,n);

			if (degree == 0) {
				Coefficient Identity(m,m);
				for (size_t i=0;i< m;++i)
					Identity.setEntry(i,i,one);
				SigmaBase[0]=Identity;
			}
			else {
				if (degree == 1) {
#ifdef _BM_TIMING				
					tMBasis.clear();
					tMBasis.start();
#endif
					M_Basis(SigmaBase, PowerSerie, degree, defect);
#ifdef _BM_TIMING
					tMBasis.stop();
					ttMBasis += tMBasis;
#endif			
				}
				else {
					size_t degree1,degree2;
					degree1 = (degree >> 1) + (degree & 1);
					degree2 = degree - degree1;									

					// Compute Sigma Base of half degree
					std::vector<Coefficient> Sigma1(degree1+1,ZeroSigma);
					std::vector<Coefficient> Serie1(degree1+1);
					for (size_t i=0;i< degree1+1;++i)
						Serie1[i] = PowerSerie[i];
					PM_Basis(Sigma1, Serie1, degree1, defect);
#ifdef _BM_TIMING				
					tUpdateSerie.clear();
					tUpdateSerie.start();
#endif
					// Compute Serie2 = x^(-degree1).Sigma.PowerSerie mod x^degree2
					std::vector<Coefficient> Serie2(degree1+1,ZeroSerie);										
					ComputeNewSerie(Serie2,Sigma1,PowerSerie, degree1, degree2);
#ifdef _BM_TIMING				
					tUpdateSerie.stop();
					ttUpdateSerie += tUpdateSerie;
#endif
					// Compute Sigma Base of half degree from updated Power Serie					
					std::vector<Coefficient> Sigma2(degree2+1,ZeroSigma);
					PM_Basis(Sigma2, Serie2, degree2, defect);
						
#ifdef _BM_TIMING				
					tBasisMultiplication.clear();
					tBasisMultiplication.start();
#endif
					// Compute the whole Sigma Base through the product 
					// of the Sigma Basis Sigma1 x Sigma2										
					MulSigmaBasis(SigmaBase,Sigma2,Sigma1);						
#ifdef _BM_TIMING				
					tBasisMultiplication.stop();
					ttBasisMultiplication += tBasisMultiplication;
#endif

				}
			}
		}


		// Computation of a minimal Sigma Base of a Power Serie up to length
		// algorithm is from Giorgi, Jeannerod and Villard  ISSAC'03		
		void M_Basis(std::vector<Coefficient>     &SigmaBase,
			     std::vector<Coefficient>    &PowerSerie, 
			     size_t                           length, 
			     std::vector<size_t>             &defect) {

			// Get the dimension of matrices inside 
			// the Matrix Power Serie
			size_t m,n;
			m = PowerSerie[0].rowdim();
			n = PowerSerie[0].coldim();

			// Set some useful constants
			const Coefficient Zero(m,m);
			Element one, zero;
			_F.init(one,1UL);
			_F.init(zero,0UL);
			
			// Reserve memory for the Sigma Base and set SigmaBase[0] to Identity
			SigmaBase.reserve(length+1);
			SigmaBase.resize(1);
			Coefficient Identity(m,m);
			for (size_t i=0;i< m;++i)
				Identity.setEntry(i,i,one);
			SigmaBase[0]=Identity;
			
			// Keep track on Sigma Base's row degree
			std::vector<size_t> degree(m,0);
			for (size_t i=0;i<n;++i)
				degree[i]=0;
			

			// Compute the minimal Sigma Base of the PowerSerie up to length
			for (size_t k=0; k< length; ++k) {

				// compute BPerm1 such that BPerm1.defect is in increasing order
				std::vector<size_t> Perm1(m);			
				for (size_t i=0;i<m;++i)
					Perm1[i]=i;			
				for (size_t i=0;i<m;++i) {
					size_t idx_min=i;
					for (size_t j=i+1;j<m;++j) 
						if (defect[j]< defect[idx_min]) 
							idx_min=j;												
					std::swap(defect[i], defect[idx_min]);				
					Perm1[i]=idx_min;
				}					
				BlasPermutation BPerm1(Perm1);

