This file is indexed.

/usr/include/InsightToolkit/Review/itkGaborImageSource.txx is in libinsighttoolkit3-dev 3.20.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkGaborImageSource.txx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkGaborImageSource_txx
#define __itkGaborImageSource_txx

#include "itkGaborKernelFunction.h"
#include "itkGaborImageSource.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkProgressReporter.h"
#include "itkObjectFactory.h"
 
namespace itk
{

template <class TOutputImage>
GaborImageSource<TOutputImage>
::GaborImageSource()
{
  //Initial image is 64 wide in each direction.
  for (unsigned int i = 0; i < ImageDimension; i++)
    {
    this->m_Size[i] = 64;
    this->m_Spacing[i] = 1.0;
    this->m_Origin[i] = 0.0;
    }

  this->m_Direction.SetIdentity();

  // Gabor parameters, defined so that the gaussian
  // is centered in the default image
  this->m_Mean.Fill( 32.0 );
  this->m_Sigma.Fill( 16.0 );

  this->m_CalculateImaginaryPart = false;
  this->m_Frequency = 0.4;
  this->m_PhaseOffset = 0.0;

}

template <class TOutputImage>
GaborImageSource<TOutputImage>
::~GaborImageSource()
{
}

//----------------------------------------------------------------------------
template <class TOutputImage>
void 
GaborImageSource<TOutputImage>
::GenerateOutputInformation()
{
  OutputImageType *output;
  typename OutputImageType::IndexType index = {{0}};
  
  output = this->GetOutput( 0 );

  typename OutputImageType::RegionType largestPossibleRegion;
  largestPossibleRegion.SetSize( this->m_Size );
  largestPossibleRegion.SetIndex( index );
  output->SetLargestPossibleRegion( largestPossibleRegion );

  output->SetSpacing( this->m_Spacing );
  output->SetOrigin( this->m_Origin );
  output->SetDirection( this->m_Direction );
}

template <class TOutputImage>
void 
GaborImageSource<TOutputImage>
::GenerateData()
{
  typename OutputImageType::Pointer outputPtr = this->GetOutput();

  // allocate the output buffer
  outputPtr->SetBufferedRegion( outputPtr->GetRequestedRegion() );
  outputPtr->Allocate();

  // Create and initialize a new gaussian function
  typedef GaborKernelFunction KernelFunctionType;
  typename KernelFunctionType::Pointer gabor = KernelFunctionType::New();  

  gabor->SetSigma( this->m_Sigma[0] );
  gabor->SetFrequency( this->m_Frequency );
  gabor->SetPhaseOffset( this->m_PhaseOffset );
  gabor->SetCalculateImaginaryPart( this->m_CalculateImaginaryPart );

  // Create an iterator that will walk the output region
  ImageRegionIteratorWithIndex<OutputImageType>
    outIt( outputPtr, outputPtr->GetRequestedRegion() );

  // The position at which the function is evaluated
  Point<double, ImageDimension> evalPoint;

  ProgressReporter progress( this, 0, 
    outputPtr->GetRequestedRegion().GetNumberOfPixels() );

  // Walk the output image, evaluating the spatial function at each pixel
  for ( outIt.GoToBegin(); !outIt.IsAtEnd(); ++outIt )
    {
    typename OutputImageType::IndexType index = outIt.GetIndex();
    outputPtr->TransformIndexToPhysicalPoint( index, evalPoint );
    double sum = 0.0;
    for ( unsigned int i = 1; i < ImageDimension; i++ )
      {
      sum += vnl_math_sqr( ( evalPoint[i] - this->m_Mean[i] ) / this->m_Sigma[i] );
      }  
    double value = vcl_exp( -0.5 * sum ) * gabor->Evaluate( evalPoint[0] - this->m_Mean[0] );

    // Set the pixel value to the function value
    outIt.Set( static_cast<PixelType>( value ) );
    progress.CompletedPixel();
    }
}

template <class TOutputImage>
void 
GaborImageSource<TOutputImage>
::PrintSelf( std::ostream& os, Indent indent ) const
{
  Superclass::PrintSelf( os,indent );

  os << indent << "Image parameters: " << std::endl;
  os << indent << "  Size: " << this->GetSize() << std::endl;
  os << indent << "  Origin: " << this->GetOrigin() << std::endl;
  os << indent << "  Spacing: " << this->GetSpacing() << std::endl;
  os << indent << "  Direction: " << this->GetDirection() << std::endl;

  os << indent << "Gabor filter parameters: " << std::endl;
  os << indent << "  Sigma: " << this->GetSigma() << std::endl;
  os << indent << "  Mean: " << this->GetMean() << std::endl;
  os << indent << "  Frequency: " << this->GetFrequency() << std::endl;
  if ( this->GetCalculateImaginaryPart() )
    {
    os << indent << "  Calculate complex part: true " << std::endl;
    }
  else  
    {
    os << indent << "  Calculate complex part: false " << std::endl;
    }
}

} // end namespace itk

#endif