This file is indexed.

/usr/include/glpk.h is in libglpk-dev 4.45-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
/* glpk.h */

/***********************************************************************
*  This code is part of GLPK (GNU Linear Programming Kit).
*
*  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
*  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
*  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
*  E-mail: <mao@gnu.org>.
*
*  GLPK is free software: you can redistribute it and/or modify it
*  under the terms of the GNU General Public License as published by
*  the Free Software Foundation, either version 3 of the License, or
*  (at your option) any later version.
*
*  GLPK is distributed in the hope that it will be useful, but WITHOUT
*  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
*  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
*  License for more details.
*
*  You should have received a copy of the GNU General Public License
*  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
***********************************************************************/

#ifndef GLPK_H
#define GLPK_H

#include <stdarg.h>
#include <stddef.h>

#ifdef __cplusplus
extern "C" {
#endif

/* library version numbers: */
#define GLP_MAJOR_VERSION  4
#define GLP_MINOR_VERSION  45

#ifndef GLP_PROB_DEFINED
#define GLP_PROB_DEFINED
typedef struct { double _opaque_prob[100]; } glp_prob;
/* LP/MIP problem object */
#endif

/* optimization direction flag: */
#define GLP_MIN            1  /* minimization */
#define GLP_MAX            2  /* maximization */

/* kind of structural variable: */
#define GLP_CV             1  /* continuous variable */
#define GLP_IV             2  /* integer variable */
#define GLP_BV             3  /* binary variable */

/* type of auxiliary/structural variable: */
#define GLP_FR             1  /* free variable */
#define GLP_LO             2  /* variable with lower bound */
#define GLP_UP             3  /* variable with upper bound */
#define GLP_DB             4  /* double-bounded variable */
#define GLP_FX             5  /* fixed variable */

/* status of auxiliary/structural variable: */
#define GLP_BS             1  /* basic variable */
#define GLP_NL             2  /* non-basic variable on lower bound */
#define GLP_NU             3  /* non-basic variable on upper bound */
#define GLP_NF             4  /* non-basic free variable */
#define GLP_NS             5  /* non-basic fixed variable */

/* scaling options: */
#define GLP_SF_GM       0x01  /* perform geometric mean scaling */
#define GLP_SF_EQ       0x10  /* perform equilibration scaling */
#define GLP_SF_2N       0x20  /* round scale factors to power of two */
#define GLP_SF_SKIP     0x40  /* skip if problem is well scaled */
#define GLP_SF_AUTO     0x80  /* choose scaling options automatically */

/* solution indicator: */
#define GLP_SOL            1  /* basic solution */
#define GLP_IPT            2  /* interior-point solution */
#define GLP_MIP            3  /* mixed integer solution */

/* solution status: */
#define GLP_UNDEF          1  /* solution is undefined */
#define GLP_FEAS           2  /* solution is feasible */
#define GLP_INFEAS         3  /* solution is infeasible */
#define GLP_NOFEAS         4  /* no feasible solution exists */
#define GLP_OPT            5  /* solution is optimal */
#define GLP_UNBND          6  /* solution is unbounded */

typedef struct
{     /* basis factorization control parameters */
      int msg_lev;            /* (reserved) */
      int type;               /* factorization type: */
#define GLP_BF_FT          1  /* LUF + Forrest-Tomlin */
#define GLP_BF_BG          2  /* LUF + Schur compl. + Bartels-Golub */
#define GLP_BF_GR          3  /* LUF + Schur compl. + Givens rotation */
      int lu_size;            /* luf.sv_size */
      double piv_tol;         /* luf.piv_tol */
      int piv_lim;            /* luf.piv_lim */
      int suhl;               /* luf.suhl */
      double eps_tol;         /* luf.eps_tol */
      double max_gro;         /* luf.max_gro */
      int nfs_max;            /* fhv.hh_max */
      double upd_tol;         /* fhv.upd_tol */
      int nrs_max;            /* lpf.n_max */
      int rs_size;            /* lpf.v_size */
      double foo_bar[38];     /* (reserved) */
} glp_bfcp;

typedef struct
{     /* simplex method control parameters */
      int msg_lev;            /* message level: */
#define GLP_MSG_OFF        0  /* no output */
#define GLP_MSG_ERR        1  /* warning and error messages only */
#define GLP_MSG_ON         2  /* normal output */
#define GLP_MSG_ALL        3  /* full output */
#define GLP_MSG_DBG        4  /* debug output */
      int meth;               /* simplex method option: */
#define GLP_PRIMAL         1  /* use primal simplex */
#define GLP_DUALP          2  /* use dual; if it fails, use primal */
#define GLP_DUAL           3  /* use dual simplex */
      int pricing;            /* pricing technique: */
#define GLP_PT_STD      0x11  /* standard (Dantzig rule) */
#define GLP_PT_PSE      0x22  /* projected steepest edge */
      int r_test;             /* ratio test technique: */
#define GLP_RT_STD      0x11  /* standard (textbook) */
#define GLP_RT_HAR      0x22  /* two-pass Harris' ratio test */
      double tol_bnd;         /* spx.tol_bnd */
      double tol_dj;          /* spx.tol_dj */
      double tol_piv;         /* spx.tol_piv */
      double obj_ll;          /* spx.obj_ll */
      double obj_ul;          /* spx.obj_ul */
      int it_lim;             /* spx.it_lim */
      int tm_lim;             /* spx.tm_lim (milliseconds) */
      int out_frq;            /* spx.out_frq */
      int out_dly;            /* spx.out_dly (milliseconds) */
      int presolve;           /* enable/disable using LP presolver */
      double foo_bar[36];     /* (reserved) */
} glp_smcp;

typedef struct
{     /* interior-point solver control parameters */
      int msg_lev;            /* message level (see glp_smcp) */
      int ord_alg;            /* ordering algorithm: */
#define GLP_ORD_NONE       0  /* natural (original) ordering */
#define GLP_ORD_QMD        1  /* quotient minimum degree (QMD) */
#define GLP_ORD_AMD        2  /* approx. minimum degree (AMD) */
#define GLP_ORD_SYMAMD     3  /* approx. minimum degree (SYMAMD) */
      double foo_bar[48];     /* (reserved) */
} glp_iptcp;

#ifndef GLP_TREE_DEFINED
#define GLP_TREE_DEFINED
typedef struct { double _opaque_tree[100]; } glp_tree;
/* branch-and-bound tree */
#endif

typedef struct
{     /* integer optimizer control parameters */
      int msg_lev;            /* message level (see glp_smcp) */
      int br_tech;            /* branching technique: */
#define GLP_BR_FFV         1  /* first fractional variable */
#define GLP_BR_LFV         2  /* last fractional variable */
#define GLP_BR_MFV         3  /* most fractional variable */
#define GLP_BR_DTH         4  /* heuristic by Driebeck and Tomlin */
#define GLP_BR_PCH         5  /* hybrid pseudocost heuristic */
      int bt_tech;            /* backtracking technique: */
#define GLP_BT_DFS         1  /* depth first search */
#define GLP_BT_BFS         2  /* breadth first search */
#define GLP_BT_BLB         3  /* best local bound */
#define GLP_BT_BPH         4  /* best projection heuristic */
      double tol_int;         /* mip.tol_int */
      double tol_obj;         /* mip.tol_obj */
      int tm_lim;             /* mip.tm_lim (milliseconds) */
      int out_frq;            /* mip.out_frq (milliseconds) */
      int out_dly;            /* mip.out_dly (milliseconds) */
      void (*cb_func)(glp_tree *T, void *info);
                              /* mip.cb_func */
      void *cb_info;          /* mip.cb_info */
      int cb_size;            /* mip.cb_size */
      int pp_tech;            /* preprocessing technique: */
#define GLP_PP_NONE        0  /* disable preprocessing */
#define GLP_PP_ROOT        1  /* preprocessing only on root level */
#define GLP_PP_ALL         2  /* preprocessing on all levels */
      double mip_gap;         /* relative MIP gap tolerance */
      int mir_cuts;           /* MIR cuts       (GLP_ON/GLP_OFF) */
      int gmi_cuts;           /* Gomory's cuts  (GLP_ON/GLP_OFF) */
      int cov_cuts;           /* cover cuts     (GLP_ON/GLP_OFF) */
      int clq_cuts;           /* clique cuts    (GLP_ON/GLP_OFF) */
      int presolve;           /* enable/disable using MIP presolver */
      int binarize;           /* try to binarize integer variables */
      int fp_heur;            /* feasibility pump heuristic */
#if 1 /* 28/V-2010 */
      int alien;              /* use alien solver */
#endif
      double foo_bar[29];     /* (reserved) */
} glp_iocp;

