This file is indexed.

/usr/lib/ocaml/compiler-libs/typing/typemod.ml is in ocaml-compiler-libs 3.12.1-2ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
(***********************************************************************)
(*                                                                     *)
(*                           Objective Caml                            *)
(*                                                                     *)
(*            Xavier Leroy, projet Cristal, INRIA Rocquencourt         *)
(*                                                                     *)
(*  Copyright 1996 Institut National de Recherche en Informatique et   *)
(*  en Automatique.  All rights reserved.  This file is distributed    *)
(*  under the terms of the Q Public License version 1.0.               *)
(*                                                                     *)
(***********************************************************************)

(* $Id: typemod.ml 10706 2010-10-07 02:22:19Z garrigue $ *)

(* Type-checking of the module language *)

open Misc
open Longident
open Path
open Asttypes
open Parsetree
open Types
open Typedtree
open Format

type error =
    Cannot_apply of module_type
  | Not_included of Includemod.error list
  | Cannot_eliminate_dependency of module_type
  | Signature_expected
  | Structure_expected of module_type
  | With_no_component of Longident.t
  | With_mismatch of Longident.t * Includemod.error list
  | Repeated_name of string * string
  | Non_generalizable of type_expr
  | Non_generalizable_class of Ident.t * class_declaration
  | Non_generalizable_module of module_type
  | Implementation_is_required of string
  | Interface_not_compiled of string
  | Not_allowed_in_functor_body
  | With_need_typeconstr

exception Error of Location.t * error

(* Extract a signature from a module type *)

let extract_sig env loc mty =
  match Mtype.scrape env mty with
    Tmty_signature sg -> sg
  | _ -> raise(Error(loc, Signature_expected))

let extract_sig_open env loc mty =
  match Mtype.scrape env mty with
    Tmty_signature sg -> sg
  | _ -> raise(Error(loc, Structure_expected mty))

(* Compute the environment after opening a module *)

let type_open env loc lid =
  let (path, mty) = Typetexp.find_module env loc lid in
  let sg = extract_sig_open env loc mty in
  Env.open_signature path sg env

(* Record a module type *)
let rm node =
  Stypes.record (Stypes.Ti_mod node);
  node

(* Forward declaration, to be filled in by type_module_type_of *)
let type_module_type_of_fwd 
  : (Env.t -> Parsetree.module_expr -> module_type) ref
  = ref (fun env m -> assert false)

(* Merge one "with" constraint in a signature *)

let rec add_rec_types env = function
    Tsig_type(id, decl, Trec_next) :: rem ->
      add_rec_types (Env.add_type id decl env) rem
  | _ -> env

let check_type_decl env id row_id newdecl decl rs rem =
  let env = Env.add_type id newdecl env in
  let env =
    match row_id with None -> env | Some id -> Env.add_type id newdecl env in
  let env = if rs = Trec_not then env else add_rec_types env rem in
  Includemod.type_declarations env id newdecl decl

let rec make_params n = function
    [] -> []
  | _ :: l -> ("a" ^ string_of_int n) :: make_params (n+1) l

let wrap_param s = {ptyp_desc=Ptyp_var s; ptyp_loc=Location.none}

let make_next_first rs rem =
  if rs = Trec_first then
    match rem with
      Tsig_type (id, decl, Trec_next) :: rem ->
        Tsig_type (id, decl, Trec_first) :: rem
    | Tsig_module (id, mty, Trec_next) :: rem ->
        Tsig_module (id, mty, Trec_first) :: rem
    | _ -> rem
  else rem

