/usr/include/Bpp/Phyl/TreeTemplateTools.h is in libbpp-phyl-dev 2.0.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 | //
// File: TreeTemplateTools.h
// Created by: Julien Dutheil
// Created on: Fri Oct 13 13:00 2006
// From file TreeTools.h
// Created on: Wed Aug 6 13:45:28 2003
//
/*
Copyright or © or Copr. Bio++ Development Team, (November 16, 2004)
This software is a computer program whose purpose is to provide classes
for phylogenetic data analysis.
This software is governed by the CeCILL license under French law and
abiding by the rules of distribution of free software. You can use,
modify and/ or redistribute the software under the terms of the CeCILL
license as circulated by CEA, CNRS and INRIA at the following URL
"http://www.cecill.info".
As a counterpart to the access to the source code and rights to copy,
modify and redistribute granted by the license, users are provided only
with a limited warranty and the software's author, the holder of the
economic rights, and the successive licensors have only limited
liability.
In this respect, the user's attention is drawn to the risks associated
with loading, using, modifying and/or developing or reproducing the
software by the user in light of its specific status of free software,
that may mean that it is complicated to manipulate, and that also
therefore means that it is reserved for developers and experienced
professionals having in-depth computer knowledge. Users are therefore
encouraged to load and test the software's suitability as regards their
requirements in conditions enabling the security of their systems and/or
data to be ensured and, more generally, to use and operate it in the
same conditions as regards security.
The fact that you are presently reading this means that you have had
knowledge of the CeCILL license and that you accept its terms.
*/
#ifndef _TREETEMPLATETOOLS_H_
#define _TREETEMPLATETOOLS_H_
#include "TreeTools.h"
#include <Bpp/Numeric/Random/RandomTools.h>
//From the STL:
#include <string>
#include <vector>
namespace bpp
{
template<class N> class TreeTemplate;
/**
* @brief Utilitary methods working with TreeTemplate and Node objects.
*
* @see TreeTools for more generic methods.
*/
class TreeTemplateTools
{
public:
TreeTemplateTools() {}
virtual ~TreeTemplateTools() {}
public:
/**
* @name Retrieve topology information
*
* @{
*/
/**
* @brief Retrieve all leaves from a subtree.
*
* @param node The node that defines the subtree.
* @return A vector of pointers toward each leaf in the subtree.
*/
template<class N>
static std::vector<N*> getLeaves(N& node)
{
std::vector<N*> leaves;
getLeaves<N>(node, leaves);
return leaves;
}
/**
* @brief Retrieve all leaves from a subtree.
*
* @param node The node that defines the subtree.
* @param leaves A vector of pointers toward each leaf in the subtree.
*/
template<class N>
static void getLeaves(N & node, std::vector<N *> & leaves)
{
if(node.isLeaf())
{
leaves.push_back(& node);
}
for(unsigned int i = 0; i < node.getNumberOfSons(); i++)
{
getLeaves<N>(* node.getSon(i), leaves);
}
}
/**
* @brief Retrieve all leaves ids from a subtree.
*
* @param node The node that defines the subtree.
* @return A vector of ids.
*/
static std::vector<int> getLeavesId(const Node& node)
{
std::vector<int> ids;
getLeavesId(node, ids);
return ids;
}
/**
* @brief Retrieve all leaves ids from a subtree.
*
* @param node The node that defines the subtree.
* @param ids A vector of ids.
*/
static void getLeavesId(const Node& node, std::vector<int>& ids)
{
if(node.isLeaf()) {
ids.push_back(node.getId());
}
for(unsigned int i = 0; i < node.getNumberOfSons(); i++) {
getLeavesId(* node.getSon(i), ids);
}
}
/**
* @brief Retrieve all nodes ids that are ancestors of a node.
*
* @param node The node
* @return A vector of ids.
*/
static std::vector<int> getAncestorsId(const Node& node)
{
std::vector<int> ids;
Node n=node;
while (n.hasFather()){
n=*n.getFather();
ids.push_back(n.getId());
}
return ids;
}
/**
* @brief Get the id of a leaf given its name in a subtree.
*
* @param node The node defining the subtree to search.
* @param name The name of the node.
* @return The id of the node.
* @throw NodeNotFoundException If the node is not found.
