/usr/share/pyshared/FIAT/reference_element.py is in python-fiat 1.0.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 | # Copyright (C) 2008 Robert C. Kirby (Texas Tech University)
#
# This file is part of FIAT.
#
# FIAT is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FIAT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FIAT. If not, see <http://www.gnu.org/licenses/>.
"""
Abstract class and particular implementations of finite element
reference simplex geometry/topology.
Provides an abstract base class and particular implementations for the
reference simplex geometry and topology.
The rest of FIAT is abstracted over this module so that different
reference element geometry (e.g. a vertex at (0,0) versus at (-1,-1))
and orderings of entities have a single point of entry.
Currently implemented are UFC and Default Line, Triangle and Tetrahedron.
"""
import numpy
LINE = 1
TRIANGLE = 2
TETRAHEDRON = 3
def linalg_subspace_intersection( A , B ):
"""Computes the intersection of the subspaces spanned by the
columns of 2-dimensional arrays A,B using the algorithm found in
Golub and van Loan (3rd ed) p. 604. A should be in
R^{m,p} and B should be in R^{m,q}. Returns an orthonormal basis
for the intersection of the spaces, stored in the columns of
the result."""
# check that vectors are in same space
if A.shape[0] != B.shape[0]:
raise Exception, "Dimension error"
#A,B are matrices of column vectors
# compute the intersection of span(A) and span(B)
# Compute the principal vectors/angles between the subspaces, G&vL
# p.604
(qa,ra) = numpy.linalg.qr( A )
(qb,rb) = numpy.linalg.qr( B )
C = numpy.dot( numpy.transpose( qa ) , qb )
(y,c,zt) = numpy.linalg.svd( C )
U = numpy.dot( qa , y )
V = numpy.dot( qb , numpy.transpose( zt ) )
rank_c = len( [ s for s in c if numpy.abs( 1.0 - s ) < 1.e-10 ] )
return U[:,:rank_c]
def lattice_iter( start , finish , depth ):
"""Generator iterating over the depth-dimensional lattice of
integers between start and (finish-1). This works on simplices in
1d, 2d, 3d, and beyond"""
if depth == 0:
return
elif depth == 1:
for ii in xrange( start , finish ):
yield [ii]
else:
for ii in xrange( start , finish ):
for jj in lattice_iter( start , finish-ii , depth - 1 ):
yield [ii] + jj
class ReferenceElement:
"""Abstract class for a reference element simplex. Provides
accessors for geometry (vertex coordinates) as well as topology
(orderings of vertices that make up edges, facecs, etc."""
def __init__( self , shape , vertices , topology ):
"""The constructor takes a shape code,
the physical vertices expressed as a list of tuples
of numbers, and the topology of a simplex.
The topology is stored as a dictionary of dictionaries
t[i][j] where i is the spatial dimension and j is the
index of the facet of that dimension. The result is
a list of the vertices comprising the facet.
"""
self.shape = shape
self.vertices = vertices
self.topology = topology
def get_shape( self ):
"""Returns the code for the element's shape."""
return self.shape
def get_vertices( self ):
"""Returns an iteratble of the element's vertices, each stored
as a tuple."""
return self.vertices
def get_spatial_dimension( self ):
"""Returns the spatial dimension in which the element lives."""
return len( self.vertices[ 0 ] )
def get_topology( self ):
"""Returns a dictionary encoding the topology of the element.
The dictionary's keys are the spatial dimensions (0,1,...)
and each value is a dictionary mapping
"""
return self.topology
def get_vertices_of_subcomplex( self , t ):
"""Returns the tuple of vertex coordinates associated with the
labels contained in the iterable t."""
return tuple( [ self.vertices[ ti ] for ti in t ] )
def compute_normal( self , facet_i ):
"""Returns the unit normal vector to facet i of codimension 1."""