let merge_constraint initial_env loc sg lid constr =
  let real_id = ref None in
  let rec merge env sg namelist row_id =
    match (sg, namelist, constr) with
      ([], _, _) ->
        raise(Error(loc, With_no_component lid))
    | (Tsig_type(id, decl, rs) :: rem, [s],
       Pwith_type ({ptype_kind = Ptype_abstract} as sdecl))
      when Ident.name id = s && Typedecl.is_fixed_type sdecl ->
        let decl_row =
          { type_params =
              List.map (fun _ -> Btype.newgenvar()) sdecl.ptype_params;
            type_arity = List.length sdecl.ptype_params;
            type_kind = Type_abstract;
            type_private = Private;
            type_manifest = None;
            type_variance =
              List.map (fun (c,n) -> (not n, not c, not c))
              sdecl.ptype_variance }
        and id_row = Ident.create (s^"#row") in
        let initial_env = Env.add_type id_row decl_row initial_env in
        let newdecl = Typedecl.transl_with_constraint
                        initial_env id (Some(Pident id_row)) decl sdecl in
        check_type_decl env id row_id newdecl decl rs rem;
        let decl_row = {decl_row with type_params = newdecl.type_params} in
        let rs' = if rs = Trec_first then Trec_not else rs in
        Tsig_type(id_row, decl_row, rs') :: Tsig_type(id, newdecl, rs) :: rem
    | (Tsig_type(id, decl, rs) :: rem, [s], Pwith_type sdecl)
      when Ident.name id = s ->
        let newdecl =
          Typedecl.transl_with_constraint initial_env id None decl sdecl in
        check_type_decl env id row_id newdecl decl rs rem;
        Tsig_type(id, newdecl, rs) :: rem
    | (Tsig_type(id, decl, rs) :: rem, [s], (Pwith_type _ | Pwith_typesubst _))
      when Ident.name id = s ^ "#row" ->
        merge env rem namelist (Some id)
    | (Tsig_type(id, decl, rs) :: rem, [s], Pwith_typesubst sdecl)
      when Ident.name id = s ->
        (* Check as for a normal with constraint, but discard definition *)
        let newdecl =
          Typedecl.transl_with_constraint initial_env id None decl sdecl in
        check_type_decl env id row_id newdecl decl rs rem;
        real_id := Some id;
        make_next_first rs rem
    | (Tsig_module(id, mty, rs) :: rem, [s], Pwith_module lid)
      when Ident.name id = s ->
        let (path, mty') = Typetexp.find_module initial_env loc lid in
        let newmty = Mtype.strengthen env mty' path in
        ignore(Includemod.modtypes env newmty mty);
        Tsig_module(id, newmty, rs) :: rem
    | (Tsig_module(id, mty, rs) :: rem, [s], Pwith_modsubst lid)
      when Ident.name id = s ->
        let (path, mty') = Typetexp.find_module initial_env loc lid in
        let newmty = Mtype.strengthen env mty' path in
        ignore(Includemod.modtypes env newmty mty);
        real_id := Some id;
        make_next_first rs rem
    | (Tsig_module(id, mty, rs) :: rem, s :: namelist, _)
      when Ident.name id = s ->
        let newsg = merge env (extract_sig env loc mty) namelist None in
        Tsig_module(id, Tmty_signature newsg, rs) :: rem
    | (item :: rem, _, _) ->
        item :: merge (Env.add_item item env) rem namelist row_id in
  try
    let names = Longident.flatten lid in
    let sg = merge initial_env sg names None in
    match names, constr with
      [s], Pwith_typesubst sdecl ->
        let id =
          match !real_id with None -> assert false | Some id -> id in
        let lid =
          try match sdecl.ptype_manifest with
          | Some {ptyp_desc = Ptyp_constr (lid, stl)} ->
              let params =
                List.map
                  (function {ptyp_desc=Ptyp_var s} -> s | _ -> raise Exit)
                  stl in
              if params <> sdecl.ptype_params then raise Exit;
              lid
          | _ -> raise Exit
          with Exit -> raise (Error (sdecl.ptype_loc, With_need_typeconstr))
        in
        let (path, _) =
          try Env.lookup_type lid initial_env with Not_found -> assert false
        in
        let sub = Subst.add_type id path Subst.identity in
        Subst.signature sub sg
    | [s], Pwith_modsubst lid ->
        let id =
          match !real_id with None -> assert false | Some id -> id in
        let (path, _) = Typetexp.find_module initial_env loc lid in
        let sub = Subst.add_module id path Subst.identity in
        Subst.signature sub sg
    | _ ->
        sg
  with Includemod.Error explanation ->
    raise(Error(loc, With_mismatch(lid, explanation)))

(* Add recursion flags on declarations arising from a mutually recursive
   block. *)

let map_rec fn decls rem =
  match decls with
  | [] -> rem
  | d1 :: dl -> fn Trec_first d1 :: map_end (fn Trec_next) dl rem

let rec map_rec' fn decls rem =
  match decls with
  | (id,_ as d1) :: dl when Btype.is_row_name (Ident.name id) ->
      fn Trec_not d1 :: map_rec' fn dl rem
  | _ -> map_rec fn decls rem

(* Auxiliary for translating recursively-defined module types.
   Return a module type that approximates the shape of the given module
   type AST.  Retain only module, type, and module type
   components of signatures.  For types, retain only their arity,
   making them abstract otherwise. *)

let rec approx_modtype env smty =
  match smty.pmty_desc with
    Pmty_ident lid ->
      let (path, info) = Typetexp.find_modtype env smty.pmty_loc lid in
      Tmty_ident path
  | Pmty_signature ssg ->
      Tmty_signature(approx_sig env ssg)
  | Pmty_functor(param, sarg, sres) ->
      let arg = approx_modtype env sarg in
      let (id, newenv) = Env.enter_module param arg env in
      let res = approx_modtype newenv sres in
      Tmty_functor(id, arg, res)
  | Pmty_with(sbody, constraints) ->
      approx_modtype env sbody
  | Pmty_typeof smod ->
      !type_module_type_of_fwd env smod

and approx_sig env ssg =
  match ssg with
    [] -> []
  | item :: srem ->
      match item.psig_desc with
      | Psig_type sdecls ->
          let decls = Typedecl.approx_type_decl env sdecls in
          let rem = approx_sig env srem in
          map_rec' (fun rs (id, info) -> Tsig_type(id, info, rs)) decls rem
      | Psig_module(name, smty) ->
          let mty = approx_modtype env smty in
          let (id, newenv) = Env.enter_module name mty env in
          Tsig_module(id, mty, Trec_not) :: approx_sig newenv srem
      | Psig_recmodule sdecls ->
          let decls =
            List.map
              (fun (name, smty) ->
                (Ident.create name, approx_modtype env smty))
              sdecls in
          let newenv =
            List.fold_left (fun env (id, mty) -> Env.add_module id mty env)
            env decls in
          map_rec (fun rs (id, mty) -> Tsig_module(id, mty, rs)) decls
                  (approx_sig newenv srem)
      | Psig_modtype(name, sinfo) ->
          let info = approx_modtype_info env sinfo in
          let (id, newenv) = Env.enter_modtype name info env in
          Tsig_modtype(id, info) :: approx_sig newenv srem
      | Psig_open lid ->
          approx_sig (type_open env item.psig_loc lid) srem
      | Psig_include smty ->
          let mty = approx_modtype env smty in
          let sg = Subst.signature Subst.identity
                     (extract_sig env smty.pmty_loc mty) in
          let newenv = Env.add_signature sg env in
          sg @ approx_sig newenv srem
      | Psig_class sdecls | Psig_class_type sdecls ->
          let decls = Typeclass.approx_class_declarations env sdecls in
          let rem = approx_sig env srem in
          List.flatten
            (map_rec
              (fun rs (i1, d1, i2, d2, i3, d3) ->
                [Tsig_cltype(i1, d1, rs);
                 Tsig_type(i2, d2, rs);
                 Tsig_type(i3, d3, rs)])
              decls [rem])
      | _ ->
          approx_sig env srem

and approx_modtype_info env sinfo =
  match sinfo with
    Pmodtype_abstract ->
      Tmodtype_abstract
  | Pmodtype_manifest smty ->
      Tmodtype_manifest(approx_modtype env smty)

