This file is indexed.

/usr/lib/ocaml/compiler-libs/typing/typedecl.ml is in ocaml-compiler-libs 3.12.1-2ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
(***********************************************************************)
(*                                                                     *)
(*                           Objective Caml                            *)
(*                                                                     *)
(* Xavier Leroy and Jerome Vouillon, projet Cristal, INRIA Rocquencourt*)
(*                                                                     *)
(*  Copyright 1996 Institut National de Recherche en Informatique et   *)
(*  en Automatique.  All rights reserved.  This file is distributed    *)
(*  under the terms of the Q Public License version 1.0.               *)
(*                                                                     *)
(***********************************************************************)

(* $Id: typedecl.ml 10669 2010-09-06 06:34:13Z garrigue $ *)

(**** Typing of type definitions ****)

open Misc
open Asttypes
open Parsetree
open Primitive
open Types
open Typedtree
open Typetexp

type error =
    Repeated_parameter
  | Duplicate_constructor of string
  | Too_many_constructors
  | Duplicate_label of string
  | Recursive_abbrev of string
  | Definition_mismatch of type_expr * Includecore.type_mismatch list
  | Constraint_failed of type_expr * type_expr
  | Unconsistent_constraint of (type_expr * type_expr) list
  | Type_clash of (type_expr * type_expr) list
  | Parameters_differ of Path.t * type_expr * type_expr
  | Null_arity_external
  | Missing_native_external
  | Unbound_type_var of type_expr * type_declaration
  | Unbound_exception of Longident.t
  | Not_an_exception of Longident.t
  | Bad_variance of int * (bool * bool) * (bool * bool)
  | Unavailable_type_constructor of Path.t
  | Bad_fixed_type of string
  | Unbound_type_var_exc of type_expr * type_expr

exception Error of Location.t * error

(* Enter all declared types in the environment as abstract types *)

let enter_type env (name, sdecl) id =
  let decl =
    { type_params =
        List.map (fun _ -> Btype.newgenvar ()) sdecl.ptype_params;
      type_arity = List.length sdecl.ptype_params;
      type_kind = Type_abstract;
      type_private = sdecl.ptype_private;
      type_manifest =
        begin match sdecl.ptype_manifest with None -> None
        | Some _ -> Some(Ctype.newvar ()) end;
      type_variance = List.map (fun _ -> true, true, true) sdecl.ptype_params;
    }
  in
  Env.add_type id decl env

let update_type temp_env env id loc =
  let path = Path.Pident id in
  let decl = Env.find_type path temp_env in
  match decl.type_manifest with None -> ()
  | Some ty ->
      let params = List.map (fun _ -> Ctype.newvar ()) decl.type_params in
      try Ctype.unify env (Ctype.newconstr path params) ty
      with Ctype.Unify trace ->
        raise (Error(loc, Type_clash trace))

(* Determine if a type is (an abbreviation for) the type "float" *)
(* We use the Ctype.expand_head_opt version of expand_head to get access
   to the manifest type of private abbreviations. *)
let is_float env ty =
  match Ctype.repr (Ctype.expand_head_opt env ty) with
    {desc = Tconstr(p, _, _)} -> Path.same p Predef.path_float
  | _ -> false

(* Determine if a type definition defines a fixed type. (PW) *)
let is_fixed_type sd =
  (match sd.ptype_manifest with
   | Some { ptyp_desc =
       (Ptyp_variant _|Ptyp_object _|Ptyp_class _|Ptyp_alias
         ({ptyp_desc = Ptyp_variant _|Ptyp_object _|Ptyp_class _},_)) } -> true
   | _ -> false) &&
  sd.ptype_kind = Ptype_abstract &&
  sd.ptype_private = Private

(* Set the row variable in a fixed type *)
let set_fixed_row env loc p decl =
  let tm =
    match decl.type_manifest with
      None -> assert false
    | Some t -> Ctype.expand_head env t
  in
  let rv =
    match tm.desc with
      Tvariant row ->
        let row = Btype.row_repr row in
        tm.desc <- Tvariant {row with row_fixed = true};
        if Btype.static_row row then Btype.newgenty Tnil
        else row.row_more
    | Tobject (ty, _) ->
        snd (Ctype.flatten_fields ty)
    | _ ->
        raise (Error (loc, Bad_fixed_type "is not an object or variant"))
  in
  if rv.desc <> Tvar then
    raise (Error (loc, Bad_fixed_type "has no row variable"));
  rv.desc <- Tconstr (p, decl.type_params, ref Mnil)