*/
static int getLeafId(const Node& node, const std::string& name) throw (NodeNotFoundException)
{
int* id = 0;
searchLeaf(node, name, id);
if (id == 0) throw NodeNotFoundException("TreeTemplateTools::getLeafId().", name);
else
{
int i = *id;
delete id;
return i;
}
}
/**
* @brief Get the id of a leaf given its name in a subtree.
*
* @param node The node defining the subtree to search.
* @param name The name of the node.
* @param id The id of the node.
* @throw NodeNotFoundException If the node is not found.
*/
static void searchLeaf(const Node& node, const std::string& name, int*& id) throw (NodeNotFoundException)
{
if (node.isLeaf())
{
if (node.getName() == name)
{
id = new int(node.getId());
return;
}
}
for (unsigned int i = 0; i < node.getNumberOfSons(); i++)
{
searchLeaf(* node.getSon(i), name, id);
}
}
/**
* @brief Remove a leaf node and its parent node, while correcting for branch lengths.
*
* @param tree The tree to edit.
* @param leafName The name of the leaf node.
* @throw NodeNotFoundException If the node is not found.
*/
template<class N>
static void dropLeaf(TreeTemplate<N>& tree, const std::string& leafName) throw (NodeNotFoundException, Exception)
{
N* leaf = tree.getNode(leafName);
if (!leaf->hasFather())
throw Exception("TreeTemplateTools::dropLeaf(). Leaf is the only node in the tree, can't remove it.");
N* parent = leaf->getFather();
if (parent->getNumberOfSons() > 2)
{
//The easy case:
parent->removeSon(leaf);
delete leaf;
}
else if (parent->getNumberOfSons() == 2)
{
//We have to delete the parent node as well:
N* brother = parent->getSon(0);
if (brother == leaf) brother = parent->getSon(1);
if (!parent->hasFather())
{
//The brother becomes the root:
if (leaf->hasDistanceToFather() && brother->hasDistanceToFather())
{
brother->setDistanceToFather(brother->getDistanceToFather() + leaf->getDistanceToFather());
}
tree.setRootNode(brother);
delete parent;
delete leaf;
}
else
{
N* gParent = parent->getFather();
if (brother->hasDistanceToFather() && parent->hasDistanceToFather())
{
brother->setDistanceToFather(brother->getDistanceToFather() + parent->getDistanceToFather());
}
unsigned int pos = gParent->getSonPosition(parent);
gParent->setSon(pos, brother);
delete parent;
delete leaf;
}
}
else
{
//Dunno what to do in that case :(
throw Exception("TreeTemplateTools::dropLeaf. Parent node as only one child, I don't know what to do in that case :(");
}
}
/**
* @brief Remove a subtree defined by its root node and its parent node, while correcting for branch lengths.
*
* @param tree The tree to edit.
* @param subtree The subtree to remove, defined by its root node.
* @throw Exception If something unexpected happens :s
*/
template<class N>
static void dropSubtree(TreeTemplate<N>& tree, Node* subtree) throw (Exception)
{
if (!subtree->hasFather())
throw Exception("TreeTemplateTools::dropSubtree(). Trying to remove the full tree!");
N* parent = subtree->getFather();
if (parent->getNumberOfSons() > 2)
{
//The easy case:
parent->removeSon(subtree);
deleteSubtree(subtree);
}
else if (parent->getNumberOfSons() == 2)
{
//We have to delete the parent node as well:
N* brother = parent->getSon(0);
if (brother == subtree) brother = parent->getSon(1);
if (!parent->hasFather())
{
//The brother becomes the root:
if (subtree->hasDistanceToFather() && brother->hasDistanceToFather())
{
brother->setDistanceToFather(brother->getDistanceToFather() + subtree->getDistanceToFather());
}
tree.setRootNode(brother);
delete parent;
deleteSubtree(subtree);
}
else
{
N* gParent = parent->getFather();
if (brother->hasDistanceToFather() && parent->hasDistanceToFather())
{
brother->setDistanceToFather(brother->getDistanceToFather() + parent->getDistanceToFather());
}
unsigned int pos = gParent->getSonPosition(parent);
gParent->setSon(pos, brother);
delete parent;
deleteSubtree(subtree);
}
}
else
{
//Dunno what to do in that case :(
throw Exception("TreeTemplateTools::dropSubtree. Parent node as only one child, I don't know what to do in that case :(");
}
}
/**
* @brief Sample a subtree by removing leaves randomly.
*
* @param tree The tree to edit.
* @param leaves The leafs names that should be sampled. They must be found in the tree otherwise an exception will be thrown.
