/usr/share/pyshared/numpy/polynomial/polynomial.py is in python-numpy 1:1.6.1-6ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 | """
Objects for dealing with polynomials.
This module provides a number of objects (mostly functions) useful for
dealing with polynomials, including a `Polynomial` class that
encapsulates the usual arithmetic operations. (General information
on how this module represents and works with polynomial objects is in
the docstring for its "parent" sub-package, `numpy.polynomial`).
Constants
---------
- `polydomain` -- Polynomial default domain, [-1,1].
- `polyzero` -- (Coefficients of the) "zero polynomial."
- `polyone` -- (Coefficients of the) constant polynomial 1.
- `polyx` -- (Coefficients of the) identity map polynomial, ``f(x) = x``.
Arithmetic
----------
- `polyadd` -- add two polynomials.
- `polysub` -- subtract one polynomial from another.
- `polymul` -- multiply two polynomials.
- `polydiv` -- divide one polynomial by another.
- `polypow` -- raise a polynomial to an positive integer power
- `polyval` -- evaluate a polynomial at given points.
Calculus
--------
- `polyder` -- differentiate a polynomial.
- `polyint` -- integrate a polynomial.
Misc Functions
--------------
- `polyfromroots` -- create a polynomial with specified roots.
- `polyroots` -- find the roots of a polynomial.
- `polyvander` -- Vandermonde-like matrix for powers.
- `polyfit` -- least-squares fit returning a polynomial.
- `polytrim` -- trim leading coefficients from a polynomial.
- `polyline` -- polynomial representing given straight line.
Classes
-------
- `Polynomial` -- polynomial class.
See also
--------
`numpy.polynomial`
"""
from __future__ import division
__all__ = ['polyzero', 'polyone', 'polyx', 'polydomain', 'polyline',
'polyadd', 'polysub', 'polymulx', 'polymul', 'polydiv', 'polypow',
'polyval', 'polyder', 'polyint', 'polyfromroots', 'polyvander',
'polyfit', 'polytrim', 'polyroots', 'Polynomial']
import numpy as np
import numpy.linalg as la
import polyutils as pu
import warnings
from polytemplate import polytemplate
polytrim = pu.trimcoef
#
# These are constant arrays are of integer type so as to be compatible
# with the widest range of other types, such as Decimal.
#
# Polynomial default domain.
polydomain = np.array([-1,1])
# Polynomial coefficients representing zero.
polyzero = np.array([0])
# Polynomial coefficients representing one.
polyone = np.array([1])
# Polynomial coefficients representing the identity x.
polyx = np.array([0,1])
#
# Polynomial series functions
#
def polyline(off, scl) :
"""
Returns an array representing a linear polynomial.
Parameters
----------
off, scl : scalars
The "y-intercept" and "slope" of the line, respectively.
Returns
-------
y : ndarray
This module's representation of the linear polynomial ``off +
scl*x``.
See Also
--------
chebline
Examples
--------
>>> from numpy import polynomial as P
>>> P.polyline(1,-1)
array([ 1, -1])
>>> P.polyval(1, P.polyline(1,-1)) # should be 0
0.0
"""
if scl != 0 :
return np.array([off,scl])
else :
return np.array([off])
def polyfromroots(roots) :
"""
Generate a polynomial with the given roots.
Return the array of coefficients for the polynomial whose leading
coefficient (i.e., that of the highest order term) is `1` and whose
roots (a.k.a. "zeros") are given by *roots*. The returned array of
coefficients is ordered from lowest order term to highest, and zeros
of multiplicity greater than one must be included in *roots* a number
of times equal to their multiplicity (e.g., if `2` is a root of
multiplicity three, then [2,2,2] must be in *roots*).
Parameters
----------
roots : array_like
Sequence containing the roots.
Returns
-------
out : ndarray
1-d array of the polynomial's coefficients, ordered from low to
high. If all roots are real, ``out.dtype`` is a float type;
otherwise, ``out.dtype`` is a complex type, even if all the
coefficients in the result are real (see Examples below).
