This file is indexed.

/usr/share/pyshared/numpy/polynomial/legendre.py is in python-numpy 1:1.6.1-6ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
"""
Objects for dealing with Legendre series.

This module provides a number of objects (mostly functions) useful for
dealing with Legendre series, including a `Legendre` class that
encapsulates the usual arithmetic operations.  (General information
on how this module represents and works with such polynomials is in the
docstring for its "parent" sub-package, `numpy.polynomial`).

Constants
---------
- `legdomain` -- Legendre series default domain, [-1,1].
- `legzero` -- Legendre series that evaluates identically to 0.
- `legone` -- Legendre series that evaluates identically to 1.
- `legx` -- Legendre series for the identity map, ``f(x) = x``.

Arithmetic
----------
- `legmulx` -- multiply a Legendre series in ``P_i(x)`` by ``x``.
- `legadd` -- add two Legendre series.
- `legsub` -- subtract one Legendre series from another.
- `legmul` -- multiply two Legendre series.
- `legdiv` -- divide one Legendre series by another.
- `legpow` -- raise a Legendre series to an positive integer power
- `legval` -- evaluate a Legendre series at given points.

Calculus
--------
- `legder` -- differentiate a Legendre series.
- `legint` -- integrate a Legendre series.

Misc Functions
--------------
- `legfromroots` -- create a Legendre series with specified roots.
- `legroots` -- find the roots of a Legendre series.
- `legvander` -- Vandermonde-like matrix for Legendre polynomials.
- `legfit` -- least-squares fit returning a Legendre series.
- `legtrim` -- trim leading coefficients from a Legendre series.
- `legline` -- Legendre series representing given straight line.
- `leg2poly` -- convert a Legendre series to a polynomial.
- `poly2leg` -- convert a polynomial to a Legendre series.

Classes
-------
- `Legendre` -- A Legendre series class.

See also
--------
`numpy.polynomial`

"""
from __future__ import division

__all__ = ['legzero', 'legone', 'legx', 'legdomain', 'legline',
        'legadd', 'legsub', 'legmulx', 'legmul', 'legdiv', 'legpow',
        'legval', 'legder', 'legint', 'leg2poly', 'poly2leg',
        'legfromroots', 'legvander', 'legfit', 'legtrim', 'legroots',
        'Legendre']

import numpy as np
import numpy.linalg as la
import polyutils as pu
import warnings
from polytemplate import polytemplate

legtrim = pu.trimcoef

def poly2leg(pol) :
    """
    Convert a polynomial to a Legendre series.

    Convert an array representing the coefficients of a polynomial (relative
    to the "standard" basis) ordered from lowest degree to highest, to an
    array of the coefficients of the equivalent Legendre series, ordered
    from lowest to highest degree.

    Parameters
    ----------
    pol : array_like
        1-d array containing the polynomial coefficients

    Returns
    -------
    cs : ndarray
        1-d array containing the coefficients of the equivalent Legendre
        series.

    See Also
    --------
    leg2poly

    Notes
    -----
    The easy way to do conversions between polynomial basis sets
    is to use the convert method of a class instance.

    Examples
    --------
    >>> from numpy import polynomial as P
    >>> p = P.Polynomial(np.arange(4))
    >>> p
    Polynomial([ 0.,  1.,  2.,  3.], [-1.,  1.])
    >>> c = P.Legendre(P.poly2leg(p.coef))
    >>> c
    Legendre([ 1.  ,  3.25,  1.  ,  0.75], [-1.,  1.])

    """
    [pol] = pu.as_series([pol])
    deg = len(pol) - 1
    res = 0
    for i in range(deg, -1, -1) :
        res = legadd(legmulx(res), pol[i])
    return res


def leg2poly(cs) :
    """
    Convert a Legendre series to a polynomial.

    Convert an array representing the coefficients of a Legendre series,
    ordered from lowest degree to highest, to an array of the coefficients
    of the equivalent polynomial (relative to the "standard" basis) ordered
    from lowest to highest degree.

    Parameters
    ----------
    cs : array_like
        1-d array containing the Legendre series coefficients, ordered
        from lowest order term to highest.

    Returns
    -------
    pol : ndarray
        1-d array containing the coefficients of the equivalent polynomial
        (relative to the "standard" basis) ordered from lowest order term
        to highest.

    See Also
    --------
    poly2leg

    Notes
    -----
    The easy way to do conversions between polynomial basis sets
    is to use the convert method of a class instance.