typedef struct
{     /* additional row attributes */
      int level;
      /* subproblem level at which the row was added */
      int origin;
      /* row origin flag: */
#define GLP_RF_REG         0  /* regular constraint */
#define GLP_RF_LAZY        1  /* "lazy" constraint */
#define GLP_RF_CUT         2  /* cutting plane constraint */
      int klass;
      /* row class descriptor: */
#define GLP_RF_GMI         1  /* Gomory's mixed integer cut */
#define GLP_RF_MIR         2  /* mixed integer rounding cut */
#define GLP_RF_COV         3  /* mixed cover cut */
#define GLP_RF_CLQ         4  /* clique cut */
      double foo_bar[7];
      /* (reserved) */
} glp_attr;

/* enable/disable flag: */
#define GLP_ON             1  /* enable something */
#define GLP_OFF            0  /* disable something */

/* reason codes: */
#define GLP_IROWGEN     0x01  /* request for row generation */
#define GLP_IBINGO      0x02  /* better integer solution found */
#define GLP_IHEUR       0x03  /* request for heuristic solution */
#define GLP_ICUTGEN     0x04  /* request for cut generation */
#define GLP_IBRANCH     0x05  /* request for branching */
#define GLP_ISELECT     0x06  /* request for subproblem selection */
#define GLP_IPREPRO     0x07  /* request for preprocessing */

/* branch selection indicator: */
#define GLP_NO_BRNCH       0  /* select no branch */
#define GLP_DN_BRNCH       1  /* select down-branch */
#define GLP_UP_BRNCH       2  /* select up-branch */

/* return codes: */
#define GLP_EBADB       0x01  /* invalid basis */
#define GLP_ESING       0x02  /* singular matrix */
#define GLP_ECOND       0x03  /* ill-conditioned matrix */
#define GLP_EBOUND      0x04  /* invalid bounds */
#define GLP_EFAIL       0x05  /* solver failed */
#define GLP_EOBJLL      0x06  /* objective lower limit reached */
#define GLP_EOBJUL      0x07  /* objective upper limit reached */
#define GLP_EITLIM      0x08  /* iteration limit exceeded */
#define GLP_ETMLIM      0x09  /* time limit exceeded */
#define GLP_ENOPFS      0x0A  /* no primal feasible solution */
#define GLP_ENODFS      0x0B  /* no dual feasible solution */
#define GLP_EROOT       0x0C  /* root LP optimum not provided */
#define GLP_ESTOP       0x0D  /* search terminated by application */
#define GLP_EMIPGAP     0x0E  /* relative mip gap tolerance reached */
#define GLP_ENOFEAS     0x0F  /* no primal/dual feasible solution */
#define GLP_ENOCVG      0x10  /* no convergence */
#define GLP_EINSTAB     0x11  /* numerical instability */
#define GLP_EDATA       0x12  /* invalid data */
#define GLP_ERANGE      0x13  /* result out of range */

/* condition indicator: */
#define GLP_KKT_PE         1  /* primal equalities */
#define GLP_KKT_PB         2  /* primal bounds */
#define GLP_KKT_DE         3  /* dual equalities */
#define GLP_KKT_DB         4  /* dual bounds */
#define GLP_KKT_CS         5  /* complementary slackness */

/* MPS file format: */
#define GLP_MPS_DECK       1  /* fixed (ancient) */
#define GLP_MPS_FILE       2  /* free (modern) */

typedef struct
{     /* MPS format control parameters */
      int blank;
      /* character code to replace blanks in symbolic names */
      char *obj_name;
      /* objective row name */
      double tol_mps;
      /* zero tolerance for MPS data */
      double foo_bar[17];
      /* (reserved for use in the future) */
} glp_mpscp;

typedef struct
{     /* CPLEX LP format control parameters */
      double foo_bar[20];
      /* (reserved for use in the future) */
} glp_cpxcp;

#ifndef GLP_TRAN_DEFINED
#define GLP_TRAN_DEFINED
typedef struct { double _opaque_tran[100]; } glp_tran;
/* MathProg translator workspace */
#endif

glp_prob *glp_create_prob(void);
/* create problem object */

void glp_set_prob_name(glp_prob *P, const char *name);
/* assign (change) problem name */

void glp_set_obj_name(glp_prob *P, const char *name);
/* assign (change) objective function name */

void glp_set_obj_dir(glp_prob *P, int dir);
/* set (change) optimization direction flag */

int glp_add_rows(glp_prob *P, int nrs);
/* add new rows to problem object */

int glp_add_cols(glp_prob *P, int ncs);
/* add new columns to problem object */

void glp_set_row_name(glp_prob *P, int i, const char *name);
/* assign (change) row name */

void glp_set_col_name(glp_prob *P, int j, const char *name);
/* assign (change) column name */

void glp_set_row_bnds(glp_prob *P, int i, int type, double lb,
      double ub);
/* set (change) row bounds */

void glp_set_col_bnds(glp_prob *P, int j, int type, double lb,
      double ub);
/* set (change) column bounds */

void glp_set_obj_coef(glp_prob *P, int j, double coef);
/* set (change) obj. coefficient or constant term */

void glp_set_mat_row(glp_prob *P, int i, int len, const int ind[],
      const double val[]);
/* set (replace) row of the constraint matrix */

void glp_set_mat_col(glp_prob *P, int j, int len, const int ind[],
      const double val[]);
/* set (replace) column of the constraint matrix */

void glp_load_matrix(glp_prob *P, int ne, const int ia[],
      const int ja[], const double ar[]);
/* load (replace) the whole constraint matrix */

int glp_check_dup(int m, int n, int ne, const int ia[], const int ja[]);
/* check for duplicate elements in sparse matrix */

void glp_sort_matrix(glp_prob *P);
/* sort elements of the constraint matrix */

void glp_del_rows(glp_prob *P, int nrs, const int num[]);
/* delete specified rows from problem object */

void glp_del_cols(glp_prob *P, int ncs, const int num[]);
/* delete specified columns from problem object */

void glp_copy_prob(glp_prob *dest, glp_prob *prob, int names);
/* copy problem object content */

void glp_erase_prob(glp_prob *P);
/* erase problem object content */

void glp_delete_prob(glp_prob *P);
/* delete problem object */

const char *glp_get_prob_name(glp_prob *P);
/* retrieve problem name */

const char *glp_get_obj_name(glp_prob *P);
/* retrieve objective function name */

int glp_get_obj_dir(glp_prob *P);
/* retrieve optimization direction flag */

int glp_get_num_rows(glp_prob *P);
/* retrieve number of rows */

int glp_get_num_cols(glp_prob *P);
/* retrieve number of columns */

const char *glp_get_row_name(glp_prob *P, int i);
/* retrieve row name */

const char *glp_get_col_name(glp_prob *P, int j);
/* retrieve column name */

int glp_get_row_type(glp_prob *P, int i);
/* retrieve row type */

double glp_get_row_lb(glp_prob *P, int i);
/* retrieve row lower bound */

double glp_get_row_ub(glp_prob *P, int i);
/* retrieve row upper bound */

int glp_get_col_type(glp_prob *P, int j);
/* retrieve column type */

double glp_get_col_lb(glp_prob *P, int j);
/* retrieve column lower bound */

double glp_get_col_ub(glp_prob *P, int j);
/* retrieve column upper bound */

double glp_get_obj_coef(glp_prob *P, int j);
/* retrieve obj. coefficient or constant term */

int glp_get_num_nz(glp_prob *P);
/* retrieve number of constraint coefficients */

int glp_get_mat_row(glp_prob *P, int i, int ind[], double val[]);
/* retrieve row of the constraint matrix */