* @param size The number of leaves in the final sample. If greater or equal to the number of leaf names, the function returns without doing anything.
*/
template<class N>
static void sampleSubtree(TreeTemplate<N>& tree, const std::vector<std::string>& leaves, unsigned int size)
{
std::vector<std::string> names = leaves;
for (unsigned int n = names.size(); n > size; --n) {
unsigned int i = RandomTools::giveIntRandomNumberBetweenZeroAndEntry(n);
dropLeaf(tree, names[i]);
names.erase(names.begin() + i);
}
}
/**
* @brief Retrieve all son nodes from a subtree.
*
* @param node The node that defines the subtree.
* @return A vector of pointers toward each son node in the subtree.
*/
template<class N>
static std::vector<N*> getNodes(N& node)
{
std::vector<N *> nodes;
getNodes<N>(node, nodes);
return nodes;
}
/**
* @brief Retrieve all son nodes from a subtree.
*
* @param node The node that defines the subtree.
* @param nodes A vector of pointers toward each son node in the subtree.
*/
template<class N>
static void getNodes(N & node, std::vector<N*> & nodes)
{
for(unsigned int i = 0; i < node.getNumberOfSons(); i++)
{
getNodes<N>(*node.getSon(i), nodes);
}
nodes.push_back(& node);
}
/**
* @brief Retrieve all nodes ids from a subtree.
*
* @param node The node that defines the subtree.
* @return A vector of ids.
*/
static std::vector<int> getNodesId(const Node& node)
{
std::vector<int> ids;
getNodesId(node, ids);
return ids;
}
/**
* @brief Retrieve all branches ids from a subtree.
*
* @param node The node that defines the subtree.
* @return A vector of ids.
*/
static std::vector<int> getBranchesId(const Node& node)
{
std::vector<int> ids;
getBranchesId(node, ids);
return ids;
}
/**
* @brief Retrieve all nodes ids from a subtree.
*
* @param node The node that defines the subtree.
* @param ids A vector of ids.
*/
static void getNodesId(const Node& node, std::vector<int>& ids)
{
for (unsigned int i = 0; i < node.getNumberOfSons(); i++)
{
getNodesId(*node.getSon(i), ids);
}
ids.push_back(node.getId());
}
/**
* @brief Retrieve all branches ids from a subtree.
*
* @param node The node that defines the subtree.
* @param ids A vector of ids.
*/
static void getBranchesId(const Node& node, std::vector<int>& ids)
{
for (unsigned int i = 0; i < node.getNumberOfSons(); i++)
{
getNodesId(*node.getSon(i), ids);
}
}
/**
* @brief Retrieve all inner nodes from a subtree.
*
* @param node The node that defines the subtree.
* @return A vector of pointers toward each inner node in the subtree.
*/
template<class N>
static std::vector<N*> getInnerNodes(N& node)
{
std::vector<N *> nodes;
getInnerNodes<N>(node, nodes);
return nodes;
}
/**
* @brief Retrieve all inner nodes from a subtree.
*
* A inner node is a node with degree > 1, that is, all nodes but the leaves, be they terminal or not.
*
* @param node The node that defines the subtree.
* @param nodes A vector to be filled with pointers toward each inner node in the subtree.
*/
template<class N>
static void getInnerNodes(N& node, std::vector<N*>& nodes)
{
for(unsigned int i = 0; i < node.getNumberOfSons(); i++)
{
getInnerNodes<N>(* node.getSon(i), nodes);
}
if (!node.isLeaf())
nodes.push_back(&node); //Do not add leaves!
}
/**
* @brief Retrieve all inner nodes ids from a subtree.
*
* A inner node is a node with degree > 1, that is, all nodes but the leaves, be they terminal or not.
*
* @param node The node that defines the subtree.
* @return A vector of ids.
*/
static std::vector<int> getInnerNodesId(const Node& node)
{
std::vector<int> ids;
getInnerNodesId(node, ids);
return ids;
}
/**
* @brief Retrieve all inner nodes ids from a subtree.
*
* @param node The node that defines the subtree.
* @param ids A vector to be filled with the resulting ids.
*/
static void getInnerNodesId(const Node& node, std::vector<int> & ids)
{
for (unsigned int i = 0; i < node.getNumberOfSons(); i++)
{
getInnerNodesId(* node.getSon(i), ids);
}
if (!node.isLeaf())
ids.push_back(node.getId()); //Do not add leaves!
}
/**
* @param node The node defining the subtree to be searched.
