/usr/share/pyshared/rdflib/sparql/Algebra.py is in python-rdflib 2.4.2-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 | #!/usr/local/bin/python
# -*- coding: utf-8 -*-
"""
An implementation of the W3C SPARQL Algebra on top of sparql-p's expansion trees
See: http://www.w3.org/TR/rdf-sparql-query/#sparqlAlgebra
For each symbol in a SPARQL abstract query, we define an operator for evaluation.
The SPARQL algebra operators of the same name are used to evaluate SPARQL abstract
query nodes as described in the section "Evaluation Semantics".
We define eval(D(G), graph pattern) as the evaluation of a graph pattern with respect
to a dataset D having active graph G. The active graph is initially the default graph.
"""
import unittest, os
from StringIO import StringIO
from rdflib.Graph import Graph, ReadOnlyGraphAggregate, ConjunctiveGraph
from rdflib import URIRef, Variable, plugin, BNode, Literal
from rdflib.util import first
from rdflib.store import Store
from rdflib.sparql.bison.Query import AskQuery, SelectQuery, DescribeQuery, Query, Prolog
from rdflib.sparql.bison.IRIRef import NamedGraph,RemoteGraph
from rdflib.sparql.bison.SolutionModifier import ASCENDING_ORDER
from rdflib.sparql import sparqlGraph, sparqlOperators, SPARQLError, Query, DESCRIBE
from rdflib.sparql.bison.SPARQLEvaluate import unRollTripleItems, _variablesToArray
from rdflib.sparql.bison.GraphPattern import *
from rdflib.sparql.graphPattern import BasicGraphPattern
from rdflib.sparql.bison.Triples import ParsedConstrainedTriples
from rdflib.sparql.bison.SPARQLEvaluate import createSPARQLPConstraint,\
CONSTRUCT_NOT_SUPPORTED,convertTerm
#A variable to determine whether we obey SPARQL definition of RDF dataset
#which does not allow matching of default graphs (or any graph with a BNode for a name)
#"An RDF Dataset comprises one graph,
# the default graph, which does not have a name" -
# http://www.w3.org/TR/rdf-sparql-query/#namedAndDefaultGraph
DAWG_DATASET_COMPLIANCE = False
def ReduceGraphPattern(graphPattern,prolog):
"""
Takes parsed graph pattern and converts it into a BGP operator
.. Replace all basic graph patterns by BGP(list of triple patterns) ..
"""
if isinstance(graphPattern.triples[0],list) and len(graphPattern.triples) == 1:
graphPattern.triples = graphPattern.triples[0]
items = []
for triple in graphPattern.triples:
bgp=BasicGraphPattern(list(unRollTripleItems(triple,prolog)),prolog)
items.append(bgp)
if len(items) == 1:
assert isinstance(items[0],BasicGraphPattern), repr(items)
bgp=items[0]
return bgp
elif len(items) > 1:
constraints=[b.constraints for b in items if b.constraints]
constraints=reduce(lambda x,y:x+y,constraints,[])
def mergeBGPs(left,right):
if isinstance(left,BasicGraphPattern):
left = left.patterns
if isinstance(right,BasicGraphPattern):
right = right.patterns
return left+right
bgp=BasicGraphPattern(reduce(mergeBGPs,items),prolog)
bgp.addConstraints(constraints)
return bgp
else:
#an empty BGP?
raise
def ReduceToAlgebra(left,right):
"""
Converts a parsed Group Graph Pattern into an expression in the algebra by recursive
folding / reduction (via functional programming) of the GGP as a list of Basic
Triple Patterns or "Graph Pattern Blocks"
12.2.1 Converting Graph Patterns
[20] GroupGraphPattern ::= '{' TriplesBlock? ( ( GraphPatternNotTriples | Filter )
'.'? TriplesBlock? )* '}'
[22] GraphPatternNotTriples ::= OptionalGraphPattern | GroupOrUnionGraphPattern |
GraphGraphPattern
[26] Filter ::= 'FILTER' Constraint
[27] Constraint ::= BrackettedExpression | BuiltInCall | FunctionCall
[56] BrackettedExpression ::= '(' ConditionalOrExpression ')'
( GraphPatternNotTriples | Filter ) '.'? TriplesBlock?
nonTripleGraphPattern filter triples
"""
if not isinstance(right,AlgebraExpression):
if isinstance(right,ParsedGroupGraphPattern):
right = reduce(ReduceToAlgebra,right,None)
print right;raise
assert isinstance(right,GraphPattern),type(right)
#Parsed Graph Pattern
if right.triples:
if right.nonTripleGraphPattern:
#left is None, just return right (a GraphPatternNotTriples)
if isinstance(right.nonTripleGraphPattern,ParsedGraphGraphPattern):
right = Join(ReduceGraphPattern(right,prolog),
GraphExpression(
right.nonTripleGraphPattern.name,
reduce(ReduceToAlgebra,
right.nonTripleGraphPattern.graphPatterns,
None)))
elif isinstance(right.nonTripleGraphPattern,
ParsedOptionalGraphPattern):
# Join(LeftJoin( ..left.. ,{..}),..triples..)
if left:
assert isinstance(left,(Join,BasicGraphPattern)),repr(left)
rightTriples = ReduceGraphPattern(right,prolog)
LJright = LeftJoin(left,
reduce(ReduceToAlgebra,
right.nonTripleGraphPattern.graphPatterns,
None))
return Join(LJright,rightTriples)
else:
# LeftJoin({},right) => {}
#see http://lists.w3.org/Archives/Public/public-rdf-dawg/2007AprJun/0046.html
return EmptyGraphPatternExpression()
elif isinstance(right.nonTripleGraphPattern,
ParsedAlternativeGraphPattern):
#Join(Union(..),..triples..)