    Examples
    --------
    >>> c = P.Legendre(range(4))
    >>> c
    Legendre([ 0.,  1.,  2.,  3.], [-1.,  1.])
    >>> p = c.convert(kind=P.Polynomial)
    >>> p
    Polynomial([-1. , -3.5,  3. ,  7.5], [-1.,  1.])
    >>> P.leg2poly(range(4))
    array([-1. , -3.5,  3. ,  7.5])


    """
    from polynomial import polyadd, polysub, polymulx

    [cs] = pu.as_series([cs])
    n = len(cs)
    if n < 3:
        return cs
    else:
        c0 = cs[-2]
        c1 = cs[-1]
        # i is the current degree of c1
        for i in range(n - 1, 1, -1) :
            tmp = c0
            c0 = polysub(cs[i - 2], (c1*(i - 1))/i)
            c1 = polyadd(tmp, (polymulx(c1)*(2*i - 1))/i)
        return polyadd(c0, polymulx(c1))

#
# These are constant arrays are of integer type so as to be compatible
# with the widest range of other types, such as Decimal.
#

# Legendre
legdomain = np.array([-1,1])

# Legendre coefficients representing zero.
legzero = np.array([0])

# Legendre coefficients representing one.
legone = np.array([1])

# Legendre coefficients representing the identity x.
legx = np.array([0,1])


def legline(off, scl) :
    """
    Legendre series whose graph is a straight line.



    Parameters
    ----------
    off, scl : scalars
        The specified line is given by ``off + scl*x``.

    Returns
    -------
    y : ndarray
        This module's representation of the Legendre series for
        ``off + scl*x``.

    See Also
    --------
    polyline, chebline

    Examples
    --------
    >>> import numpy.polynomial.legendre as L
    >>> L.legline(3,2)
    array([3, 2])
    >>> L.legval(-3, L.legline(3,2)) # should be -3
    -3.0

    """
    if scl != 0 :
        return np.array([off,scl])
    else :
        return np.array([off])


def legfromroots(roots) :
    """
    Generate a Legendre series with the given roots.

    Return the array of coefficients for the P-series whose roots (a.k.a.
    "zeros") are given by *roots*.  The returned array of coefficients is
    ordered from lowest order "term" to highest, and zeros of multiplicity
    greater than one must be included in *roots* a number of times equal
    to their multiplicity (e.g., if `2` is a root of multiplicity three,
    then [2,2,2] must be in *roots*).

    Parameters
    ----------
    roots : array_like
        Sequence containing the roots.

    Returns
    -------
    out : ndarray
        1-d array of the Legendre series coefficients, ordered from low to
        high.  If all roots are real, ``out.dtype`` is a float type;
        otherwise, ``out.dtype`` is a complex type, even if all the
        coefficients in the result are real (see Examples below).

    See Also
    --------
    polyfromroots, chebfromroots

    Notes
    -----
    What is returned are the :math:`c_i` such that:

    .. math::

        \\sum_{i=0}^{n} c_i*P_i(x) = \\prod_{i=0}^{n} (x - roots[i])

    where ``n == len(roots)`` and :math:`P_i(x)` is the `i`-th Legendre
    (basis) polynomial over the domain `[-1,1]`.  Note that, unlike
    `polyfromroots`, due to the nature of the Legendre basis set, the
    above identity *does not* imply :math:`c_n = 1` identically (see
    Examples).

    Examples
    --------
    >>> import numpy.polynomial.legendre as L
    >>> L.legfromroots((-1,0,1)) # x^3 - x relative to the standard basis
    array([ 0. , -0.4,  0. ,  0.4])
    >>> j = complex(0,1)
    >>> L.legfromroots((-j,j)) # x^2 + 1 relative to the standard basis
    array([ 1.33333333+0.j,  0.00000000+0.j,  0.66666667+0.j])

    """
    if len(roots) == 0 :
        return np.ones(1)
    else :
        [roots] = pu.as_series([roots], trim=False)
        prd = np.array([1], dtype=roots.dtype)
        for r in roots:
            prd = legsub(legmulx(prd), r*prd)
        return prd


def legadd(c1, c2):
    """
    Add one Legendre series to another.

    Returns the sum of two Legendre series `c1` + `c2`.  The arguments
    are sequences of coefficients ordered from lowest order term to
    highest, i.e., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.