* @param id The id to search for.
* @return Nodes with the specified id.
*/
template<class N>
static std::vector<N*> searchNodeWithId(N& node, int id)
{
std::vector<N*> nodes;
searchNodeWithId<N>(node, id, nodes);
return nodes;
}
/**
* @param node The node defining the subtree to be searched.
* @param id The id to search for.
* @param nodes A vector to be filled with the matching nodes.
*/
template<class N>
static void searchNodeWithId(N& node, int id, std::vector<N*>& nodes)
{
for (unsigned int i = 0; i < node.getNumberOfSons(); ++i)
{
searchNodeWithId<N>(*node.getSon(i), id, nodes);
}
if (node.getId() == id) nodes.push_back(&node);
}
/**
* @param node The node defining the subtree to be searched.
* @param id The id to search for.
* @return The first node encountered with the given id, or 0 if no node with the given id is found.
*/
static Node* searchFirstNodeWithId(Node& node, int id)
{
if (node.getId() == id)
return &node;
else {
for (unsigned int i = 0; i < node.getNumberOfSons(); ++i)
{
Node* result = searchFirstNodeWithId(*node.getSon(i), id);
if (result)
return result;
}
}
return 0;
}
/**
* @param node The node defining the subtree to be searched.
* @param id The id to search for.
* @return The first node encountered with the given id, or 0 if no node with the given id is found.
*/
static const Node* searchFirstNodeWithId(const Node& node, int id)
{
if (node.getId() == id)
return &node;
else {
for (unsigned int i = 0; i < node.getNumberOfSons(); ++i)
{
const Node* result = searchFirstNodeWithId(*node.getSon(i), id);
if (result)
return result;
}
}
return 0;
}
/**
* @param node The node defining the subtree to be searched.
* @param id The id to search for.
* @return True if the subtree contains a node with the specified id.
*/
template<class N>
static bool hasNodeWithId(const N& node, int id)
{
if(node.getId() == id) return true;
else
{
for(unsigned int i = 0; i < node.getNumberOfSons(); i++)
{
if(hasNodeWithId(*node.getSon(i), id)) return true;
}
return false;
}
}
/**
* @param node The node defining the subtree to be searched.
* @param name The name to search for.
* @return Nodes with the specified name.
*/
template<class N>
static std::vector<N*> searchNodeWithName(N& node, const std::string& name)
{
std::vector<N*> nodes;
searchNodeWithId<N>(node, name, nodes);
return nodes;
}
/**
* @param node The node defining the subtree to be searched.
* @param name The name to search for.
* @param nodes A vector to be filled with the matching nodes.
*/
template<class N>
static void searchNodeWithName(N& node, const std::string& name, std::vector<N*> & nodes)
{
for(unsigned int i = 0; i < node.getNumberOfSons(); i++)
{
searchNodeWithName<N>(*node.getSon(i), name, nodes);
}
if(node.hasName() && node.getName() == name) nodes.push_back(&node);
}
/**
* @param node The node defining the subtree to be searched.
* @param name The name to search for.
* @return True if the subtree contains a node with the specified name.
*/
template<class N>
static bool hasNodeWithName(const N& node, const std::string& name)
{
if(node.hasName() & node.getName() == name) return true;
else
{
for(unsigned int i = 0; i < node.getNumberOfSons(); i++)
{
if(hasNodeWithName(*node.getSon(i), name)) return true;
}
return false;
}
}
/**
* @brief Tell if a particular node is the root of a tree
* i.e. if it has a father node.
*
* @param node The node to check.
* @return True if node does not have a father.
*/
static bool isRoot(const Node& node) { return !node.hasFather(); }
/**
* @brief Get the number of leaves of a subtree defined by a particular node.
*
* @param node The node defining the subtree to check.
* @return The number of leaves.
*/
static unsigned int getNumberOfLeaves(const Node& node);
/**
* @brief Get the number of nodes of a subtree defined by a particular node.
*
* @param node The node defining the subtree to check.
* @return The number of nodes.
*/
static unsigned int getNumberOfNodes(const Node& node);
/**
* @brief Get the leaves names of a subtree defined by a particular node.
*
* @param node The node defining the subtree to check.
* @return The list of all leaves names.
*/
static std::vector<std::string> getLeavesNames(const Node& node);
/**
* @brief Get the depth of the subtree defined by node 'node', i.e. the maximum
* number of sons 'generations'.