(* Additional validity checks on type definitions arising from
   recursive modules *)

let check_recmod_typedecls env sdecls decls =
  let recmod_ids = List.map fst decls in
  List.iter2
    (fun (_, smty) (id, mty) ->
      List.iter
        (fun path ->
          Typedecl.check_recmod_typedecl env smty.pmty_loc recmod_ids
                                         path (Env.find_type path env))
        (Mtype.type_paths env (Pident id) mty))
    sdecls decls

(* Auxiliaries for checking uniqueness of names in signatures and structures *)

module StringSet = Set.Make(struct type t = string let compare = compare end)

let check cl loc set_ref name =
  if StringSet.mem name !set_ref
  then raise(Error(loc, Repeated_name(cl, name)))
  else set_ref := StringSet.add name !set_ref

let check_sig_item type_names module_names modtype_names loc = function
    Tsig_type(id, _, _) ->
      check "type" loc type_names (Ident.name id)
  | Tsig_module(id, _, _) ->
      check "module" loc module_names (Ident.name id)
  | Tsig_modtype(id, _) ->
      check "module type" loc modtype_names (Ident.name id)
  | _ -> ()

let rec remove_values ids = function
    [] -> []
  | Tsig_value (id, _) :: rem
    when List.exists (Ident.equal id) ids -> remove_values ids rem
  | f :: rem -> f :: remove_values ids rem

let rec get_values = function
    [] -> []
  | Tsig_value (id, _) :: rem -> id :: get_values rem
  | f :: rem -> get_values rem

(* Check and translate a module type expression *)

let transl_modtype_longident loc env lid =
  let (path, info) = Typetexp.find_modtype env loc lid in
  path

let rec transl_modtype env smty =
  match smty.pmty_desc with
    Pmty_ident lid ->
      Tmty_ident (transl_modtype_longident smty.pmty_loc env lid)
  | Pmty_signature ssg ->
      Tmty_signature(transl_signature env ssg)
  | Pmty_functor(param, sarg, sres) ->
      let arg = transl_modtype env sarg in
      let (id, newenv) = Env.enter_module param arg env in
      let res = transl_modtype newenv sres in
      Tmty_functor(id, arg, res)
  | Pmty_with(sbody, constraints) ->
      let body = transl_modtype env sbody in
      let init_sg = extract_sig env sbody.pmty_loc body in
      let final_sg =
        List.fold_left
          (fun sg (lid, sdecl) ->
            merge_constraint env smty.pmty_loc sg lid sdecl)
          init_sg constraints in
      Mtype.freshen (Tmty_signature final_sg)
  | Pmty_typeof smod ->
      !type_module_type_of_fwd env smod

and transl_signature env sg =
  let type_names = ref StringSet.empty
  and module_names = ref StringSet.empty
  and modtype_names = ref StringSet.empty in
  let rec transl_sig env sg =
    Ctype.init_def(Ident.current_time());
    match sg with
      [] -> []
    | item :: srem ->
        match item.psig_desc with
        | Psig_value(name, sdesc) ->
            let desc = Typedecl.transl_value_decl env sdesc in
            let (id, newenv) = Env.enter_value name desc env in
            let rem = transl_sig newenv srem in
            if List.exists (Ident.equal id) (get_values rem) then rem
            else Tsig_value(id, desc) :: rem
        | Psig_type sdecls ->
            List.iter
              (fun (name, decl) -> check "type" item.psig_loc type_names name)
              sdecls;
            let (decls, newenv) = Typedecl.transl_type_decl env sdecls in
            let rem = transl_sig newenv srem in
            map_rec' (fun rs (id, info) -> Tsig_type(id, info, rs)) decls rem
        | Psig_exception(name, sarg) ->
            let arg = Typedecl.transl_exception env sarg in
            let (id, newenv) = Env.enter_exception name arg env in
            let rem = transl_sig newenv srem in
            Tsig_exception(id, arg) :: rem
        | Psig_module(name, smty) ->
            check "module" item.psig_loc module_names name;
            let mty = transl_modtype env smty in
            let (id, newenv) = Env.enter_module name mty env in
            let rem = transl_sig newenv srem in
            Tsig_module(id, mty, Trec_not) :: rem
        | Psig_recmodule sdecls ->
            List.iter
              (fun (name, smty) ->
                 check "module" item.psig_loc module_names name)
              sdecls;
            let (decls, newenv) =
              transl_recmodule_modtypes item.psig_loc env sdecls in
            let rem = transl_sig newenv srem in
            map_rec (fun rs (id, mty) -> Tsig_module(id, mty, rs)) decls rem
        | Psig_modtype(name, sinfo) ->
            check "module type" item.psig_loc modtype_names name;
            let info = transl_modtype_info env sinfo in
            let (id, newenv) = Env.enter_modtype name info env in
            let rem = transl_sig newenv srem in
            Tsig_modtype(id, info) :: rem
        | Psig_open lid ->
            transl_sig (type_open env item.psig_loc lid) srem
        | Psig_include smty ->
            let mty = transl_modtype env smty in
            let sg = Subst.signature Subst.identity
                       (extract_sig env smty.pmty_loc mty) in
            List.iter
              (check_sig_item type_names module_names modtype_names
                              item.psig_loc)
              sg;
            let newenv = Env.add_signature sg env in
            let rem = transl_sig newenv srem in
            remove_values (get_values rem) sg @ rem
        | Psig_class cl ->
            List.iter
              (fun {pci_name = name} ->
                 check "type" item.psig_loc type_names name)
              cl;
            let (classes, newenv) = Typeclass.class_descriptions env cl in
            let rem = transl_sig newenv srem in
            List.flatten
              (map_rec
                 (fun rs (i, d, i', d', i'', d'', i''', d''', _, _, _) ->
                    [Tsig_class(i, d, rs);
                     Tsig_cltype(i', d', rs);
                     Tsig_type(i'', d'', rs);
                     Tsig_type(i''', d''', rs)])
                 classes [rem])
        | Psig_class_type cl ->
            List.iter
              (fun {pci_name = name} ->
                 check "type" item.psig_loc type_names name)
              cl;
            let (classes, newenv) = Typeclass.class_type_declarations env cl in
            let rem = transl_sig newenv srem in
            List.flatten
              (map_rec
                 (fun rs (i, d, i', d', i'', d'') ->
                    [Tsig_cltype(i, d, rs);
                     Tsig_type(i', d', rs);
                     Tsig_type(i'', d'', rs)])
                 classes [rem])
    in transl_sig env sg