See Also
--------
chebfromroots
Notes
-----
What is returned are the :math:`a_i` such that:
.. math::
\\sum_{i=0}^{n} a_ix^i = \\prod_{i=0}^{n} (x - roots[i])
where ``n == len(roots)``; note that this implies that `1` is always
returned for :math:`a_n`.
Examples
--------
>>> import numpy.polynomial as P
>>> P.polyfromroots((-1,0,1)) # x(x - 1)(x + 1) = x^3 - x
array([ 0., -1., 0., 1.])
>>> j = complex(0,1)
>>> P.polyfromroots((-j,j)) # complex returned, though values are real
array([ 1.+0.j, 0.+0.j, 1.+0.j])
"""
if len(roots) == 0 :
return np.ones(1)
else :
[roots] = pu.as_series([roots], trim=False)
prd = np.array([1], dtype=roots.dtype)
for r in roots:
prd = polysub(polymulx(prd), r*prd)
return prd
def polyadd(c1, c2):
"""
Add one polynomial to another.
Returns the sum of two polynomials `c1` + `c2`. The arguments are
sequences of coefficients from lowest order term to highest, i.e.,
[1,2,3] represents the polynomial ``1 + 2*x + 3*x**2"``.
Parameters
----------
c1, c2 : array_like
1-d arrays of polynomial coefficients ordered from low to high.
Returns
-------
out : ndarray
The coefficient array representing their sum.
See Also
--------
polysub, polymul, polydiv, polypow
Examples
--------
>>> from numpy import polynomial as P
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> sum = P.polyadd(c1,c2); sum
array([ 4., 4., 4.])
>>> P.polyval(2, sum) # 4 + 4(2) + 4(2**2)
28.0
"""
# c1, c2 are trimmed copies
[c1, c2] = pu.as_series([c1, c2])
if len(c1) > len(c2) :
c1[:c2.size] += c2
ret = c1
else :
c2[:c1.size] += c1
ret = c2
return pu.trimseq(ret)
def polysub(c1, c2):
"""
Subtract one polynomial from another.
Returns the difference of two polynomials `c1` - `c2`. The arguments
are sequences of coefficients from lowest order term to highest, i.e.,
[1,2,3] represents the polynomial ``1 + 2*x + 3*x**2``.
Parameters
----------
c1, c2 : array_like
1-d arrays of polynomial coefficients ordered from low to
high.
Returns
-------
out : ndarray
Of coefficients representing their difference.
See Also
--------
polyadd, polymul, polydiv, polypow
Examples
--------
>>> from numpy import polynomial as P
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> P.polysub(c1,c2)
array([-2., 0., 2.])
>>> P.polysub(c2,c1) # -P.polysub(c1,c2)
array([ 2., 0., -2.])
"""
# c1, c2 are trimmed copies
[c1, c2] = pu.as_series([c1, c2])
if len(c1) > len(c2) :
c1[:c2.size] -= c2
ret = c1
else :
c2 = -c2
c2[:c1.size] += c1
ret = c2
return pu.trimseq(ret)
def polymulx(cs):
"""Multiply a polynomial by x.
Multiply the polynomial `cs` by x, where x is the independent
variable.
Parameters
----------
cs : array_like
1-d array of polynomial coefficients ordered from low to
high.
Returns
-------
out : ndarray
Array representing the result of the multiplication.
Notes
-----
.. versionadded:: 1.5.0
"""
# cs is a trimmed copy
[cs] = pu.as_series([cs])
# The zero series needs special treatment
if len(cs) == 1 and cs[0] == 0:
return cs
prd = np.empty(len(cs) + 1, dtype=cs.dtype)
prd[0] = cs[0]*0
prd[1:] = cs
return prd
def polymul(c1, c2):
"""
Multiply one polynomial by another.
