This file is indexed.

/usr/share/perl5/DBIx/Class/Manual/Cookbook.pod is in libdbix-class-perl 0.08196-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
=head1 NAME

DBIx::Class::Manual::Cookbook - Miscellaneous recipes

=head1 SEARCHING

=head2 Paged results

When you expect a large number of results, you can ask L<DBIx::Class> for a
paged resultset, which will fetch only a defined number of records at a time:

  my $rs = $schema->resultset('Artist')->search(
    undef,
    {
      page => 1,  # page to return (defaults to 1)
      rows => 10, # number of results per page
    },
  );

  return $rs->all(); # all records for page 1

  return $rs->page(2); # records for page 2

You can get a L<Data::Page> object for the resultset (suitable for use
in e.g. a template) using the C<pager> method:

  return $rs->pager();

=head2 Complex WHERE clauses

Sometimes you need to formulate a query using specific operators:

  my @albums = $schema->resultset('Album')->search({
    artist => { 'like', '%Lamb%' },
    title  => { 'like', '%Fear of Fours%' },
  });

This results in something like the following C<WHERE> clause:

  WHERE artist LIKE ? AND title LIKE ?

And the following bind values for the placeholders: C<'%Lamb%'>, C<'%Fear of
Fours%'>.

Other queries might require slightly more complex logic:

  my @albums = $schema->resultset('Album')->search({
    -or => [
      -and => [
        artist => { 'like', '%Smashing Pumpkins%' },
        title  => 'Siamese Dream',
      ],
      artist => 'Starchildren',
    ],
  });

This results in the following C<WHERE> clause:

  WHERE ( artist LIKE '%Smashing Pumpkins%' AND title = 'Siamese Dream' )
    OR artist = 'Starchildren'

For more information on generating complex queries, see
L<SQL::Abstract/WHERE CLAUSES>.

=head2 Retrieve one and only one row from a resultset

Sometimes you need only the first "top" row of a resultset. While this
can be easily done with L<< $rs->first|DBIx::Class::ResultSet/first
>>, it is suboptimal, as a full blown cursor for the resultset will be
created and then immediately destroyed after fetching the first row
object.  L<< $rs->single|DBIx::Class::ResultSet/single >> is designed
specifically for this case - it will grab the first returned result
without even instantiating a cursor.

Before replacing all your calls to C<first()> with C<single()> please observe the
following CAVEATS:

=over

=item *

While single() takes a search condition just like search() does, it does
_not_ accept search attributes. However one can always chain a single() to
a search():

  my $top_cd = $cd_rs->search({}, { order_by => 'rating' })->single;


=item *

Since single() is the engine behind find(), it is designed to fetch a
single row per database query. Thus a warning will be issued when the
underlying SELECT returns more than one row. Sometimes however this usage
is valid: i.e. we have an arbitrary number of cd's but only one of them is
at the top of the charts at any given time. If you know what you are doing,
you can silence the warning by explicitly limiting the resultset size:

  my $top_cd = $cd_rs->search ({}, { order_by => 'rating', rows => 1 })->single;

=back

=head2 Arbitrary SQL through a custom ResultSource

Sometimes you have to run arbitrary SQL because your query is too complex
(e.g. it contains Unions, Sub-Selects, Stored Procedures, etc.) or has to
be optimized for your database in a special way, but you still want to
get the results as a L<DBIx::Class::ResultSet>.

This is accomplished by defining a
L<ResultSource::View|DBIx::Class::ResultSource::View> for your query,
almost like you would define a regular ResultSource.

  package My::Schema::Result::UserFriendsComplex;
  use strict;
  use warnings;
  use base qw/DBIx::Class::Core/;

  __PACKAGE__->table_class('DBIx::Class::ResultSource::View');

  # ->table, ->add_columns, etc.

  # do not attempt to deploy() this view
  __PACKAGE__->result_source_instance->is_virtual(1);

  __PACKAGE__->result_source_instance->view_definition(q[
    SELECT u.* FROM user u
    INNER JOIN user_friends f ON u.id = f.user_id
    WHERE f.friend_user_id = ?
    UNION
    SELECT u.* FROM user u
    INNER JOIN user_friends f ON u.id = f.friend_user_id
    WHERE f.user_id = ?
  ]);

Next, you can execute your complex query using bind parameters like this:

  my $friends = $schema->resultset( 'UserFriendsComplex' )->search( {},
    {
      bind  => [ 12345, 12345 ]
    }
  );

... and you'll get back a perfect L<DBIx::Class::ResultSet> (except, of course,
that you cannot modify the rows it contains, e.g. cannot call L</update>,
L</delete>, ...  on it).

Note that you cannot have bind parameters unless is_virtual is set to true.

=over

=item * NOTE

If you're using the old deprecated C<< $rsrc_instance->name(\'( SELECT ...') >>
method for custom SQL execution, you are highly encouraged to update your code
to use a virtual view as above. If you do not want to change your code, and just
want to suppress the deprecation warning when you call
L<DBIx::Class::Schema/deploy>, add this line to your source definition, so that
C<deploy> will exclude this "table":

  sub sqlt_deploy_hook { $_[1]->schema->drop_table ($_[1]) }

=back

=head2 Using specific columns

When you only want specific columns from a table, you can use
C<columns> to specify which ones you need. This is useful to avoid
loading columns with large amounts of data that you aren't about to
use anyway:

  my $rs = $schema->resultset('Artist')->search(
    undef,
    {
      columns => [qw/ name /]
    }
  );

  # Equivalent SQL:
  # SELECT artist.name FROM artist

This is a shortcut for C<select> and C<as>, see below. C<columns>
cannot be used together with C<select> and C<as>.

=head2 Using database functions or stored procedures

The combination of C<select> and C<as> can be used to return the result of a
database function or stored procedure as a column value. You use C<select> to
specify the source for your column value (e.g. a column name, function, or
stored procedure name). You then use C<as> to set the column name you will use
to access the returned value:

  my $rs = $schema->resultset('Artist')->search(
    {},
    {
      select => [ 'name', { LENGTH => 'name' } ],
      as     => [qw/ name name_length /],
    }
  );

  # Equivalent SQL:
  # SELECT name name, LENGTH( name )
  # FROM artist

Note that the C<as> attribute B<has absolutely nothing to do> with the SQL
syntax C< SELECT foo AS bar > (see the documentation in
L<DBIx::Class::ResultSet/ATTRIBUTES>). You can control the C<AS> part of the
generated SQL via the C<-as> field attribute as follows:

  my $rs = $schema->resultset('Artist')->search(
    {},
    {
      join => 'cds',
      distinct => 1,
      '+select' => [ { count => 'cds.cdid', -as => 'amount_of_cds' } ],
      '+as' => [qw/num_cds/],
      order_by => { -desc => 'amount_of_cds' },
    }
  );

  # Equivalent SQL
  # SELECT me.artistid, me.name, me.rank, me.charfield, COUNT( cds.cdid ) AS amount_of_cds
  #   FROM artist me LEFT JOIN cd cds ON cds.artist = me.artistid
  # GROUP BY me.artistid, me.name, me.rank, me.charfield
  # ORDER BY amount_of_cds DESC


If your alias exists as a column in your base class (i.e. it was added with
L<add_columns|DBIx::Class::ResultSource/add_columns>), you just access it as
normal. Our C<Artist> class has a C<name> column, so we just use the C<name>
accessor:

  my $artist = $rs->first();
  my $name = $artist->name();

If on the other hand the alias does not correspond to an existing column, you
have to fetch the value using the C<get_column> accessor:

  my $name_length = $artist->get_column('name_length');

If you don't like using C<get_column>, you can always create an accessor for
any of your aliases using either of these:

  # Define accessor manually:
  sub name_length { shift->get_column('name_length'); }

  # Or use DBIx::Class::AccessorGroup:
  __PACKAGE__->mk_group_accessors('column' => 'name_length');

See also L</Using SQL functions on the left hand side of a comparison>.