and transl_modtype_info env sinfo =
  match sinfo with
    Pmodtype_abstract ->
      Tmodtype_abstract
  | Pmodtype_manifest smty ->
      Tmodtype_manifest(transl_modtype env smty)

and transl_recmodule_modtypes loc env sdecls =
  let make_env curr =
    List.fold_left
      (fun env (id, mty) -> Env.add_module id mty env)
      env curr in
  let transition env_c curr =
    List.map2
      (fun (_, smty) (id, mty) -> (id, transl_modtype env_c smty))
      sdecls curr in
  let init =
    List.map
      (fun (name, smty) ->
        (Ident.create name, approx_modtype env smty))
      sdecls in
  let env0 = make_env init in
  let dcl1 = transition env0 init in
  let env1 = make_env dcl1 in
  check_recmod_typedecls env1 sdecls dcl1;
  let dcl2 = transition env1 dcl1 in
(*
  List.iter
    (fun (id, mty) ->
      Format.printf "%a: %a@." Printtyp.ident id Printtyp.modtype mty)
    dcl2;
*)
  let env2 = make_env dcl2 in
  check_recmod_typedecls env2 sdecls dcl2;
  (dcl2, env2)

(* Try to convert a module expression to a module path. *)

exception Not_a_path

let rec path_of_module mexp =
  match mexp.mod_desc with
    Tmod_ident p -> p
  | Tmod_apply(funct, arg, coercion) when !Clflags.applicative_functors ->
      Papply(path_of_module funct, path_of_module arg)
  | _ -> raise Not_a_path

(* Check that all core type schemes in a structure are closed *)

let rec closed_modtype = function
    Tmty_ident p -> true
  | Tmty_signature sg -> List.for_all closed_signature_item sg
  | Tmty_functor(id, param, body) -> closed_modtype body

and closed_signature_item = function
    Tsig_value(id, desc) -> Ctype.closed_schema desc.val_type
  | Tsig_module(id, mty, _) -> closed_modtype mty
  | _ -> true

let check_nongen_scheme env = function
    Tstr_value(rec_flag, pat_exp_list) ->
      List.iter
        (fun (pat, exp) ->
          if not (Ctype.closed_schema exp.exp_type) then
            raise(Error(exp.exp_loc, Non_generalizable exp.exp_type)))
        pat_exp_list
  | Tstr_module(id, md) ->
      if not (closed_modtype md.mod_type) then
        raise(Error(md.mod_loc, Non_generalizable_module md.mod_type))
  | _ -> ()

let check_nongen_schemes env str =
  List.iter (check_nongen_scheme env) str

(* Extract the list of "value" identifiers bound by a signature.
   "Value" identifiers are identifiers for signature components that
   correspond to a run-time value: values, exceptions, modules, classes.
   Note: manifest primitives do not correspond to a run-time value! *)

let rec bound_value_identifiers = function
    [] -> []
  | Tsig_value(id, {val_kind = Val_reg}) :: rem ->
      id :: bound_value_identifiers rem
  | Tsig_exception(id, decl) :: rem -> id :: bound_value_identifiers rem
  | Tsig_module(id, mty, _) :: rem -> id :: bound_value_identifiers rem
  | Tsig_class(id, decl, _) :: rem -> id :: bound_value_identifiers rem
  | _ :: rem -> bound_value_identifiers rem

(* Helpers for typing recursive modules *)

let anchor_submodule name anchor =
  match anchor with None -> None | Some p -> Some(Pdot(p, name, nopos))
let anchor_recmodule id anchor =
  Some (Pident id)

let enrich_type_decls anchor decls oldenv newenv =
  match anchor with
    None -> newenv
  | Some p ->
      List.fold_left
        (fun e (id, info) ->
          let info' =
            Mtype.enrich_typedecl oldenv (Pdot(p, Ident.name id, nopos)) info
          in
            Env.add_type id info' e)
        oldenv decls

let enrich_module_type anchor name mty env =
  match anchor with
    None -> mty
  | Some p -> Mtype.enrich_modtype env (Pdot(p, name, nopos)) mty

let check_recmodule_inclusion env bindings =
  (* PR#4450, PR#4470: consider
        module rec X : DECL = MOD  where MOD has inferred type ACTUAL
     The "natural" typing condition
        E, X: ACTUAL |- ACTUAL <: DECL
     leads to circularities through manifest types.
     Instead, we "unroll away" the potential circularities a finite number
     of times.  The (weaker) condition we implement is:
        E, X: DECL,
           X1: ACTUAL,
           X2: ACTUAL{X <- X1}/X1
           ...
           Xn: ACTUAL{X <- X(n-1)}/X(n-1)
        |- ACTUAL{X <- Xn}/Xn <: DECL{X <- Xn}
     so that manifest types rooted at X(n+1) are expanded in terms of X(n),
     avoiding circularities.  The strengthenings ensure that
     Xn.t = X(n-1).t = ... = X2.t = X1.t.
     N can be chosen arbitrarily; larger values of N result in more
     recursive definitions being accepted.  A good choice appears to be
     the number of mutually recursive declarations. *)