# first, let's compute the span of the simplex
# This is trivial if we have a d-simplex in R^d.
# Not so otherwise.
vert_vecs = [ numpy.array( v ) \
for v in self.vertices ]
vert_vecs_foo = numpy.array( [ vert_vecs[i] - vert_vecs[0] \
for i in range(1,len(vert_vecs) ) ] )
(u,s,vt) = numpy.linalg.svd( vert_vecs_foo )
rank = len( [ si for si in s if si > 1.e-10 ] )
# this is the set of vectors that span the simplex
spanu = u[:,:rank]
t = self.get_topology( )
sd = self.get_spatial_dimension()
vert_coords_of_facet = \
self.get_vertices_of_subcomplex( t[sd-1][facet_i] )
# now I find everything normal to the facet.
vcf = [ numpy.array( foo ) \
for foo in vert_coords_of_facet ]
facet_span = numpy.array( [ vcf[i] - vcf[0] \
for i in range(1,len(vcf) ) ] )
(uf,sf,vft) = numpy.linalg.svd( facet_span )
# now get the null space from vft
rankfacet = len( [ si for si in sf if si > 1.e-10 ] )
facet_normal_space = numpy.transpose( vft[rankfacet:,:] )
# now, I have to compute the intersection of
# facet_span with facet_normal_space
foo = linalg_subspace_intersection( facet_normal_space , spanu )
num_cols = foo.shape[1]
if num_cols != 1:
raise Exception, "barf in normal computation"
# now need to get the correct sign
# get a vector in the direction
nfoo = foo[:,0]
# what is the vertex not in the facet?
verts_set = set( t[sd][0] )
verts_facet = set( t[sd-1][facet_i] )
verts_diff = verts_set.difference( verts_facet )
if len( verts_diff ) != 1:
raise Exception, "barf in normal computation: getting sign"
vert_off = verts_diff.pop()
vert_on = verts_facet.pop()
# get a vector from the off vertex to the facet
v_to_facet = numpy.array( self.vertices[vert_on] ) \
- numpy.array( self.vertices[ vert_off ] )
if numpy.dot( v_to_facet , nfoo ) > 0.0:
return nfoo
else:
return -nfoo
def compute_tangents( self , dim , i ):
"""computes tangents in any dimension based on differences
between vertices and the first vertex of the i:th facet
of dimension dim. Returns a (possibly empty) list.
These tangents are *NOT* normalized to have unit length."""
t = self.get_topology()
vs = map( numpy.array , \
self.get_vertices_of_subcomplex( t[dim][i] ) )
ts = [ v - vs[0] for v in vs[1:] ]
return ts
def compute_normalized_tangents( self , dim , i ):
"""computes tangents in any dimension based on differences
between vertices and the first vertex of the i:th facet
of dimension dim. Returns a (possibly empty) list.
These tangents are normalized to have unit length."""
ts = self.compute_tangents( dim , i )
return [ t / numpy.linalg.norm( t ) for t in ts ]
def compute_edge_tangent( self , edge_i ):
"""Computes the nonnormalized tangent to a 1-dimensional facet.
returns a single vector."""
t = self.get_topology()
(v0,v1) = self.get_vertices_of_subcomplex( t[1][edge_i] )
return numpy.array( v1 ) - numpy.array( v0 )
def compute_normalized_edge_tangent( self , edge_i ):
"""Computes the unit tangent vector to a 1-dimensional facet"""
v = self.compute_edge_tangent( edge_i )
return v / numpy.linalg.norm( v )
def compute_face_tangents( self , face_i ):
"""Computes the two tangents to a face. Only implemented
for a tetrahedron."""
if self.get_spatial_dimension() != 3:
raise Exception, "can't get face tangents yet"
t = self.get_topology()
(v0,v1,v2) = map( numpy.array , \
self.get_vertices_of_subcomplex( t[2][face_i] ) )
return (v1-v0,v2-v0)
def make_lattice( self , n , interior = 0):
"""Constructs a lattice of points on the simplex. For
example, the 1:st order lattice will be just the vertices.