Returns the product of two polynomials `c1` * `c2`. The arguments are
sequences of coefficients, from lowest order term to highest, e.g.,
[1,2,3] represents the polynomial ``1 + 2*x + 3*x**2.``
Parameters
----------
c1, c2 : array_like
1-d arrays of coefficients representing a polynomial, relative to the
"standard" basis, and ordered from lowest order term to highest.
Returns
-------
out : ndarray
Of the coefficients of their product.
See Also
--------
polyadd, polysub, polydiv, polypow
Examples
--------
>>> import numpy.polynomial as P
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> P.polymul(c1,c2)
array([ 3., 8., 14., 8., 3.])
"""
# c1, c2 are trimmed copies
[c1, c2] = pu.as_series([c1, c2])
ret = np.convolve(c1, c2)
return pu.trimseq(ret)
def polydiv(c1, c2):
"""
Divide one polynomial by another.
Returns the quotient-with-remainder of two polynomials `c1` / `c2`.
The arguments are sequences of coefficients, from lowest order term
to highest, e.g., [1,2,3] represents ``1 + 2*x + 3*x**2``.
Parameters
----------
c1, c2 : array_like
1-d arrays of polynomial coefficients ordered from low to high.
Returns
-------
[quo, rem] : ndarrays
Of coefficient series representing the quotient and remainder.
See Also
--------
polyadd, polysub, polymul, polypow
Examples
--------
>>> import numpy.polynomial as P
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> P.polydiv(c1,c2)
(array([ 3.]), array([-8., -4.]))
>>> P.polydiv(c2,c1)
(array([ 0.33333333]), array([ 2.66666667, 1.33333333]))
"""
# c1, c2 are trimmed copies
[c1, c2] = pu.as_series([c1, c2])
if c2[-1] == 0 :
raise ZeroDivisionError()
len1 = len(c1)
len2 = len(c2)
if len2 == 1 :
return c1/c2[-1], c1[:1]*0
elif len1 < len2 :
return c1[:1]*0, c1
else :
dlen = len1 - len2
scl = c2[-1]
c2 = c2[:-1]/scl
i = dlen
j = len1 - 1
while i >= 0 :
c1[i:j] -= c2*c1[j]
i -= 1
j -= 1
return c1[j+1:]/scl, pu.trimseq(c1[:j+1])
def polypow(cs, pow, maxpower=None) :
"""Raise a polynomial to a power.
Returns the polynomial `cs` raised to the power `pow`. The argument
`cs` is a sequence of coefficients ordered from low to high. i.e.,
[1,2,3] is the series ``1 + 2*x + 3*x**2.``
Parameters
----------
cs : array_like
1d array of chebyshev series coefficients ordered from low to
high.
pow : integer
Power to which the series will be raised
maxpower : integer, optional
Maximum power allowed. This is mainly to limit growth of the series
to umanageable size. Default is 16
Returns
-------
coef : ndarray
Chebyshev series of power.
See Also
--------
chebadd, chebsub, chebmul, chebdiv
Examples
--------
"""
# cs is a trimmed copy
[cs] = pu.as_series([cs])
power = int(pow)
if power != pow or power < 0 :
raise ValueError("Power must be a non-negative integer.")
elif maxpower is not None and power > maxpower :
raise ValueError("Power is too large")
elif power == 0 :
return np.array([1], dtype=cs.dtype)
elif power == 1 :
return cs
else :
# This can be made more efficient by using powers of two
# in the usual way.
prd = cs
for i in range(2, power + 1) :
prd = np.convolve(prd, cs)
return prd
def polyder(cs, m=1, scl=1):
"""
Differentiate a polynomial.
Returns the polynomial `cs` differentiated `m` times. At each
iteration the result is multiplied by `scl` (the scaling factor is for
use in a linear change of variable). The argument `cs` is the sequence
of coefficients from lowest order term to highest, e.g., [1,2,3]
represents the polynomial ``1 + 2*x + 3*x**2``.