int glp_get_mat_col(glp_prob *P, int j, int ind[], double val[]);
/* retrieve column of the constraint matrix */

void glp_create_index(glp_prob *P);
/* create the name index */

int glp_find_row(glp_prob *P, const char *name);
/* find row by its name */

int glp_find_col(glp_prob *P, const char *name);
/* find column by its name */

void glp_delete_index(glp_prob *P);
/* delete the name index */

void glp_set_rii(glp_prob *P, int i, double rii);
/* set (change) row scale factor */

void glp_set_sjj(glp_prob *P, int j, double sjj);
/* set (change) column scale factor */

double glp_get_rii(glp_prob *P, int i);
/* retrieve row scale factor */

double glp_get_sjj(glp_prob *P, int j);
/* retrieve column scale factor */

void glp_scale_prob(glp_prob *P, int flags);
/* scale problem data */

void glp_unscale_prob(glp_prob *P);
/* unscale problem data */

void glp_set_row_stat(glp_prob *P, int i, int stat);
/* set (change) row status */

void glp_set_col_stat(glp_prob *P, int j, int stat);
/* set (change) column status */

void glp_std_basis(glp_prob *P);
/* construct standard initial LP basis */

void glp_adv_basis(glp_prob *P, int flags);
/* construct advanced initial LP basis */

void glp_cpx_basis(glp_prob *P);
/* construct Bixby's initial LP basis */

int glp_simplex(glp_prob *P, const glp_smcp *parm);
/* solve LP problem with the simplex method */

int glp_exact(glp_prob *P, const glp_smcp *parm);
/* solve LP problem in exact arithmetic */

void glp_init_smcp(glp_smcp *parm);
/* initialize simplex method control parameters */

int glp_get_status(glp_prob *P);
/* retrieve generic status of basic solution */

int glp_get_prim_stat(glp_prob *P);
/* retrieve status of primal basic solution */

int glp_get_dual_stat(glp_prob *P);
/* retrieve status of dual basic solution */

double glp_get_obj_val(glp_prob *P);
/* retrieve objective value (basic solution) */

int glp_get_row_stat(glp_prob *P, int i);
/* retrieve row status */

double glp_get_row_prim(glp_prob *P, int i);
/* retrieve row primal value (basic solution) */

double glp_get_row_dual(glp_prob *P, int i);
/* retrieve row dual value (basic solution) */

int glp_get_col_stat(glp_prob *P, int j);
/* retrieve column status */

double glp_get_col_prim(glp_prob *P, int j);
/* retrieve column primal value (basic solution) */

double glp_get_col_dual(glp_prob *P, int j);
/* retrieve column dual value (basic solution) */

int glp_get_unbnd_ray(glp_prob *P);
/* determine variable causing unboundedness */

int glp_interior(glp_prob *P, const glp_iptcp *parm);
/* solve LP problem with the interior-point method */

void glp_init_iptcp(glp_iptcp *parm);
/* initialize interior-point solver control parameters */

int glp_ipt_status(glp_prob *P);
/* retrieve status of interior-point solution */

double glp_ipt_obj_val(glp_prob *P);
/* retrieve objective value (interior point) */

double glp_ipt_row_prim(glp_prob *P, int i);
/* retrieve row primal value (interior point) */

double glp_ipt_row_dual(glp_prob *P, int i);
/* retrieve row dual value (interior point) */

double glp_ipt_col_prim(glp_prob *P, int j);
/* retrieve column primal value (interior point) */

double glp_ipt_col_dual(glp_prob *P, int j);
/* retrieve column dual value (interior point) */

void glp_set_col_kind(glp_prob *P, int j, int kind);
/* set (change) column kind */

int glp_get_col_kind(glp_prob *P, int j);
/* retrieve column kind */

int glp_get_num_int(glp_prob *P);
/* retrieve number of integer columns */

int glp_get_num_bin(glp_prob *P);
/* retrieve number of binary columns */

int glp_intopt(glp_prob *P, const glp_iocp *parm);
/* solve MIP problem with the branch-and-bound method */

void glp_init_iocp(glp_iocp *parm);
/* initialize integer optimizer control parameters */

int glp_mip_status(glp_prob *P);
/* retrieve status of MIP solution */

double glp_mip_obj_val(glp_prob *P);
/* retrieve objective value (MIP solution) */

double glp_mip_row_val(glp_prob *P, int i);
/* retrieve row value (MIP solution) */

double glp_mip_col_val(glp_prob *P, int j);
/* retrieve column value (MIP solution) */

int glp_print_sol(glp_prob *P, const char *fname);
/* write basic solution in printable format */

int glp_read_sol(glp_prob *P, const char *fname);
/* read basic solution from text file */

int glp_write_sol(glp_prob *P, const char *fname);
/* write basic solution to text file */

int glp_print_ranges(glp_prob *P, int len, const int list[],
      int flags, const char *fname);
/* print sensitivity analysis report */

int glp_print_ipt(glp_prob *P, const char *fname);
/* write interior-point solution in printable format */

int glp_read_ipt(glp_prob *P, const char *fname);
/* read interior-point solution from text file */

int glp_write_ipt(glp_prob *P, const char *fname);
/* write interior-point solution to text file */

int glp_print_mip(glp_prob *P, const char *fname);
/* write MIP solution in printable format */

int glp_read_mip(glp_prob *P, const char *fname);
/* read MIP solution from text file */

int glp_write_mip(glp_prob *P, const char *fname);
/* write MIP solution to text file */

int glp_bf_exists(glp_prob *P);
/* check if the basis factorization exists */

int glp_factorize(glp_prob *P);
/* compute the basis factorization */

int glp_bf_updated(glp_prob *P);
/* check if the basis factorization has been updated */

void glp_get_bfcp(glp_prob *P, glp_bfcp *parm);
/* retrieve basis factorization control parameters */

void glp_set_bfcp(glp_prob *P, const glp_bfcp *parm);
/* change basis factorization control parameters */

int glp_get_bhead(glp_prob *P, int k);
/* retrieve the basis header information */

int glp_get_row_bind(glp_prob *P, int i);
/* retrieve row index in the basis header */

int glp_get_col_bind(glp_prob *P, int j);
/* retrieve column index in the basis header */

void glp_ftran(glp_prob *P, double x[]);
/* perform forward transformation (solve system B*x = b) */

void glp_btran(glp_prob *P, double x[]);
/* perform backward transformation (solve system B'*x = b) */

int glp_warm_up(glp_prob *P);
/* "warm up" LP basis */

int glp_eval_tab_row(glp_prob *P, int k, int ind[], double val[]);
/* compute row of the simplex tableau */

int glp_eval_tab_col(glp_prob *P, int k, int ind[], double val[]);
/* compute column of the simplex tableau */

int glp_transform_row(glp_prob *P, int len, int ind[], double val[]);
/* transform explicitly specified row */

int glp_transform_col(glp_prob *P, int len, int ind[], double val[]);
/* transform explicitly specified column */

int glp_prim_rtest(glp_prob *P, int len, const int ind[],
      const double val[], int dir, double eps);
/* perform primal ratio test */

int glp_dual_rtest(glp_prob *P, int len, const int ind[],
      const double val[], int dir, double eps);
/* perform dual ratio test */

void glp_analyze_bound(glp_prob *P, int k, double *value1, int *var1,
      double *value2, int *var2);
/* analyze active bound of non-basic variable */

void glp_analyze_coef(glp_prob *P, int k, double *coef1, int *var1,
      double *value1, double *coef2, int *var2, double *value2);
/* analyze objective coefficient at basic variable */

int glp_ios_reason(glp_tree *T);
/* determine reason for calling the callback routine */

glp_prob *glp_ios_get_prob(glp_tree *T);
/* access the problem object */

void glp_ios_tree_size(glp_tree *T, int *a_cnt, int *n_cnt,
      int *t_cnt);
/* determine size of the branch-and-bound tree */

int glp_ios_curr_node(glp_tree *T);
/* determine current active subproblem */

int glp_ios_next_node(glp_tree *T, int p);
/* determine next active subproblem */

int glp_ios_prev_node(glp_tree *T, int p);
/* determine previous active subproblem */