  let subst_and_strengthen env s id mty =
    Mtype.strengthen env (Subst.modtype s mty)
                         (Subst.module_path s (Pident id)) in

  let rec check_incl first_time n env s =
    if n > 0 then begin
      (* Generate fresh names Y_i for the rec. bound module idents X_i *)
      let bindings1 =
        List.map
          (fun (id, mty_decl, modl, mty_actual) ->
             (id, Ident.rename id, mty_actual))
          bindings in
      (* Enter the Y_i in the environment with their actual types substituted
         by the input substitution s *)
      let env' =
        List.fold_left
          (fun env (id, id', mty_actual) ->
             let mty_actual' =
               if first_time
               then mty_actual
               else subst_and_strengthen env s id mty_actual in
             Env.add_module id' mty_actual' env)
          env bindings1 in
      (* Build the output substitution Y_i <- X_i *)
      let s' =
        List.fold_left
          (fun s (id, id', mty_actual) ->
             Subst.add_module id (Pident id') s)
          Subst.identity bindings1 in
      (* Recurse with env' and s' *)
      check_incl false (n-1) env' s'
    end else begin
      (* Base case: check inclusion of s(mty_actual) in s(mty_decl)
         and insert coercion if needed *)
      let check_inclusion (id, mty_decl, modl, mty_actual) =
        let mty_decl' = Subst.modtype s mty_decl
        and mty_actual' = subst_and_strengthen env s id mty_actual in
        let coercion =
          try
            Includemod.modtypes env mty_actual' mty_decl'
          with Includemod.Error msg ->
            raise(Error(modl.mod_loc, Not_included msg)) in
        let modl' =
          { mod_desc = Tmod_constraint(modl, mty_decl, coercion);
            mod_type = mty_decl;
            mod_env = env;
            mod_loc = modl.mod_loc } in
        (id, modl') in
      List.map check_inclusion bindings
    end
  in check_incl true (List.length bindings) env Subst.identity

(* Type a module value expression *)

let rec type_module sttn funct_body anchor env smod =
  match smod.pmod_desc with
    Pmod_ident lid ->
      let (path, mty) = Typetexp.find_module env smod.pmod_loc lid in
      rm { mod_desc = Tmod_ident path;
           mod_type = if sttn then Mtype.strengthen env mty path else mty;
           mod_env = env;
           mod_loc = smod.pmod_loc }
  | Pmod_structure sstr ->
      let (str, sg, finalenv) =
        type_structure funct_body anchor env sstr smod.pmod_loc in
      rm { mod_desc = Tmod_structure str;
           mod_type = Tmty_signature sg;
           mod_env = env;
           mod_loc = smod.pmod_loc }
  | Pmod_functor(name, smty, sbody) ->
      let mty = transl_modtype env smty in
      let (id, newenv) = Env.enter_module name mty env in
      let body = type_module sttn true None newenv sbody in
      rm { mod_desc = Tmod_functor(id, mty, body);
           mod_type = Tmty_functor(id, mty, body.mod_type);
           mod_env = env;
           mod_loc = smod.pmod_loc }
  | Pmod_apply(sfunct, sarg) ->
      let arg = type_module true funct_body None env sarg in
      let path = try Some (path_of_module arg) with Not_a_path -> None in
      let funct =
        type_module (sttn && path <> None) funct_body None env sfunct in
      begin match Mtype.scrape env funct.mod_type with
        Tmty_functor(param, mty_param, mty_res) as mty_functor ->
          let coercion =
            try
              Includemod.modtypes env arg.mod_type mty_param
            with Includemod.Error msg ->
              raise(Error(sarg.pmod_loc, Not_included msg)) in
          let mty_appl =
            match path with
              Some path ->
                Subst.modtype (Subst.add_module param path Subst.identity)
                              mty_res
            | None ->
                try
                  Mtype.nondep_supertype
                    (Env.add_module param arg.mod_type env) param mty_res
                with Not_found ->
                  raise(Error(smod.pmod_loc,
                              Cannot_eliminate_dependency mty_functor))
          in
          rm { mod_desc = Tmod_apply(funct, arg, coercion);
               mod_type = mty_appl;
               mod_env = env;
               mod_loc = smod.pmod_loc }
      | _ ->
          raise(Error(sfunct.pmod_loc, Cannot_apply funct.mod_type))
      end
  | Pmod_constraint(sarg, smty) ->
      let arg = type_module true funct_body anchor env sarg in
      let mty = transl_modtype env smty in
      let coercion =
        try
          Includemod.modtypes env arg.mod_type mty
        with Includemod.Error msg ->
          raise(Error(sarg.pmod_loc, Not_included msg)) in
      rm { mod_desc = Tmod_constraint(arg, mty, coercion);
           mod_type = mty;
           mod_env = env;
           mod_loc = smod.pmod_loc }

  | Pmod_unpack (sexp, (p, l)) ->
      if funct_body then
        raise (Error (smod.pmod_loc, Not_allowed_in_functor_body));
      let l, mty = Typetexp.create_package_mty smod.pmod_loc env (p, l) in
      let mty = transl_modtype env mty in
      let exp = Typecore.type_expect env sexp
          (Typecore.create_package_type smod.pmod_loc env (p, l)) in
      rm { mod_desc = Tmod_unpack(exp, mty);
           mod_type = mty;
           mod_env = env;
           mod_loc = smod.pmod_loc }