=head2 SELECT DISTINCT with multiple columns

  my $rs = $schema->resultset('Artist')->search(
    {},
    {
      columns => [ qw/artist_id name rank/ ],
      distinct => 1
    }
  );

  my $rs = $schema->resultset('Artist')->search(
    {},
    {
      columns => [ qw/artist_id name rank/ ],
      group_by => [ qw/artist_id name rank/ ],
    }
  );

  # Equivalent SQL:
  # SELECT me.artist_id, me.name, me.rank
  # FROM artist me
  # GROUP BY artist_id, name, rank

=head2 SELECT COUNT(DISTINCT colname)

  my $rs = $schema->resultset('Artist')->search(
    {},
    {
      columns => [ qw/name/ ],
      distinct => 1
    }
  );

  my $rs = $schema->resultset('Artist')->search(
    {},
    {
      columns => [ qw/name/ ],
      group_by => [ qw/name/ ],
    }
  );

  my $count = $rs->count;

  # Equivalent SQL:
  # SELECT COUNT( * ) FROM (SELECT me.name FROM artist me GROUP BY me.name) me:

=head2 Grouping results

L<DBIx::Class> supports C<GROUP BY> as follows:

  my $rs = $schema->resultset('Artist')->search(
    {},
    {
      join     => [qw/ cds /],
      select   => [ 'name', { count => 'cds.id' } ],
      as       => [qw/ name cd_count /],
      group_by => [qw/ name /]
    }
  );

  # Equivalent SQL:
  # SELECT name, COUNT( cd.id ) FROM artist
  # LEFT JOIN cd ON artist.id = cd.artist
  # GROUP BY name

Please see L<DBIx::Class::ResultSet/ATTRIBUTES> documentation if you
are in any way unsure about the use of the attributes above (C< join
>, C< select >, C< as > and C< group_by >).

=head2 Subqueries

You can write subqueries relatively easily in DBIC.

  my $inside_rs = $schema->resultset('Artist')->search({
    name => [ 'Billy Joel', 'Brittany Spears' ],
  });

  my $rs = $schema->resultset('CD')->search({
    artist_id => { -in => $inside_rs->get_column('id')->as_query },
  });

The usual operators ( '=', '!=', -in, -not_in, etc.) are supported.

B<NOTE>: You have to explicitly use '=' when doing an equality comparison.
The following will B<not> work:

  my $rs = $schema->resultset('CD')->search({
    artist_id => $inside_rs->get_column('id')->as_query,  # does NOT work
  });

=head3 Support

Subqueries are supported in the where clause (first hashref), and in the
from, select, and +select attributes.

=head3 Correlated subqueries

  my $cdrs = $schema->resultset('CD');
  my $rs = $cdrs->search({
    year => {
      '=' => $cdrs->search(
        { artist_id => { '=' => { -ident => 'me.artist_id' } } },
        { alias => 'inner' }
      )->get_column('year')->max_rs->as_query,
    },
  });

That creates the following SQL:

  SELECT me.cdid, me.artist, me.title, me.year, me.genreid, me.single_track
    FROM cd me
   WHERE year = (
      SELECT MAX(inner.year)
        FROM cd inner
       WHERE artist_id = me.artist_id
      )

=head2 Predefined searches

You can define frequently used searches as methods by subclassing
L<DBIx::Class::ResultSet>:

  package My::DBIC::ResultSet::CD;
  use strict;
  use warnings;
  use base 'DBIx::Class::ResultSet';

  sub search_cds_ordered {
      my ($self) = @_;

      return $self->search(
          {},
          { order_by => 'name DESC' },
      );
  }

  1;

If you're using L<DBIx::Class::Schema/load_namespaces>, simply place the file
into the C<ResultSet> directory next to your C<Result> directory, and it will
be automatically loaded.

If however you are still using L<DBIx::Class::Schema/load_classes>, first tell
DBIx::Class to create an instance of the ResultSet class for you, in your
My::DBIC::Schema::CD class:

  # class definition as normal
  use base 'DBIx::Class::Core';
  __PACKAGE__->table('cd');

  # tell DBIC to use the custom ResultSet class
  __PACKAGE__->resultset_class('My::DBIC::ResultSet::CD');

Note that C<resultset_class> must be called after C<load_components> and C<table>, or you will get errors about missing methods.

Then call your new method in your code:

   my $ordered_cds = $schema->resultset('CD')->search_cds_ordered();

=head2 Using SQL functions on the left hand side of a comparison

Using SQL functions on the left hand side of a comparison is generally not a
good idea since it requires a scan of the entire table. (Unless your RDBMS
supports indexes on expressions - including return values of functions - and
you create an index on the return value of the function in question.) However,
it can be accomplished with C<DBIx::Class> when necessary by resorting to
literal SQL:

  $rs->search(\[ 'YEAR(date_of_birth) = ?', [ plain_value => 1979 ] ]);

  # Equivalent SQL:
  # SELECT * FROM employee WHERE YEAR(date_of_birth) = ?

  $rs->search({ -and => [
    name => 'Bob',
    \[ 'YEAR(date_of_birth) = ?', [ plain_value => 1979 ] ],
  ]});

  # Equivalent SQL:
  # SELECT * FROM employee WHERE name = ? AND YEAR(date_of_birth) = ?

Note: the C<plain_value> string in the C<< [ plain_value => 1979 ] >> part
should be either the same as the name of the column (do this if the type of the
return value of the function is the same as the type of the column) or in the
case of a function it's currently treated as a dummy string (it is a good idea
to use C<plain_value> or something similar to convey intent). The value is
currently only significant when handling special column types (BLOBs, arrays,
etc.), but this may change in the future.

See also L<SQL::Abstract/Literal SQL with placeholders and bind values
(subqueries)>.

=head1 JOINS AND PREFETCHING

=head2 Using joins and prefetch

You can use the C<join> attribute to allow searching on, or sorting your
results by, one or more columns in a related table.

This requires that you have defined the L<DBIx::Class::Relationship>. For example :

  My::Schema::CD->has_many( artists => 'My::Schema::Artist', 'artist_id');

To return all CDs matching a particular artist name, you specify the name of the relationship ('artists'):

  my $rs = $schema->resultset('CD')->search(
    {
      'artists.name' => 'Bob Marley'
    },
    {
      join => 'artists', # join the artist table
    }
  );

  # Equivalent SQL:
  # SELECT cd.* FROM cd
  # JOIN artist ON cd.artist = artist.id
  # WHERE artist.name = 'Bob Marley'

In that example both the join, and the condition use the relationship name rather than the table name
(see L<DBIx::Class::Manual::Joining> for more details on aliasing ).

If required, you can now sort on any column in the related tables by including
it in your C<order_by> attribute, (again using the aliased relation name rather than table name) :

  my $rs = $schema->resultset('CD')->search(
    {
      'artists.name' => 'Bob Marley'
    },
    {
      join     => 'artists',
      order_by => [qw/ artists.name /]
    }
  );

  # Equivalent SQL:
  # SELECT cd.* FROM cd
  # JOIN artist ON cd.artist = artist.id
  # WHERE artist.name = 'Bob Marley'
  # ORDER BY artist.name

Note that the C<join> attribute should only be used when you need to search or
sort using columns in a related table. Joining related tables when you only
need columns from the main table will make performance worse!

Now let's say you want to display a list of CDs, each with the name of the
artist. The following will work fine:

  while (my $cd = $rs->next) {
    print "CD: " . $cd->title . ", Artist: " . $cd->artist->name;
  }

There is a problem however. We have searched both the C<cd> and C<artist> tables
in our main query, but we have only returned data from the C<cd> table. To get
the artist name for any of the CD objects returned, L<DBIx::Class> will go back
to the database:

  SELECT artist.* FROM artist WHERE artist.id = ?

A statement like the one above will run for each and every CD returned by our
main query. Five CDs, five extra queries. A hundred CDs, one hundred extra
queries!

Thankfully, L<DBIx::Class> has a C<prefetch> attribute to solve this problem.
This allows you to fetch results from related tables in advance:

  my $rs = $schema->resultset('CD')->search(
    {
      'artists.name' => 'Bob Marley'
    },
    {
      join     => 'artists',
      order_by => [qw/ artists.name /],
      prefetch => 'artists' # return artist data too!
    }
  );

  # Equivalent SQL (note SELECT from both "cd" and "artist"):
  # SELECT cd.*, artist.* FROM cd
  # JOIN artist ON cd.artist = artist.id
  # WHERE artist.name = 'Bob Marley'
  # ORDER BY artist.name

The code to print the CD list remains the same:

  while (my $cd = $rs->next) {
    print "CD: " . $cd->title . ", Artist: " . $cd->artist->name;
  }

L<DBIx::Class> has now prefetched all matching data from the C<artist> table,
so no additional SQL statements are executed. You now have a much more
efficient query.