Parameters
----------
cs: array_like
1-d array of polynomial coefficients ordered from low to high.
m : int, optional
Number of derivatives taken, must be non-negative. (Default: 1)
scl : scalar, optional
Each differentiation is multiplied by `scl`. The end result is
multiplication by ``scl**m``. This is for use in a linear change
of variable. (Default: 1)
Returns
-------
der : ndarray
Polynomial of the derivative.
See Also
--------
polyint
Examples
--------
>>> from numpy import polynomial as P
>>> cs = (1,2,3,4) # 1 + 2x + 3x**2 + 4x**3
>>> P.polyder(cs) # (d/dx)(cs) = 2 + 6x + 12x**2
array([ 2., 6., 12.])
>>> P.polyder(cs,3) # (d**3/dx**3)(cs) = 24
array([ 24.])
>>> P.polyder(cs,scl=-1) # (d/d(-x))(cs) = -2 - 6x - 12x**2
array([ -2., -6., -12.])
>>> P.polyder(cs,2,-1) # (d**2/d(-x)**2)(cs) = 6 + 24x
array([ 6., 24.])
"""
cnt = int(m)
if cnt != m:
raise ValueError, "The order of derivation must be integer"
if cnt < 0:
raise ValueError, "The order of derivation must be non-negative"
# cs is a trimmed copy
[cs] = pu.as_series([cs])
if cnt == 0:
return cs
elif cnt >= len(cs):
return cs[:1]*0
else :
n = len(cs)
d = np.arange(n)*scl
for i in range(cnt):
cs[i:] *= d[:n-i]
return cs[i+1:].copy()
def polyint(cs, m=1, k=[], lbnd=0, scl=1):
"""
Integrate a polynomial.
Returns the polynomial `cs`, integrated `m` times from `lbnd` to `x`.
At each iteration the resulting series is **multiplied** by `scl` and
an integration constant, `k`, is added. The scaling factor is for use
in a linear change of variable. ("Buyer beware": note that, depending
on what one is doing, one may want `scl` to be the reciprocal of what
one might expect; for more information, see the Notes section below.)
The argument `cs` is a sequence of coefficients, from lowest order
term to highest, e.g., [1,2,3] represents the polynomial
``1 + 2*x + 3*x**2``.
Parameters
----------
cs : array_like
1-d array of polynomial coefficients, ordered from low to high.
m : int, optional
Order of integration, must be positive. (Default: 1)
k : {[], list, scalar}, optional
Integration constant(s). The value of the first integral at zero
is the first value in the list, the value of the second integral
at zero is the second value, etc. If ``k == []`` (the default),
all constants are set to zero. If ``m == 1``, a single scalar can
be given instead of a list.
lbnd : scalar, optional
The lower bound of the integral. (Default: 0)
scl : scalar, optional
Following each integration the result is *multiplied* by `scl`
before the integration constant is added. (Default: 1)
Returns
-------
S : ndarray
Coefficients of the integral.
Raises
------
ValueError
If ``m < 1``, ``len(k) > m``.
See Also
--------
polyder
Notes
-----
Note that the result of each integration is *multiplied* by `scl`.
Why is this important to note? Say one is making a linear change of
variable :math:`u = ax + b` in an integral relative to `x`. Then
:math:`dx = du/a`, so one will need to set `scl` equal to :math:`1/a`
- perhaps not what one would have first thought.
Examples
--------
>>> from numpy import polynomial as P
>>> cs = (1,2,3)
>>> P.polyint(cs) # should return array([0, 1, 1, 1])
array([ 0., 1., 1., 1.])
>>> P.polyint(cs,3) # should return array([0, 0, 0, 1/6, 1/12, 1/20])
array([ 0. , 0. , 0. , 0.16666667, 0.08333333,
0.05 ])
>>> P.polyint(cs,k=3) # should return array([3, 1, 1, 1])
array([ 3., 1., 1., 1.])
>>> P.polyint(cs,lbnd=-2) # should return array([6, 1, 1, 1])
array([ 6., 1., 1., 1.])