unionList =\
[ reduce(ReduceToAlgebra,i.graphPatterns,None) for i in
right.nonTripleGraphPattern.alternativePatterns ]
right = Join(reduce(Union,unionList),
ReduceGraphPattern(right,prolog))
else:
raise Exception(right)
else:
if isinstance(left,BasicGraphPattern) and left.constraints:
if right.filter:
if not left.patterns:
#{ } FILTER E1 FILTER E2 BGP(..)
filter2=createSPARQLPConstraint(right.filter,prolog)
right = ReduceGraphPattern(right,prolog)
right.addConstraints(left.constraints)
right.addConstraint(filter2)
return right
else:
#BGP(..) FILTER E1 FILTER E2 BGP(..)
left.addConstraint(createSPARQLPConstraint(right.filter,
prolog))
right = ReduceGraphPattern(right,prolog)
else:
if right.filter:
#FILTER ...
filter=createSPARQLPConstraint(right.filter,prolog)
right = ReduceGraphPattern(right,prolog)
right.addConstraint(filter)
else:
#BGP(..)
right = ReduceGraphPattern(right,prolog)
else:
#right.triples is None
if right.nonTripleGraphPattern is None:
if right.filter:
if isinstance(left,BasicGraphPattern):
#BGP(...) FILTER
left.addConstraint(createSPARQLPConstraint(right.filter,
prolog))
return left
else:
pattern=BasicGraphPattern()
pattern.addConstraint(createSPARQLPConstraint(right.filter,
prolog))
if left is None:
return pattern
else:
right=pattern
else:
raise Exception(right)
elif right.nonTripleGraphPattern:
if isinstance(right.nonTripleGraphPattern,ParsedGraphGraphPattern):
# Join(left,Graph(...))
right = GraphExpression(right.nonTripleGraphPattern.name,
reduce(ReduceToAlgebra,
right.nonTripleGraphPattern.graphPatterns,
None))
elif isinstance(right.nonTripleGraphPattern,ParsedOptionalGraphPattern):
if left:
# LeftJoin(left,right)
return LeftJoin(left,
reduce(ReduceToAlgebra,
right.nonTripleGraphPattern.graphPatterns,
None))
else:
# LeftJoin({},right)
#see - http://lists.w3.org/Archives/Public/public-rdf-dawg/2007AprJun/0046.html
return EmptyGraphPatternExpression()
elif isinstance(right.nonTripleGraphPattern,
ParsedAlternativeGraphPattern):
#right = Union(..)
unionList =\
map(lambda i: reduce(ReduceToAlgebra,i.graphPatterns,None),
right.nonTripleGraphPattern.alternativePatterns)
right = reduce(Union,unionList)
else:
raise Exception(right)
if not left:
return right
else:
return Join(left,right)
def RenderSPARQLAlgebra(parsedSPARQL,nsMappings=None):
nsMappings = nsMappings and nsMappings or {}
global prolog
prolog = parsedSPARQL.prolog
if prolog is not None:
prolog.DEBUG = False
else:
prolog = Prolog(None, [])
prolog.DEBUG=False
return reduce(ReduceToAlgebra,
parsedSPARQL.query.whereClause.parsedGraphPattern.graphPatterns,None)
def LoadGraph(dtSet,dataSetBase,graph):
#An RDF URI dereference, following TAG best practices
#Need a hook (4Suite) to bypass urllib's inability
#to implement URI RFC verbatim - problematic for descendent
#specifications
try:
from Ft.Lib.Uri import UriResolverBase as Resolver
from Ft.Lib.Uri import GetScheme, OsPathToUri
except:
def OsPathToUri(path):
return path
def GetScheme(uri):
return None
class Resolver:
supportedSchemas=[None]
def resolve(self, uriRef, baseUri):
return uriRef
if dataSetBase is not None:
res = Resolver()
scheme = GetScheme(dtSet) or GetScheme(dataSetBase)
if scheme not in res.supportedSchemes:
dataSetBase = OsPathToUri(dataSetBase)
source=Resolver().resolve(str(dtSet), dataSetBase)
else:
source = dtSet
#GRDDL hook here!
try:
#Try as RDF/XML first (without resolving)
graph.parse(source)
except:
try:
#Parse as Notation 3 instead
source=Resolver().resolve(str(dtSet), dataSetBase)
graph.parse(source,format='n3')
except:
raise
#RDFa?
graph.parse(dtSet,format='rdfa')
def TopEvaluate(query,dataset,passedBindings = None,DEBUG=False,exportTree=False,
dataSetBase=None,
extensionFunctions={}):
"""
The outcome of executing a SPARQL is defined by a series of steps, starting
from the SPARQL query as a string, turning that string into an abstract
syntax form, then turning the abstract syntax into a SPARQL abstract query
comprising operators from the SPARQL algebra. This abstract query is then
evaluated on an RDF dataset.