Also note that C<prefetch> should only be used when you know you will
definitely use data from a related table. Pre-fetching related tables when you
only need columns from the main table will make performance worse!

=head2 Multiple joins

In the examples above, the C<join> attribute was a scalar.  If you
pass an array reference instead, you can join to multiple tables.  In
this example, we want to limit the search further, using
C<LinerNotes>:

  # Relationships defined elsewhere:
  # CD->belongs_to('artist' => 'Artist');
  # CD->has_one('liner_notes' => 'LinerNotes', 'cd');
  my $rs = $schema->resultset('CD')->search(
    {
      'artist.name' => 'Bob Marley'
      'liner_notes.notes' => { 'like', '%some text%' },
    },
    {
      join     => [qw/ artist liner_notes /],
      order_by => [qw/ artist.name /],
    }
  );

  # Equivalent SQL:
  # SELECT cd.*, artist.*, liner_notes.* FROM cd
  # JOIN artist ON cd.artist = artist.id
  # JOIN liner_notes ON cd.id = liner_notes.cd
  # WHERE artist.name = 'Bob Marley'
  # ORDER BY artist.name

=head2 Multi-step joins

Sometimes you want to join more than one relationship deep. In this example,
we want to find all C<Artist> objects who have C<CD>s whose C<LinerNotes>
contain a specific string:

  # Relationships defined elsewhere:
  # Artist->has_many('cds' => 'CD', 'artist');
  # CD->has_one('liner_notes' => 'LinerNotes', 'cd');

  my $rs = $schema->resultset('Artist')->search(
    {
      'liner_notes.notes' => { 'like', '%some text%' },
    },
    {
      join => {
        'cds' => 'liner_notes'
      }
    }
  );

  # Equivalent SQL:
  # SELECT artist.* FROM artist
  # LEFT JOIN cd ON artist.id = cd.artist
  # LEFT JOIN liner_notes ON cd.id = liner_notes.cd
  # WHERE liner_notes.notes LIKE '%some text%'

Joins can be nested to an arbitrary level. So if we decide later that we
want to reduce the number of Artists returned based on who wrote the liner
notes:

  # Relationship defined elsewhere:
  # LinerNotes->belongs_to('author' => 'Person');

  my $rs = $schema->resultset('Artist')->search(
    {
      'liner_notes.notes' => { 'like', '%some text%' },
      'author.name' => 'A. Writer'
    },
    {
      join => {
        'cds' => {
          'liner_notes' => 'author'
        }
      }
    }
  );

  # Equivalent SQL:
  # SELECT artist.* FROM artist
  # LEFT JOIN cd ON artist.id = cd.artist
  # LEFT JOIN liner_notes ON cd.id = liner_notes.cd
  # LEFT JOIN author ON author.id = liner_notes.author
  # WHERE liner_notes.notes LIKE '%some text%'
  # AND author.name = 'A. Writer'

=head2 Multi-step and multiple joins

With various combinations of array and hash references, you can join
tables in any combination you desire.  For example, to join Artist to
CD and Concert, and join CD to LinerNotes:

  # Relationships defined elsewhere:
  # Artist->has_many('concerts' => 'Concert', 'artist');

  my $rs = $schema->resultset('Artist')->search(
    { },
    {
      join => [
        {
          cds => 'liner_notes'
        },
        'concerts'
      ],
    }
  );

  # Equivalent SQL:
  # SELECT artist.* FROM artist
  # LEFT JOIN cd ON artist.id = cd.artist
  # LEFT JOIN liner_notes ON cd.id = liner_notes.cd
  # LEFT JOIN concert ON artist.id = concert.artist

=head2 Multi-step prefetch

C<prefetch> can be nested more than one relationship
deep using the same syntax as a multi-step join:

  my $rs = $schema->resultset('Tag')->search(
    {},
    {
      prefetch => {
        cd => 'artist'
      }
    }
  );

  # Equivalent SQL:
  # SELECT tag.*, cd.*, artist.* FROM tag
  # JOIN cd ON tag.cd = cd.id
  # JOIN artist ON cd.artist = artist.id

Now accessing our C<cd> and C<artist> relationships does not need additional
SQL statements:

  my $tag = $rs->first;
  print $tag->cd->artist->name;

=head1 ROW-LEVEL OPERATIONS

=head2 Retrieving a row object's Schema

It is possible to get a Schema object from a row object like so:

  my $schema = $cd->result_source->schema;
  # use the schema as normal:
  my $artist_rs = $schema->resultset('Artist');

This can be useful when you don't want to pass around a Schema object to every
method.

=head2 Getting the value of the primary key for the last database insert

AKA getting last_insert_id

Thanks to the core component PK::Auto, this is straightforward:

  my $foo = $rs->create(\%blah);
  # do more stuff
  my $id = $foo->id; # foo->my_primary_key_field will also work.

If you are not using autoincrementing primary keys, this will probably
not work, but then you already know the value of the last primary key anyway.

=head2 Stringification

Employ the standard stringification technique by using the L<overload>
module.

To make an object stringify itself as a single column, use something
like this (replace C<name> with the column/method of your choice):

  use overload '""' => sub { shift->name}, fallback => 1;

For more complex stringification, you can use an anonymous subroutine:

  use overload '""' => sub { $_[0]->name . ", " .
                             $_[0]->address }, fallback => 1;

=head3 Stringification Example

Suppose we have two tables: C<Product> and C<Category>. The table
specifications are:

  Product(id, Description, category)
  Category(id, Description)

C<category> is a foreign key into the Category table.

If you have a Product object C<$obj> and write something like

  print $obj->category

things will not work as expected.

To obtain, for example, the category description, you should add this
method to the class defining the Category table:

  use overload "" => sub {
      my $self = shift;

      return $self->Description;
  }, fallback => 1;

=head2 Want to know if find_or_create found or created a row?

Just use C<find_or_new> instead, then check C<in_storage>:

  my $obj = $rs->find_or_new({ blah => 'blarg' });
  unless ($obj->in_storage) {
    $obj->insert;
    # do whatever else you wanted if it was a new row
  }

=head2 Static sub-classing DBIx::Class result classes

AKA adding additional relationships/methods/etc. to a model for a
specific usage of the (shared) model.

B<Schema definition>

    package My::App::Schema;

    use base 'DBIx::Class::Schema';

    # load subclassed classes from My::App::Schema::Result/ResultSet
    __PACKAGE__->load_namespaces;

    # load classes from shared model
    load_classes({
        'My::Shared::Model::Result' => [qw/
            Foo
            Bar
        /]});

    1;

B<Result-Subclass definition>

    package My::App::Schema::Result::Baz;

    use strict;
    use warnings;
    use base 'My::Shared::Model::Result::Baz';

    # WARNING: Make sure you call table() again in your subclass,
    # otherwise DBIx::Class::ResultSourceProxy::Table will not be called
    # and the class name is not correctly registered as a source
    __PACKAGE__->table('baz');

    sub additional_method {
        return "I'm an additional method only needed by this app";
    }

    1;

=head2 Dynamic Sub-classing DBIx::Class proxy classes

AKA multi-class object inflation from one table

L<DBIx::Class> classes are proxy classes, therefore some different
techniques need to be employed for more than basic subclassing.  In
this example we have a single user table that carries a boolean bit
for admin.  We would like like to give the admin users
objects (L<DBIx::Class::Row>) the same methods as a regular user but
also special admin only methods.  It doesn't make sense to create two
separate proxy-class files for this.  We would be copying all the user
methods into the Admin class.  There is a cleaner way to accomplish
this.