int glp_ios_up_node(glp_tree *T, int p);
/* determine parent subproblem */

int glp_ios_node_level(glp_tree *T, int p);
/* determine subproblem level */

double glp_ios_node_bound(glp_tree *T, int p);
/* determine subproblem local bound */

int glp_ios_best_node(glp_tree *T);
/* find active subproblem with best local bound */

double glp_ios_mip_gap(glp_tree *T);
/* compute relative MIP gap */

void *glp_ios_node_data(glp_tree *T, int p);
/* access subproblem application-specific data */

void glp_ios_row_attr(glp_tree *T, int i, glp_attr *attr);
/* retrieve additional row attributes */

int glp_ios_pool_size(glp_tree *T);
/* determine current size of the cut pool */

int glp_ios_add_row(glp_tree *T,
      const char *name, int klass, int flags, int len, const int ind[],
      const double val[], int type, double rhs);
/* add row (constraint) to the cut pool */

void glp_ios_del_row(glp_tree *T, int i);
/* remove row (constraint) from the cut pool */

void glp_ios_clear_pool(glp_tree *T);
/* remove all rows (constraints) from the cut pool */

int glp_ios_can_branch(glp_tree *T, int j);
/* check if can branch upon specified variable */

void glp_ios_branch_upon(glp_tree *T, int j, int sel);
/* choose variable to branch upon */

void glp_ios_select_node(glp_tree *T, int p);
/* select subproblem to continue the search */

int glp_ios_heur_sol(glp_tree *T, const double x[]);
/* provide solution found by heuristic */

void glp_ios_terminate(glp_tree *T);
/* terminate the solution process */

void glp_init_mpscp(glp_mpscp *parm);
/* initialize MPS format control parameters */

int glp_read_mps(glp_prob *P, int fmt, const glp_mpscp *parm,
      const char *fname);
/* read problem data in MPS format */

int glp_write_mps(glp_prob *P, int fmt, const glp_mpscp *parm,
      const char *fname);
/* write problem data in MPS format */

void glp_init_cpxcp(glp_cpxcp *parm);
/* initialize CPLEX LP format control parameters */

int glp_read_lp(glp_prob *P, const glp_cpxcp *parm, const char *fname);
/* read problem data in CPLEX LP format */

int glp_write_lp(glp_prob *P, const glp_cpxcp *parm, const char *fname);
/* write problem data in CPLEX LP format */

int glp_read_prob(glp_prob *P, int flags, const char *fname);
/* read problem data in GLPK format */

int glp_write_prob(glp_prob *P, int flags, const char *fname);
/* write problem data in GLPK format */

glp_tran *glp_mpl_alloc_wksp(void);
/* allocate the MathProg translator workspace */

int glp_mpl_read_model(glp_tran *tran, const char *fname, int skip);
/* read and translate model section */

int glp_mpl_read_data(glp_tran *tran, const char *fname);
/* read and translate data section */

int glp_mpl_generate(glp_tran *tran, const char *fname);
/* generate the model */

void glp_mpl_build_prob(glp_tran *tran, glp_prob *prob);
/* build LP/MIP problem instance from the model */

int glp_mpl_postsolve(glp_tran *tran, glp_prob *prob, int sol);
/* postsolve the model */

void glp_mpl_free_wksp(glp_tran *tran);
/* free the MathProg translator workspace */

int glp_main(int argc, const char *argv[]);
/* stand-alone LP/MIP solver */

/**********************************************************************/

#ifndef GLP_LONG_DEFINED
#define GLP_LONG_DEFINED
typedef struct { int lo, hi; } glp_long;
/* long integer data type */
#endif

int glp_init_env(void);
/* initialize GLPK environment */

const char *glp_version(void);
/* determine library version */

int glp_free_env(void);
/* free GLPK environment */

void glp_printf(const char *fmt, ...);
/* write formatted output to terminal */

void glp_vprintf(const char *fmt, va_list arg);
/* write formatted output to terminal */

int glp_term_out(int flag);
/* enable/disable terminal output */

void glp_term_hook(int (*func)(void *info, const char *s), void *info);
/* install hook to intercept terminal output */

int glp_open_tee(const char *fname);
/* start copying terminal output to text file */

int glp_close_tee(void);
/* stop copying terminal output to text file */

#ifndef GLP_ERROR_DEFINED
#define GLP_ERROR_DEFINED
typedef void (*_glp_error)(const char *fmt, ...);
#endif

#define glp_error glp_error_(__FILE__, __LINE__)
_glp_error glp_error_(const char *file, int line);
/* display error message and terminate execution */

#define glp_assert(expr) \
      ((void)((expr) || (glp_assert_(#expr, __FILE__, __LINE__), 1)))
void glp_assert_(const char *expr, const char *file, int line);
/* check for logical condition */

void glp_error_hook(void (*func)(void *info), void *info);
/* install hook to intercept abnormal termination */

void *glp_malloc(int size);
/* allocate memory block */

void *glp_calloc(int n, int size);
/* allocate memory block */

void glp_free(void *ptr);
/* free memory block */

void glp_mem_limit(int limit);
/* set memory usage limit */

void glp_mem_usage(int *count, int *cpeak, glp_long *total,
      glp_long *tpeak);
/* get memory usage information */

glp_long glp_time(void);
/* determine current universal time */

double glp_difftime(glp_long t1, glp_long t0);
/* compute difference between two time values */

/**********************************************************************/

#ifndef GLP_DATA_DEFINED
#define GLP_DATA_DEFINED
typedef struct { double _opaque_data[100]; } glp_data;
/* plain data file */
#endif

glp_data *glp_sdf_open_file(const char *fname);
/* open plain data file */

void glp_sdf_set_jump(glp_data *data, void *jump);
/* set up error handling */

void glp_sdf_error(glp_data *data, const char *fmt, ...);
/* print error message */

void glp_sdf_warning(glp_data *data, const char *fmt, ...);
/* print warning message */

int glp_sdf_read_int(glp_data *data);
/* read integer number */

double glp_sdf_read_num(glp_data *data);
/* read floating-point number */

const char *glp_sdf_read_item(glp_data *data);
/* read data item */

const char *glp_sdf_read_text(glp_data *data);
/* read text until end of line */

int glp_sdf_line(glp_data *data);
/* determine current line number */

void glp_sdf_close_file(glp_data *data);
/* close plain data file */

/**********************************************************************/

typedef struct _glp_graph glp_graph;
typedef struct _glp_vertex glp_vertex;
typedef struct _glp_arc glp_arc;

struct _glp_graph
{     /* graph descriptor */
      void *pool; /* DMP *pool; */
      /* memory pool to store graph components */
      char *name;
      /* graph name (1 to 255 chars); NULL means no name is assigned
         to the graph */
      int nv_max;
      /* length of the vertex list (enlarged automatically) */
      int nv;
      /* number of vertices in the graph, 0 <= nv <= nv_max */
      int na;
      /* number of arcs in the graph, na >= 0 */
      glp_vertex **v; /* glp_vertex *v[1+nv_max]; */
      /* v[i], 1 <= i <= nv, is a pointer to i-th vertex */
      void *index; /* AVL *index; */
      /* vertex index to find vertices by their names; NULL means the
         index does not exist */
      int v_size;
      /* size of data associated with each vertex (0 to 256 bytes) */
      int a_size;
      /* size of data associated with each arc (0 to 256 bytes) */
};

struct _glp_vertex
{     /* vertex descriptor */
      int i;
      /* vertex ordinal number, 1 <= i <= nv */
      char *name;
      /* vertex name (1 to 255 chars); NULL means no name is assigned
         to the vertex */
      void *entry; /* AVLNODE *entry; */
      /* pointer to corresponding entry in the vertex index; NULL means
         that either the index does not exist or the vertex has no name
         assigned */
      void *data;
      /* pointer to data associated with the vertex */
      void *temp;
      /* working pointer */
      glp_arc *in;
      /* pointer to the (unordered) list of incoming arcs */
      glp_arc *out;
      /* pointer to the (unordered) list of outgoing arcs */
};