"""
if not passedBindings:
passedBindings = {}
global prolog
if query.prolog:
query.prolog.DEBUG = DEBUG
prolog = query.prolog
prolog.extensionFunctions.update(extensionFunctions)
if query.query.dataSets:
graphs = []
for dtSet in query.query.dataSets:
if isinstance(dtSet,NamedGraph):
newGraph = Graph(dataset.store,dtSet)
LoadGraph(dtSet,dataSetBase,newGraph)
graphs.append(newGraph)
else:
#"Each FROM clause contains an IRI that indicates a graph to be
# used to form the default graph. This does not put the graph
# in as a named graph." -- 8.2.1 Specifying the Default Graph
if DAWG_DATASET_COMPLIANCE:
#@@ this should indicate a merge into the 'default' graph
# per http://www.w3.org/TR/rdf-sparql-query/#unnamedGraph
# (8.2.1 Specifying the Default Graph)
assert isinstance(dataset,ConjunctiveGraph)
memGraph = dataset.default_context
else:
memStore = plugin.get('IOMemory',Store)()
memGraph = Graph(memStore)
LoadGraph(dtSet,dataSetBase,memGraph)
if memGraph.identifier not in [g.identifier for g in graphs]:
graphs.append(memGraph)
tripleStore = sparqlGraph.SPARQLGraph(ReadOnlyGraphAggregate(graphs,
store=dataset.store),
dSCompliance=DAWG_DATASET_COMPLIANCE)
else:
tripleStore = sparqlGraph.SPARQLGraph(dataset,
dSCompliance=DAWG_DATASET_COMPLIANCE)
if isinstance(query.query,SelectQuery) and query.query.variables:
query.query.variables = [convertTerm(item,query.prolog)
for item in query.query.variables]
else:
query.query.variables = []
expr = reduce(ReduceToAlgebra,query.query.whereClause.parsedGraphPattern.graphPatterns,
None)
if isinstance(expr,BasicGraphPattern):
retval = None
bindings = Query._createInitialBindings(expr)
if passedBindings:
bindings.update(passedBindings)
top = Query._SPARQLNode(None,bindings,expr.patterns, tripleStore,expr=expr)
top.expand(expr.constraints)
# for tree in Query._fetchBoundLeaves(top):
# print_tree(tree)
# print "---------------"
result = Query.Query(top, tripleStore)
else:
assert isinstance(expr,AlgebraExpression), repr(expr)
if DEBUG:
print "## Full SPARQL Algebra expression ##"
print expr
print "###################################"
result = expr.evaluate(tripleStore,passedBindings,query.prolog)
if isinstance(result,BasicGraphPattern):
retval = None
bindings = Query._createInitialBindings(result)
if passedBindings:
bindings.update(passedBindings)
top = Query._SPARQLNode(None,bindings,result.patterns,
result.tripleStore,expr=result)
top.expand(result.constraints)
result = Query.Query(top, tripleStore)
assert isinstance(result,Query.Query),repr(result)
if exportTree:
from rdflib.sparql.Visualization import ExportExpansionNode
if result.top:
ExportExpansionNode(result.top,fname='out.svg',verbose=True)
else:
ExportExpansionNode(result.parent1.top,fname='out1.svg',verbose=True)
ExportExpansionNode(result.parent2.top,fname='out2.svg',verbose=True)
if result == None :
# generate some proper output for the exception :-)
msg = "Errors in the patterns, no valid query object generated; "
msg += ("pattern:\n%s\netc..." % basicPatterns[0])
raise SPARQLError(msg)
if isinstance(query.query,AskQuery):
return result.ask()
elif isinstance(query.query,SelectQuery):
orderBy = None
orderAsc = None
if query.query.solutionModifier.orderClause:
orderBy = []
orderAsc = []
for orderCond in query.query.solutionModifier.orderClause:
# is it a variable?
if isinstance(orderCond,Variable):
orderBy.append(orderCond)
orderAsc.append(ASCENDING_ORDER)
# is it another expression, only variables are supported
else:
expr = orderCond.expression
assert isinstance(expr,Variable),\
"Support for ORDER BY with anything other than a variable is not supported: %s"%expr
orderBy.append(expr)
orderAsc.append(orderCond.order == ASCENDING_ORDER)
if query.query.solutionModifier.limitClause is not None:
limit = int(query.query.solutionModifier.limitClause)
else:
limit = None
if query.query.solutionModifier.offsetClause is not None:
offset = int(query.query.solutionModifier.offsetClause)
else:
offset = 0
topUnionBindings=[]
selection=result.select(query.query.variables,
query.query.distinct,
limit,
orderBy,
orderAsc,
offset
)
selectionF = Query._variablesToArray(query.query.variables,"selection")
if result.parent1 != None and result.parent2 != None :
topUnionBindings=reduce(lambda x,y:x+y,
[root.returnResult(selectionF) \
for root in fetchUnionBranchesRoots(result)])
else:
if (limit == 0 or limit is not None or offset is not None and \
offset > 0):
topUnionBindings=[]
else:
topUnionBindings=result.top.returnResult(selectionF)
return selection,\
_variablesToArray(query.query.variables,"selection"),\
result._getAllVariables(),\
orderBy,query.query.distinct,\
topUnionBindings
elif isinstance(query.query,DescribeQuery):
if query.query.solutionModifier.limitClause is not None:
limit = int(query.query.solutionModifier.limitClause)
else:
limit = None
if query.query.solutionModifier.offsetClause is not None:
offset = int(query.query.solutionModifier.offsetClause)
else:
offset = 0
if result.parent1 != None and result.parent2 != None :
rt=(r for r in reduce(lambda x,y:x+y,
[root.returnResult(selectionF) \
for root in fetchUnionBranchesRoots(result)]))
elif limit is not None or offset != 0:
raise NotImplemented("Solution modifiers cannot be used with DESCRIBE")
else:
rt=result.top.returnResult(None)
rtGraph=Graph()
for binding in rt:
g=extensionFunctions[DESCRIBE](query.query.describeVars,
binding,
tripleStore.graph)
return g
else:
# 10.2 CONSTRUCT
# The CONSTRUCT query form returns a single RDF graph specified by a graph
# template. The result is an RDF graph formed by taking each query solution
# in the solution sequence, substituting for the variables in the graph
# template, and combining the triples into a single RDF graph by set union.
if query.query.solutionModifier.limitClause is not None:
limit = int(query.query.solutionModifier.limitClause)
else:
limit = None
if query.query.solutionModifier.offsetClause is not None:
offset = int(query.query.solutionModifier.offsetClause)
else:
offset = 0
if result.parent1 != None and result.parent2 != None :
rt=(r for r in reduce(lambda x,y:x+y,
[root.returnResult(selectionF) \
for root in fetchUnionBranchesRoots(result)]))
elif limit is not None or offset != 0:
raise NotImplemented("Solution modifiers cannot be used with CONSTRUCT")
else:
rt=result.top.returnResult(None)
rtGraph=Graph()
for binding in rt:
for s,p,o,func in ReduceGraphPattern(query.query.triples,prolog).patterns:
s,p,o=map(lambda x:isinstance(x,Variable) and binding.get(x) or
x,[s,p,o])
#If any such instantiation produces a triple containing an unbound
#variable or an illegal RDF construct, such as a literal in subject
#or predicate position, then that triple is not included in the
#output RDF graph.
if not [i for i in [s,p,o] if isinstance(i,Variable)]:
rtGraph.add((s,p,o))
return rtGraph
class AlgebraExpression(object):
"""
For each symbol in a SPARQL abstract query, we define an operator for
evaluation. The SPARQL algebra operators of the same name are used
to evaluate SPARQL abstract query nodes as described in the section
"Evaluation Semantics".