    Parameters
    ----------
    c1, c2 : array_like
        1-d arrays of Legendre series coefficients ordered from low to
        high.

    Returns
    -------
    out : ndarray
        Array representing the Legendre series of their sum.

    See Also
    --------
    legsub, legmul, legdiv, legpow

    Notes
    -----
    Unlike multiplication, division, etc., the sum of two Legendre series
    is a Legendre series (without having to "reproject" the result onto
    the basis set) so addition, just like that of "standard" polynomials,
    is simply "component-wise."

    Examples
    --------
    >>> from numpy.polynomial import legendre as L
    >>> c1 = (1,2,3)
    >>> c2 = (3,2,1)
    >>> L.legadd(c1,c2)
    array([ 4.,  4.,  4.])

    """
    # c1, c2 are trimmed copies
    [c1, c2] = pu.as_series([c1, c2])
    if len(c1) > len(c2) :
        c1[:c2.size] += c2
        ret = c1
    else :
        c2[:c1.size] += c1
        ret = c2
    return pu.trimseq(ret)


def legsub(c1, c2):
    """
    Subtract one Legendre series from another.

    Returns the difference of two Legendre series `c1` - `c2`.  The
    sequences of coefficients are from lowest order term to highest, i.e.,
    [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.

    Parameters
    ----------
    c1, c2 : array_like
        1-d arrays of Legendre series coefficients ordered from low to
        high.

    Returns
    -------
    out : ndarray
        Of Legendre series coefficients representing their difference.

    See Also
    --------
    legadd, legmul, legdiv, legpow

    Notes
    -----
    Unlike multiplication, division, etc., the difference of two Legendre
    series is a Legendre series (without having to "reproject" the result
    onto the basis set) so subtraction, just like that of "standard"
    polynomials, is simply "component-wise."

    Examples
    --------
    >>> from numpy.polynomial import legendre as L
    >>> c1 = (1,2,3)
    >>> c2 = (3,2,1)
    >>> L.legsub(c1,c2)
    array([-2.,  0.,  2.])
    >>> L.legsub(c2,c1) # -C.legsub(c1,c2)
    array([ 2.,  0., -2.])

    """
    # c1, c2 are trimmed copies
    [c1, c2] = pu.as_series([c1, c2])
    if len(c1) > len(c2) :
        c1[:c2.size] -= c2
        ret = c1
    else :
        c2 = -c2
        c2[:c1.size] += c1
        ret = c2
    return pu.trimseq(ret)


def legmulx(cs):
    """Multiply a Legendre series by x.

    Multiply the Legendre series `cs` by x, where x is the independent
    variable.


    Parameters
    ----------
    cs : array_like
        1-d array of Legendre series coefficients ordered from low to
        high.

    Returns
    -------
    out : ndarray
        Array representing the result of the multiplication.

    Notes
    -----
    The multiplication uses the recursion relationship for Legendre
    polynomials in the form

    .. math::

      xP_i(x) = ((i + 1)*P_{i + 1}(x) + i*P_{i - 1}(x))/(2i + 1)

    """
    # cs is a trimmed copy
    [cs] = pu.as_series([cs])
    # The zero series needs special treatment
    if len(cs) == 1 and cs[0] == 0:
        return cs

    prd = np.empty(len(cs) + 1, dtype=cs.dtype)
    prd[0] = cs[0]*0
    prd[1] = cs[0]
    for i in range(1, len(cs)):
        j = i + 1
        k = i - 1
        s = i + j
        prd[j] = (cs[i]*j)/s
        prd[k] += (cs[i]*i)/s
    return prd


def legmul(c1, c2):
    """
    Multiply one Legendre series by another.

    Returns the product of two Legendre series `c1` * `c2`.  The arguments
    are sequences of coefficients, from lowest order "term" to highest,
    e.g., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.

    Parameters
    ----------
    c1, c2 : array_like
        1-d arrays of Legendre series coefficients ordered from low to
        high.

    Returns
    -------
    out : ndarray
        Of Legendre series coefficients representing their product.

    See Also
    --------
    legadd, legsub, legdiv, legpow

    Notes
    -----
    In general, the (polynomial) product of two C-series results in terms
    that are not in the Legendre polynomial basis set.  Thus, to express
    the product as a Legendre series, it is necessary to "re-project" the
    product onto said basis set, which may produce "un-intuitive" (but
    correct) results; see Examples section below.