Overriding the C<inflate_result> method within the User proxy-class
gives us the effect we want.  This method is called by
L<DBIx::Class::ResultSet> when inflating a result from storage.  So we
grab the object being returned, inspect the values we are looking for,
bless it if it's an admin object, and then return it.  See the example
below:

B<Schema Definition>

    package My::Schema;

    use base qw/DBIx::Class::Schema/;

    __PACKAGE__->load_namespaces;

    1;


B<Proxy-Class definitions>

    package My::Schema::Result::User;

    use strict;
    use warnings;
    use base qw/DBIx::Class::Core/;

    ### Define what our admin class is, for ensure_class_loaded()
    my $admin_class = __PACKAGE__ . '::Admin';

    __PACKAGE__->table('users');

    __PACKAGE__->add_columns(qw/user_id   email    password
                                firstname lastname active
                                admin/);

    __PACKAGE__->set_primary_key('user_id');

    sub inflate_result {
        my $self = shift;
        my $ret = $self->next::method(@_);
        if( $ret->admin ) {### If this is an admin, rebless for extra functions
            $self->ensure_class_loaded( $admin_class );
            bless $ret, $admin_class;
        }
        return $ret;
    }

    sub hello {
        print "I am a regular user.\n";
        return ;
    }

    1;


    package My::Schema::Result::User::Admin;

    use strict;
    use warnings;
    use base qw/My::Schema::Result::User/;

    # This line is important
    __PACKAGE__->table('users');

    sub hello
    {
        print "I am an admin.\n";
        return;
    }

    sub do_admin_stuff
    {
        print "I am doing admin stuff\n";
        return ;
    }

    1;

B<Test File> test.pl

    use warnings;
    use strict;
    use My::Schema;

    my $user_data = { email    => 'someguy@place.com',
                      password => 'pass1',
                      admin    => 0 };

    my $admin_data = { email    => 'someadmin@adminplace.com',
                       password => 'pass2',
                       admin    => 1 };

    my $schema = My::Schema->connection('dbi:Pg:dbname=test');

    $schema->resultset('User')->create( $user_data );
    $schema->resultset('User')->create( $admin_data );

    ### Now we search for them
    my $user = $schema->resultset('User')->single( $user_data );
    my $admin = $schema->resultset('User')->single( $admin_data );

    print ref $user, "\n";
    print ref $admin, "\n";

    print $user->password , "\n"; # pass1
    print $admin->password , "\n";# pass2; inherited from User
    print $user->hello , "\n";# I am a regular user.
    print $admin->hello, "\n";# I am an admin.

    ### The statement below will NOT print
    print "I can do admin stuff\n" if $user->can('do_admin_stuff');
    ### The statement below will print
    print "I can do admin stuff\n" if $admin->can('do_admin_stuff');

Alternatively you can use L<DBIx::Class::DynamicSubclass> that implements
exactly the above functionality.

=head2 Skip row object creation for faster results

DBIx::Class is not built for speed, it's built for convenience and
ease of use, but sometimes you just need to get the data, and skip the
fancy objects.

To do this simply use L<DBIx::Class::ResultClass::HashRefInflator>.

 my $rs = $schema->resultset('CD');

 $rs->result_class('DBIx::Class::ResultClass::HashRefInflator');

 my $hash_ref = $rs->find(1);

Wasn't that easy?

Beware, changing the Result class using
L<DBIx::Class::ResultSet/result_class> will replace any existing class
completely including any special components loaded using
load_components, eg L<DBIx::Class::InflateColumn::DateTime>.

=head2 Get raw data for blindingly fast results

If the L<HashRefInflator|DBIx::Class::ResultClass::HashRefInflator> solution
above is not fast enough for you, you can use a DBIx::Class to return values
exactly as they come out of the database with none of the convenience methods
wrapped round them.

This is used like so:

  my $cursor = $rs->cursor
  while (my @vals = $cursor->next) {
      # use $val[0..n] here
  }

You will need to map the array offsets to particular columns (you can
use the L<DBIx::Class::ResultSet/select> attribute of L<DBIx::Class::ResultSet/search> to force ordering).

=head1 RESULTSET OPERATIONS

=head2 Getting Schema from a ResultSet

To get the L<DBIx::Class::Schema> object from a ResultSet, do the following:

 $rs->result_source->schema

=head2 Getting Columns Of Data

AKA Aggregating Data

If you want to find the sum of a particular column there are several
ways, the obvious one is to use search:

  my $rs = $schema->resultset('Items')->search(
    {},
    {
       select => [ { sum => 'Cost' } ],
       as     => [ 'total_cost' ], # remember this 'as' is for DBIx::Class::ResultSet not SQL
    }
  );
  my $tc = $rs->first->get_column('total_cost');

Or, you can use the L<DBIx::Class::ResultSetColumn>, which gets
returned when you ask the C<ResultSet> for a column using
C<get_column>:

  my $cost = $schema->resultset('Items')->get_column('Cost');
  my $tc = $cost->sum;

With this you can also do:

  my $minvalue = $cost->min;
  my $maxvalue = $cost->max;

Or just iterate through the values of this column only:

  while ( my $c = $cost->next ) {
    print $c;
  }

  foreach my $c ($cost->all) {
    print $c;
  }

C<ResultSetColumn> only has a limited number of built-in functions. If
you need one that it doesn't have, then you can use the C<func> method
instead:

  my $avg = $cost->func('AVERAGE');

This will cause the following SQL statement to be run:

  SELECT AVERAGE(Cost) FROM Items me

Which will of course only work if your database supports this function.
See L<DBIx::Class::ResultSetColumn> for more documentation.

=head2 Creating a result set from a set of rows

Sometimes you have a (set of) row objects that you want to put into a
resultset without the need to hit the DB again. You can do that by using the
L<set_cache|DBIx::Class::Resultset/set_cache> method:

 my @uploadable_groups;
 while (my $group = $groups->next) {
   if ($group->can_upload($self)) {
     push @uploadable_groups, $group;
   }
 }
 my $new_rs = $self->result_source->resultset;
 $new_rs->set_cache(\@uploadable_groups);
 return $new_rs;


=head1 USING RELATIONSHIPS

=head2 Create a new row in a related table

  my $author = $book->create_related('author', { name => 'Fred'});

=head2 Search in a related table

Only searches for books named 'Titanic' by the author in $author.

  my $books_rs = $author->search_related('books', { name => 'Titanic' });

=head2 Delete data in a related table

Deletes only the book named Titanic by the author in $author.

  $author->delete_related('books', { name => 'Titanic' });

=head2 Ordering a relationship result set

If you always want a relation to be ordered, you can specify this when you
create the relationship.

To order C<< $book->pages >> by descending page_number, create the relation
as follows:

  __PACKAGE__->has_many('pages' => 'Page', 'book', { order_by => { -desc => 'page_number'} } );

=head2 Filtering a relationship result set

If you want to get a filtered result set, you can just add add to $attr as follows:

 __PACKAGE__->has_many('pages' => 'Page', 'book', { where => { scrap => 0 } } );

=head2 Many-to-many relationship bridges

This is straightforward using L<ManyToMany|DBIx::Class::Relationship/many_to_many>:

  package My::User;
  use base 'DBIx::Class::Core';
  __PACKAGE__->table('user');
  __PACKAGE__->add_columns(qw/id name/);
  __PACKAGE__->set_primary_key('id');
  __PACKAGE__->has_many('user_address' => 'My::UserAddress', 'user');
  __PACKAGE__->many_to_many('addresses' => 'user_address', 'address');

  package My::UserAddress;
  use base 'DBIx::Class::Core';
  __PACKAGE__->table('user_address');
  __PACKAGE__->add_columns(qw/user address/);
  __PACKAGE__->set_primary_key(qw/user address/);
  __PACKAGE__->belongs_to('user' => 'My::User');
  __PACKAGE__->belongs_to('address' => 'My::Address');

  package My::Address;
  use base 'DBIx::Class::Core';
  __PACKAGE__->table('address');
  __PACKAGE__->add_columns(qw/id street town area_code country/);
  __PACKAGE__->set_primary_key('id');
  __PACKAGE__->has_many('user_address' => 'My::UserAddress', 'address');
  __PACKAGE__->many_to_many('users' => 'user_address', 'user');

  $rs = $user->addresses(); # get all addresses for a user
  $rs = $address->users(); # get all users for an address

  my $address = $user->add_to_addresses(    # returns a My::Address instance,
                                            # NOT a My::UserAddress instance!
    {
      country => 'United Kingdom',
      area_code => 'XYZ',
      town => 'London',
      street => 'Sesame',
    }
  );

=head2 Relationships across DB schemas

Mapping relationships across L<DB schemas|DBIx::Class::Manual::Glossary/DB schema>
is easy as long as the schemas themselves are all accessible via the same DBI
connection. In most cases, this means that they are on the same database host
as each other and your connecting database user has the proper permissions to them.

To accomplish this one only needs to specify the DB schema name in the table
declaration, like so...

  package MyDatabase::Main::Artist;
  use base qw/DBIx::Class::Core/;

  __PACKAGE__->table('database1.artist'); # will use "database1.artist" in FROM clause

  __PACKAGE__->add_columns(qw/ artist_id name /);
  __PACKAGE__->set_primary_key('artist_id');
  __PACKAGE__->has_many('cds' => 'MyDatabase::Main::Cd');

  1;

Whatever string you specify there will be used to build the "FROM" clause in SQL
queries.