"""
def __repr__(self):
return "%s(%s,%s)"%(self.__class__.__name__,self.left,self.right)
def evaluate(self,tripleStore,initialBindings,prolog):
"""
12.5 Evaluation Semantics
We define eval(D(G), graph pattern) as the evaluation of a graph pattern
with respect to a dataset D having active graph G. The active graph is
initially the default graph.
"""
raise Exception(repr(self))
class EmptyGraphPatternExpression(AlgebraExpression):
"""
A placeholder for evaluating empty graph patterns - which
should result in an empty multiset of solution bindings
"""
def __repr__(self):
return "EmptyGraphPatternExpression(..)"
def evaluate(self,tripleStore,initialBindings,prolog):
#raise NotImplementedError("Empty Graph Pattern expressions, not supported")
if prolog.DEBUG:
print "eval(%s,%s,%s)"%(self,initialBindings,tripleStore.graph)
empty = Query._SPARQLNode(None,{},[],tripleStore)
empty.bound = False
return Query.Query(empty, tripleStore)
def fetchUnionBranchesRoots(node):
for parent in [node.parent1,node.parent2]:
if parent.parent1:
for branch_root in fetchUnionBranchesRoots(parent):
yield branch_root
else:
yield parent.top
def fetchChildren(node):
if isinstance(node,Query._SPARQLNode):
yield [c for c in node.children]
elif isinstance(node,Query.Query):
if node.parent1 is None:
for c in fetchChildren(node.top):
yield c
else:
for parent in [node.parent1,node.parent2]:
for c in fetchChildren(parent):
yield c
def walktree(top, depthfirst = True, leavesOnly = True, optProxies=False):
#assert top.parent1 is None
if isinstance(top,Query._SPARQLNode) and top.clash:
return
if not depthfirst and (not leavesOnly or not top.children):
proxies=False
for optChild in reduce(lambda x,y: x+y,[list(Query._fetchBoundLeaves(o))
for o in top.optionalTrees],[]):
proxies=True
yield optChild
if not proxies:
yield top
children=reduce(lambda x,y:x+y,list(fetchChildren(top)))
# if isinstance(top,Query._SPARQLNode) or isinstance(top,Query.Query) and \
# top.parent1 is None:
# children = top.children
# else:
# children = top.parent1.children + top.parent2.children
for child in children:
if child.children:
for newtop in walktree(child, depthfirst,leavesOnly,optProxies):
yield newtop
else:
proxies=False
for optChild in reduce(lambda x,y: x+y,[list(Query._fetchBoundLeaves(o))
for o in child.optionalTrees],[]):
proxies=True
yield optChild
if not proxies:
yield child
if depthfirst and (not leavesOnly or not children):
proxies=False
for optChild in reduce(lambda x,y: x+y,[list(Query._fetchBoundLeaves(o))
for o in top.optionalTrees],[]):
proxies=True
yield optChild
if not proxies:
yield top
def print_tree(node, padding=' '):
print padding[:-1] + repr(node)
padding = padding + ' '
count = 0
#_children1=reduce(lambda x,y:x+y,list(fetchChildren(node)))
for child in node.children:#_children1:
count += 1
print padding + '|'
if child.children:
if count == len(node.children):
print_tree(child, padding + ' ')
else:
print_tree(child, padding + '|')
else:
print padding + '+-' + repr(child) + ' ' + repr(dict([(k,v)
for k,v in child.bindings.items() if v]))
optCount=0
for optTree in child.optionalTrees:
optCount += 1
print padding + '||'
if optTree.children:
if optCount == len(child.optionalTrees):
print_tree(optTree, padding + ' ')
else:
print_tree(optTree, padding + '||')
else:
print padding + '+=' + repr(optTree)
count = 0
for optTree in node.optionalTrees:
count += 1
print padding + '||'
if optTree.children:
if count == len(node.optionalTrees):
print_tree(optTree, padding + ' ')
else:
print_tree(optTree, padding + '||')
else:
print padding + '+=' + repr(optTree)
def _ExpandJoin(node,expression,tripleStore,prolog,optionalTree=False):
"""
Traverses to the leaves of expansion trees to implement the Join
operator
"""
if prolog.DEBUG:
print_tree(node)
print "-------------------"
#for node in BF_leaf_traversal(node):
currExpr = expression
for node in walktree(node):
if node.clash:
continue
assert len(node.children) == 0
if prolog.DEBUG:
print "Performing Join(%s,..)"%node
if isinstance(currExpr,AlgebraExpression):
#If an algebra expression evaluate it passing on the leaf bindings
if prolog.DEBUG:
print "passing on bindings to %s\n:%s"%(currExpr,node.bindings.copy())
expression = currExpr.evaluate(tripleStore,node.bindings.copy(),prolog)
else:
expression = currExpr
if isinstance(expression,BasicGraphPattern):
tS = tripleStore
if hasattr(expression,'tripleStore'):
if prolog.DEBUG:
print "has tripleStore: ",expression.tripleStore
tS = expression.tripleStore
if prolog.DEBUG:
print "Evaluated left node and traversed to leaf, expanding with ",
expression
print node.tripleStore.graph
print "expressions bindings: ",
Query._createInitialBindings(expression)
print "node bindings: ", node.bindings
exprBindings = Query._createInitialBindings(expression)
exprBindings.update(node.bindings)
#An indicator for whether this node has any descendant optional expansions
#we should consider instead
#in Join(LeftJoin(A,B),X), if the inner LeftJoin is successful,