The optional argument interior specifies how many points from
the boundary to omit. For example, on a line with n = 2,
and interior = 0, this function will return the vertices and
midpoint, but with interior = 1, it will only return the
midpoint."""
verts = self.get_vertices()
nverts = len( verts )
vs = [ numpy.array( v ) for v in verts ]
hs = [ (vs[ i ] - vs[ 0 ]) / n for i in range(1,nverts) ]
result = []
m = len( hs )
for indices in lattice_iter( interior , n + 1 - interior , m ):
res_cur = vs[0].copy()
for i in range(len(indices)):
res_cur += indices[i] * hs[m-i-1]
result.append( tuple( res_cur ) )
return result
def make_points( self , dim , entity_id , order ):
"""Constructs a lattice of points on the entity_id:th
facet of dimension dim. Order indicates how many points to
include in each direction."""
if dim == 0:
return ( self.get_vertices()[entity_id] , )
elif dim > self.get_spatial_dimension():
raise Exception, "illegal dimension"
elif dim == self.get_spatial_dimension():
return self.make_lattice( order , 1 )
else:
base_el = default_simplex( dim )
base_verts = base_el.get_vertices()
facet_verts = \
self.get_vertices_of_subcomplex( \
self.get_topology()[dim][entity_id] )
(A,b) = make_affine_mapping( base_verts , facet_verts )
f = lambda x: (numpy.dot( A , x ) + b)
base_pts = base_el.make_lattice( order , 1 )
image_pts = tuple( [ tuple( f( x ) ) for x in base_pts ] )
return image_pts
def volume( self ):
"""Computes the volumne of the simplex in the appropriate
dimensional measure."""
return volume( self.get_vertices() )
def volume_of_subcomplex( self , dim , facet_no ):
vids = self.topology[dim][facet_no]
return volume( self.get_vertices_of_subcomplex( vids ) )
def compute_scaled_normal( self , facet_i ):
"""Returns the unit normal to facet_i of scaled by the
volume of that facet."""
t = self.get_topology()
sd = self.get_spatial_dimension()
facet_verts_ids = t[sd-1][facet_i]
facet_verts_coords = self.get_vertices_of_subcomplex( facet_verts_ids )
v = volume( facet_verts_coords )
return self.compute_normal( facet_i ) * v
class DefaultLine( ReferenceElement ):
"""This is the reference line with vertices (-1.0,) and (1.0,)."""
def __init__( self ):
verts = ( (-1.0,) , (1.0,) )
edges = { 0 : ( 0 , 1 ) }
topology = { 0 : { 0 : (0,) , 1: (1,) } , \
1 : edges }
ReferenceElement.__init__( self , LINE , verts , topology )
class UFCInterval( ReferenceElement ):
"""This is the reference interval with vertices (0.0,) and (1.0,)."""
def __init__( self ):
verts = ( (0.0,) , (1.0,) )
edges = { 0 : ( 0 , 1 ) }
topology = { 0 : { 0 : (0,) , 1 : (1,) } , \
1 : edges }
ReferenceElement.__init__( self , LINE , verts , topology )
class DefaultTriangle( ReferenceElement ):
"""This is the reference triangle with vertices (-1.0,-1.0),
(1.0,-1.0), and (-1.0,1.0)."""
def __init__( self ):
verts = ((-1.0,-1.0),(1.0,-1.0),(-1.0,1.0))
edges = { 0 : ( 1 , 2 ) , \
1 : ( 2 , 0 ) , \
2 : ( 0 , 1 ) }
faces = { 0 : ( 0 , 1 , 2 ) }
topology = { 0 : { 0 : (0,) , 1 : (1,) , 2 : (2,) } , \
1 : edges , 2 : faces }
ReferenceElement.__init__( self , TRIANGLE , verts , topology )
class UFCTriangle( ReferenceElement ):
"""This is the reference triangle with vertices (0.0,0.0),
(1.0,0.0), and (0.0,1.0)."""