struct _glp_arc
{     /* arc descriptor */
      glp_vertex *tail;
      /* pointer to the tail endpoint */
      glp_vertex *head;
      /* pointer to the head endpoint */
      void *data;
      /* pointer to data associated with the arc */
      void *temp;
      /* working pointer */
      glp_arc *t_prev;
      /* pointer to previous arc having the same tail endpoint */
      glp_arc *t_next;
      /* pointer to next arc having the same tail endpoint */
      glp_arc *h_prev;
      /* pointer to previous arc having the same head endpoint */
      glp_arc *h_next;
      /* pointer to next arc having the same head endpoint */
};

glp_graph *glp_create_graph(int v_size, int a_size);
/* create graph */

void glp_set_graph_name(glp_graph *G, const char *name);
/* assign (change) graph name */

int glp_add_vertices(glp_graph *G, int nadd);
/* add new vertices to graph */

void glp_set_vertex_name(glp_graph *G, int i, const char *name);
/* assign (change) vertex name */

glp_arc *glp_add_arc(glp_graph *G, int i, int j);
/* add new arc to graph */

void glp_del_vertices(glp_graph *G, int ndel, const int num[]);
/* delete vertices from graph */

void glp_del_arc(glp_graph *G, glp_arc *a);
/* delete arc from graph */

void glp_erase_graph(glp_graph *G, int v_size, int a_size);
/* erase graph content */

void glp_delete_graph(glp_graph *G);
/* delete graph */

void glp_create_v_index(glp_graph *G);
/* create vertex name index */

int glp_find_vertex(glp_graph *G, const char *name);
/* find vertex by its name */

void glp_delete_v_index(glp_graph *G);
/* delete vertex name index */

int glp_read_graph(glp_graph *G, const char *fname);
/* read graph from plain text file */

int glp_write_graph(glp_graph *G, const char *fname);
/* write graph to plain text file */

void glp_mincost_lp(glp_prob *P, glp_graph *G, int names, int v_rhs,
      int a_low, int a_cap, int a_cost);
/* convert minimum cost flow problem to LP */

int glp_mincost_okalg(glp_graph *G, int v_rhs, int a_low, int a_cap,
      int a_cost, double *sol, int a_x, int v_pi);
/* find minimum-cost flow with out-of-kilter algorithm */

void glp_maxflow_lp(glp_prob *P, glp_graph *G, int names, int s,
      int t, int a_cap);
/* convert maximum flow problem to LP */

int glp_maxflow_ffalg(glp_graph *G, int s, int t, int a_cap,
      double *sol, int a_x, int v_cut);
/* find maximal flow with Ford-Fulkerson algorithm */

int glp_check_asnprob(glp_graph *G, int v_set);
/* check correctness of assignment problem data */

/* assignment problem formulation: */
#define GLP_ASN_MIN        1  /* perfect matching (minimization) */
#define GLP_ASN_MAX        2  /* perfect matching (maximization) */
#define GLP_ASN_MMP        3  /* maximum matching */

int glp_asnprob_lp(glp_prob *P, int form, glp_graph *G, int names,
      int v_set, int a_cost);
/* convert assignment problem to LP */

int glp_asnprob_okalg(int form, glp_graph *G, int v_set, int a_cost,
      double *sol, int a_x);
/* solve assignment problem with out-of-kilter algorithm */

int glp_asnprob_hall(glp_graph *G, int v_set, int a_x);
/* find bipartite matching of maximum cardinality */

double glp_cpp(glp_graph *G, int v_t, int v_es, int v_ls);
/* solve critical path problem */

int glp_read_mincost(glp_graph *G, int v_rhs, int a_low, int a_cap,
      int a_cost, const char *fname);
/* read min-cost flow problem data in DIMACS format */

int glp_write_mincost(glp_graph *G, int v_rhs, int a_low, int a_cap,
      int a_cost, const char *fname);
/* write min-cost flow problem data in DIMACS format */

int glp_read_maxflow(glp_graph *G, int *s, int *t, int a_cap,
      const char *fname);
/* read maximum flow problem data in DIMACS format */

int glp_write_maxflow(glp_graph *G, int s, int t, int a_cap,
      const char *fname);
/* write maximum flow problem data in DIMACS format */

int glp_read_asnprob(glp_graph *G, int v_set, int a_cost, const char
      *fname);
/* read assignment problem data in DIMACS format */

int glp_write_asnprob(glp_graph *G, int v_set, int a_cost, const char
      *fname);
/* write assignment problem data in DIMACS format */

int glp_read_ccdata(glp_graph *G, int v_wgt, const char *fname);
/* read graph in DIMACS clique/coloring format */

int glp_write_ccdata(glp_graph *G, int v_wgt, const char *fname);
/* write graph in DIMACS clique/coloring format */

int glp_netgen(glp_graph *G, int v_rhs, int a_cap, int a_cost,
      const int parm[1+15]);
/* Klingman's network problem generator */

int glp_gridgen(glp_graph *G, int v_rhs, int a_cap, int a_cost,
      const int parm[1+14]);
/* grid-like network problem generator */

int glp_rmfgen(glp_graph *G, int *s, int *t, int a_cap,
      const int parm[1+5]);
/* Goldfarb's maximum flow problem generator */

int glp_weak_comp(glp_graph *G, int v_num);
/* find all weakly connected components of graph */

int glp_strong_comp(glp_graph *G, int v_num);
/* find all strongly connected components of graph */

int glp_top_sort(glp_graph *G, int v_num);
/* topological sorting of acyclic digraph */

int glp_wclique_exact(glp_graph *G, int v_wgt, double *sol, int v_set);
/* find maximum weight clique with exact algorithm */

/***********************************************************************
*  NOTE: All symbols defined below are obsolete and kept here only for
*        backward compatibility.
***********************************************************************/

#define LPX glp_prob

/* problem class: */
#define LPX_LP          100   /* linear programming (LP) */
#define LPX_MIP         101   /* mixed integer programming (MIP) */

/* type of auxiliary/structural variable: */
#define LPX_FR          110   /* free variable */
#define LPX_LO          111   /* variable with lower bound */
#define LPX_UP          112   /* variable with upper bound */
#define LPX_DB          113   /* double-bounded variable */
#define LPX_FX          114   /* fixed variable */

/* optimization direction flag: */
#define LPX_MIN         120   /* minimization */
#define LPX_MAX         121   /* maximization */

/* status of primal basic solution: */
#define LPX_P_UNDEF     132   /* primal solution is undefined */
#define LPX_P_FEAS      133   /* solution is primal feasible */
#define LPX_P_INFEAS    134   /* solution is primal infeasible */
#define LPX_P_NOFEAS    135   /* no primal feasible solution exists */

/* status of dual basic solution: */
#define LPX_D_UNDEF     136   /* dual solution is undefined */
#define LPX_D_FEAS      137   /* solution is dual feasible */
#define LPX_D_INFEAS    138   /* solution is dual infeasible */
#define LPX_D_NOFEAS    139   /* no dual feasible solution exists */

/* status of auxiliary/structural variable: */
#define LPX_BS          140   /* basic variable */
#define LPX_NL          141   /* non-basic variable on lower bound */
#define LPX_NU          142   /* non-basic variable on upper bound */
#define LPX_NF          143   /* non-basic free variable */
#define LPX_NS          144   /* non-basic fixed variable */

/* status of interior-point solution: */
#define LPX_T_UNDEF     150   /* interior solution is undefined */
#define LPX_T_OPT       151   /* interior solution is optimal */

/* kind of structural variable: */
#define LPX_CV          160   /* continuous variable */
#define LPX_IV          161   /* integer variable */

/* status of integer solution: */
#define LPX_I_UNDEF     170   /* integer solution is undefined */
#define LPX_I_OPT       171   /* integer solution is optimal */
#define LPX_I_FEAS      172   /* integer solution is feasible */
#define LPX_I_NOFEAS    173   /* no integer solution exists */

/* status codes reported by the routine lpx_get_status: */
#define LPX_OPT         180   /* optimal */
#define LPX_FEAS        181   /* feasible */
#define LPX_INFEAS      182   /* infeasible */
#define LPX_NOFEAS      183   /* no feasible */
#define LPX_UNBND       184   /* unbounded */
#define LPX_UNDEF       185   /* undefined */