#then X is joined
#against the cumulative bindings ( instead of just A )
descendantOptionals = node.optionalTrees and \
[o for o in node.optionalTrees if list(Query._fetchBoundLeaves(o))]
if not descendantOptionals:
top = node
else:
if prolog.DEBUG:
print "descendant optionals: ", descendantOptionals
top = None
child = None
if not node.clash and not descendantOptionals:
#It has compatible bindings and either no optional expansions
#or no *valid* optional expansions
child = Query._SPARQLNode(top,
exprBindings,
expression.patterns,
tS,
expr=node.expr)
child.expand(expression.constraints)
if prolog.DEBUG:
print "Has compatible bindings and no valid optional expansions"
print "Newly bound descendants: "
for c in Query._fetchBoundLeaves(child):
print "\t",c, c.bound
print c.bindings
else:
assert isinstance(expression,Query.Query)
if not expression.top:
#already evaluated a UNION - fetch UNION branches
child = list(fetchUnionBranchesRoots(expression))
else:
#Already been evaluated (non UNION), just attach the SPARQLNode
child = expression.top
if isinstance(child,Query._SPARQLNode):
if node.clash == False and child is not None:
node.children.append(child)
if prolog.DEBUG:
print "Adding %s to %s (a UNION branch)"%(child,node)
else:
assert isinstance(child,list)
for newChild in child:
# if not newChild.clash:
node.children.append(newChild)
if prolog.DEBUG:
print "Adding %s to %s"%(child,node)
if prolog.DEBUG:
print_tree(node)
print "-------------------"
for optTree in node.optionalTrees:
#Join the optional paths as well - those that are bound and valid
for validLeaf in Query._fetchBoundLeaves(optTree):
_ExpandJoin(validLeaf,
expression,
tripleStore,
prolog,
optionalTree=True)
class Join(AlgebraExpression):
"""
[[(P1 AND P2)]](D,G) = [[P1]](D,G) compat [[P2]](D,G)
Join(Ω1, Ω2) = { merge(μ1, μ2) | μ1 in Ω1 and μ2 in Ω2, and μ1 and μ2 are \
compatible }
Pseudocode implementation:
Evaluate BGP1
Traverse to leaves (expand and expandOption leaves) of BGP1, set 'rest' to
triple patterns in BGP2 (filling out bindings).
Trigger another round of expand / expandOptions (from the leaves)
"""
def __init__(self,BGP1,BGP2):
self.left = BGP1
self.right = BGP2
def evaluate(self,tripleStore,initialBindings,prolog):
if prolog.DEBUG:
print "eval(%s,%s,%s)"%(self,initialBindings,tripleStore.graph)
if isinstance(self.left,AlgebraExpression):
left = self.left.evaluate(tripleStore,initialBindings,prolog)
else:
left = self.left
if isinstance(left,BasicGraphPattern):
retval = None
bindings = Query._createInitialBindings(left)
if initialBindings:
bindings.update(initialBindings)
if hasattr(left,'tripleStore'):
#Use the prepared tripleStore
lTS = left.tripleStore
else:
lTS = tripleStore
top = Query._SPARQLNode(None,
bindings,
left.patterns,
lTS,
expr=left)
top.expand(left.constraints)
_ExpandJoin(top,self.right,tripleStore,prolog)
return Query.Query(top, tripleStore)
else:
assert isinstance(left,Query.Query), repr(left)
if left.parent1 and left.parent2:
#union branch. We need to unroll all operands (recursively)
for union_root in fetchUnionBranchesRoots(left):
_ExpandJoin(union_root,self.right,tripleStore,prolog)
else:
for b in Query._fetchBoundLeaves(left.top):
_ExpandJoin(b,self.right,tripleStore,prolog)
return left
def _ExpandLeftJoin(node,expression,tripleStore,prolog,optionalTree=False):
"""
Traverses to the leaves of expansion trees to implement the LeftJoin
operator
"""
currExpr = expression
if prolog.DEBUG:
print "DFS and LeftJoin expansion of "
print_tree(node)
print "---------------------"
print node.bindings
for node in walktree(node,optProxies=True):
if node.clash:
continue
assert len(node.children) == 0
# this is a leaf in the original expansion
if prolog.DEBUG:
print "Performing LeftJoin(%s,..)"%node
if isinstance(currExpr,AlgebraExpression):
#If a Graph pattern evaluate it passing on the leaf bindings
#(possibly as solutions to graph names
if prolog.DEBUG:
print "evaluating B in LeftJoin(A,B)"
print "passing on bindings to %s\n:%s"%(currExpr,
node.bindings.copy())
expression = currExpr.evaluate(tripleStore,node.bindings.copy(),
prolog)
else:
expression = currExpr
if isinstance(expression,BasicGraphPattern):
rightBindings = Query._createInitialBindings(expression)
rightBindings.update(node.bindings)
optTree = Query._SPARQLNode(None,
rightBindings,
expression.patterns,
tripleStore,
expr=expression)
if prolog.DEBUG:
print "evaluating B in LeftJoin(A,B) - a BGP: ", expression
print "Passing on bindings ",rightBindings
optTree.expand(expression.constraints)
for proxy in Query._fetchBoundLeaves(optTree):
#Mark a successful evaluation of LeftJoin (new bindings were added)
#these become proxies for later expressions
proxy.priorLeftJoin=True
else:
if prolog.DEBUG:
print "Attaching previously evaluated node: ", expression.top
assert isinstance(expression,Query.Query)
if not expression.top:
#already evaluated a UNION - fetch UNION branches
optTree = list(fetchUnionBranchesRoots(expression))