    Examples
    --------
    >>> from numpy.polynomial import legendre as L
    >>> c1 = (1,2,3)
    >>> c2 = (3,2)
    >>> P.legmul(c1,c2) # multiplication requires "reprojection"
    array([  4.33333333,  10.4       ,  11.66666667,   3.6       ])

    """
    # s1, s2 are trimmed copies
    [c1, c2] = pu.as_series([c1, c2])

    if len(c1) > len(c2):
        cs = c2
        xs = c1
    else:
        cs = c1
        xs = c2

    if len(cs) == 1:
        c0 = cs[0]*xs
        c1 = 0
    elif len(cs) == 2:
        c0 = cs[0]*xs
        c1 = cs[1]*xs
    else :
        nd = len(cs)
        c0 = cs[-2]*xs
        c1 = cs[-1]*xs
        for i in range(3, len(cs) + 1) :
            tmp = c0
            nd =  nd - 1
            c0 = legsub(cs[-i]*xs, (c1*(nd - 1))/nd)
            c1 = legadd(tmp, (legmulx(c1)*(2*nd - 1))/nd)
    return legadd(c0, legmulx(c1))


def legdiv(c1, c2):
    """
    Divide one Legendre series by another.

    Returns the quotient-with-remainder of two Legendre series
    `c1` / `c2`.  The arguments are sequences of coefficients from lowest
    order "term" to highest, e.g., [1,2,3] represents the series
    ``P_0 + 2*P_1 + 3*P_2``.

    Parameters
    ----------
    c1, c2 : array_like
        1-D arrays of Legendre series coefficients ordered from low to
        high.

    Returns
    -------
    quo, rem : ndarrays
        Of Legendre series coefficients representing the quotient and
        remainder.

    See Also
    --------
    legadd, legsub, legmul, legpow

    Notes
    -----
    In general, the (polynomial) division of one Legendre series by another
    results in quotient and remainder terms that are not in the Legendre
    polynomial basis set.  Thus, to express these results as a Legendre
    series, it is necessary to "re-project" the results onto the Legendre
    basis set, which may produce "un-intuitive" (but correct) results; see
    Examples section below.

    Examples
    --------
    >>> from numpy.polynomial import legendre as L
    >>> c1 = (1,2,3)
    >>> c2 = (3,2,1)
    >>> L.legdiv(c1,c2) # quotient "intuitive," remainder not
    (array([ 3.]), array([-8., -4.]))
    >>> c2 = (0,1,2,3)
    >>> L.legdiv(c2,c1) # neither "intuitive"
    (array([-0.07407407,  1.66666667]), array([-1.03703704, -2.51851852]))

    """
    # c1, c2 are trimmed copies
    [c1, c2] = pu.as_series([c1, c2])
    if c2[-1] == 0 :
        raise ZeroDivisionError()

    lc1 = len(c1)
    lc2 = len(c2)
    if lc1 < lc2 :
        return c1[:1]*0, c1
    elif lc2 == 1 :
        return c1/c2[-1], c1[:1]*0
    else :
        quo = np.empty(lc1 - lc2 + 1, dtype=c1.dtype)
        rem = c1
        for i in range(lc1 - lc2, - 1, -1):
            p = legmul([0]*i + [1], c2)
            q = rem[-1]/p[-1]
            rem = rem[:-1] - q*p[:-1]
            quo[i] = q
        return quo, pu.trimseq(rem)


def legpow(cs, pow, maxpower=16) :
    """Raise a Legendre series to a power.

    Returns the Legendre series `cs` raised to the power `pow`. The
    arguement `cs` is a sequence of coefficients ordered from low to high.
    i.e., [1,2,3] is the series  ``P_0 + 2*P_1 + 3*P_2.``

    Parameters
    ----------
    cs : array_like
        1d array of Legendre series coefficients ordered from low to
        high.
    pow : integer
        Power to which the series will be raised
    maxpower : integer, optional
        Maximum power allowed. This is mainly to limit growth of the series
        to umanageable size. Default is 16

    Returns
    -------
    coef : ndarray
        Legendre series of power.