def __init__( self ):
verts = ((0.0,0.0),(1.0,0.0),(0.0,1.0))
edges = { 0 : ( 1 , 2 ) , 1 : ( 0 , 2 ) , 2 : ( 0 , 1 ) }
faces = { 0 : ( 0 , 1 , 2 ) }
topology = { 0 : { 0 : (0,) , 1 : (1,) , 2 : (2,) } , \
1 : edges , 2 : faces }
ReferenceElement.__init__( self , TRIANGLE , verts , topology )
def compute_normal(self, i):
"UFC consistent normal"
t = self.compute_tangents(1, i)[0]
n = numpy.array((t[1], -t[0]))
return n/numpy.linalg.norm(n)
class IntrepidTriangle( ReferenceElement ):
"""This is the Intrepid triangle with vertices (0,0),(1,0),(0,1)"""
def __init__( self ):
verts = ((0.0,0.0),(1.0,0.0),(0.0,1.0))
edges = { 0 : ( 0 , 1 ) , \
1 : ( 1 , 2 ) , \
2 : ( 2 , 0 ) }
faces = { 0 : ( 0 , 1 , 2 ) }
topology = { 0 : { 0 : (0,) , 1 : (1,) , 2 : (2,) } , \
1 : edges , 2 : faces }
ReferenceElement.__init__( self , TRIANGLE , verts , topology )
class DefaultTetrahedron( ReferenceElement ):
"""This is the reference tetrahedron with vertices (-1,-1,-1),
(1,-1,-1),(-1,1,-1), and (-1,-1,1)."""
def __init__( self ):
verts = ((-1.0,-1.0,-1.0),(1.0,-1.0,-1.0),\
(-1.0,1.0,-1.0),(-1.0,-1.0,1.0))
vs = { 0 : ( 0, ) , \
1 : ( 1, ) , \
2 : ( 2, ) , \
3 : ( 3, ) }
edges = { 0: ( 1 , 2 ) , \
1: ( 2 , 0 ) , \
2: ( 0 , 1 ) , \
3: ( 0 , 3 ) , \
4: ( 1 , 3 ) , \
5: ( 2 , 3 ) }
faces = { 0 : ( 1 , 3 , 2 ) , \
1 : ( 2 , 3 , 0 ) , \
2 : ( 3 , 1 , 0 ) , \
3 : ( 0 , 1 , 2 ) }
tets = { 0 : ( 0 , 1 , 2 , 3 ) }
topology = { 0: vs , 1 : edges , 2 : faces , 3 : tets }
ReferenceElement.__init__( self , TETRAHEDRON , verts , topology )
class IntrepidTetrahedron( ReferenceElement ):
"""This is the reference tetrahedron with vertices (0,0,0),
(1,0,0),(0,1,0), and (0,0,1) used in the Intrepid project."""
def __init__( self ):
verts = ((0.0,0.0,0.0),(1.0,0.0,0.0),(0.0,1.0,0.0),(0.0,0.0,1.0))
vs = { 0 : ( 0, ) , \
1 : ( 1, ) , \
2 : ( 2, ) , \
3 : ( 3, ) }
edges = { 0 : (0,1) , \
1 : (1,2) , \
2 : (2,0) , \
3 : (0,3) , \
4 : (1,3) , \
5 : (2,3) }
faces = { 0 : (0,1,3) , \
1 : (1,2,3) , \
2 : (0,3,2) , \
3 : (0,2,1) }
tets = { 0 : ( 0 , 1 , 2 , 3 ) }
topology = { 0: vs , 1 : edges , 2 : faces , 3 : tets }
ReferenceElement.__init__( self , TETRAHEDRON , verts , topology )
class UFCTetrahedron( ReferenceElement ):
"""This is the reference tetrahedron with vertices (0,0,0),
(1,0,0),(0,1,0), and (0,0,1)."""