else:
#Already been evaluated (non UNION), just attach the SPARQLNode
optTree = expression.top
if prolog.DEBUG:
print "Optional tree: ", optTree
if isinstance(optTree,Query._SPARQLNode):
if optTree.clash == False and optTree is not None:
node.optionalTrees.append(optTree)
if prolog.DEBUG:
print "Adding %s to %s (a UNION branch)"%(optTree,
node.optionalTrees)
else:
assert isinstance(optTree,list)
for newChild in optTree:
# if not newChild.clash:
node.optionalTrees.append(newChild)
if prolog.DEBUG:
print "Adding %s to %s"%(newChild,node.optionalTrees)
if prolog.DEBUG:
print "DFS after LeftJoin expansion "
print_tree(node)
print "---------------------"
class LeftJoin(AlgebraExpression):
"""
Let Ω1 and Ω2 be multisets of solution mappings and F a filter. We define:
LeftJoin(Ω1, Ω2, expr) =
Filter(expr, Join(Ω1, Ω2)) set-union Diff(Ω1, Ω2, expr)
LeftJoin(Ω1, Ω2, expr) =
{ merge(μ1, μ2) | μ1 in Ω1 and μ2 in Ω2, and
μ1 and μ2 are compatible, and
expr(merge(μ1, μ2)) is true }
set-union
{ μ1 | μ1 in Ω1 and μ2 in Ω2, and
μ1 and μ2 are not compatible }
set-union
{ μ1 | μ1 in Ω1and μ2 in Ω2, and μ1 and μ2 are compatible and
expr(merge(μ1, μ2)) is false }
"""
def __init__(self,BGP1,BGP2,expr=None):
self.left = BGP1
self.right = BGP2
def evaluate(self,tripleStore,initialBindings,prolog):
if prolog.DEBUG:
print "eval(%s,%s,%s)"%(self,initialBindings,tripleStore.graph)
if isinstance(self.left,AlgebraExpression):
#print "evaluating A in LeftJoin(A,B) - an expression"
left = self.left.evaluate(tripleStore,initialBindings,prolog)
else:
left = self.left
if isinstance(left,BasicGraphPattern):
#print "expanding A in LeftJoin(A,B) - a BGP: ", left
retval = None
bindings = Query._createInitialBindings(left)
if initialBindings:
bindings.update(initialBindings)
if hasattr(left,'tripleStore'):
#Use the prepared tripleStore
tripleStore = left.tripleStore
top = Query._SPARQLNode(None,
bindings,
left.patterns,
tripleStore,
expr=left)
top.expand(left.constraints)
for b in Query._fetchBoundLeaves(top):
_ExpandLeftJoin(b,self.right,tripleStore,prolog)
#_ExpandLeftJoin(top,self.right,tripleStore,prolog)
return Query.Query(top, tripleStore)
else:
assert isinstance(left,Query.Query), repr(left)
if left.parent1 and left.parent2:
for union_root in fetchUnionBranchesRoots(left):
_ExpandLeftJoin(union_root,self.right,tripleStore,prolog)
else:
for b in Query._fetchBoundLeaves(left.top):
_ExpandLeftJoin(b,self.right,tripleStore,prolog)
#_ExpandLeftJoin(left.top,self.right,tripleStore,prolog)
return left
class Union(AlgebraExpression):
"""
II. [[(P1 UNION P2)]](D,G) = [[P1]](D,G) OR [[P2]](D,G)
Union(Ω1, Ω2) = { μ | μ in Ω1 or μ in Ω2 }
"""
def __init__(self,BGP1,BGP2):
self.left = BGP1
self.right = BGP2
def evaluate(self,tripleStore,initialBindings,prolog):
if prolog.DEBUG:
print "eval(%s,%s,%s)"%(self,initialBindings,tripleStore.graph)
if isinstance(self.left,AlgebraExpression):
left = self.left.evaluate(tripleStore,initialBindings,prolog)
else:
left = self.left
if isinstance(left,BasicGraphPattern):
#The left expression has not been evaluated
retval = None
bindings = Query._createInitialBindings(left)
if initialBindings:
bindings.update(initialBindings)
top = Query._SPARQLNode(None,
bindings,
left.patterns,
tripleStore,
expr=left)
top.expand(left.constraints)
top = Query.Query(top, tripleStore)
else:
#The left expression has already been evaluated
assert isinstance(left,Query.Query), repr(left)
top = left
#Now we evaluate the right expression (independently)
if isinstance(self.right,AlgebraExpression):
#If it is a GraphExpression, 'reduce' it
right = self.right.evaluate(tripleStore,initialBindings,prolog)
else:
right = self.right
tS = tripleStore
if isinstance(right,BasicGraphPattern):
if hasattr(right,'tripleStore'):
tS = right.tripleStore
rightBindings = Query._createInitialBindings(right)
if initialBindings:
rightBindings.update(initialBindings)
rightNode = Query._SPARQLNode(None,
rightBindings,
right.patterns,
tS,
expr=right)
rightNode.expand(right.constraints)
else:
assert isinstance(right,Query.Query), repr(right)
rightNode = right.top
# if prolog.DEBUG:
# print "### Two UNION trees ###"
# print self.left
# print_tree(top.top)
# print self.right
# print_tree(rightNode)
# print "#######################"
#The UNION semantics are implemented by the overidden __add__ method
return top + Query.Query(rightNode, tS)
class GraphExpression(AlgebraExpression):
"""
[24] GraphGraphPattern ::= 'GRAPH' VarOrIRIref GroupGraphPattern
eval(D(G), Graph(IRI,P)) = eval(D(D[i]), P)
eval(D(G), Graph(var,P)) =
multiset-union over IRI i in D : Join( eval(D(D[i]), P) , Omega(?v->i) )
"""
def __init__(self,iriOrVar,GGP):
self.iriOrVar = iriOrVar
self.GGP = GGP
def __repr__(self):
return "Graph(%s,%s)"%(self.iriOrVar,self.GGP)
def evaluate(self,tripleStore,initialBindings,prolog):
"""
.. The GRAPH keyword is used to make the active graph one of all of the
named graphs in the dataset for part of the query ...