/* exit codes returned by solver routines: */
#define LPX_E_OK        200   /* success */
#define LPX_E_EMPTY     201   /* empty problem */
#define LPX_E_BADB      202   /* invalid initial basis */
#define LPX_E_INFEAS    203   /* infeasible initial solution */
#define LPX_E_FAULT     204   /* unable to start the search */
#define LPX_E_OBJLL     205   /* objective lower limit reached */
#define LPX_E_OBJUL     206   /* objective upper limit reached */
#define LPX_E_ITLIM     207   /* iterations limit exhausted */
#define LPX_E_TMLIM     208   /* time limit exhausted */
#define LPX_E_NOFEAS    209   /* no feasible solution */
#define LPX_E_INSTAB    210   /* numerical instability */
#define LPX_E_SING      211   /* problems with basis matrix */
#define LPX_E_NOCONV    212   /* no convergence (interior) */
#define LPX_E_NOPFS     213   /* no primal feas. sol. (LP presolver) */
#define LPX_E_NODFS     214   /* no dual feas. sol. (LP presolver) */
#define LPX_E_MIPGAP    215   /* relative mip gap tolerance reached */

/* control parameter identifiers: */
#define LPX_K_MSGLEV    300   /* lp->msg_lev */
#define LPX_K_SCALE     301   /* lp->scale */
#define LPX_K_DUAL      302   /* lp->dual */
#define LPX_K_PRICE     303   /* lp->price */
#define LPX_K_RELAX     304   /* lp->relax */
#define LPX_K_TOLBND    305   /* lp->tol_bnd */
#define LPX_K_TOLDJ     306   /* lp->tol_dj */
#define LPX_K_TOLPIV    307   /* lp->tol_piv */
#define LPX_K_ROUND     308   /* lp->round */
#define LPX_K_OBJLL     309   /* lp->obj_ll */
#define LPX_K_OBJUL     310   /* lp->obj_ul */
#define LPX_K_ITLIM     311   /* lp->it_lim */
#define LPX_K_ITCNT     312   /* lp->it_cnt */
#define LPX_K_TMLIM     313   /* lp->tm_lim */
#define LPX_K_OUTFRQ    314   /* lp->out_frq */
#define LPX_K_OUTDLY    315   /* lp->out_dly */
#define LPX_K_BRANCH    316   /* lp->branch */
#define LPX_K_BTRACK    317   /* lp->btrack */
#define LPX_K_TOLINT    318   /* lp->tol_int */
#define LPX_K_TOLOBJ    319   /* lp->tol_obj */
#define LPX_K_MPSINFO   320   /* lp->mps_info */
#define LPX_K_MPSOBJ    321   /* lp->mps_obj */
#define LPX_K_MPSORIG   322   /* lp->mps_orig */
#define LPX_K_MPSWIDE   323   /* lp->mps_wide */
#define LPX_K_MPSFREE   324   /* lp->mps_free */
#define LPX_K_MPSSKIP   325   /* lp->mps_skip */
#define LPX_K_LPTORIG   326   /* lp->lpt_orig */
#define LPX_K_PRESOL    327   /* lp->presol */
#define LPX_K_BINARIZE  328   /* lp->binarize */
#define LPX_K_USECUTS   329   /* lp->use_cuts */
#define LPX_K_BFTYPE    330   /* lp->bfcp->type */
#define LPX_K_MIPGAP    331   /* lp->mip_gap */

#define LPX_C_COVER     0x01  /* mixed cover cuts */
#define LPX_C_CLIQUE    0x02  /* clique cuts */
#define LPX_C_GOMORY    0x04  /* Gomory's mixed integer cuts */
#define LPX_C_MIR       0x08  /* mixed integer rounding cuts */
#define LPX_C_ALL       0xFF  /* all cuts */

typedef struct
{     /* this structure contains results reported by the routines which
         checks Karush-Kuhn-Tucker conditions (for details see comments
         to those routines) */
      /*--------------------------------------------------------------*/
      /* xR - A * xS = 0 (KKT.PE) */
      double pe_ae_max;
      /* largest absolute error */
      int    pe_ae_row;
      /* number of row with largest absolute error */
      double pe_re_max;
      /* largest relative error */
      int    pe_re_row;
      /* number of row with largest relative error */
      int    pe_quality;
      /* quality of primal solution:
         'H' - high
         'M' - medium
         'L' - low
         '?' - primal solution is wrong */
      /*--------------------------------------------------------------*/
      /* l[k] <= x[k] <= u[k] (KKT.PB) */
      double pb_ae_max;
      /* largest absolute error */
      int    pb_ae_ind;
      /* number of variable with largest absolute error */
      double pb_re_max;
      /* largest relative error */
      int    pb_re_ind;
      /* number of variable with largest relative error */
      int    pb_quality;
      /* quality of primal feasibility:
         'H' - high
         'M' - medium
         'L' - low
         '?' - primal solution is infeasible */
      /*--------------------------------------------------------------*/
      /* A' * (dR - cR) + (dS - cS) = 0 (KKT.DE) */
      double de_ae_max;
      /* largest absolute error */
      int    de_ae_col;
      /* number of column with largest absolute error */
      double de_re_max;
      /* largest relative error */
      int    de_re_col;
      /* number of column with largest relative error */
      int    de_quality;
      /* quality of dual solution:
         'H' - high
         'M' - medium
         'L' - low
         '?' - dual solution is wrong */
      /*--------------------------------------------------------------*/
      /* d[k] >= 0 or d[k] <= 0 (KKT.DB) */
      double db_ae_max;
      /* largest absolute error */
      int    db_ae_ind;
      /* number of variable with largest absolute error */
      double db_re_max;
      /* largest relative error */
      int    db_re_ind;
      /* number of variable with largest relative error */
      int    db_quality;
      /* quality of dual feasibility:
         'H' - high
         'M' - medium
         'L' - low
         '?' - dual solution is infeasible */
      /*--------------------------------------------------------------*/
      /* (x[k] - bound of x[k]) * d[k] = 0 (KKT.CS) */
      double cs_ae_max;
      /* largest absolute error */
      int    cs_ae_ind;
      /* number of variable with largest absolute error */
      double cs_re_max;
      /* largest relative error */
      int    cs_re_ind;
      /* number of variable with largest relative error */
      int    cs_quality;
      /* quality of complementary slackness:
         'H' - high
         'M' - medium
         'L' - low
         '?' - primal and dual solutions are not complementary */
} LPXKKT;

#define lpx_create_prob _glp_lpx_create_prob
LPX *lpx_create_prob(void);
/* create problem object */

#define lpx_set_prob_name _glp_lpx_set_prob_name
void lpx_set_prob_name(LPX *lp, const char *name);
/* assign (change) problem name */

#define lpx_set_obj_name _glp_lpx_set_obj_name
void lpx_set_obj_name(LPX *lp, const char *name);
/* assign (change) objective function name */

#define lpx_set_obj_dir _glp_lpx_set_obj_dir
void lpx_set_obj_dir(LPX *lp, int dir);
/* set (change) optimization direction flag */

#define lpx_add_rows _glp_lpx_add_rows
int lpx_add_rows(LPX *lp, int nrs);
/* add new rows to problem object */

#define lpx_add_cols _glp_lpx_add_cols
int lpx_add_cols(LPX *lp, int ncs);
/* add new columns to problem object */

#define lpx_set_row_name _glp_lpx_set_row_name
void lpx_set_row_name(LPX *lp, int i, const char *name);
/* assign (change) row name */

#define lpx_set_col_name _glp_lpx_set_col_name
void lpx_set_col_name(LPX *lp, int j, const char *name);
/* assign (change) column name */

#define lpx_set_row_bnds _glp_lpx_set_row_bnds
void lpx_set_row_bnds(LPX *lp, int i, int type, double lb, double ub);
/* set (change) row bounds */

#define lpx_set_col_bnds _glp_lpx_set_col_bnds
void lpx_set_col_bnds(LPX *lp, int j, int type, double lb, double ub);
/* set (change) column bounds */

#define lpx_set_obj_coef _glp_lpx_set_obj_coef
void lpx_set_obj_coef(glp_prob *lp, int j, double coef);
/* set (change) obj. coefficient or constant term */