*
* ex:
* @verbatim
* +----------A
* |
* ---+ N1 +-------B
* | |
* +--------+ N2
* |
* +------C
* @endverbatim
* Depth of node 'N1' id 2, depth of node 'N2' is 1, depth of leaves is 0.
*
* @param node The node defining the subtree to check.
* @return The depth of the subtree.
*/
static unsigned int getDepth(const Node& node);
/**
* @brief Get the depths for all nodes of the subtree defined by node 'node', i.e. the maximum
* number of sons 'generations'.
*
* ex:
* @verbatim
* +----------A
* |
* ---+ N1 +-------B
* | |
* +--------+ N2
* |
* +------C
* @endverbatim
* Depth of node 'N1' id 2, depth of node 'N2' is 1, depth of leaves is 0.
*
* @param node The node defining the subtree to check.
* @param depths The map that will contain all the depths of the nodes, with node pointers as keys.
* @return The depth of the subtree.
*/
static unsigned int getDepths(const Node& node, std::map<const Node*, unsigned int>& depths);
/**
* @brief Get the height of the subtree defined by node 'node', i.e. the maximum
* distance between leaves and the root of the subtree.
*
* The distance do not include the branch length of the subtree root node.
* The height of a leaf is hence 0.
*
* @param node The node defining the subtree to check.
* @return The height of the subtree.
* @throw NodePException If a branch length is lacking.
*/
static double getHeight(const Node& node);
/**
* @brief Get the heights of all nodes within a subtree defined by node 'node', i.e. the maximum
* distance between leaves and the root of the subtree.
*
* The height of a leaf is 0.
*
* @param node The node defining the subtree to check.
* @param heights The map that will contain all the heights of the nodes, with node pointers as keys.
* @return The height of the subtree.
* @throw NodePException If a branch length is lacking.
*/
static double getHeights(const Node& node, std::map<const Node*, double>& heights);
/**
* @brief Tell is a subtree is multifurcating.
*
* @param node The root node of the subtree.
* @return True is the subtree contains at least one multifurcating
* node (including the root node).
*/
static bool isMultifurcating(const Node& node);
/**
* @brief Tells if two subtrees have the same topology.
*
* The comparison is based on parental relationships and leaf names only, node ids and all branch/node properties are ignored.
* The ordering of son nodes is taken into account so that ((A,B),C) will be considered different from ((B,A),C). Considerer
* ordering the trees first if you want to perform a strict topological comparison.
*
* @param n1 Root node of the first subtree.
* @param n2 Root node of the second subtree.
* @return true if the two subtrees have the same topology.
*/
static bool haveSameOrderedTopology(const Node& n1, const Node& n2);
static std::vector<Node*> getPathBetweenAnyTwoNodes(Node& node1, Node& node2, bool includeAncestor = true);
static std::vector<const Node*> getPathBetweenAnyTwoNodes(const Node & node1, const Node & node2, bool includeAncestor = true);
/**
* @brief Recursively clone a subtree structure.
*
* This is a template function allowing to specify the class of the copy.
* The template class has to have a constructor accepting const Node& as signle argument.
*
* @param node The basal node of the subtree.
* @return The basal node of the new copy.
*/
template<class N>
static N* cloneSubtree(const Node& node)
{
//First we copy this node using default copy constuctor:
N* clone = new N(node);
//We remove the link toward the father:
clone->removeFather();
//Now we perform a hard copy:
for(unsigned int i = 0; i < node.getNumberOfSons(); i++)
{
clone->setSon(i, cloneSubtree<N>(*node[i]));
}
return clone;
}
/**
* @brief Recursively delete a subtree structure.
*
* @param node The basal node of the subtree.
*/
template<class N>
static void deleteSubtree(N* node)
{
for (unsigned int i = 0; i < node->getNumberOfSons(); ++i)
{
N* son = node->getSon(i);
deleteSubtree(son);
delete son;
}
}
template<class N>
static N* cloneSubtree(const Tree& tree, int nodeId)
{
//First we copy this node using default copy constuctor:
N* clone = tree.hasNodeName(nodeId) ? new N(nodeId, tree.getNodeName(nodeId)) : new N(nodeId);
//Then we set the length:
if (tree.hasDistanceToFather(nodeId))
clone->setDistanceToFather(tree.getDistanceToFather(nodeId));
//Now we copy all sons:
std::vector<int> sonsId = tree.getSonsId(nodeId);
for (size_t i = 0; i < sonsId.size(); i++)
{
clone->addSon(cloneSubtree<N>(tree, sonsId[i]));
}
//Must copy all properties too:
std::vector<std::string> names;
names = tree.getNodePropertyNames(nodeId);
for (size_t i = 0; i < names.size(); i++)
{
clone->setNodeProperty(names[i], *tree.getNodeProperty(nodeId, names[i]));
}
names = tree.getBranchPropertyNames(nodeId);
for (size_t i = 0; i < names.size(); i++)
{
clone->setBranchProperty(names[i], *tree.getBranchProperty(nodeId, names[i]));
}
return clone;
}
/** @} */
/**
* @name Act on branch lengths.