"""
if prolog.DEBUG:
print "eval(%s,%s,%s)"%(self,initialBindings,tripleStore.graph)
if isinstance(self.iriOrVar,Variable):
#A variable:
if self.iriOrVar in initialBindings:
#assert initialBindings[self.iriOrVar], "Empty binding for GRAPH variable!"
if prolog.DEBUG:
print "Passing on unified graph name: ",
initialBindings[self.iriOrVar]
tripleStore = sparqlGraph.SPARQLGraph(
Graph(tripleStore.store,
initialBindings[self.iriOrVar])
,dSCompliance=DAWG_DATASET_COMPLIANCE)
else:
if prolog.DEBUG:
print "Setting up BGP to return additional bindings for %s"%self.iriOrVar
tripleStore = sparqlGraph.SPARQLGraph(tripleStore.graph,
graphVariable = self.iriOrVar,
dSCompliance=DAWG_DATASET_COMPLIANCE)
else:
graphName = self.iriOrVar
graphName = convertTerm(graphName,prolog)
if isinstance(tripleStore.graph,ReadOnlyGraphAggregate):
targetGraph = [g for g in tripleStore.graph.graphs
if g.identifier == graphName]
#assert len(targetGraph) == 1
targetGraph = targetGraph[0]
else:
targetGraph = Graph(tripleStore.store,graphName)
tripleStore = sparqlGraph.SPARQLGraph(targetGraph,
dSCompliance=\
DAWG_DATASET_COMPLIANCE)
if isinstance(self.GGP,AlgebraExpression):
#Dont evaluate
return self.GGP.evaluate(tripleStore,initialBindings,prolog)
else:
assert isinstance(self.GGP,BasicGraphPattern),repr(self.GGP)
#Attach the prepared triple store to the BGP
self.GGP.tripleStore = tripleStore
return self.GGP
#########################################
# Tests #
#########################################
TEST1="BASE <http://example.com/> SELECT * WHERE { ?s :p1 ?v1 ; :p2 ?v2 }"
#BGP( ?s :p1 ?v1 .?s :p2 ?v2 )
TEST1_REPR=\
"BGP((?s,http://example.com/p1,?v1),(?s,http://example.com/p2,?v2))"
TEST2 = "BASE <http://example.com/> SELECT * WHERE { { ?s :p1 ?v1 } UNION {?s :p2 ?v2 } }"
#Union( BGP(?s :p1 ?v1) , BGP(?s :p2 ?v2) )
TEST2_REPR=\
"Union(BGP((?s,http://example.com/p1,?v1)),BGP((?s,http://example.com/p2,?v2)))"
TEST3 = "BASE <http://example.com/> SELECT * WHERE { ?s :p1 ?v1 OPTIONAL {?s :p2 ?v2 } }"
#LeftJoin(BGP(?s :p1 ?v1), BGP(?s :p2 ?v2), true)
TEST3_REPR=\
"LeftJoin(BGP((?s,http://example.com/p1,?v1)),BGP((?s,http://example.com/p2,?v2)))"
TEST4 = "BASE <http://example.com/> SELECT * WHERE { ?s :p ?o. { ?s :p1 ?v1 } UNION {?s :p2 ?v2 } }"
#Join(BGP(?s :p ?v),Union(BGP(?s :p1 ?v1), BGP(?s :p2 ?v2)))
TEST4_REPR=\
"Join(BGP((?s,http://example.com/p,?o)),Union(BGP((?s,http://example.com/p1,?v1)),BGP((?s,http://example.com/p2,?v2))))"
TEST5 = "BASE <http://example.com/> SELECT * WHERE { ?a ?b ?c OPTIONAL { ?s :p1 ?v1 } }"
#Join(BGP(?s :p ?v),Union(BGP(?s :p1 ?v1), BGP(?s :p2 ?v2)))
TEST5_REPR=\
"LeftJoin(BGP((?a,?b,?c)),BGP((?s,http://example.com/p1,?v1)))"
TEST6="BASE <http://example.com/> SELECT * WHERE { ?a :b :c OPTIONAL {:x :y :z} { :x1 :y1 :z1 } UNION { :x2 :y2 :z2 } }"
TEST6_REPR=\
"Join(LeftJoin(BGP((?a,http://example.com/b,http://example.com/c)),BGP((http://example.com/x,http://example.com/y,http://example.com/z))),Union(BGP((http://example.com/x1,http://example.com/y1,http://example.com/z1)),BGP((http://example.com/x2,http://example.com/y2,http://example.com/z2))))"
TEST7="BASE <http://example.com/> SELECT * WHERE { ?s :p1 ?v1 OPTIONAL { ?s :p2 ?v2. FILTER( ?v1 < 3 ) } }"
TEST7_REPR=\
"LeftJoin(BGP((?s,http://example.com/p1,?v1)),Filter(.. a filter ..,BGP(?s,http://example.com/p2,?v2)))"
TEST8="BASE <http://example.com/> SELECT * WHERE { ?s :p1 ?v1. FILTER ( ?v1 < 3 ) OPTIONAL { ?s :p3 ?v3 } }"
TEST8_REPR=\
"LeftJoin(Filter(.. a filter ..,BGP(?s,http://example.com/p1,?v1)),BGP((?s,http://example.com/p3,?v3)))"
TEST10=\
"""
PREFIX data: <http://example.org/foaf/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?mbox ?nick ?ppd
FROM NAMED <http://example.org/foaf/aliceFoaf>
FROM NAMED <http://example.org/foaf/bobFoaf>
WHERE
{
GRAPH data:aliceFoaf
{
?alice foaf:mbox <mailto:alice@work.example> ;
foaf:knows ?whom .
?whom foaf:mbox ?mbox ;
rdfs:seeAlso ?ppd .
?ppd a foaf:PersonalProfileDocument .
} .
GRAPH ?ppd
{
?w foaf:mbox ?mbox ;
foaf:nick ?nick
}
}"""
reducableSPARQL=\
"""
PREFIX mf: <http://www.w3.org/2001/sw/DataAccess/tests/test-manifest#>
PREFIX qt: <http://www.w3.org/2001/sw/DataAccess/tests/test-query#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?test ?testName ?testComment ?query ?result ?testAction
WHERE {
{ ?test a mf:QueryEvaluationTest }
UNION
{ ?test a <http://jena.hpl.hp.com/2005/05/test-manifest-extra#TestQuery> }
?test mf:name ?testName.