and type_structure funct_body anchor env sstr scope =
  let type_names = ref StringSet.empty
  and module_names = ref StringSet.empty
  and modtype_names = ref StringSet.empty in
  let rec type_struct env sstr =
    Ctype.init_def(Ident.current_time());
    match sstr with
      [] ->
        ([], [], env)
    | {pstr_desc = Pstr_eval sexpr} :: srem ->
        let expr = Typecore.type_expression env sexpr in
        let (str_rem, sig_rem, final_env) = type_struct env srem in
        (Tstr_eval expr :: str_rem, sig_rem, final_env)
    | {pstr_desc = Pstr_value(rec_flag, sdefs); pstr_loc = loc} :: srem ->
        let scope =
          match rec_flag with
          | Recursive -> Some (Annot.Idef {scope with
                                 Location.loc_start = loc.Location.loc_start})
          | Nonrecursive ->
              let start = match srem with
                | [] -> loc.Location.loc_end
                | {pstr_loc = loc2} :: _ -> loc2.Location.loc_start
              in Some (Annot.Idef {scope with Location.loc_start = start})
          | Default -> None
        in
        let (defs, newenv) =
          Typecore.type_binding env rec_flag sdefs scope in
        let (str_rem, sig_rem, final_env) = type_struct newenv srem in
        let bound_idents = let_bound_idents defs in
        let make_sig_value id =
          Tsig_value(id, Env.find_value (Pident id) newenv) in
        (Tstr_value(rec_flag, defs) :: str_rem,
         map_end make_sig_value bound_idents sig_rem,
         final_env)
    | {pstr_desc = Pstr_primitive(name, sdesc)} :: srem ->
        let desc = Typedecl.transl_value_decl env sdesc in
        let (id, newenv) = Env.enter_value name desc env in
        let (str_rem, sig_rem, final_env) = type_struct newenv srem in
        (Tstr_primitive(id, desc) :: str_rem,
         Tsig_value(id, desc) :: sig_rem,
         final_env)
    | {pstr_desc = Pstr_type sdecls; pstr_loc = loc} :: srem ->
        List.iter
          (fun (name, decl) -> check "type" loc type_names name)
          sdecls;
        let (decls, newenv) = Typedecl.transl_type_decl env sdecls in
        let newenv' =
          enrich_type_decls anchor decls env newenv in
        let (str_rem, sig_rem, final_env) = type_struct newenv' srem in
        (Tstr_type decls :: str_rem,
         map_rec' (fun rs (id, info) -> Tsig_type(id, info, rs)) decls sig_rem,
         final_env)
    | {pstr_desc = Pstr_exception(name, sarg)} :: srem ->
        let arg = Typedecl.transl_exception env sarg in
        let (id, newenv) = Env.enter_exception name arg env in
        let (str_rem, sig_rem, final_env) = type_struct newenv srem in
        (Tstr_exception(id, arg) :: str_rem,
         Tsig_exception(id, arg) :: sig_rem,
         final_env)
    | {pstr_desc = Pstr_exn_rebind(name, longid); pstr_loc = loc} :: srem ->
        let (path, arg) = Typedecl.transl_exn_rebind env loc longid in
        let (id, newenv) = Env.enter_exception name arg env in
        let (str_rem, sig_rem, final_env) = type_struct newenv srem in
        (Tstr_exn_rebind(id, path) :: str_rem,
         Tsig_exception(id, arg) :: sig_rem,
         final_env)
    | {pstr_desc = Pstr_module(name, smodl); pstr_loc = loc} :: srem ->
        check "module" loc module_names name;
        let modl =
          type_module true funct_body (anchor_submodule name anchor) env
            smodl in
        let mty = enrich_module_type anchor name modl.mod_type env in
        let (id, newenv) = Env.enter_module name mty env in
        let (str_rem, sig_rem, final_env) = type_struct newenv srem in
        (Tstr_module(id, modl) :: str_rem,
         Tsig_module(id, modl.mod_type, Trec_not) :: sig_rem,
         final_env)
    | {pstr_desc = Pstr_recmodule sbind; pstr_loc = loc} :: srem ->
        List.iter
          (fun (name, _, _) -> check "module" loc module_names name)
          sbind;
        let (decls, newenv) =
          transl_recmodule_modtypes loc env
            (List.map (fun (name, smty, smodl) -> (name, smty)) sbind) in
        let bindings1 =
          List.map2
            (fun (id, mty) (name, smty, smodl) ->
              let modl =
                type_module true funct_body (anchor_recmodule id anchor) newenv
                  smodl in
              let mty' =
                enrich_module_type anchor (Ident.name id) modl.mod_type newenv
              in
              (id, mty, modl, mty'))
           decls sbind in
        let bindings2 =
          check_recmodule_inclusion newenv bindings1 in
        let (str_rem, sig_rem, final_env) = type_struct newenv srem in
        (Tstr_recmodule bindings2 :: str_rem,
         map_rec (fun rs (id, modl) -> Tsig_module(id, modl.mod_type, rs))
                 bindings2 sig_rem,
         final_env)
    | {pstr_desc = Pstr_modtype(name, smty); pstr_loc = loc} :: srem ->
        check "module type" loc modtype_names name;
        let mty = transl_modtype env smty in
        let (id, newenv) = Env.enter_modtype name (Tmodtype_manifest mty) env in
        let (str_rem, sig_rem, final_env) = type_struct newenv srem in
        (Tstr_modtype(id, mty) :: str_rem,
         Tsig_modtype(id, Tmodtype_manifest mty) :: sig_rem,
         final_env)
    | {pstr_desc = Pstr_open lid; pstr_loc = loc} :: srem ->
        type_struct (type_open env loc lid) srem
    | {pstr_desc = Pstr_class cl; pstr_loc = loc} :: srem ->
         List.iter
           (fun {pci_name = name} -> check "type" loc type_names name)
           cl;
        let (classes, new_env) = Typeclass.class_declarations env cl in
        let (str_rem, sig_rem, final_env) = type_struct new_env srem in
        (Tstr_class
           (List.map (fun (i, d, _,_,_,_,_,_, s, m, c) ->
              let vf = if d.cty_new = None then Virtual else Concrete in
              (i, s, m, c, vf)) classes) ::
         Tstr_cltype
           (List.map (fun (_,_, i, d, _,_,_,_,_,_,_) -> (i, d)) classes) ::
         Tstr_type
           (List.map (fun (_,_,_,_, i, d, _,_,_,_,_) -> (i, d)) classes) ::
         Tstr_type
           (List.map (fun (_,_,_,_,_,_, i, d, _,_,_) -> (i, d)) classes) ::
         str_rem,
         List.flatten
           (map_rec
              (fun rs (i, d, i', d', i'', d'', i''', d''', _, _, _) ->
                 [Tsig_class(i, d, rs);
                  Tsig_cltype(i', d', rs);
                  Tsig_type(i'', d'', rs);
                  Tsig_type(i''', d''', rs)])
              classes [sig_rem]),
         final_env)
    | {pstr_desc = Pstr_class_type cl; pstr_loc = loc} :: srem ->
        List.iter
          (fun {pci_name = name} -> check "type" loc type_names name)
          cl;
        let (classes, new_env) = Typeclass.class_type_declarations env cl in
        let (str_rem, sig_rem, final_env) = type_struct new_env srem in
        (Tstr_cltype
           (List.map (fun (i, d, _, _, _, _) -> (i, d)) classes) ::
         Tstr_type
           (List.map (fun (_, _, i, d, _, _) -> (i, d)) classes) ::
         Tstr_type
           (List.map (fun (_, _, _, _, i, d) -> (i, d)) classes) ::
         str_rem,
         List.flatten
           (map_rec
              (fun rs (i, d, i', d', i'', d'') ->
                 [Tsig_cltype(i, d, rs);
                  Tsig_type(i', d', rs);
                  Tsig_type(i'', d'', rs)])
              classes [sig_rem]),
         final_env)
    | {pstr_desc = Pstr_include smodl; pstr_loc = loc} :: srem ->
        let modl = type_module true funct_body None env smodl in
        (* Rename all identifiers bound by this signature to avoid clashes *)
        let sg = Subst.signature Subst.identity
                   (extract_sig_open env smodl.pmod_loc modl.mod_type) in
        List.iter
          (check_sig_item type_names module_names modtype_names loc) sg;
        let new_env = Env.add_signature sg env in
        let (str_rem, sig_rem, final_env) = type_struct new_env srem in
        (Tstr_include (modl, bound_value_identifiers sg) :: str_rem,
         sg @ sig_rem,
         final_env)
  in
  if !Clflags.annotations
  then List.iter (function {pstr_loc = l} -> Stypes.record_phrase l) sstr;
  type_struct env sstr