>>> P.polyint(cs,scl=-2) # should return array([0, -2, -2, -2])
array([ 0., -2., -2., -2.])
"""
cnt = int(m)
if not np.iterable(k):
k = [k]
if cnt != m:
raise ValueError, "The order of integration must be integer"
if cnt < 0 :
raise ValueError, "The order of integration must be non-negative"
if len(k) > cnt :
raise ValueError, "Too many integration constants"
# cs is a trimmed copy
[cs] = pu.as_series([cs])
if cnt == 0:
return cs
k = list(k) + [0]*(cnt - len(k))
for i in range(cnt):
n = len(cs)
cs *= scl
if n == 1 and cs[0] == 0:
cs[0] += k[i]
else:
tmp = np.empty(n + 1, dtype=cs.dtype)
tmp[0] = cs[0]*0
tmp[1:] = cs/np.arange(1, n + 1)
tmp[0] += k[i] - polyval(lbnd, tmp)
cs = tmp
return cs
def polyval(x, cs):
"""
Evaluate a polynomial.
If `cs` is of length `n`, this function returns :
``p(x) = cs[0] + cs[1]*x + ... + cs[n-1]*x**(n-1)``
If x is a sequence or array then p(x) will have the same shape as x.
If r is a ring_like object that supports multiplication and addition
by the values in `cs`, then an object of the same type is returned.
Parameters
----------
x : array_like, ring_like
If x is a list or tuple, it is converted to an ndarray. Otherwise
it must support addition and multiplication with itself and the
elements of `cs`.
cs : array_like
1-d array of Chebyshev coefficients ordered from low to high.
Returns
-------
values : ndarray
The return array has the same shape as `x`.
See Also
--------
polyfit
Notes
-----
The evaluation uses Horner's method.
"""
# cs is a trimmed copy
[cs] = pu.as_series([cs])
if isinstance(x, tuple) or isinstance(x, list) :
x = np.asarray(x)
c0 = cs[-1] + x*0
for i in range(2, len(cs) + 1) :
c0 = cs[-i] + c0*x
return c0
def polyvander(x, deg) :
"""Vandermonde matrix of given degree.
Returns the Vandermonde matrix of degree `deg` and sample points `x`.
This isn't a true Vandermonde matrix because `x` can be an arbitrary
ndarray. If ``V`` is the returned matrix and `x` is a 2d array, then
the elements of ``V`` are ``V[i,j,k] = x[i,j]**k``
Parameters
----------
x : array_like
Array of points. The values are converted to double or complex
doubles. If x is scalar it is converted to a 1D array.
deg : integer
Degree of the resulting matrix.
Returns
-------
vander : Vandermonde matrix.
The shape of the returned matrix is ``x.shape + (deg+1,)``. The last
index is the degree.
"""
ideg = int(deg)
if ideg != deg:
raise ValueError("deg must be integer")
if ideg < 0:
raise ValueError("deg must be non-negative")
x = np.array(x, copy=0, ndmin=1) + 0.0
v = np.empty((ideg + 1,) + x.shape, dtype=x.dtype)
v[0] = x*0 + 1
if ideg > 0 :
v[1] = x
for i in range(2, ideg + 1) :
v[i] = v[i-1]*x
return np.rollaxis(v, 0, v.ndim)
def polyfit(x, y, deg, rcond=None, full=False, w=None):
"""
Least-squares fit of a polynomial to data.
Fit a polynomial ``c0 + c1*x + c2*x**2 + ... + c[deg]*x**deg`` to
points (`x`, `y`). Returns a 1-d (if `y` is 1-d) or 2-d (if `y` is 2-d)
array of coefficients representing, from lowest order term to highest,
the polynomial(s) which minimize the total square error.