OPTIONAL { ?test rdfs:comment ?testComment }
?test mf:action ?testAction;
mf:result ?result.
?testAction qt:query ?query }"""
reducableSPARQLExpr=\
"Join(LeftJoin(Join(Union(BGP((?test,http://www.w3.org/1999/02/22-rdf-syntax-ns#type,mf:QueryEvaluationTest)),BGP((?test,http://www.w3.org/1999/02/22-rdf-syntax-ns#type,http://jena.hpl.hp.com/2005/05/test-manifest-extra#TestQuery))),BGP((?test,mf:name,?testName))),BGP((?test,rdfs:comment,?testComment))),BGP((?test,mf:action,?testAction),(?test,mf:result,?result),(?testAction,qt:query,?query)))"
ExprTests = \
[
(TEST1,TEST1_REPR),
(TEST2,TEST2_REPR),
(TEST3,TEST3_REPR),
(TEST4,TEST4_REPR),
(TEST5,TEST5_REPR),
(TEST6,TEST6_REPR),
(TEST7,TEST7_REPR),
(TEST8,TEST8_REPR),
(reducableSPARQL,reducableSPARQLExpr),
]
test_graph_a = """
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@work.example> .
_:a foaf:knows _:b .
_:b foaf:name "Bob" .
_:b foaf:mbox <mailto:bob@work.example> .
_:b foaf:nick "Bobby" .
_:b rdfs:seeAlso <http://example.org/foaf/bobFoaf> .
<http://example.org/foaf/bobFoaf>
rdf:type foaf:PersonalProfileDocument ."""
test_graph_b = """
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
_:z foaf:mbox <mailto:bob@work.example> .
_:z rdfs:seeAlso <http://example.org/foaf/bobFoaf> .
_:z foaf:nick "Robert" .
<http://example.org/foaf/bobFoaf>
rdf:type foaf:PersonalProfileDocument ."""
scopingQuery=\
"""
PREFIX data: <http://example.org/foaf/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?ppd
FROM NAMED <http://example.org/foaf/aliceFoaf>
FROM NAMED <http://example.org/foaf/bobFoaf>
WHERE
{
GRAPH ?ppd { ?b foaf:name "Bob" . } .
GRAPH ?ppd { ?doc a foaf:PersonalProfileDocument . }
}"""
class TestSPARQLAlgebra(unittest.TestCase):
def setUp(self):
self.store = plugin.get('IOMemory', Store)()
self.graph1 = Graph(self.store,identifier=URIRef('http://example.org/foaf/aliceFoaf'))
self.graph1.parse(StringIO(test_graph_a), format="n3")
self.graph2 = Graph(self.store,identifier=URIRef('http://example.org/foaf/bobFoaf'))
self.graph2.parse(StringIO(test_graph_b), format="n3")
self.unionGraph = ReadOnlyGraphAggregate(graphs=[self.graph1,self.graph2],store=self.store)
# def testScoping(self):
# from rdflib.sparql.bison.Processor import Parse
# from rdflib.sparql.QueryResult import SPARQLQueryResult
# from rdflib.sparql.bison.Query import Prolog
# p = Parse(scopingQuery)
# prolog = p.prolog
# if prolog is None:
# prolog = Prolog(u'',[])
# prolog.DEBUG = True
# rt = TopEvaluate(p,self.unionGraph,passedBindings = {},DEBUG=False)
# rt = SPARQLQueryResult(rt).serialize(format='python')
# self.failUnless(len(rt) == 1,"Expected 1 item solution set")
# for ppd in rt:
# self.failUnless(ppd == URIRef('http://example.org/foaf/aliceFoaf'),
# "Unexpected ?mbox binding :\n %s" % ppd)
def testExpressions(self):
from rdflib.sparql.bison.Processor import Parse
global prolog
for inExpr,outExpr in ExprTests:
p = Parse(inExpr)
prolog = p.prolog
p = p.query.whereClause.parsedGraphPattern.graphPatterns
if prolog is None:
from rdflib.sparql.bison.Query import Prolog
prolog = Prolog(u'',[])
if not hasattr(prolog,'DEBUG'):
prolog.DEBUG = False
self.assertEquals(repr(reduce(ReduceToAlgebra,p,None)),outExpr)
def testSimpleGraphPattern(self):
from rdflib.sparql.bison.Processor import Parse
global prolog
p = Parse("BASE <http://example.com/> SELECT ?ptrec WHERE { GRAPH ?ptrec { ?data :foo 'bar'. } }")
prolog = p.prolog
p = p.query.whereClause.parsedGraphPattern.graphPatterns
if prolog is None:
from rdflib.sparql.bison.Query import Prolog
prolog = Prolog(u'',[])
prolog.DEBUG = True
assert isinstance(reduce(ReduceToAlgebra,p,None),GraphExpression)
# def testGraphEvaluation(self):
# from rdflib.sparql.bison.Processor import Parse
# p = Parse(TEST10)
# print TEST10
# rt = TopEvaluate(p,self.unionGraph,passedBindings = {})
# from rdflib.sparql.QueryResult import SPARQLQueryResult
# rt = SPARQLQueryResult(rt).serialize(format='python')
# self.failUnless(len(rt) == 1,"Expected 1 item solution set")
# for mbox,nick,ppd in rt:
# self.failUnless(mbox == URIRef('mailto:bob@work.example'),
# "Unexpected ?mbox binding :\n %s" % mbox)
# self.failUnless(nick == Literal("Robert"),
# "Unexpected ?nick binding :\n %s" % nick)
# self.failUnless(ppd == URIRef('http://example.org/foaf/bobFoaf'),
# "Unexpected ?ppd binding :\n %s" % ppd)
if __name__ == '__main__':
unittest.main()
|