    See Also
    --------
    legadd, legsub, legmul, legdiv

    Examples
    --------

    """
    # cs is a trimmed copy
    [cs] = pu.as_series([cs])
    power = int(pow)
    if power != pow or power < 0 :
        raise ValueError("Power must be a non-negative integer.")
    elif maxpower is not None and power > maxpower :
        raise ValueError("Power is too large")
    elif power == 0 :
        return np.array([1], dtype=cs.dtype)
    elif power == 1 :
        return cs
    else :
        # This can be made more efficient by using powers of two
        # in the usual way.
        prd = cs
        for i in range(2, power + 1) :
            prd = legmul(prd, cs)
        return prd


def legder(cs, m=1, scl=1) :
    """
    Differentiate a Legendre series.

    Returns the series `cs` differentiated `m` times.  At each iteration the
    result is multiplied by `scl` (the scaling factor is for use in a linear
    change of variable).  The argument `cs` is the sequence of coefficients
    from lowest order "term" to highest, e.g., [1,2,3] represents the series
    ``P_0 + 2*P_1 + 3*P_2``.

    Parameters
    ----------
    cs : array_like
        1-D array of Legendre series coefficients ordered from low to high.
    m : int, optional
        Number of derivatives taken, must be non-negative. (Default: 1)
    scl : scalar, optional
        Each differentiation is multiplied by `scl`.  The end result is
        multiplication by ``scl**m``.  This is for use in a linear change of
        variable. (Default: 1)

    Returns
    -------
    der : ndarray
        Legendre series of the derivative.

    See Also
    --------
    legint

    Notes
    -----
    In general, the result of differentiating a Legendre series does not
    resemble the same operation on a power series. Thus the result of this
    function may be "un-intuitive," albeit correct; see Examples section
    below.

    Examples
    --------
    >>> from numpy.polynomial import legendre as L
    >>> cs = (1,2,3,4)
    >>> L.legder(cs)
    array([  6.,   9.,  20.])
    >>> L.legder(cs,3)
    array([ 60.])
    >>> L.legder(cs,scl=-1)
    array([ -6.,  -9., -20.])
    >>> L.legder(cs,2,-1)
    array([  9.,  60.])

    """
    cnt = int(m)

    if cnt != m:
        raise ValueError, "The order of derivation must be integer"
    if cnt < 0 :
        raise ValueError, "The order of derivation must be non-negative"

    # cs is a trimmed copy
    [cs] = pu.as_series([cs])
    if cnt == 0:
        return cs
    elif cnt >= len(cs):
        return cs[:1]*0
    else :
        for i in range(cnt):
            n = len(cs) - 1
            cs *= scl
            der = np.empty(n, dtype=cs.dtype)
            for j in range(n, 0, -1):
                der[j - 1] = (2*j - 1)*cs[j]
                cs[j - 2] += cs[j]
            cs = der
        return cs


def legint(cs, m=1, k=[], lbnd=0, scl=1):
    """
    Integrate a Legendre series.

    Returns a Legendre series that is the Legendre series `cs`, integrated
    `m` times from `lbnd` to `x`.  At each iteration the resulting series
    is **multiplied** by `scl` and an integration constant, `k`, is added.
    The scaling factor is for use in a linear change of variable.  ("Buyer
    beware": note that, depending on what one is doing, one may want `scl`
    to be the reciprocal of what one might expect; for more information,
    see the Notes section below.)  The argument `cs` is a sequence of
    coefficients, from lowest order Legendre series "term" to highest,
    e.g., [1,2,3] represents the series :math:`P_0(x) + 2P_1(x) + 3P_2(x)`.

    Parameters
    ----------
    cs : array_like
        1-d array of Legendre series coefficients, ordered from low to high.
    m : int, optional
        Order of integration, must be positive. (Default: 1)
    k : {[], list, scalar}, optional
        Integration constant(s).  The value of the first integral at
        ``lbnd`` is the first value in the list, the value of the second
        integral at ``lbnd`` is the second value, etc.  If ``k == []`` (the
        default), all constants are set to zero.  If ``m == 1``, a single
        scalar can be given instead of a list.
    lbnd : scalar, optional
        The lower bound of the integral. (Default: 0)
    scl : scalar, optional
        Following each integration the result is *multiplied* by `scl`
        before the integration constant is added. (Default: 1)

    Returns
    -------
    S : ndarray
        Legendre series coefficients of the integral.

    Raises
    ------
    ValueError
        If ``m < 0``, ``len(k) > m``, ``np.isscalar(lbnd) == False``, or
        ``np.isscalar(scl) == False``.