*
* @{
*/
/**
* @brief Get all the branch lengths of a subtree.
*
* @param node The root node of the subtree.
* @return A vector with all branch lengths.
* @throw NodePException If a branch length is lacking.
*/
static Vdouble getBranchLengths(const Node& node) throw (NodePException);
/**
* @brief Get the total length (sum of all branch lengths) of a subtree.
*
* @param node The root node of the subtree.
* @param includeAncestor Tell if the branch length of the most ancient node should be included in the counting.
* (this should be set to false if this node is the root of the tree for instance).
* @return The total length of the subtree.
* @throw NodePException If a branch length is lacking.
*/
static double getTotalLength(const Node& node, bool includeAncestor = true) throw (NodePException);
/**
* @brief Set all the branch lengths of a subtree.
*
* @param node The root node of the subtree.
* @param brLen The branch length to apply.
*/
static void setBranchLengths(Node& node, double brLen);
/**
* @brief Remove all the branch lengths of a subtree.
*
* @param node The root node of the subtree.
*/
static void deleteBranchLengths(Node& node);
/**
* @brief Give a length to branches that don't have one in a subtree.
*
* @param node The root node of the subtree.
* @param brLen The branch length to apply.
*/
static void setVoidBranchLengths(Node& node, double brLen);
/**
* @brief Scale a given tree.
*
* Multiply all branch lengths by a given factor.
*
* @param node The root node of the subtree to scale.
* @param factor The factor to multiply all branch lengths with.
* @throw NodePException If a branch length is lacking.
*/
static void scaleTree(Node& node, double factor) throw (NodePException);
/**
* @brief Get the total distance between to nodes.
*
* Sum all branch lengths between two nodes.
*
* @param node1 The first node.
* @param node2 The second node.
* @return The sum of all branch lengths between the two nodes.
*/
static double getDistanceBetweenAnyTwoNodes(const Node& node1, const Node& node2);
/**
* @brief Compute a distance matrix from a tree.
*
* Compute all distances between each leaves and store them in a matrix.
* A new DistanceMatrix object is created, and a pointer toward it is returned.
* The destruction of this matrix is left up to the user.
*
* From version 1.9 of Bio++, this function has been rewritten in a more efficient way
* and does not use getDistanceBetweenAnyTwoNodes anymore, but makes use of a more clever
* pass on the tree. The new function now works well on trees with thousands of leaves.
*
* @see getDistanceBetweenAnyTwoNodes
*
* @author Nicolas Rochette
*
* @param tree The tree to use.
* @return The distance matrix computed from tree.
*/
static DistanceMatrix* getDistanceMatrix(const TreeTemplate<Node>& tree);
private:
/**
* @brief Inner function used by getDistanceMatrix.
*
* (1) Retrieves leaf-leaf distances in node's subtree and
* writes them in the distance matrix.
* (2) Returns distances from node's father to those leaves.
*
* @param node The current node in the recursion.
* @param matrix The output matrix which will be filled.
* @param distsToNodeFather Intermediate computations contianing the distances of the node to the leaves.
*/
static void processDistsInSubtree_(const Node* node, DistanceMatrix& matrix, std::vector< std::pair<std::string, double> >& distsToNodeFather);
public:
/** @} */
/**
* @name Conversion tools.
*
* Convert from Newick standard tree description.
* The description is for a node, and hence is to be surrounded with
* parenthesis. ex: (A:0.001, (B:0.001, C:0.02)90:0.005)50:0.0005
*
* @{
*/
struct Element
{
public:
std::string content;
std::string length;
std::string bootstrap;
bool isLeaf;
public:
Element() : content(), length(), bootstrap(), isLeaf(false) {}
};
static Element getElement(const std::string& elt) throw (IOException);
/**
* @brief Parse a string in the parenthesis format and convert it to
* a subtree.