let type_module = type_module true false None
let type_structure = type_structure false None

(* Normalize types in a signature *)

let rec normalize_modtype env = function
    Tmty_ident p -> ()
  | Tmty_signature sg -> normalize_signature env sg
  | Tmty_functor(id, param, body) -> normalize_modtype env body

and normalize_signature env = List.iter (normalize_signature_item env)

and normalize_signature_item env = function
    Tsig_value(id, desc) -> Ctype.normalize_type env desc.val_type
  | Tsig_module(id, mty, _) -> normalize_modtype env mty
  | _ -> ()

(* Simplify multiple specifications of a value or an exception in a signature.
   (Other signature components, e.g. types, modules, etc, are checked for
   name uniqueness.)  If multiple specifications with the same name,
   keep only the last (rightmost) one. *)

let rec simplify_modtype mty =
  match mty with
    Tmty_ident path -> mty
  | Tmty_functor(id, arg, res) -> Tmty_functor(id, arg, simplify_modtype res)
  | Tmty_signature sg -> Tmty_signature(simplify_signature sg)

and simplify_signature sg =
  let rec simplif val_names exn_names res = function
    [] -> res
  | (Tsig_value(id, descr) as component) :: sg ->
      let name = Ident.name id in
      simplif (StringSet.add name val_names) exn_names
              (if StringSet.mem name val_names then res else component :: res)
              sg
  | (Tsig_exception(id, decl) as component) :: sg ->
      let name = Ident.name id in
      simplif val_names (StringSet.add name exn_names)
              (if StringSet.mem name exn_names then res else component :: res)
              sg
  | Tsig_module(id, mty, rs) :: sg ->
      simplif val_names exn_names
              (Tsig_module(id, simplify_modtype mty, rs) :: res) sg
  | component :: sg ->
      simplif val_names exn_names (component :: res) sg
  in
    simplif StringSet.empty StringSet.empty [] (List.rev sg)

(* Extract the module type of a module expression *)

let type_module_type_of env smod =
  let mty =
    match smod.pmod_desc with
    | Pmod_ident lid -> (* turn off strengthening in this case *)
        let (path, mty) = Typetexp.find_module env smod.pmod_loc lid in mty
    | _ -> (type_module env smod).mod_type in
  (* PR#5037: clean up inferred signature to remove duplicate specs *)
  let mty = simplify_modtype mty in
  (* PR#5036: must not contain non-generalized type variables *)
  if not (closed_modtype mty) then
    raise(Error(smod.pmod_loc, Non_generalizable_module mty));
  mty

(* Fill in the forward declarations *)
let () =
  Typecore.type_module := type_module;
  Typetexp.transl_modtype_longident := transl_modtype_longident;
  Typetexp.transl_modtype := transl_modtype;
  Typecore.type_open := type_open;
  type_module_type_of_fwd := type_module_type_of