				// Apply Bperm1 to the current SigmaBase
				for (size_t i=0;i<SigmaBase.size();++i)
					_BMD.mulin_right(BPerm1,SigmaBase[i]);

				// Compute Discrepancy
				Coefficient Discrepancy(m,n);								
				_BMD.mul(Discrepancy,SigmaBase[0],PowerSerie[k]);
				for (size_t i=1;i<SigmaBase.size();i++){
					_BMD.axpyin(Discrepancy,SigmaBase[i],PowerSerie[k-i]);
				}
				
				// Compute LQUP of Discrepancy
				LQUPMatrix<Field> LQUP(_F,Discrepancy);

				// Get L from LQUP
				TriangularBlasMatrix<Element> L(m, m, BlasTag::low, BlasTag::unit);
				LQUP.getL(L);

				// get the transposed permutation of Q from LQUP
				BlasPermutation Qt =LQUP.getQ();

				// Compute the inverse of L
				TriangularBlasMatrix<Element> invL(m, m, BlasTag::low, BlasTag::unit);
				FFPACK::trinv_left(_F,m,L.getPointer(),L.getStride(),invL.getWritePointer(),invL.getStride());

				// Update Sigma by L^(-1)
				// Sigma = L^(-1) . Sigma
				for (size_t i=0;i<SigmaBase.size();++i) 
					_BMD.mulin_right(invL,SigmaBase[i]);

				//std::cout<<"BaseBis"<<k<<":=";
				//write_maple(_F,SigmaBase);
				// Increase by degree and defect according to row choosen as pivot in LQUP
				for (size_t i=0;i<n;++i){
					defect[*(Qt.getPointer()+i)]++;
					degree[*(Qt.getPointer()+i)]++;
				}
								
				size_t max_degree=degree[*(Qt.getPointer())];
				for (size_t i=0;i<n;++i) {
					if (degree[*(Qt.getPointer()+i)]>max_degree)
						max_degree=degree[*(Qt.getPointer()+i)];
				}	
			
		
				size_t size=SigmaBase.size();
				if (SigmaBase.size()<= max_degree+1)
					{					
						SigmaBase.resize(size+1,Zero);					
						size++;
					}				
				// Mulitply by x the rows of Sigma involved as pivot in LQUP
				for (size_t i=0;i<n;++i){
					for (int j= (int) size-2;j>=0; --j){						
						for (size_t l=0;l<m;++l)
							_F.assign(SigmaBase[j+1].refEntry(*(Qt.getPointer()+i),l),
								  SigmaBase[j].getEntry(*(Qt.getPointer()+i),l));			
					}
					for (size_t l=0;l<m;++l)
						_F.assign(SigmaBase[0].refEntry(*(Qt.getPointer()+i),l),zero);
				}

				//std::cout<<"Base"<<k<<":=";
				//write_maple(_F,SigmaBase);
			}
			//std::cout<<"defect: ";
			//for (size_t i=0;i<m;++i)
			//	std::cout<<defect[i]<<" ";
			//std::cout<<std::endl;
			
			//std::cout<<"SigmaBase"<<length<<":=";
			//write_maple(_F,SigmaBase);

		}


		// compute the middle product of A [1..n].B[1..2n]
		// using Karatsuba multiplication
		// algorithm is that of Hanrot, Quercia and Zimmermann 2002

		void MP_Karatsuba(std::vector<Coefficient> &C, const std::vector<Coefficient> &A, const std::vector<Coefficient> &B){
		
			if (A.size() == 1)
				_BMD.mul(C[0],A[0],B[0]);
			else {				
				size_t k0= A.size()>>1;
				size_t k1= A.size()-k0;

				size_t m = B[0].rowdim();
				size_t n = B[0].coldim();