Parameters
----------
x : array_like, shape (`M`,)
x-coordinates of the `M` sample (data) points ``(x[i], y[i])``.
y : array_like, shape (`M`,) or (`M`, `K`)
y-coordinates of the sample points. Several sets of sample points
sharing the same x-coordinates can be (independently) fit with one
call to `polyfit` by passing in for `y` a 2-d array that contains
one data set per column.
deg : int
Degree of the polynomial(s) to be fit.
rcond : float, optional
Relative condition number of the fit. Singular values smaller
than `rcond`, relative to the largest singular value, will be
ignored. The default value is ``len(x)*eps``, where `eps` is the
relative precision of the platform's float type, about 2e-16 in
most cases.
full : bool, optional
Switch determining the nature of the return value. When ``False``
(the default) just the coefficients are returned; when ``True``,
diagnostic information from the singular value decomposition (used
to solve the fit's matrix equation) is also returned.
w : array_like, shape (`M`,), optional
Weights. If not None, the contribution of each point
``(x[i],y[i])`` to the fit is weighted by `w[i]`. Ideally the
weights are chosen so that the errors of the products ``w[i]*y[i]``
all have the same variance. The default value is None.
.. versionadded:: 1.5.0
Returns
-------
coef : ndarray, shape (`deg` + 1,) or (`deg` + 1, `K`)
Polynomial coefficients ordered from low to high. If `y` was 2-d,
the coefficients in column `k` of `coef` represent the polynomial
fit to the data in `y`'s `k`-th column.
[residuals, rank, singular_values, rcond] : present when `full` == True
Sum of the squared residuals (SSR) of the least-squares fit; the
effective rank of the scaled Vandermonde matrix; its singular
values; and the specified value of `rcond`. For more information,
see `linalg.lstsq`.
Raises
------
RankWarning
Raised if the matrix in the least-squares fit is rank deficient.
The warning is only raised if `full` == False. The warnings can
be turned off by:
>>> import warnings
>>> warnings.simplefilter('ignore', RankWarning)
See Also
--------
polyval : Evaluates a polynomial.
polyvander : Vandermonde matrix for powers.
chebfit : least squares fit using Chebyshev series.
linalg.lstsq : Computes a least-squares fit from the matrix.
scipy.interpolate.UnivariateSpline : Computes spline fits.
Notes
-----
The solutions are the coefficients ``c[i]`` of the polynomial ``P(x)``
that minimizes the total squared error:
.. math :: E = \\sum_j (y_j - P(x_j))^2
This problem is solved by setting up the (typically) over-determined
matrix equation:
.. math :: V(x)*c = y
where `V` is the Vandermonde matrix of `x`, the elements of `c` are the
coefficients to be solved for, and the elements of `y` are the observed
values. This equation is then solved using the singular value
decomposition of `V`.
If some of the singular values of `V` are so small that they are
neglected (and `full` == ``False``), a `RankWarning` will be raised.
This means that the coefficient values may be poorly determined.
Fitting to a lower order polynomial will usually get rid of the warning
(but may not be what you want, of course; if you have independent
reason(s) for choosing the degree which isn't working, you may have to:
a) reconsider those reasons, and/or b) reconsider the quality of your
data). The `rcond` parameter can also be set to a value smaller than
its default, but the resulting fit may be spurious and have large
contributions from roundoff error.
Polynomial fits using double precision tend to "fail" at about
(polynomial) degree 20. Fits using Chebyshev series are generally
better conditioned, but much can still depend on the distribution of
the sample points and the smoothness of the data. If the quality of
the fit is inadequate, splines may be a good alternative.