(* Typecheck an implementation file *)

let type_implementation sourcefile outputprefix modulename initial_env ast =
  Typecore.reset_delayed_checks ();
  let (str, sg, finalenv) = type_structure initial_env ast Location.none in
  let simple_sg = simplify_signature sg in
  Typecore.force_delayed_checks ();
  if !Clflags.print_types then begin
    fprintf std_formatter "%a@." Printtyp.signature simple_sg;
    (str, Tcoerce_none)   (* result is ignored by Compile.implementation *)
  end else begin
    let sourceintf =
      Misc.chop_extension_if_any sourcefile ^ !Config.interface_suffix in
    if Sys.file_exists sourceintf then begin
      let intf_file =
        try
          find_in_path_uncap !Config.load_path (modulename ^ ".cmi")
        with Not_found ->
          raise(Error(Location.none, Interface_not_compiled sourceintf)) in
      let dclsig = Env.read_signature modulename intf_file in
      let coercion = Includemod.compunit sourcefile sg intf_file dclsig in
      (str, coercion)
    end else begin
      check_nongen_schemes finalenv str;
      normalize_signature finalenv simple_sg;
      let coercion =
        Includemod.compunit sourcefile sg
                            "(inferred signature)" simple_sg in
      if not !Clflags.dont_write_files then
        Env.save_signature simple_sg modulename (outputprefix ^ ".cmi");
      (str, coercion)
    end
  end

(* "Packaging" of several compilation units into one unit
   having them as sub-modules.  *)

let rec package_signatures subst = function
    [] -> []
  | (name, sg) :: rem ->
      let sg' = Subst.signature subst sg in
      let oldid = Ident.create_persistent name
      and newid = Ident.create name in
      Tsig_module(newid, Tmty_signature sg', Trec_not) ::
      package_signatures (Subst.add_module oldid (Pident newid) subst) rem

let package_units objfiles cmifile modulename =
  (* Read the signatures of the units *)
  let units =
    List.map
      (fun f ->
         let pref = chop_extensions f in
         let modname = String.capitalize(Filename.basename pref) in
         let sg = Env.read_signature modname (pref ^ ".cmi") in
         if Filename.check_suffix f ".cmi" &&
            not(Mtype.no_code_needed_sig Env.initial sg)
         then raise(Error(Location.none, Implementation_is_required f));
         (modname, Env.read_signature modname (pref ^ ".cmi")))
      objfiles in
  (* Compute signature of packaged unit *)
  Ident.reinit();
  let sg = package_signatures Subst.identity units in
  (* See if explicit interface is provided *)
  let mlifile =
    chop_extension_if_any cmifile ^ !Config.interface_suffix in
  if Sys.file_exists mlifile then begin
    if not (Sys.file_exists cmifile) then begin
      raise(Error(Location.in_file mlifile, Interface_not_compiled mlifile))
    end;
    let dclsig = Env.read_signature modulename cmifile in
    Includemod.compunit "(obtained by packing)" sg mlifile dclsig
  end else begin
    (* Determine imports *)
    let unit_names = List.map fst units in
    let imports =
      List.filter
        (fun (name, crc) -> not (List.mem name unit_names))
        (Env.imported_units()) in
    (* Write packaged signature *)
    Env.save_signature_with_imports sg modulename cmifile imports;
    Tcoerce_none
  end

(* Error report *)

open Printtyp

let report_error ppf = function
    Cannot_apply mty ->
      fprintf ppf
        "@[This module is not a functor; it has type@ %a@]" modtype mty
  | Not_included errs ->
      fprintf ppf
        "@[<v>Signature mismatch:@ %a@]" Includemod.report_error errs
  | Cannot_eliminate_dependency mty ->
      fprintf ppf
        "@[This functor has type@ %a@ \
           The parameter cannot be eliminated in the result type.@  \
           Please bind the argument to a module identifier.@]" modtype mty
  | Signature_expected -> fprintf ppf "This module type is not a signature"
  | Structure_expected mty ->
      fprintf ppf
        "@[This module is not a structure; it has type@ %a" modtype mty
  | With_no_component lid ->
      fprintf ppf
        "@[The signature constrained by `with' has no component named %a@]"
        longident lid
  | With_mismatch(lid, explanation) ->
      fprintf ppf
        "@[<v>\
           @[In this `with' constraint, the new definition of %a@ \
             does not match its original definition@ \
             in the constrained signature:@]@ \
           %a@]"
        longident lid Includemod.report_error explanation
  | Repeated_name(kind, name) ->
      fprintf ppf
        "@[Multiple definition of the %s name %s.@ \
           Names must be unique in a given structure or signature.@]" kind name
  | Non_generalizable typ ->
      fprintf ppf
        "@[The type of this expression,@ %a,@ \
           contains type variables that cannot be generalized@]" type_scheme typ
  | Non_generalizable_class (id, desc) ->
      fprintf ppf
        "@[The type of this class,@ %a,@ \
           contains type variables that cannot be generalized@]"
        (class_declaration id) desc
  | Non_generalizable_module mty ->
      fprintf ppf
        "@[The type of this module,@ %a,@ \
           contains type variables that cannot be generalized@]" modtype mty
  | Implementation_is_required intf_name ->
      fprintf ppf
        "@[The interface %s@ declares values, not just types.@ \
           An implementation must be provided.@]" intf_name
  | Interface_not_compiled intf_name ->
      fprintf ppf
        "@[Could not find the .cmi file for interface@ %s.@]" intf_name
  | Not_allowed_in_functor_body ->
      fprintf ppf
        "This kind of expression is not allowed within the body of a functor."
  | With_need_typeconstr ->
      fprintf ppf
        "Only type constructors with identical parameters can be substituted."