				const Coefficient Zero(m,n);
				std::vector<Coefficient> alpha(k1,Zero), beta(k1,Zero), gamma(k0,Zero);
				std::vector<Coefficient> A_low(k0), A_high(k1), B1(2*k1-1), B2(2*k1-1);
				
				for (size_t i=0;i<k0;++i)
					A_low[i] = A[i];

				for (size_t i=k0;i<A.size();++i)
					A_high[i-k0] = A[i];

				for (size_t i=0;i<2*k1-1;++i){
					B1[i] = B[i];
					B2[i] = B[i+k1];
					_MD.addin(B1[i],B2[i]);
				}		
				MP_Karatsuba(alpha, A_high, B1);			

				if (k0 == k1) {
					for (size_t i=0;i<k1;++i)
						_MD.subin(A_high[i],A_low[i]);
					MP_Karatsuba(beta, A_high, B2);					
				}
				else {
					for (size_t i=1;i<k1;++i)
						_MD.subin(A_high[i],A_low[i-1]);
					MP_Karatsuba(beta, A_high, B2);
				}				
				
				std::vector<Coefficient> B3(2*k0-1,Zero);
				for (size_t i=0;i<2*k0-1;++i)
					_MD.add(B3[i],B[i+2*k1],B[i+k1]);
				
				MP_Karatsuba(gamma, A_low, B3);

				for (size_t i=0;i<k1;++i)
					_MD.sub(C[i],alpha[i],beta[i]);
				
				for (size_t i=0;i<k0;++i){
					C[k1+i]=gamma[i];
					_MD.addin(C[k1+i],beta[i]);								
				}
			}
		}


		// Multiply a Power Serie by a Sigma Base.
		// only affect coefficients of the Power Serie between degree1 and degree2
		void ComputeNewSerie(std::vector<Coefficient>          &NewSerie, 
				     const std::vector<Coefficient>   &SigmaBase, 
				     const std::vector<Coefficient>    &OldSerie,
				     size_t                              degree1,
				     size_t                              degree2){						
			

			// degree1 >= degree2
			//size_t size = 2*degree1 + 1;
					
			const Coefficient ZeroSerie (OldSerie[0].rowdim(), OldSerie[0].coldim());
			const Coefficient ZeroBase  (SigmaBase[0].rowdim(), SigmaBase[0].coldim());

			// Work on a copy of the old  Serie (increase size by one for computation of middle product)
			std::vector<Coefficient> Serie(OldSerie.size()+1,ZeroSerie);
			for (size_t i=0;i< OldSerie.size();++i)
				Serie[i] = OldSerie[i];

			// Work on a copy of the Sigma Base 
			std::vector<Coefficient> Sigma(SigmaBase.size());
			for (size_t i=0;i<SigmaBase.size();++i){
				Sigma[i] = SigmaBase[i];
			}

			MP_Karatsuba(NewSerie, Sigma, Serie);

			//std::vector<Coefficient> NewPowerSerie(SigmaBase.size()+OldSerie.size(), Zero);
			//MulSigmaBasis(NewPowerSerie, Sigma, Serie);		       
			//for (size_t i=0;i<degree2;++i)
			//	NewSerie[i] = NewPowerSerie[i+degree1];	

			
		}
		

		// matrix polynomial multiplication
		// using Karatsuba's algorithm		
		void MulPolyMatrix(std::vector<Coefficient> &C, size_t shiftC,
				   std::vector<Coefficient> &A, size_t shiftA, size_t degA,
				   std::vector<Coefficient> &B, size_t shiftB, size_t degB){
			
			const Coefficient ZeroC(C[0].rowdim(), C[0].coldim());
			const Coefficient ZeroA(A[0].rowdim(), A[0].coldim());
			const Coefficient ZeroB(B[0].rowdim(), B[0].coldim());
			