def __init__( self ):
verts = ((0.0,0.0,0.0),(1.0,0.0,0.0),(0.0,1.0,0.0),(0.0,0.0,1.0))
vs = { 0 : ( 0, ) , \
1 : ( 1, ) , \
2 : ( 2, ) , \
3 : ( 3, ) }
edges = { 0 : ( 2 , 3 ) , \
1 : ( 1 , 3 ) , \
2 : ( 1 , 2 ) , \
3 : ( 0 , 3 ) , \
4 : ( 0 , 2 ) , \
5 : ( 0 , 1 ) }
faces = { 0 : ( 1 , 2 , 3 ) , \
1 : ( 0 , 2 , 3 ) , \
2 : ( 0 , 1 , 3 ) , \
3 : ( 0 , 1 , 2 ) }
tets = { 0 : ( 0 , 1 , 2 , 3 ) }
topology = { 0: vs , 1 : edges , 2 : faces , 3 : tets }
ReferenceElement.__init__( self , TETRAHEDRON , verts , topology )
def compute_normal(self, i):
"UFC consistent normals."
t = self.compute_tangents(2, i)
n = numpy.cross(t[0], t[1])
return -2.0*n/numpy.linalg.norm(n)
def make_affine_mapping( xs , ys ):
"""Constructs (A,b) such that x --> A * x + b is the affine
mapping from the simplex defined by xs to the simplex defined by ys."""
dim_x = len( xs[0] )
dim_y = len( ys[0] )
if len( xs ) != len( ys ):
raise Exception, ""
# find A in R^{dim_y,dim_x}, b in R^{dim_y} such that
# A xs[i] + b = ys[i] for all i
mat = numpy.zeros( (dim_x*dim_y+dim_y,dim_x*dim_y+dim_y) , "d" )
rhs = numpy.zeros( (dim_x*dim_y+dim_y,) , "d" )
# loop over points
for i in range( len( xs ) ):
# loop over components of each A * point + b
for j in range( dim_y ):
row_cur = i*dim_y+j
col_start = dim_x * j
col_finish = col_start + dim_x
mat[row_cur,col_start:col_finish] = numpy.array( xs[i] )
rhs[row_cur] = ys[i][j]
# need to get terms related to b
mat[row_cur,dim_y*dim_x+j] = 1.0
sol = numpy.linalg.solve( mat , rhs )
A = numpy.reshape( sol[:dim_x*dim_y] , (dim_y,dim_x) )
b = sol[dim_x*dim_y:]
return A,b
def default_simplex( spatial_dim ):
"""Factory function that maps spatial dimension to an instance of
the default reference simplex of that dimension."""
if spatial_dim == 1:
return DefaultLine()
elif spatial_dim == 2:
return DefaultTriangle()
elif spatial_dim == 3:
return DefaultTetrahedron()
def ufc_simplex( spatial_dim ):
"""Factory function that maps spatial dimension to an instance of
the UFC reference simplex of that dimension."""
if spatial_dim == 1:
return UFCInterval()
elif spatial_dim == 2:
return UFCTriangle()
elif spatial_dim == 3:
return UFCTetrahedron()
else:
raise RuntimeError, "Don't know how to create UFC simplex for dimension %s" % str(spatial_dim)
def volume( verts ):
"""Constructs the volume of the simplex spanned by verts"""
from factorial import factorial
# use fact that volume of UFC reference element is 1/n!
sd = len( verts ) - 1
ufcel = ufc_simplex( sd )
ufcverts = ufcel.get_vertices()
A,b = make_affine_mapping( ufcverts , verts )
# can't just take determinant since, e.g. the face of
# a tet being mapped to a 2d triangle doesn't have a
# square matrix
(u,s,vt) = numpy.linalg.svd( A )
# this is the determinant of the "square part" of the matrix
# (ie the part that maps the restriction of the higher-dimensional
# stuff to UFC element
p = numpy.prod( [ si for si in s if (si) > 1.e-10 ] )
return p / factorial( sd )
if __name__ == "__main__":
# U = UFCTetrahedron()
# print U.make_points( 1 , 1 , 3 )
# for i in range(len(U.vertices)):
# print U.compute_normal( i )
V = DefaultTetrahedron()
sd = V.get_spatial_dimension()
# print make_affine_mapping(V.get_vertices(),U.get_vertices())
for i in range( len( V.vertices ) ):
print V.compute_normal( i )
print V.compute_scaled_normal( i )
print volume( V.get_vertices_of_subcomplex( V.topology[sd-1][i] ) )
print
|