Examples
--------
>>> from numpy import polynomial as P
>>> x = np.linspace(-1,1,51) # x "data": [-1, -0.96, ..., 0.96, 1]
>>> y = x**3 - x + np.random.randn(len(x)) # x^3 - x + N(0,1) "noise"
>>> c, stats = P.polyfit(x,y,3,full=True)
>>> c # c[0], c[2] should be approx. 0, c[1] approx. -1, c[3] approx. 1
array([ 0.01909725, -1.30598256, -0.00577963, 1.02644286])
>>> stats # note the large SSR, explaining the rather poor results
[array([ 38.06116253]), 4, array([ 1.38446749, 1.32119158, 0.50443316,
0.28853036]), 1.1324274851176597e-014]
Same thing without the added noise
>>> y = x**3 - x
>>> c, stats = P.polyfit(x,y,3,full=True)
>>> c # c[0], c[2] should be "very close to 0", c[1] ~= -1, c[3] ~= 1
array([ -1.73362882e-17, -1.00000000e+00, -2.67471909e-16,
1.00000000e+00])
>>> stats # note the minuscule SSR
[array([ 7.46346754e-31]), 4, array([ 1.38446749, 1.32119158,
0.50443316, 0.28853036]), 1.1324274851176597e-014]
"""
order = int(deg) + 1
x = np.asarray(x) + 0.0
y = np.asarray(y) + 0.0
# check arguments.
if deg < 0 :
raise ValueError, "expected deg >= 0"
if x.ndim != 1:
raise TypeError, "expected 1D vector for x"
if x.size == 0:
raise TypeError, "expected non-empty vector for x"
if y.ndim < 1 or y.ndim > 2 :
raise TypeError, "expected 1D or 2D array for y"
if len(x) != len(y):
raise TypeError, "expected x and y to have same length"
# set up the least squares matrices
lhs = polyvander(x, deg)
rhs = y
if w is not None:
w = np.asarray(w) + 0.0
if w.ndim != 1:
raise TypeError, "expected 1D vector for w"
if len(x) != len(w):
raise TypeError, "expected x and w to have same length"
# apply weights
if rhs.ndim == 2:
lhs *= w[:, np.newaxis]
rhs *= w[:, np.newaxis]
else:
lhs *= w[:, np.newaxis]
rhs *= w
# set rcond
if rcond is None :
rcond = len(x)*np.finfo(x.dtype).eps
# scale the design matrix and solve the least squares equation
scl = np.sqrt((lhs*lhs).sum(0))
c, resids, rank, s = la.lstsq(lhs/scl, rhs, rcond)
c = (c.T/scl).T
# warn on rank reduction
if rank != order and not full:
msg = "The fit may be poorly conditioned"
warnings.warn(msg, pu.RankWarning)
if full :
return c, [resids, rank, s, rcond]
else :
return c
def polyroots(cs):
"""
Compute the roots of a polynomial.
Return the roots (a.k.a. "zeros") of the "polynomial" `cs`, the
polynomial's coefficients from lowest order term to highest
(e.g., [1,2,3] represents the polynomial ``1 + 2*x + 3*x**2``).
Parameters
----------
cs : array_like of shape (M,)
1-d array of polynomial coefficients ordered from low to high.
Returns
-------
out : ndarray
Array of the roots of the polynomial. If all the roots are real,
then so is the dtype of ``out``; otherwise, ``out``'s dtype is
complex.
See Also
--------
chebroots
Examples
--------
>>> import numpy.polynomial as P
>>> P.polyroots(P.polyfromroots((-1,0,1)))
array([-1., 0., 1.])
>>> P.polyroots(P.polyfromroots((-1,0,1))).dtype
dtype('float64')
>>> j = complex(0,1)
>>> P.polyroots(P.polyfromroots((-j,0,j)))
array([ 0.00000000e+00+0.j, 0.00000000e+00+1.j, 2.77555756e-17-1.j])
"""
# cs is a trimmed copy
[cs] = pu.as_series([cs])
if len(cs) <= 1 :
return np.array([], dtype=cs.dtype)
if len(cs) == 2 :
return np.array([-cs[0]/cs[1]])
n = len(cs) - 1
cmat = np.zeros((n,n), dtype=cs.dtype)
cmat.flat[n::n+1] = 1
cmat[:,-1] -= cs[:-1]/cs[-1]
roots = la.eigvals(cmat)
roots.sort()
return roots
#
# polynomial class
#
exec polytemplate.substitute(name='Polynomial', nick='poly', domain='[-1,1]')
|