			if ((degA == 1) || (degB == 1)) {
				
				if ((degA == 1) && (degB == 1))
					_BMD.mul(C[shiftC],A[shiftA],B[shiftB]); 
				else 
					if (degA == 1) 
						for (size_t i=0;i< degB;++i)
							_BMD.mul(C[shiftC+i],A[shiftA],B[shiftB+i]);
					else 
						for (size_t i=0;i< degA;++i)
							_BMD.mul(C[shiftC+i],A[shiftA+i],B[shiftB]);
			}
			else {
				size_t degA_low, degA_high, degB_low, degB_high, half_degA, half_degB, degSplit;
				half_degA= (degA & 1) + degA >>1;
				half_degB= (degB & 1) + degB >>1;
				degSplit= (half_degA > half_degB) ? half_degA : half_degB;
				
				degB_low = (degB < degSplit) ? degB : degSplit;
				degA_low = (degA < degSplit) ? degA : degSplit;
				degA_high= degA - degA_low;
				degB_high= degB - degB_low;
				
				// multiply low degrees
				MulPolyMatrix(C, shiftC, A, shiftA, degA_low, B, shiftB, degB_low);   
				
				// multiply high degrees (only if they are both different from zero)
				if ((degA_high !=0) && (degB_high != 0)) {	
					MulPolyMatrix(C, shiftC+(degSplit << 1), A, shiftA+degSplit, degA_high, B, shiftB+degSplit, degB_high);
				}
				
				// allocate space for summation of low and high degrees
				std::vector<Coefficient> A_tmp(degA_low,ZeroA);
				std::vector<Coefficient> B_tmp(degB_low,ZeroB);
				std::vector<Coefficient> C_tmp(degA_low+degB_low-1,ZeroC);
				
				// add low and high degrees of A
				for (size_t i=0;i<degA_low;++i)
					A_tmp[i]=A[shiftA+i];
				if ( degA_high != 0) 
					for (size_t i=0;i<degA_high;++i)
						_MD.addin(A_tmp[i],A[shiftA+degSplit+i]);	
				
				// add low and high degrees of B
				for (size_t i=0;i<degB_low;++i)
					B_tmp[i]=B[shiftA+i];
				if ( degB_high != 0)
					for (size_t i=0;i<degB_high;++i)
						_MD.addin(B_tmp[i],B[shiftB+degSplit+i]);
				
				//  multiply the sums
				MulPolyMatrix(C_tmp, 0, A_tmp, 0, degA_low, B_tmp, 0, degB_low);
				
				// subtract the low product from the product of sums
				for (size_t i=0;i< C_tmp.size();++i)
					_MD.subin(C_tmp[i], C[shiftC+i]);	
				
				// subtract the high product from the product of sums
				if ((degA_high !=0) && (degB_high != 0))
					for (size_t i=0;i< degA_high+degB_high-1; ++i)
						_MD.subin(C_tmp[i], C[shiftC+(degSplit << 1)+i]);
				
				// add the middle term of the product
				size_t mid= (degA_low+degB_high > degB_low+degA_high)? degA_low+degB_high :degB_low+degA_high;
				for (size_t i=0;i< mid-1; ++i)
					_MD.addin(C[shiftC+degSplit+i], C_tmp[i]);											
			}		    
		}				
			
		// Multiply two Sigma Basis
		// in fact this is matrix polynomial multiplication
		// we assume that we can modify each operand 
		// since only result will be used
		void MulSigmaBasis(std::vector<Coefficient> &C, 
				   std::vector<Coefficient> &A,
				   std::vector<Coefficient> &B){
			//std::cout<<"C=A*B: "<<C.size()<<" "<<A.size()<<" "<<B.size()<<std::endl;
			MulPolyMatrix(C, 0, A, 0, A.size(), B, 0, B.size());
			
			//for (size_t i=0;i<A.size();++i)
			//	for (size_t j=0;j<B.size();++j)
			//		_BMD.axpyin(C[i+j],A[i],B[j]);
		}
					
	}; //end of class BlockMasseyDomain
	
} // end of namespace LinBox
	
#endif // __MASSEY_DOMAIN_H