The big drawback to this is you now have DB schema names hardcoded in your
class files. This becomes especially troublesome if you have multiple instances
of your application to support a change lifecycle (e.g. DEV, TEST, PROD) and
the DB schemas are named based on the environment (e.g. database1_dev).

However, one can dynamically "map" to the proper DB schema by overriding the
L<connection|DBIx::Class::Schama/connection> method in your Schema class and
building a renaming facility, like so:

  package MyDatabase::Schema;
  use Moose;

  extends 'DBIx::Class::Schema';

  around connection => sub {
    my ( $inner, $self, $dsn, $username, $pass, $attr ) = ( shift, @_ );

    my $postfix = delete $attr->{schema_name_postfix};

    $inner->(@_);

    if ( $postfix ) {
        $self->append_db_name($postfix);
    }
  };

  sub append_db_name {
    my ( $self, $postfix ) = @_;

    my @sources_with_db
        = grep
            { $_->name =~ /^\w+\./mx }
            map
                { $self->source($_) }
                $self->sources;

    foreach my $source (@sources_with_db) {
        my $name = $source->name;
        $name =~ s{^(\w+)\.}{${1}${postfix}\.}mx;

        $source->name($name);
    }
  }

  1;

By overriding the L<connection|DBIx::Class::Schama/connection>
method and extracting a custom option from the provided \%attr hashref one can
then simply iterate over all the Schema's ResultSources, renaming them as
needed.

To use this facility, simply add or modify the \%attr hashref that is passed to
L<connection|DBIx::Class::Schama/connect>, as follows:

  my $schema
    = MyDatabase::Schema->connect(
      $dsn,
      $user,
      $pass,
      {
        schema_name_postfix => '_dev'
        # ... Other options as desired ...
      })

Obviously, one could accomplish even more advanced mapping via a hash map or a
callback routine.

=head1 TRANSACTIONS

=head2 Transactions with txn_do

As of version 0.04001, there is improved transaction support in
L<DBIx::Class::Storage> and L<DBIx::Class::Schema>.  Here is an
example of the recommended way to use it:

  my $genus = $schema->resultset('Genus')->find(12);

  my $coderef2 = sub {
    $genus->extinct(1);
    $genus->update;
  };

  my $coderef1 = sub {
    $genus->add_to_species({ name => 'troglodyte' });
    $genus->wings(2);
    $genus->update;
    $schema->txn_do($coderef2); # Can have a nested transaction. Only the outer will actualy commit
    return $genus->species;
  };

  use Try::Tiny;
  my $rs;
  try {
    $rs = $schema->txn_do($coderef1);
  } catch {
    # Transaction failed
    die "the sky is falling!"           #
      if ($_ =~ /Rollback failed/);     # Rollback failed

    deal_with_failed_transaction();
  };

Note: by default C<txn_do> will re-run the coderef one more time if an
error occurs due to client disconnection (e.g. the server is bounced).
You need to make sure that your coderef can be invoked multiple times
without terrible side effects.

Nested transactions will work as expected. That is, only the outermost
transaction will actually issue a commit to the $dbh, and a rollback
at any level of any transaction will cause the entire nested
transaction to fail.

=head2 Nested transactions and auto-savepoints

If savepoints are supported by your RDBMS, it is possible to achieve true
nested transactions with minimal effort. To enable auto-savepoints via nested
transactions, supply the C<< auto_savepoint = 1 >> connection attribute.

Here is an example of true nested transactions. In the example, we start a big
task which will create several rows. Generation of data for each row is a
fragile operation and might fail. If we fail creating something, depending on
the type of failure, we want to abort the whole task, or only skip the failed
row.

  my $schema = MySchema->connect("dbi:Pg:dbname=my_db");

  # Start a transaction. Every database change from here on will only be
  # committed into the database if the try block succeeds.
  use Try::Tiny;
  my $exception;
  try {
    $schema->txn_do(sub {
      # SQL: BEGIN WORK;

      my $job = $schema->resultset('Job')->create({ name=> 'big job' });
      # SQL: INSERT INTO job ( name) VALUES ( 'big job' );

      for (1..10) {

        # Start a nested transaction, which in fact sets a savepoint.
        try {
          $schema->txn_do(sub {
            # SQL: SAVEPOINT savepoint_0;

            my $thing = $schema->resultset('Thing')->create({ job=>$job->id });
            # SQL: INSERT INTO thing ( job) VALUES ( 1 );

            if (rand > 0.8) {
              # This will generate an error, thus setting $@

              $thing->update({force_fail=>'foo'});
              # SQL: UPDATE thing SET force_fail = 'foo'
              #      WHERE ( id = 42 );
            }
          });
        } catch {
          # SQL: ROLLBACK TO SAVEPOINT savepoint_0;

          # There was an error while creating a $thing. Depending on the error
          # we want to abort the whole transaction, or only rollback the
          # changes related to the creation of this $thing

          # Abort the whole job
          if ($_ =~ /horrible_problem/) {
            print "something horrible happend, aborting job!";
            die $_;                # rethrow error
          }

          # Ignore this $thing, report the error, and continue with the
          # next $thing
          print "Cannot create thing: $_";
        }
        # There was no error, so save all changes since the last
        # savepoint.

        # SQL: RELEASE SAVEPOINT savepoint_0;
      }
    });
  } catch {
    $exception = $_;
  }

  if ($caught) {
    # There was an error while handling the $job. Rollback all changes
    # since the transaction started, including the already committed
    # ('released') savepoints. There will be neither a new $job nor any
    # $thing entry in the database.

    # SQL: ROLLBACK;

    print "ERROR: $exception\n";
  }
  else {
    # There was no error while handling the $job. Commit all changes.
    # Only now other connections can see the newly created $job and
    # @things.

    # SQL: COMMIT;

    print "Ok\n";
  }

In this example it might be hard to see where the rollbacks, releases and
commits are happening, but it works just the same as for plain L<<txn_do>>: If
the C<try>-block around C<txn_do> fails, a rollback is issued. If the C<try>
succeeds, the transaction is committed (or the savepoint released).

While you can get more fine-grained control using C<svp_begin>, C<svp_release>
and C<svp_rollback>, it is strongly recommended to use C<txn_do> with coderefs.

=head2 Simple Transactions with DBIx::Class::Storage::TxnScopeGuard

An easy way to use transactions is with
L<DBIx::Class::Storage::TxnScopeGuard>. See L</Automatically creating
related objects> for an example.

Note that unlike txn_do, TxnScopeGuard will only make sure the connection is
alive when issuing the C<BEGIN> statement. It will not (and really can not)
retry if the server goes away mid-operations, unlike C<txn_do>.

=head1 SQL

=head2 Creating Schemas From An Existing Database

L<DBIx::Class::Schema::Loader> will connect to a database and create a
L<DBIx::Class::Schema> and associated sources by examining the database.

The recommend way of achieving this is to use the L<dbicdump> utility or the
L<Catalyst> helper, as described in
L<Manual::Intro|DBIx::Class::Manual::Intro/Using DBIx::Class::Schema::Loader>.

Alternatively, use the
L<make_schema_at|DBIx::Class::Schema::Loader/make_schema_at> method:

  perl -MDBIx::Class::Schema::Loader=make_schema_at,dump_to_dir:./lib \
    -e 'make_schema_at("My::Schema", \
    { db_schema => 'myschema', components => ["InflateColumn::DateTime"] }, \
    [ "dbi:Pg:dbname=foo", "username", "password" ])'

This will create a tree of files rooted at C<./lib/My/Schema/> containing source
definitions for all the tables found in the C<myschema> schema in the C<foo>
database.

=head2 Creating DDL SQL

The following functionality requires you to have L<SQL::Translator>
(also known as "SQL Fairy") installed.

To create a set of database-specific .sql files for the above schema:

 my $schema = My::Schema->connect($dsn);
 $schema->create_ddl_dir(['MySQL', 'SQLite', 'PostgreSQL'],
                        '0.1',
                        './dbscriptdir/'
                        );

By default this will create schema files in the current directory, for
MySQL, SQLite and PostgreSQL, using the $VERSION from your Schema.pm.