#define lpx_set_mat_row _glp_lpx_set_mat_row
void lpx_set_mat_row(LPX *lp, int i, int len, const int ind[],
      const double val[]);
/* set (replace) row of the constraint matrix */

#define lpx_set_mat_col _glp_lpx_set_mat_col
void lpx_set_mat_col(LPX *lp, int j, int len, const int ind[],
      const double val[]);
/* set (replace) column of the constraint matrix */

#define lpx_load_matrix _glp_lpx_load_matrix
void lpx_load_matrix(LPX *lp, int ne, const int ia[], const int ja[],
      const double ar[]);
/* load (replace) the whole constraint matrix */

#define lpx_del_rows _glp_lpx_del_rows
void lpx_del_rows(LPX *lp, int nrs, const int num[]);
/* delete specified rows from problem object */

#define lpx_del_cols _glp_lpx_del_cols
void lpx_del_cols(LPX *lp, int ncs, const int num[]);
/* delete specified columns from problem object */

#define lpx_delete_prob _glp_lpx_delete_prob
void lpx_delete_prob(LPX *lp);
/* delete problem object */

#define lpx_get_prob_name _glp_lpx_get_prob_name
const char *lpx_get_prob_name(LPX *lp);
/* retrieve problem name */

#define lpx_get_obj_name _glp_lpx_get_obj_name
const char *lpx_get_obj_name(LPX *lp);
/* retrieve objective function name */

#define lpx_get_obj_dir _glp_lpx_get_obj_dir
int lpx_get_obj_dir(LPX *lp);
/* retrieve optimization direction flag */

#define lpx_get_num_rows _glp_lpx_get_num_rows
int lpx_get_num_rows(LPX *lp);
/* retrieve number of rows */

#define lpx_get_num_cols _glp_lpx_get_num_cols
int lpx_get_num_cols(LPX *lp);
/* retrieve number of columns */

#define lpx_get_row_name _glp_lpx_get_row_name
const char *lpx_get_row_name(LPX *lp, int i);
/* retrieve row name */

#define lpx_get_col_name _glp_lpx_get_col_name
const char *lpx_get_col_name(LPX *lp, int j);
/* retrieve column name */

#define lpx_get_row_type _glp_lpx_get_row_type
int lpx_get_row_type(LPX *lp, int i);
/* retrieve row type */

#define lpx_get_row_lb _glp_lpx_get_row_lb
double lpx_get_row_lb(LPX *lp, int i);
/* retrieve row lower bound */

#define lpx_get_row_ub _glp_lpx_get_row_ub
double lpx_get_row_ub(LPX *lp, int i);
/* retrieve row upper bound */

#define lpx_get_row_bnds _glp_lpx_get_row_bnds
void lpx_get_row_bnds(LPX *lp, int i, int *typx, double *lb,
      double *ub);
/* retrieve row bounds */

#define lpx_get_col_type _glp_lpx_get_col_type
int lpx_get_col_type(LPX *lp, int j);
/* retrieve column type */

#define lpx_get_col_lb _glp_lpx_get_col_lb
double lpx_get_col_lb(LPX *lp, int j);
/* retrieve column lower bound */

#define lpx_get_col_ub _glp_lpx_get_col_ub
double lpx_get_col_ub(LPX *lp, int j);
/* retrieve column upper bound */

#define lpx_get_col_bnds _glp_lpx_get_col_bnds
void lpx_get_col_bnds(LPX *lp, int j, int *typx, double *lb,
      double *ub);
/* retrieve column bounds */

#define lpx_get_obj_coef _glp_lpx_get_obj_coef
double lpx_get_obj_coef(LPX *lp, int j);
/* retrieve obj. coefficient or constant term */

#define lpx_get_num_nz _glp_lpx_get_num_nz
int lpx_get_num_nz(LPX *lp);
/* retrieve number of constraint coefficients */

#define lpx_get_mat_row _glp_lpx_get_mat_row
int lpx_get_mat_row(LPX *lp, int i, int ind[], double val[]);
/* retrieve row of the constraint matrix */

#define lpx_get_mat_col _glp_lpx_get_mat_col
int lpx_get_mat_col(LPX *lp, int j, int ind[], double val[]);
/* retrieve column of the constraint matrix */

#define lpx_create_index _glp_lpx_create_index
void lpx_create_index(LPX *lp);
/* create the name index */

#define lpx_find_row _glp_lpx_find_row
int lpx_find_row(LPX *lp, const char *name);
/* find row by its name */

#define lpx_find_col _glp_lpx_find_col
int lpx_find_col(LPX *lp, const char *name);
/* find column by its name */

#define lpx_delete_index _glp_lpx_delete_index
void lpx_delete_index(LPX *lp);
/* delete the name index */

#define lpx_scale_prob _glp_lpx_scale_prob
void lpx_scale_prob(LPX *lp);
/* scale problem data */

#define lpx_unscale_prob _glp_lpx_unscale_prob
void lpx_unscale_prob(LPX *lp);
/* unscale problem data */

#define lpx_set_row_stat _glp_lpx_set_row_stat
void lpx_set_row_stat(LPX *lp, int i, int stat);
/* set (change) row status */

#define lpx_set_col_stat _glp_lpx_set_col_stat
void lpx_set_col_stat(LPX *lp, int j, int stat);
/* set (change) column status */

#define lpx_std_basis _glp_lpx_std_basis
void lpx_std_basis(LPX *lp);
/* construct standard initial LP basis */

#define lpx_adv_basis _glp_lpx_adv_basis
void lpx_adv_basis(LPX *lp);
/* construct advanced initial LP basis */

#define lpx_cpx_basis _glp_lpx_cpx_basis
void lpx_cpx_basis(LPX *lp);
/* construct Bixby's initial LP basis */

#define lpx_simplex _glp_lpx_simplex
int lpx_simplex(LPX *lp);
/* easy-to-use driver to the simplex method */

#define lpx_exact _glp_lpx_exact
int lpx_exact(LPX *lp);
/* easy-to-use driver to the exact simplex method */

#define lpx_get_status _glp_lpx_get_status
int lpx_get_status(LPX *lp);
/* retrieve generic status of basic solution */

#define lpx_get_prim_stat _glp_lpx_get_prim_stat
int lpx_get_prim_stat(LPX *lp);
/* retrieve primal status of basic solution */

#define lpx_get_dual_stat _glp_lpx_get_dual_stat
int lpx_get_dual_stat(LPX *lp);
/* retrieve dual status of basic solution */

#define lpx_get_obj_val _glp_lpx_get_obj_val
double lpx_get_obj_val(LPX *lp);
/* retrieve objective value (basic solution) */

#define lpx_get_row_stat _glp_lpx_get_row_stat
int lpx_get_row_stat(LPX *lp, int i);
/* retrieve row status (basic solution) */

#define lpx_get_row_prim _glp_lpx_get_row_prim
double lpx_get_row_prim(LPX *lp, int i);
/* retrieve row primal value (basic solution) */

#define lpx_get_row_dual _glp_lpx_get_row_dual
double lpx_get_row_dual(LPX *lp, int i);
/* retrieve row dual value (basic solution) */

#define lpx_get_row_info _glp_lpx_get_row_info
void lpx_get_row_info(LPX *lp, int i, int *tagx, double *vx,
      double *dx);
/* obtain row solution information */

#define lpx_get_col_stat _glp_lpx_get_col_stat
int lpx_get_col_stat(LPX *lp, int j);
/* retrieve column status (basic solution) */

#define lpx_get_col_prim _glp_lpx_get_col_prim
double lpx_get_col_prim(LPX *lp, int j);
/* retrieve column primal value (basic solution) */

#define lpx_get_col_dual _glp_lpx_get_col_dual
double lpx_get_col_dual(glp_prob *lp, int j);
/* retrieve column dual value (basic solution) */

#define lpx_get_col_info _glp_lpx_get_col_info
void lpx_get_col_info(LPX *lp, int j, int *tagx, double *vx,
      double *dx);
/* obtain column solution information (obsolete) */

#define lpx_get_ray_info _glp_lpx_get_ray_info
int lpx_get_ray_info(LPX *lp);
/* determine what causes primal unboundness */