(* Translate one type declaration *)

module StringSet =
  Set.Make(struct
    type t = string
    let compare = compare
  end)

let transl_declaration env (name, sdecl) id =
  (* Bind type parameters *)
  reset_type_variables();
  Ctype.begin_def ();
  let params =
    try List.map (enter_type_variable true sdecl.ptype_loc) sdecl.ptype_params
    with Already_bound ->
      raise(Error(sdecl.ptype_loc, Repeated_parameter))
  in
  let cstrs = List.map
      (fun (sty, sty', loc) ->
        transl_simple_type env false sty,
        transl_simple_type env false sty', loc)
      sdecl.ptype_cstrs
  in
  let decl =
    { type_params = params;
      type_arity = List.length params;
      type_kind =
        begin match sdecl.ptype_kind with
          Ptype_abstract -> Type_abstract
        | Ptype_variant cstrs ->
            let all_constrs = ref StringSet.empty in
            List.iter
              (fun (name, args, loc) ->
                if StringSet.mem name !all_constrs then
                  raise(Error(sdecl.ptype_loc, Duplicate_constructor name));
                all_constrs := StringSet.add name !all_constrs)
              cstrs;
            if List.length (List.filter (fun (_, args, _) -> args <> []) cstrs)
               > (Config.max_tag + 1) then
              raise(Error(sdecl.ptype_loc, Too_many_constructors));
            Type_variant
              (List.map
                 (fun (name, args, loc) ->
                    (name, List.map (transl_simple_type env true) args))
              cstrs)
        | Ptype_record lbls ->
            let all_labels = ref StringSet.empty in
            List.iter
              (fun (name, mut, arg, loc) ->
                if StringSet.mem name !all_labels then
                  raise(Error(sdecl.ptype_loc, Duplicate_label name));
                all_labels := StringSet.add name !all_labels)
              lbls;
            let lbls' =
              List.map
                (fun (name, mut, arg, loc) ->
                  let ty = transl_simple_type env true arg in
                  name, mut, match ty.desc with Tpoly(t,[]) -> t | _ -> ty)
                lbls in
            let rep =
              if List.for_all (fun (name, mut, arg) -> is_float env arg) lbls'
              then Record_float
              else Record_regular in
            Type_record(lbls', rep)
        end;
      type_private = sdecl.ptype_private;
      type_manifest =
        begin match sdecl.ptype_manifest with
          None -> None
        | Some sty ->
            let no_row = not (is_fixed_type sdecl) in
            Some (transl_simple_type env no_row sty)
        end;
      type_variance = List.map (fun _ -> true, true, true) params;
    } in

  (* Check constraints *)
  List.iter
    (fun (ty, ty', loc) ->
      try Ctype.unify env ty ty' with Ctype.Unify tr ->
        raise(Error(loc, Unconsistent_constraint tr)))
    cstrs;
  Ctype.end_def ();
  (* Add abstract row *)
  if is_fixed_type sdecl then begin
    let (p, _) =
      try Env.lookup_type (Longident.Lident(Ident.name id ^ "#row")) env
      with Not_found -> assert false in
    set_fixed_row env sdecl.ptype_loc p decl
  end;
  (* Check for cyclic abbreviations *)
  begin match decl.type_manifest with None -> ()
  | Some ty ->
      if Ctype.cyclic_abbrev env id ty then
        raise(Error(sdecl.ptype_loc, Recursive_abbrev name));
  end;
  (id, decl)

(* Generalize a type declaration *)

let generalize_decl decl =
  List.iter Ctype.generalize decl.type_params;
  begin match decl.type_kind with
    Type_abstract ->
      ()
  | Type_variant v ->
      List.iter (fun (_, tyl) -> List.iter Ctype.generalize tyl) v
  | Type_record(r, rep) ->
      List.iter (fun (_, _, ty) -> Ctype.generalize ty) r
  end;
  begin match decl.type_manifest with
  | None    -> ()
  | Some ty -> Ctype.generalize ty
  end

(* Check that all constraints are enforced *)

module TypeSet =
  Set.Make
    (struct
      type t = type_expr
      let compare t1 t2 = t1.id - t2.id
    end)

let rec check_constraints_rec env loc visited ty =
  let ty = Ctype.repr ty in
  if TypeSet.mem ty !visited then () else begin
  visited := TypeSet.add ty !visited;
  match ty.desc with
  | Tconstr (path, args, _) ->
      let args' = List.map (fun _ -> Ctype.newvar ()) args in
      let ty' = Ctype.newconstr path args' in
      begin try Ctype.enforce_constraints env ty'
      with Ctype.Unify _ -> assert false
      | Not_found -> raise (Error(loc, Unavailable_type_constructor path))
      end;
      if not (Ctype.matches env ty ty') then
        raise (Error(loc, Constraint_failed (ty, ty')));
      List.iter (check_constraints_rec env loc visited) args
  | Tpoly (ty, tl) ->
      let _, ty = Ctype.instance_poly false tl ty in
      check_constraints_rec env loc visited ty
  | _ ->
      Btype.iter_type_expr (check_constraints_rec env loc visited) ty
  end