To create a new database using the schema:

 my $schema = My::Schema->connect($dsn);
 $schema->deploy({ add_drop_table => 1});

To import created .sql files using the mysql client:

  mysql -h "host" -D "database" -u "user" -p < My_Schema_1.0_MySQL.sql

To create C<ALTER TABLE> conversion scripts to update a database to a
newer version of your schema at a later point, first set a new
C<$VERSION> in your Schema file, then:

 my $schema = My::Schema->connect($dsn);
 $schema->create_ddl_dir(['MySQL', 'SQLite', 'PostgreSQL'],
                         '0.2',
                         '/dbscriptdir/',
                         '0.1'
                         );

This will produce new database-specific .sql files for the new version
of the schema, plus scripts to convert from version 0.1 to 0.2. This
requires that the files for 0.1 as created above are available in the
given directory to diff against.

=head2 Select from dual

Dummy tables are needed by some databases to allow calling functions
or expressions that aren't based on table content, for examples of how
this applies to various database types, see:
L<http://troels.arvin.dk/db/rdbms/#other-dummy_table>.

Note: If you're using Oracles dual table don't B<ever> do anything
other than a select, if you CRUD on your dual table you *will* break
your database.

Make a table class as you would for any other table

  package MyAppDB::Dual;
  use strict;
  use warnings;
  use base 'DBIx::Class::Core';
  __PACKAGE__->table("Dual");
  __PACKAGE__->add_columns(
    "dummy",
    { data_type => "VARCHAR2", is_nullable => 0, size => 1 },
  );

Once you've loaded your table class select from it using C<select>
and C<as> instead of C<columns>

  my $rs = $schema->resultset('Dual')->search(undef,
    { select => [ 'sydate' ],
      as     => [ 'now' ]
    },
  );

All you have to do now is be careful how you access your resultset, the below
will not work because there is no column called 'now' in the Dual table class

  while (my $dual = $rs->next) {
    print $dual->now."\n";
  }
  # Can't locate object method "now" via package "MyAppDB::Dual" at headshot.pl line 23.

You could of course use 'dummy' in C<as> instead of 'now', or C<add_columns> to
your Dual class for whatever you wanted to select from dual, but that's just
silly, instead use C<get_column>

  while (my $dual = $rs->next) {
    print $dual->get_column('now')."\n";
  }

Or use C<cursor>

  my $cursor = $rs->cursor;
  while (my @vals = $cursor->next) {
    print $vals[0]."\n";
  }

In case you're going to use this "trick" together with L<DBIx::Class::Schema/deploy> or
L<DBIx::Class::Schema/create_ddl_dir> a table called "dual" will be created in your
current schema. This would overlap "sys.dual" and you could not fetch "sysdate" or
"sequence.nextval" anymore from dual. To avoid this problem, just tell
L<SQL::Translator> to not create table dual:

    my $sqlt_args = {
        add_drop_table => 1,
        parser_args    => { sources => [ grep $_ ne 'Dual', schema->sources ] },
    };
    $schema->create_ddl_dir( [qw/Oracle/], undef, './sql', undef, $sqlt_args );

Or use L<DBIx::Class::ResultClass::HashRefInflator>

  $rs->result_class('DBIx::Class::ResultClass::HashRefInflator');
  while ( my $dual = $rs->next ) {
    print $dual->{now}."\n";
  }

Here are some example C<select> conditions to illustrate the different syntax
you could use for doing stuff like
C<oracles.heavily(nested(functions_can('take', 'lots'), OF), 'args')>

  # get a sequence value
  select => [ 'A_SEQ.nextval' ],

  # get create table sql
  select => [ { 'dbms_metadata.get_ddl' => [ "'TABLE'", "'ARTIST'" ]} ],

  # get a random num between 0 and 100
  select => [ { "trunc" => [ { "dbms_random.value" => [0,100] } ]} ],

  # what year is it?
  select => [ { 'extract' => [ \'year from sysdate' ] } ],

  # do some math
  select => [ {'round' => [{'cos' => [ \'180 * 3.14159265359/180' ]}]}],

  # which day of the week were you born on?
  select => [{'to_char' => [{'to_date' => [ "'25-DEC-1980'", "'dd-mon-yyyy'" ]}, "'day'"]}],

  # select 16 rows from dual
  select   => [ "'hello'" ],
  as       => [ 'world' ],
  group_by => [ 'cube( 1, 2, 3, 4 )' ],



=head2 Adding Indexes And Functions To Your SQL

Often you will want indexes on columns on your table to speed up searching. To
do this, create a method called C<sqlt_deploy_hook> in the relevant source
class (refer to the advanced
L<callback system|DBIx::Class::ResultSource/sqlt_deploy_callback> if you wish
to share a hook between multiple sources):

 package My::Schema::Result::Artist;

 __PACKAGE__->table('artist');
 __PACKAGE__->add_columns(id => { ... }, name => { ... })

 sub sqlt_deploy_hook {
   my ($self, $sqlt_table) = @_;

   $sqlt_table->add_index(name => 'idx_name', fields => ['name']);
 }

 1;

Sometimes you might want to change the index depending on the type of the
database for which SQL is being generated:

  my ($db_type = $sqlt_table->schema->translator->producer_type)
    =~ s/^SQL::Translator::Producer:://;

You can also add hooks to the schema level to stop certain tables being
created:

 package My::Schema;

 ...

 sub sqlt_deploy_hook {
   my ($self, $sqlt_schema) = @_;

   $sqlt_schema->drop_table('table_name');
 }

You could also add views, procedures or triggers to the output using
L<SQL::Translator::Schema/add_view>,
L<SQL::Translator::Schema/add_procedure> or
L<SQL::Translator::Schema/add_trigger>.


=head2 Schema versioning

The following example shows simplistically how you might use DBIx::Class to
deploy versioned schemas to your customers. The basic process is as follows:

=over 4

=item 1.

Create a DBIx::Class schema

=item 2.

Save the schema

=item 3.

Deploy to customers

=item 4.

Modify schema to change functionality

=item 5.

Deploy update to customers

=back

B<Create a DBIx::Class schema>

This can either be done manually, or generated from an existing database as
described under L</Creating Schemas From An Existing Database>

B<Save the schema>

Call L<DBIx::Class::Schema/create_ddl_dir> as above under L</Creating DDL SQL>.

B<Deploy to customers>

There are several ways you could deploy your schema. These are probably
beyond the scope of this recipe, but might include:

=over 4

=item 1.

Require customer to apply manually using their RDBMS.

=item 2.

Package along with your app, making database dump/schema update/tests
all part of your install.

=back

B<Modify the schema to change functionality>

As your application evolves, it may be necessary to modify your schema
to change functionality. Once the changes are made to your schema in
DBIx::Class, export the modified schema and the conversion scripts as
in L</Creating DDL SQL>.

B<Deploy update to customers>

Add the L<DBIx::Class::Schema::Versioned> schema component to your
Schema class. This will add a new table to your database called
C<dbix_class_schema_vesion> which will keep track of which version is installed
and warn if the user tries to run a newer schema version than the
database thinks it has.

Alternatively, you can send the conversion SQL scripts to your
customers as above.

=head2 Setting quoting for the generated SQL

If the database contains column names with spaces and/or reserved words, they
need to be quoted in the SQL queries. This is done using:

 $schema->storage->sql_maker->quote_char([ qw/[ ]/] );
 $schema->storage->sql_maker->name_sep('.');

The first sets the quote characters. Either a pair of matching
brackets, or a C<"> or C<'>:

 $schema->storage->sql_maker->quote_char('"');

Check the documentation of your database for the correct quote
characters to use. C<name_sep> needs to be set to allow the SQL
generator to put the quotes the correct place, and defaults to
C<.> if not supplied.