    See Also
    --------
    legder

    Notes
    -----
    Note that the result of each integration is *multiplied* by `scl`.
    Why is this important to note?  Say one is making a linear change of
    variable :math:`u = ax + b` in an integral relative to `x`.  Then
    :math:`dx = du/a`, so one will need to set `scl` equal to :math:`1/a`
    - perhaps not what one would have first thought.

    Also note that, in general, the result of integrating a C-series needs
    to be "re-projected" onto the C-series basis set.  Thus, typically,
    the result of this function is "un-intuitive," albeit correct; see
    Examples section below.

    Examples
    --------
    >>> from numpy.polynomial import legendre as L
    >>> cs = (1,2,3)
    >>> L.legint(cs)
    array([ 0.33333333,  0.4       ,  0.66666667,  0.6       ])
    >>> L.legint(cs,3)
    array([  1.66666667e-02,  -1.78571429e-02,   4.76190476e-02,
            -1.73472348e-18,   1.90476190e-02,   9.52380952e-03])
    >>> L.legint(cs, k=3)
    array([ 3.33333333,  0.4       ,  0.66666667,  0.6       ])
    >>> L.legint(cs, lbnd=-2)
    array([ 7.33333333,  0.4       ,  0.66666667,  0.6       ])
    >>> L.legint(cs, scl=2)
    array([ 0.66666667,  0.8       ,  1.33333333,  1.2       ])

    """
    cnt = int(m)
    if np.isscalar(k) :
        k = [k]

    if cnt != m:
        raise ValueError, "The order of integration must be integer"
    if cnt < 0 :
        raise ValueError, "The order of integration must be non-negative"
    if len(k) > cnt :
        raise ValueError, "Too many integration constants"

    # cs is a trimmed copy
    [cs] = pu.as_series([cs])
    if cnt == 0:
        return cs

    k = list(k) + [0]*(cnt - len(k))
    for i in range(cnt) :
        n = len(cs)
        cs *= scl
        if n == 1 and cs[0] == 0:
            cs[0] += k[i]
        else:
            tmp = np.empty(n + 1, dtype=cs.dtype)
            tmp[0] = cs[0]*0
            tmp[1] = cs[0]
            for j in range(1, n):
                t = cs[j]/(2*j + 1)
                tmp[j + 1] = t
                tmp[j - 1] -= t
            tmp[0] += k[i] - legval(lbnd, tmp)
            cs = tmp
    return cs


def legval(x, cs):
    """Evaluate a Legendre series.

    If `cs` is of length `n`, this function returns :

    ``p(x) = cs[0]*P_0(x) + cs[1]*P_1(x) + ... + cs[n-1]*P_{n-1}(x)``

    If x is a sequence or array then p(x) will have the same shape as x.
    If r is a ring_like object that supports multiplication and addition
    by the values in `cs`, then an object of the same type is returned.

    Parameters
    ----------
    x : array_like, ring_like
        Array of numbers or objects that support multiplication and
        addition with themselves and with the elements of `cs`.
    cs : array_like
        1-d array of Legendre coefficients ordered from low to high.

    Returns
    -------
    values : ndarray, ring_like
        If the return is an ndarray then it has the same shape as `x`.

    See Also
    --------
    legfit

    Notes
    -----
    The evaluation uses Clenshaw recursion, aka synthetic division.

    Examples
    --------

    """
    # cs is a trimmed copy
    [cs] = pu.as_series([cs])
    if isinstance(x, tuple) or isinstance(x, list) :
        x = np.asarray(x)

    if len(cs) == 1 :
        c0 = cs[0]
        c1 = 0
    elif len(cs) == 2 :
        c0 = cs[0]
        c1 = cs[1]
    else :
        nd = len(cs)
        c0 = cs[-2]
        c1 = cs[-1]
        for i in range(3, len(cs) + 1) :
            tmp = c0
            nd =  nd - 1
            c0 = cs[-i] - (c1*(nd - 1))/nd
            c1 = tmp + (c1*x*(2*nd - 1))/nd
    return c0 + c1*x


def legvander(x, deg) :
    """Vandermonde matrix of given degree.

    Returns the Vandermonde matrix of degree `deg` and sample points `x`.
    This isn't a true Vandermonde matrix because `x` can be an arbitrary
    ndarray and the Legendre polynomials aren't powers. If ``V`` is the
    returned matrix and `x` is a 2d array, then the elements of ``V`` are
    ``V[i,j,k] = P_k(x[i,j])``, where ``P_k`` is the Legendre polynomial
    of degree ``k``.