#define lpx_check_kkt _glp_lpx_check_kkt
void lpx_check_kkt(LPX *lp, int scaled, LPXKKT *kkt);
/* check Karush-Kuhn-Tucker conditions */

#define lpx_warm_up _glp_lpx_warm_up
int lpx_warm_up(LPX *lp);
/* "warm up" LP basis */

#define lpx_eval_tab_row _glp_lpx_eval_tab_row
int lpx_eval_tab_row(LPX *lp, int k, int ind[], double val[]);
/* compute row of the simplex table */

#define lpx_eval_tab_col _glp_lpx_eval_tab_col
int lpx_eval_tab_col(LPX *lp, int k, int ind[], double val[]);
/* compute column of the simplex table */

#define lpx_transform_row _glp_lpx_transform_row
int lpx_transform_row(LPX *lp, int len, int ind[], double val[]);
/* transform explicitly specified row */

#define lpx_transform_col _glp_lpx_transform_col
int lpx_transform_col(LPX *lp, int len, int ind[], double val[]);
/* transform explicitly specified column */

#define lpx_prim_ratio_test _glp_lpx_prim_ratio_test
int lpx_prim_ratio_test(LPX *lp, int len, const int ind[],
      const double val[], int how, double tol);
/* perform primal ratio test */

#define lpx_dual_ratio_test _glp_lpx_dual_ratio_test
int lpx_dual_ratio_test(LPX *lp, int len, const int ind[],
      const double val[], int how, double tol);
/* perform dual ratio test */

#define lpx_interior _glp_lpx_interior
int lpx_interior(LPX *lp);
/* easy-to-use driver to the interior point method */

#define lpx_ipt_status _glp_lpx_ipt_status
int lpx_ipt_status(LPX *lp);
/* retrieve status of interior-point solution */

#define lpx_ipt_obj_val _glp_lpx_ipt_obj_val
double lpx_ipt_obj_val(LPX *lp);
/* retrieve objective value (interior point) */

#define lpx_ipt_row_prim _glp_lpx_ipt_row_prim
double lpx_ipt_row_prim(LPX *lp, int i);
/* retrieve row primal value (interior point) */

#define lpx_ipt_row_dual _glp_lpx_ipt_row_dual
double lpx_ipt_row_dual(LPX *lp, int i);
/* retrieve row dual value (interior point) */

#define lpx_ipt_col_prim _glp_lpx_ipt_col_prim
double lpx_ipt_col_prim(LPX *lp, int j);
/* retrieve column primal value (interior point) */

#define lpx_ipt_col_dual _glp_lpx_ipt_col_dual
double lpx_ipt_col_dual(LPX *lp, int j);
/* retrieve column dual value (interior point) */

#define lpx_set_class _glp_lpx_set_class
void lpx_set_class(LPX *lp, int klass);
/* set problem class */

#define lpx_get_class _glp_lpx_get_class
int lpx_get_class(LPX *lp);
/* determine problem klass */

#define lpx_set_col_kind _glp_lpx_set_col_kind
void lpx_set_col_kind(LPX *lp, int j, int kind);
/* set (change) column kind */

#define lpx_get_col_kind _glp_lpx_get_col_kind
int lpx_get_col_kind(LPX *lp, int j);
/* retrieve column kind */

#define lpx_get_num_int _glp_lpx_get_num_int
int lpx_get_num_int(LPX *lp);
/* retrieve number of integer columns */

#define lpx_get_num_bin _glp_lpx_get_num_bin
int lpx_get_num_bin(LPX *lp);
/* retrieve number of binary columns */

#define lpx_integer _glp_lpx_integer
int lpx_integer(LPX *lp);
/* easy-to-use driver to the branch-and-bound method */

#define lpx_intopt _glp_lpx_intopt
int lpx_intopt(LPX *lp);
/* easy-to-use driver to the branch-and-bound method */

#define lpx_mip_status _glp_lpx_mip_status
int lpx_mip_status(LPX *lp);
/* retrieve status of MIP solution */

#define lpx_mip_obj_val _glp_lpx_mip_obj_val
double lpx_mip_obj_val(LPX *lp);
/* retrieve objective value (MIP solution) */

#define lpx_mip_row_val _glp_lpx_mip_row_val
double lpx_mip_row_val(LPX *lp, int i);
/* retrieve row value (MIP solution) */

#define lpx_mip_col_val _glp_lpx_mip_col_val
double lpx_mip_col_val(LPX *lp, int j);
/* retrieve column value (MIP solution) */

#define lpx_check_int _glp_lpx_check_int
void lpx_check_int(LPX *lp, LPXKKT *kkt);
/* check integer feasibility conditions */

#define lpx_reset_parms _glp_lpx_reset_parms
void lpx_reset_parms(LPX *lp);
/* reset control parameters to default values */

#define lpx_set_int_parm _glp_lpx_set_int_parm
void lpx_set_int_parm(LPX *lp, int parm, int val);
/* set (change) integer control parameter */

#define lpx_get_int_parm _glp_lpx_get_int_parm
int lpx_get_int_parm(LPX *lp, int parm);
/* query integer control parameter */

#define lpx_set_real_parm _glp_lpx_set_real_parm
void lpx_set_real_parm(LPX *lp, int parm, double val);
/* set (change) real control parameter */

#define lpx_get_real_parm _glp_lpx_get_real_parm
double lpx_get_real_parm(LPX *lp, int parm);
/* query real control parameter */

#define lpx_read_mps _glp_lpx_read_mps
LPX *lpx_read_mps(const char *fname);
/* read problem data in fixed MPS format */

#define lpx_write_mps _glp_lpx_write_mps
int lpx_write_mps(LPX *lp, const char *fname);
/* write problem data in fixed MPS format */

#define lpx_read_bas _glp_lpx_read_bas
int lpx_read_bas(LPX *lp, const char *fname);
/* read LP basis in fixed MPS format */

#define lpx_write_bas _glp_lpx_write_bas
int lpx_write_bas(LPX *lp, const char *fname);
/* write LP basis in fixed MPS format */

#define lpx_read_freemps _glp_lpx_read_freemps
LPX *lpx_read_freemps(const char *fname);
/* read problem data in free MPS format */

#define lpx_write_freemps _glp_lpx_write_freemps
int lpx_write_freemps(LPX *lp, const char *fname);
/* write problem data in free MPS format */

#define lpx_read_cpxlp _glp_lpx_read_cpxlp
LPX *lpx_read_cpxlp(const char *fname);
/* read problem data in CPLEX LP format */

#define lpx_write_cpxlp _glp_lpx_write_cpxlp
int lpx_write_cpxlp(LPX *lp, const char *fname);
/* write problem data in CPLEX LP format */

#define lpx_read_model _glp_lpx_read_model
LPX *lpx_read_model(const char *model, const char *data,
      const char *output);
/* read LP/MIP model written in GNU MathProg language */

#define lpx_print_prob _glp_lpx_print_prob
int lpx_print_prob(LPX *lp, const char *fname);
/* write problem data in plain text format */

#define lpx_print_sol _glp_lpx_print_sol
int lpx_print_sol(LPX *lp, const char *fname);
/* write LP problem solution in printable format */

#define lpx_print_sens_bnds _glp_lpx_print_sens_bnds
int lpx_print_sens_bnds(LPX *lp, const char *fname);
/* write bounds sensitivity information */

#define lpx_print_ips _glp_lpx_print_ips
int lpx_print_ips(LPX *lp, const char *fname);
/* write interior point solution in printable format */

#define lpx_print_mip _glp_lpx_print_mip
int lpx_print_mip(LPX *lp, const char *fname);
/* write MIP problem solution in printable format */

#define lpx_is_b_avail _glp_lpx_is_b_avail
int lpx_is_b_avail(LPX *lp);
/* check if LP basis is available */

#define lpx_write_pb _glp_lpx_write_pb
int lpx_write_pb(LPX *lp, const char *fname, int normalized,
      int binarize);
/* write problem data in (normalized) OPB format */

#define lpx_main _glp_lpx_main
int lpx_main(int argc, const char *argv[]);
/* stand-alone LP/MIP solver */

#ifdef __cplusplus
}
#endif

#endif

/* eof */