*
* @param description the string to parse;
* @param bootstrap Tell is real bootstrap values are expected. If so, a property with name TreeTools::BOOTSTRAP will be created and stored at the corresponding node.
* The property value will be of type Number<double>. Otherwise, an object of type String will be created and stored with the property name propertyName.
* @param propertyName The name of the property to store. Only used if bootstrap = false.
* @param withId Tells if node ids have been stored in the tree. If set at "true", no bootstrap or property values can be read. Node ids are positioned as bootstrap values for internal nodes, and are concatenated to leaf names after a "_" sign.
* @return A pointer toward a dynamically created subtree.
*/
static Node* parenthesisToNode(const std::string& description, bool bootstrap=true, const std::string& propertyName=TreeTools::BOOTSTRAP, bool withId=false);
/**
* @brief Parse a string in the parenthesis format and convert it to
* a tree.
*
* @param description the string to parse;
* @param bootstrap Tells if real bootstrap values are expected. If so, a property with name TreeTools::BOOTSTRAP will be created and stored at the corresponding node.
* The property value will be of type Number<double>. Otherwise, an object of type String will be created and stored with the property name propertyName.
* @param propertyName The name of the property to store. Only used if bootstrap = false.
* @param withId Tells if node ids have been stored in the tree. If set at "true", no bootstrap or property values can be read. Node ids are positioned as bootstrap values for internal nodes, and are concatenated to leaf names after a "_" sign.
* @return A pointer toward a dynamically created tree.
* @throw Exception in case of bad format.
*/
static TreeTemplate<Node>* parenthesisToTree(const std::string& description, bool bootstrap = true, const std::string& propertyName = TreeTools::BOOTSTRAP, bool withId = false) throw (Exception);
/**
* @brief Get the parenthesis description of a subtree.
*
* @param node The node defining the subtree.
* @param writeId Tells if node ids must be printed.
* This will overwrite bootstrap values if there are ones.
* Leaves id will be added to the leave names, separated by a '_' character.
* @return A string in the parenthesis format.
*/
static std::string nodeToParenthesis(const Node & node, bool writeId = false);
/**
* @brief Get the parenthesis description of a subtree.
*
* @param node The node defining the subtree.
* @param bootstrap Tell is bootstrap values must be writen.
* If so, the content of the property with name TreeTools::BOOTSTRAP will be written as bootstrap value.
* The property should be a Number<double> object.
* Otherwise, the content of the property with name 'propertyName' will be written.
* In this later case, the property should be a String object.
* @param propertyName The name of the property to use. Only used if bootstrap = false.
* @return A string in the parenthesis format.
*/
static std::string nodeToParenthesis(const Node & node, bool bootstrap, const std::string & propertyName);
/**
* @brief Get the parenthesis description of a tree.
*
* @param tree The tree to convert.
* @param writeId Tells if node ids must be printed.
* This will overwrite bootstrap values if there are ones.
* Leaves id will be added to the leave names, separated by a '_' character.
* @return A string in the parenthesis format.
*/
static std::string treeToParenthesis(const TreeTemplate<Node>& tree, bool writeId = false);
/**
* @brief Get the parenthesis description of a tree.
*
* @param tree The tree to convert.
* @param bootstrap Tell is bootstrap values must be writen.
* If so, the content of the property with name TreeTools::BOOTSTRAP will be written as bootstrap value.
* The property should be a Number<double> object.
* Otherwise, the content of the property with name 'propertyName' will be written.
* In this later case, the property should be a String object.
* @param propertyName The name of the property to use. Only used if bootstrap = false.
* @return A string in the parenthesis format.
*/
static std::string treeToParenthesis(const TreeTemplate<Node> & tree, bool bootstrap, const std::string& propertyName);
/** @} */
/**
* @name Random trees
*
* @{
*/
/**
* @brief Draw a random tree from a list of taxa, using a Yule process.
*
* @param leavesNames A list of taxa.
* @param rooted Tell is the output tree should be rooted.
* @return A random tree with all corresponding taxa.
*/
static TreeTemplate<Node>* getRandomTree(std::vector<std::string>& leavesNames, bool rooted=true);
/** @} */
/**
* @brief Get a subset of node neighbors.
*
* Get all neighbors of node node1 that are neither node1 nor node2.
* This method is useful for topology manipulations, like NNI.
*
* @param node1 The node whose neighbors must be retrieved.