    Parameters
    ----------
    x : array_like
        Array of points. The values are converted to double or complex
        doubles. If x is scalar it is converted to a 1D array.
    deg : integer
        Degree of the resulting matrix.

    Returns
    -------
    vander : Vandermonde matrix.
        The shape of the returned matrix is ``x.shape + (deg+1,)``. The last
        index is the degree.

    """
    ideg = int(deg)
    if ideg != deg:
        raise ValueError("deg must be integer")
    if ideg < 0:
        raise ValueError("deg must be non-negative")

    x = np.array(x, copy=0, ndmin=1) + 0.0
    v = np.empty((ideg + 1,) + x.shape, dtype=x.dtype)
    # Use forward recursion to generate the entries. This is not as accurate
    # as reverse recursion in this application but it is more efficient.
    v[0] = x*0 + 1
    if ideg > 0 :
        v[1] = x
        for i in range(2, ideg + 1) :
            v[i] = (v[i-1]*x*(2*i - 1) - v[i-2]*(i - 1))/i
    return np.rollaxis(v, 0, v.ndim)


def legfit(x, y, deg, rcond=None, full=False, w=None):
    """
    Least squares fit of Legendre series to data.

    Fit a Legendre series ``p(x) = p[0] * P_{0}(x) + ... + p[deg] *
    P_{deg}(x)`` of degree `deg` to points `(x, y)`. Returns a vector of
    coefficients `p` that minimises the squared error.

    Parameters
    ----------
    x : array_like, shape (M,)
        x-coordinates of the M sample points ``(x[i], y[i])``.
    y : array_like, shape (M,) or (M, K)
        y-coordinates of the sample points. Several data sets of sample
        points sharing the same x-coordinates can be fitted at once by
        passing in a 2D-array that contains one dataset per column.
    deg : int
        Degree of the fitting polynomial
    rcond : float, optional
        Relative condition number of the fit. Singular values smaller than
        this relative to the largest singular value will be ignored. The
        default value is len(x)*eps, where eps is the relative precision of
        the float type, about 2e-16 in most cases.
    full : bool, optional
        Switch determining nature of return value. When it is False (the
        default) just the coefficients are returned, when True diagnostic
        information from the singular value decomposition is also returned.
    w : array_like, shape (`M`,), optional
        Weights. If not None, the contribution of each point
        ``(x[i],y[i])`` to the fit is weighted by `w[i]`. Ideally the
        weights are chosen so that the errors of the products ``w[i]*y[i]``
        all have the same variance.  The default value is None.

    Returns
    -------
    coef : ndarray, shape (M,) or (M, K)
        Legendre coefficients ordered from low to high. If `y` was 2-D,
        the coefficients for the data in column k  of `y` are in column
        `k`.

    [residuals, rank, singular_values, rcond] : present when `full` = True
        Residuals of the least-squares fit, the effective rank of the
        scaled Vandermonde matrix and its singular values, and the
        specified value of `rcond`. For more details, see `linalg.lstsq`.

    Warns
    -----
    RankWarning
        The rank of the coefficient matrix in the least-squares fit is
        deficient. The warning is only raised if `full` = False.  The
        warnings can be turned off by

        >>> import warnings
        >>> warnings.simplefilter('ignore', RankWarning)

    See Also
    --------
    legval : Evaluates a Legendre series.
    legvander : Vandermonde matrix of Legendre series.
    polyfit : least squares fit using polynomials.
    chebfit : least squares fit using Chebyshev series.
    linalg.lstsq : Computes a least-squares fit from the matrix.
    scipy.interpolate.UnivariateSpline : Computes spline fits.

    Notes
    -----
    The solution are the coefficients ``c[i]`` of the Legendre series
    ``P(x)`` that minimizes the squared error

    ``E = \\sum_j |y_j - P(x_j)|^2``.

    This problem is solved by setting up as the overdetermined matrix
    equation

    ``V(x)*c = y``,

    where ``V`` is the Vandermonde matrix of `x`, the elements of ``c`` are
    the coefficients to be solved for, and the elements of `y` are the
    observed values.  This equation is then solved using the singular value
    decomposition of ``V``.

    If some of the singular values of ``V`` are so small that they are
    neglected, then a `RankWarning` will be issued. This means that the
    coeficient values may be poorly determined. Using a lower order fit
    will usually get rid of the warning.  The `rcond` parameter can also be
    set to a value smaller than its default, but the resulting fit may be
    spurious and have large contributions from roundoff error.