let check_constraints env (_, sdecl) (_, decl) =
  let visited = ref TypeSet.empty in
  begin match decl.type_kind with
  | Type_abstract -> ()
  | Type_variant l ->
      let rec find_pl = function
          Ptype_variant pl -> pl
        | Ptype_record _ | Ptype_abstract -> assert false
      in
      let pl = find_pl sdecl.ptype_kind in
      List.iter
        (fun (name, tyl) ->
          let styl =
            try let (_,sty,_) = List.find (fun (n,_,_) -> n = name) pl in sty
            with Not_found -> assert false in
          List.iter2
            (fun sty ty ->
              check_constraints_rec env sty.ptyp_loc visited ty)
            styl tyl)
        l
  | Type_record (l, _) ->
      let rec find_pl = function
          Ptype_record pl -> pl
        | Ptype_variant _ | Ptype_abstract -> assert false
      in
      let pl = find_pl sdecl.ptype_kind in
      let rec get_loc name = function
          [] -> assert false
        | (name', _, sty, _) :: tl ->
            if name = name' then sty.ptyp_loc else get_loc name tl
      in
      List.iter
        (fun (name, _, ty) ->
          check_constraints_rec env (get_loc name pl) visited ty)
        l
  end;
  begin match decl.type_manifest with
  | None -> ()
  | Some ty ->
      let sty =
        match sdecl.ptype_manifest with Some sty -> sty | _ -> assert false
      in
      check_constraints_rec env sty.ptyp_loc visited ty
  end

(*
   If both a variant/record definition and a type equation are given,
   need to check that the equation refers to a type of the same kind
   with the same constructors and labels.
*)
let check_abbrev env (_, sdecl) (id, decl) =
  match decl with
    {type_kind = (Type_variant _ | Type_record _); type_manifest = Some ty} ->
      begin match (Ctype.repr ty).desc with
        Tconstr(path, args, _) ->
          begin try
            let decl' = Env.find_type path env in
            let err =
              if List.length args <> List.length decl.type_params
              then [Includecore.Arity]
              else if not (Ctype.equal env false args decl.type_params)
              then [Includecore.Constraint]
              else
                Includecore.type_declarations env id
                  decl'
                  (Subst.type_declaration
                     (Subst.add_type id path Subst.identity) decl)
            in
            if err <> [] then
              raise(Error(sdecl.ptype_loc, Definition_mismatch (ty, err)))
          with Not_found ->
            raise(Error(sdecl.ptype_loc, Unavailable_type_constructor path))
          end
      | _ -> raise(Error(sdecl.ptype_loc, Definition_mismatch (ty, [])))
      end
  | _ -> ()

(* Check for ill-defined abbrevs *)

let check_recursion env loc path decl to_check =
  (* to_check is true for potentially mutually recursive paths.
     (path, decl) is the type declaration to be checked. *)

  let visited = ref [] in

  let rec check_regular cpath args prev_exp ty =
    let ty = Ctype.repr ty in
    if not (List.memq ty !visited) then begin
      visited := ty :: !visited;
      match ty.desc with
      | Tconstr(path', args', _) ->
          if Path.same path path' then begin
            if not (Ctype.equal env false args args') then
              raise (Error(loc,
                     Parameters_differ(cpath, ty, Ctype.newconstr path args)))
          end
          (* Attempt to expand a type abbreviation if:
              1- [to_check path'] holds
                 (otherwise the expansion cannot involve [path]);
              2- we haven't expanded this type constructor before
                 (otherwise we could loop if [path'] is itself
                 a non-regular abbreviation). *)
          else if to_check path' && not (List.mem path' prev_exp) then begin
            try
              (* Attempt expansion *)
              let (params0, body0) = Env.find_type_expansion path' env in
              let (params, body) =
                Ctype.instance_parameterized_type params0 body0 in
              begin
                try List.iter2 (Ctype.unify env) params args'
                with Ctype.Unify _ ->
                  raise (Error(loc, Constraint_failed
                                 (ty, Ctype.newconstr path' params0)));
              end;
              check_regular path' args (path' :: prev_exp) body
            with Not_found -> ()
          end;
          List.iter (check_regular cpath args prev_exp) args'
      | Tpoly (ty, tl) ->
          let (_, ty) = Ctype.instance_poly false tl ty in
          check_regular cpath args prev_exp ty
      | _ ->
          Btype.iter_type_expr (check_regular cpath args prev_exp) ty
    end in