In most cases you should set these as part of the arguments passed to
L<DBIx::Class::Schema/connect>:

 my $schema = My::Schema->connect(
  'dbi:mysql:my_db',
  'db_user',
  'db_password',
  {
    quote_char => '"',
    name_sep   => '.'
  }
 )

In some cases, quoting will be required for all users of a schema. To enforce
this, you can also overload the C<connection> method for your schema class:

 sub connection {
     my $self = shift;
     my $rv = $self->next::method( @_ );
     $rv->storage->sql_maker->quote_char([ qw/[ ]/ ]);
     $rv->storage->sql_maker->name_sep('.');
     return $rv;
 }

=head2 Working with PostgreSQL array types

You can also assign values to PostgreSQL array columns by passing array
references in the C<\%columns> (C<\%vals>) hashref of the
L<DBIx::Class::ResultSet/create> and L<DBIx::Class::Row/update> family of
methods:

  $resultset->create({
    numbers => [1, 2, 3]
  });

  $row->update(
    {
      numbers => [1, 2, 3]
    },
    {
      day => '2008-11-24'
    }
  );

In conditions (e.g. C<\%cond> in the L<DBIx::Class::ResultSet/search> family of
methods) you cannot directly use array references (since this is interpreted as
a list of values to be C<OR>ed), but you can use the following syntax to force
passing them as bind values:

  $resultset->search(
    {
      numbers => \[ '= ?', [numbers => [1, 2, 3]] ]
    }
  );

See L<SQL::Abstract/array_datatypes> and L<SQL::Abstract/Literal SQL with
placeholders and bind values (subqueries)> for more explanation. Note that
L<DBIx::Class> sets L<SQL::Abstract/bindtype> to C<columns>, so you must pass
the bind values (the C<[1, 2, 3]> arrayref in the above example) wrapped in
arrayrefs together with the column name, like this:
C<< [column_name => value] >>.

=head2 Formatting DateTime objects in queries

To ensure C<WHERE> conditions containing L<DateTime> arguments are properly
formatted to be understood by your RDBMS, you must use the C<DateTime>
formatter returned by L<DBIx::Class::Storage::DBI/datetime_parser> to format
any L<DateTime> objects you pass to L<search|DBIx::Class::ResultSet/search>
conditions. Any L<Storage|DBIx::Class::Storage> object attached to your
L<Schema|DBIx::Class::Schema> provides a correct C<DateTime> formatter, so
all you have to do is:

  my $dtf = $schema->storage->datetime_parser;
  my $rs = $schema->resultset('users')->search(
    {
      signup_date => {
        -between => [
          $dtf->format_datetime($dt_start),
          $dtf->format_datetime($dt_end),
        ],
      }
    },
  );

Without doing this the query will contain the simple stringification of the
C<DateTime> object, which almost never matches the RDBMS expectations.

This kludge is necessary only for conditions passed to
L<DBIx::Class::ResultSet/search>, whereas
L<create|DBIx::Class::ResultSet/create>,
L<find|DBIx::Class::ResultSet/find>,
L<DBIx::Class::Row/update> (but not L<DBIx::Class::ResultSet/update>) are all
L<DBIx::Class::InflateColumn>-aware and will do the right thing when supplied
an inflated C<DateTime> object.

=head2 Using Unicode

When using unicode character data there are two alternatives -
either your database supports unicode characters (including setting
the utf8 flag on the returned string), or you need to encode/decode
data appropriately each time a string field is inserted into or
retrieved from the database. It is better to avoid
encoding/decoding data and to use your database's own unicode
capabilities if at all possible.

The L<DBIx::Class::UTF8Columns> component handles storing selected
unicode columns in a database that does not directly support
unicode. If used with a database that does correctly handle unicode
then strange and unexpected data corrupt B<will> occur.

The Catalyst Wiki Unicode page at
L<http://wiki.catalystframework.org/wiki/tutorialsandhowtos/using_unicode>
has additional information on the use of Unicode with Catalyst and
DBIx::Class.

The following databases do correctly handle unicode data:-

=head3 MySQL

MySQL supports unicode, and will correctly flag utf8 data from the
database if the C<mysql_enable_utf8> is set in the connect options.

  my $schema = My::Schema->connection('dbi:mysql:dbname=test',
                                      $user, $pass,
                                      { mysql_enable_utf8 => 1} );


When set, a data retrieved from a textual column type (char,
varchar, etc) will have the UTF-8 flag turned on if necessary. This
enables character semantics on that string. You will also need to
ensure that your database / table / column is configured to use
UTF8. See Chapter 10 of the mysql manual for details.

See L<DBD::mysql> for further details.

=head3 Oracle

Information about Oracle support for unicode can be found in
L<DBD::Oracle/Unicode>.

=head3 PostgreSQL

PostgreSQL supports unicode if the character set is correctly set
at database creation time. Additionally the C<pg_enable_utf8>
should be set to ensure unicode data is correctly marked.

  my $schema = My::Schema->connection('dbi:Pg:dbname=test',
                                      $user, $pass,
                                      { pg_enable_utf8 => 1} );

Further information can be found in L<DBD::Pg>.

=head3 SQLite

SQLite version 3 and above natively use unicode internally. To
correctly mark unicode strings taken from the database, the
C<sqlite_unicode> flag should be set at connect time (in versions
of L<DBD::SQLite> prior to 1.27 this attribute was named
C<unicode>).

  my $schema = My::Schema->connection('dbi:SQLite:/tmp/test.db',
                                      '', '',
                                      { sqlite_unicode => 1} );

=head1 BOOTSTRAPPING/MIGRATING

=head2 Easy migration from class-based to schema-based setup

You want to start using the schema-based approach to L<DBIx::Class>
(see L<DBIx::Class::Manual::Intro/Setting it up manually>), but have an
established class-based setup with lots of existing classes that you don't
want to move by hand. Try this nifty script instead:

  use MyDB;
  use SQL::Translator;

  my $schema = MyDB->schema_instance;

  my $translator           =  SQL::Translator->new(
      debug                => $debug          ||  0,
      trace                => $trace          ||  0,
      no_comments          => $no_comments    ||  0,
      show_warnings        => $show_warnings  ||  0,
      add_drop_table       => $add_drop_table ||  0,
      validate             => $validate       ||  0,
      parser_args          => {
         'DBIx::Schema'    => $schema,
                              },
      producer_args   => {
          'prefix'         => 'My::Schema',
                         },
  );

  $translator->parser('SQL::Translator::Parser::DBIx::Class');
  $translator->producer('SQL::Translator::Producer::DBIx::Class::File');

  my $output = $translator->translate(@args) or die
          "Error: " . $translator->error;

  print $output;

You could use L<Module::Find> to search for all subclasses in the MyDB::*
namespace, which is currently left as an exercise for the reader.

=head1 OVERLOADING METHODS

L<DBIx::Class> uses the L<Class::C3> package, which provides for redispatch of
method calls, useful for things like default values and triggers. You have to
use calls to C<next::method> to overload methods. More information on using
L<Class::C3> with L<DBIx::Class> can be found in
L<DBIx::Class::Manual::Component>.

=head2 Setting default values for a row

It's as simple as overriding the C<new> method.  Note the use of
C<next::method>.

  sub new {
    my ( $class, $attrs ) = @_;

    $attrs->{foo} = 'bar' unless defined $attrs->{foo};

    my $new = $class->next::method($attrs);

    return $new;
  }

For more information about C<next::method>, look in the L<Class::C3>
documentation. See also L<DBIx::Class::Manual::Component> for more
ways to write your own base classes to do this.

People looking for ways to do "triggers" with DBIx::Class are probably
just looking for this.

=head2 Changing one field whenever another changes

For example, say that you have three columns, C<id>, C<number>, and
C<squared>.  You would like to make changes to C<number> and have
C<squared> be automagically set to the value of C<number> squared.
You can accomplish this by wrapping the C<number> accessor with
L<Class::Method::Modifiers>:

  around number => sub {
    my ($orig, $self) = (shift, shift);

    if (@_) {
      my $value = $_[0];
      $self->squared( $value * $value );
    }

    $self->$orig(@_);
  }

Note that the hard work is done by the call to C<< $self->$orig >>, which
redispatches your call to store_column in the superclass(es).

Generally, if this is a calculation your database can easily do, try
and avoid storing the calculated value, it is safer to calculate when
needed, than rely on the data being in sync.

=head2 Automatically creating related objects

You might have a class C<Artist> which has many C<CD>s.  Further, you
want to create a C<CD> object every time you insert an C<Artist> object.
You can accomplish this by overriding C<insert> on your objects:

  sub insert {
    my ( $self, @args ) = @_;
    $self->next::method(@args);
    $self->create_related ('cds', \%initial_cd_data );
    return $self;
  }

If you want to wrap the two inserts in a transaction (for consistency,
an excellent idea), you can use the awesome
L<DBIx::Class::Storage::TxnScopeGuard>:

  sub insert {
    my ( $self, @args ) = @_;

    my $guard = $self->result_source->schema->txn_scope_guard;

    $self->next::method(@args);
    $self->create_related ('cds', \%initial_cd_data );

    $guard->commit;

    return $self
  }


=head2 Wrapping/overloading a column accessor

B<Problem:>

Say you have a table "Camera" and want to associate a description
with each camera. For most cameras, you'll be able to generate the description from
the other columns. However, in a few special cases you may want to associate a
custom description with a camera.