* @param node2 One neighbor to exclude.
* @param node3 Another neighbor to exclude.
* @return A vector of neighbors.
*/
static std::vector<const Node*> getRemainingNeighbors(const Node* node1, const Node* node2, const Node* node3);
/**
* @brief This method will add a given value (possibly negative) to all identifiers in a (sub)tree.
*
* @param node The root node of the (sub)tree to use.
* @param increment The value to add.
*/
static void incrementAllIds(Node* node, int increment);
/**
* @name Retrieve properties from a (sub)tree.
*
* @{
*/
/**
* @brief Retrieve the names of all available node properties in the tree.
*
* @param node [in] The root node of the (sub)tree to use.
* @param propertyNames [out] a vector where names will be added.
*/
static void getNodePropertyNames(const Node& node, std::vector<std::string>& propertyNames);
/**
* @brief Retrieve all node property objects with a given name over a (sub) tree (const version).
*
* @param node [in] The root node of the (sub)tree to use.
* @param propertyName [in] The name of the property to retrieve.
* @param properties [out] A map with pointers toward the properties as values, and node ids as key.
* If a node does not contain the given property, then no entry in the map is created.
* If an entry already exists in the map, it will be replaced, but the underlying property will not be destroyed.
* Property objects are not cloned when added to the map, but passed as pointers.
*/
static void getNodeProperties(const Node& node, const std::string& propertyName, std::map<int, const Clonable*>& properties);
/**
* @brief Retrieve all node property objects with a given name over a (sub) tree.
*
* @param node [in] The root node of the (sub)tree to use.
* @param propertyName [in] The name of the property to retrieve.
* @param properties [out] A map with pointers toward the properties as values, and node ids as key.
* If a node does not contain the given property, then no entry in the map is created.
* If an entry already exists in the map, it will be replaced, but the underlying property will not be destroyed.
* Property objects are not cloned when added to the map, but passed as pointers.
*/
static void getNodeProperties(Node& node, const std::string& propertyName, std::map<int, Clonable*>& properties);
/**
* @brief Retrieve the names of all available branch properties in the tree.
*
* @param node [in] The root node of the (sub)tree to use.
* @param propertyNames [out] a vector where names will be added.
*/
static void getBranchPropertyNames(const Node& node, std::vector<std::string>& propertyNames);
/**
* @brief Retrieve all branch property objects with a given name over a (sub) tree (const version).
*
* @param node [in] The root node of the (sub)tree to use.
* @param propertyName [in] The name of the property to retrieve.
* @param properties [out] A map with pointers toward the properties as values, and node ids as key.
* If a node does not contain the given property, then no entry in the map is created.
* If an entry already exists in the map, it will be replaced, but the underlying property will not be destroyed.
* Property objects are not cloned when added to the map, but passed as pointers.
*/
static void getBranchProperties(const Node& node, const std::string& propertyName, std::map<int, const Clonable*>& properties);
/**
* @brief Retrieve all branch property objects with a given name over a (sub) tree.
*
* @param node [in] The root node of the (sub)tree to use.
* @param propertyName [in] The name of the property to retrieve.
* @param properties [out] A map with pointers toward the properties as values, and node ids as key.
* If a node does not contain the given property, then no entry in the map is created.
* If an entry already exists in the map, it will be replaced, but the underlying property will not be destroyed.
* Property objects are not cloned when added to the map, but passed as pointers.
*/
static void getBranchProperties(Node& node, const std::string& propertyName, std::map<int, Clonable*>& properties);
/**
* @brief Swap nodes in the subtree so that they are ordered according to the underlying number of leaves.
*
* @param node The root node of the (sub)tree to use.
* @param downward If yes, biggest subtrees (in terms of number of leaves) will come first. Otherwise, the smallest subtrees will come first.
* @param orderLeaves Tell if leaves have to be ordered alphabetically. This ensures that two identical topology will always have the same ordered tree, whatever the initial ordering of nodes.
*/
static void orderTree(Node& node, bool downward = true, bool orderLeaves = false) {
orderTree_(node, downward, orderLeaves);
}
/** @} */
private:
struct OrderTreeData_ {
unsigned int size;
std::string firstLeaf;
OrderTreeData_(): size(0), firstLeaf("") {}
};
static OrderTreeData_ orderTree_(Node& node, bool downward, bool orderLeaves);
};
} //end of namespace bpp.
#endif //_TREETEMPLATETOOLS_H_
|