    Fits using Legendre series are usually better conditioned than fits
    using power series, but much can depend on the distribution of the
    sample points and the smoothness of the data. If the quality of the fit
    is inadequate splines may be a good alternative.

    References
    ----------
    .. [1] Wikipedia, "Curve fitting",
           http://en.wikipedia.org/wiki/Curve_fitting

    Examples
    --------

    """
    order = int(deg) + 1
    x = np.asarray(x) + 0.0
    y = np.asarray(y) + 0.0

    # check arguments.
    if deg < 0 :
        raise ValueError, "expected deg >= 0"
    if x.ndim != 1:
        raise TypeError, "expected 1D vector for x"
    if x.size == 0:
        raise TypeError, "expected non-empty vector for x"
    if y.ndim < 1 or y.ndim > 2 :
        raise TypeError, "expected 1D or 2D array for y"
    if len(x) != len(y):
        raise TypeError, "expected x and y to have same length"

    # set up the least squares matrices
    lhs = legvander(x, deg)
    rhs = y
    if w is not None:
        w = np.asarray(w) + 0.0
        if w.ndim != 1:
            raise TypeError, "expected 1D vector for w"
        if len(x) != len(w):
            raise TypeError, "expected x and w to have same length"
        # apply weights
        if rhs.ndim == 2:
            lhs *= w[:, np.newaxis]
            rhs *= w[:, np.newaxis]
        else:
            lhs *= w[:, np.newaxis]
            rhs *= w

    # set rcond
    if rcond is None :
        rcond = len(x)*np.finfo(x.dtype).eps

    # scale the design matrix and solve the least squares equation
    scl = np.sqrt((lhs*lhs).sum(0))
    c, resids, rank, s = la.lstsq(lhs/scl, rhs, rcond)
    c = (c.T/scl).T

    # warn on rank reduction
    if rank != order and not full:
        msg = "The fit may be poorly conditioned"
        warnings.warn(msg, pu.RankWarning)

    if full :
        return c, [resids, rank, s, rcond]
    else :
        return c


def legroots(cs):
    """
    Compute the roots of a Legendre series.

    Return the roots (a.k.a "zeros") of the Legendre series represented by
    `cs`, which is the sequence of coefficients from lowest order "term"
    to highest, e.g., [1,2,3] is the series ``L_0 + 2*L_1 + 3*L_2``.

    Parameters
    ----------
    cs : array_like
        1-d array of Legendre series coefficients ordered from low to high.

    Returns
    -------
    out : ndarray
        Array of the roots.  If all the roots are real, then so is the
        dtype of ``out``; otherwise, ``out``'s dtype is complex.

    See Also
    --------
    polyroots
    chebroots

    Notes
    -----
    Algorithm(s) used:

    Remember: because the Legendre series basis set is different from the
    "standard" basis set, the results of this function *may* not be what
    one is expecting.

    Examples
    --------
    >>> import numpy.polynomial as P
    >>> P.polyroots((1, 2, 3, 4)) # 4x^3 + 3x^2 + 2x + 1 has two complex roots
    array([-0.60582959+0.j        , -0.07208521-0.63832674j,
           -0.07208521+0.63832674j])
    >>> P.legroots((1, 2, 3, 4)) # 4L_3 + 3L_2 + 2L_1 + 1L_0 has only real roots
    array([-0.85099543, -0.11407192,  0.51506735])

    """
    # cs is a trimmed copy
    [cs] = pu.as_series([cs])
    if len(cs) <= 1 :
        return np.array([], dtype=cs.dtype)
    if len(cs) == 2 :
        return np.array([-cs[0]/cs[1]])

    n = len(cs) - 1
    cs /= cs[-1]
    cmat = np.zeros((n,n), dtype=cs.dtype)
    cmat[1, 0] = 1
    for i in range(1, n):
        tmp = 2*i + 1
        cmat[i - 1, i] = i/tmp
        if i != n - 1:
            cmat[i + 1, i] = (i + 1)/tmp
        else:
            cmat[:, i] -= cs[:-1]*(i + 1)/tmp
    roots = la.eigvals(cmat)
    roots.sort()
    return roots


#
# Legendre series class
#

exec polytemplate.substitute(name='Legendre', nick='leg', domain='[-1,1]')