B<Solution:>

In your database schema, define a description field in the "Camera" table that
can contain text and null values.

In DBIC, we'll overload the column accessor to provide a sane default if no
custom description is defined. The accessor will either return or generate the
description, depending on whether the field is null or not.

First, in your "Camera" schema class, define the description field as follows:

  __PACKAGE__->add_columns(description => { accessor => '_description' });

Next, we'll define the accessor-wrapper subroutine:

  sub description {
      my $self = shift;

      # If there is an update to the column, we'll let the original accessor
      # deal with it.
      return $self->_description(@_) if @_;

      # Fetch the column value.
      my $description = $self->_description;

      # If there's something in the description field, then just return that.
      return $description if defined $description && length $descripton;

      # Otherwise, generate a description.
      return $self->generate_description;
  }

=head1 DEBUGGING AND PROFILING

=head2 DBIx::Class objects with Data::Dumper

L<Data::Dumper> can be a very useful tool for debugging, but sometimes it can
be hard to find the pertinent data in all the data it can generate.
Specifically, if one naively tries to use it like so,

  use Data::Dumper;

  my $cd = $schema->resultset('CD')->find(1);
  print Dumper($cd);

several pages worth of data from the CD object's schema and result source will
be dumped to the screen. Since usually one is only interested in a few column
values of the object, this is not very helpful.

Luckily, it is possible to modify the data before L<Data::Dumper> outputs
it. Simply define a hook that L<Data::Dumper> will call on the object before
dumping it. For example,

  package My::DB::CD;

  sub _dumper_hook {
    $_[0] = bless {
      %{ $_[0] },
      result_source => undef,
    }, ref($_[0]);
  }

  [...]

  use Data::Dumper;

  local $Data::Dumper::Freezer = '_dumper_hook';

  my $cd = $schema->resultset('CD')->find(1);
  print Dumper($cd);
         # dumps $cd without its ResultSource

If the structure of your schema is such that there is a common base class for
all your table classes, simply put a method similar to C<_dumper_hook> in the
base class and set C<$Data::Dumper::Freezer> to its name and L<Data::Dumper>
will automagically clean up your data before printing it. See
L<Data::Dumper/EXAMPLES> for more information.

=head2 Profiling

When you enable L<DBIx::Class::Storage>'s debugging it prints the SQL
executed as well as notifications of query completion and transaction
begin/commit.  If you'd like to profile the SQL you can subclass the
L<DBIx::Class::Storage::Statistics> class and write your own profiling
mechanism:

  package My::Profiler;
  use strict;

  use base 'DBIx::Class::Storage::Statistics';

  use Time::HiRes qw(time);

  my $start;

  sub query_start {
    my $self = shift();
    my $sql = shift();
    my @params = @_;

    $self->print("Executing $sql: ".join(', ', @params)."\n");
    $start = time();
  }

  sub query_end {
    my $self = shift();
    my $sql = shift();
    my @params = @_;

    my $elapsed = sprintf("%0.4f", time() - $start);
    $self->print("Execution took $elapsed seconds.\n");
    $start = undef;
  }

  1;

You can then install that class as the debugging object:

  __PACKAGE__->storage->debugobj(new My::Profiler());
  __PACKAGE__->storage->debug(1);

A more complicated example might involve storing each execution of SQL in an
array:

  sub query_end {
    my $self = shift();
    my $sql = shift();
    my @params = @_;

    my $elapsed = time() - $start;
    push(@{ $calls{$sql} }, {
        params => \@params,
        elapsed => $elapsed
    });
  }

You could then create average, high and low execution times for an SQL
statement and dig down to see if certain parameters cause aberrant behavior.
You might want to check out L<DBIx::Class::QueryLog> as well.

=head1 IMPROVING PERFORMANCE

=over

=item *

Install L<Class::XSAccessor> to speed up L<Class::Accessor::Grouped>.

=item *

On Perl 5.8 install L<Class::C3::XS>.

=item *

L<prefetch|DBIx::Class::ResultSet/prefetch> relationships, where possible. See
L</Using joins and prefetch>.

=item *

Use L<populate|DBIx::Class::ResultSet/populate> in void context to insert data
when you don't need the resulting L<DBIx::Class::Row> objects, if possible, but
see the caveats.

When inserting many rows, for best results, populate a large number of rows at a
time, but not so large that the table is locked for an unacceptably long time.

If using L<create|DBIx::Class::ResultSet/create> instead, use a transaction and
commit every C<X> rows; where C<X> gives you the best performance without
locking the table for too long.

=item *

When selecting many rows, if you don't need full-blown L<DBIx::Class::Row>
objects, consider using L<DBIx::Class::ResultClass::HashRefInflator>.

=item *

See also L</STARTUP SPEED> and L</MEMORY USAGE> in this document.

=back

=head1 STARTUP SPEED

L<DBIx::Class|DBIx::Class> programs can have a significant startup delay
as the ORM loads all the relevant classes. This section examines
techniques for reducing the startup delay.

These tips are are listed in order of decreasing effectiveness - so the
first tip, if applicable, should have the greatest effect on your
application.

=head2 Statically Define Your Schema

If you are using
L<DBIx::Class::Schema::Loader|DBIx::Class::Schema::Loader> to build the
classes dynamically based on the database schema then there will be a
significant startup delay.

For production use a statically defined schema (which can be generated
using L<DBIx::Class::Schema::Loader|DBIx::Class::Schema::Loader> to dump
the database schema once - see
L<make_schema_at|DBIx::Class::Schema::Loader/make_schema_at> and
L<dump_directory|DBIx::Class::Schema::Loader/dump_directory> for more
details on creating static schemas from a database).

=head2 Move Common Startup into a Base Class

Typically L<DBIx::Class> result classes start off with

    use base qw/DBIx::Class::Core/;
    __PACKAGE__->load_components(qw/InflateColumn::DateTime/);

If this preamble is moved into a common base class:-

    package MyDBICbase;

    use base qw/DBIx::Class::Core/;
    __PACKAGE__->load_components(qw/InflateColumn::DateTime/);
    1;

and each result class then uses this as a base:-

    use base qw/MyDBICbase/;

then the load_components is only performed once, which can result in a
considerable startup speedup for schemas with many classes.

=head2 Explicitly List Schema Result Classes

The schema class will normally contain

    __PACKAGE__->load_classes();

to load the result classes. This will use L<Module::Find|Module::Find>
to find and load the appropriate modules. Explicitly defining the
classes you wish to load will remove the overhead of
L<Module::Find|Module::Find> and the related directory operations:

    __PACKAGE__->load_classes(qw/ CD Artist Track /);

If you are instead using the L<load_namespaces|DBIx::Class::Schema/load_namespaces>
syntax to load the appropriate classes there is not a direct alternative
avoiding L<Module::Find|Module::Find>.

=head1 MEMORY USAGE

=head2 Cached statements

L<DBIx::Class> normally caches all statements with L<< prepare_cached()|DBI/prepare_cached >>.
This is normally a good idea, but if too many statements are cached, the database may use too much
memory and may eventually run out and fail entirely.  If you suspect this may be the case, you may want
to examine DBI's L<< CachedKids|DBI/CachedKidsCachedKids_(hash_ref) >> hash:

    # print all currently cached prepared statements
    print for keys %{$schema->storage->dbh->{CachedKids}};
    # get a count of currently cached prepared statements
    my $count = scalar keys %{$schema->storage->dbh->{CachedKids}};

If it's appropriate, you can simply clear these statements, automatically deallocating them in the
database:

    my $kids = $schema->storage->dbh->{CachedKids};
    delete @{$kids}{keys %$kids} if scalar keys %$kids > 100;

But what you probably want is to expire unused statements and not those that are used frequently.
You can accomplish this with L<Tie::Cache> or L<Tie::Cache::LRU>:

    use Tie::Cache;
    use DB::Main;
    my $schema = DB::Main->connect($dbi_dsn, $user, $pass, {
        on_connect_do => sub { tie %{shift->_dbh->{CachedKids}}, 'Tie::Cache', 100 },
    });

=cut