  match decl.type_manifest with
  | None -> ()
  | Some body ->
      (* Check that recursion is well-founded *)
      begin try
        Ctype.correct_abbrev env path decl.type_params body
      with Ctype.Recursive_abbrev ->
        raise(Error(loc, Recursive_abbrev (Path.name path)))
      | Ctype.Unify trace -> raise(Error(loc, Type_clash trace))
      end;
      (* Check that recursion is regular *)
      if decl.type_params = [] then () else
      let (args, body) =
        Ctype.instance_parameterized_type decl.type_params body in
      check_regular path args [] body

let check_abbrev_recursion env id_loc_list (id, decl) =
  check_recursion env (List.assoc id id_loc_list) (Path.Pident id) decl
    (function Path.Pident id -> List.mem_assoc id id_loc_list | _ -> false)

(* Compute variance *)

let compute_variance env tvl nega posi cntr ty =
  let pvisited = ref TypeSet.empty
  and nvisited = ref TypeSet.empty
  and cvisited = ref TypeSet.empty in
  let rec compute_variance_rec posi nega cntr ty =
    let ty = Ctype.repr ty in
    if (not posi || TypeSet.mem ty !pvisited)
    && (not nega || TypeSet.mem ty !nvisited)
    && (not cntr || TypeSet.mem ty !cvisited) then
      ()
    else begin
      if posi then pvisited := TypeSet.add ty !pvisited;
      if nega then nvisited := TypeSet.add ty !nvisited;
      if cntr then cvisited := TypeSet.add ty !cvisited;
      let compute_same = compute_variance_rec posi nega cntr in
      match ty.desc with
        Tarrow (_, ty1, ty2, _) ->
          compute_variance_rec nega posi true ty1;
          compute_same ty2
      | Ttuple tl ->
          List.iter compute_same tl
      | Tconstr (path, tl, _) ->
          if tl = [] then () else begin
            try
              let decl = Env.find_type path env in
              List.iter2
                (fun ty (co,cn,ct) ->
                  compute_variance_rec
                    (posi && co || nega && cn)
                    (posi && cn || nega && co)
                    (cntr || ct)
                    ty)
                tl decl.type_variance
            with Not_found ->
              List.iter (compute_variance_rec true true true) tl
          end
      | Tobject (ty, _) ->
          compute_same ty
      | Tfield (_, _, ty1, ty2) ->
          compute_same ty1;
          compute_same ty2
      | Tsubst ty ->
          compute_same ty
      | Tvariant row ->
          let row = Btype.row_repr row in
          List.iter
            (fun (_,f) ->
              match Btype.row_field_repr f with
                Rpresent (Some ty) ->
                  compute_same ty
              | Reither (_, tyl, _, _) ->
                  List.iter compute_same tyl
              | _ -> ())
            row.row_fields;
          compute_same row.row_more
      | Tpoly (ty, _) ->
          compute_same ty
      | Tvar | Tnil | Tlink _ | Tunivar -> ()
      | Tpackage (_, _, tyl) ->
          List.iter (compute_variance_rec true true true) tyl
    end
  in
  compute_variance_rec nega posi cntr ty;
  List.iter
    (fun (ty, covar, convar, ctvar) ->
      if TypeSet.mem ty !pvisited then covar := true;
      if TypeSet.mem ty !nvisited then convar := true;
      if TypeSet.mem ty !cvisited then ctvar := true)
    tvl

let make_variance ty = (ty, ref false, ref false, ref false)
let whole_type decl =
  match decl.type_kind with
    Type_variant tll ->
      Btype.newgenty
        (Ttuple (List.map (fun (_, tl) -> Btype.newgenty (Ttuple tl)) tll))
  | Type_record (ftl, _) ->
      Btype.newgenty
        (Ttuple (List.map (fun (_, _, ty) -> ty) ftl))
  | Type_abstract ->
      match decl.type_manifest with
        Some ty -> ty
      | _ -> Btype.newgenty (Ttuple [])

let compute_variance_decl env check decl (required, loc) =
  if decl.type_kind = Type_abstract && decl.type_manifest = None then
    List.map (fun (c, n) -> if c || n then (c, n, n) else (true, true, true))
      required
  else
  let params = List.map Btype.repr decl.type_params in
  let tvl0 = List.map make_variance params in
  let fvl = if check then Ctype.free_variables (whole_type decl) else [] in
  let fvl = List.filter (fun v -> not (List.memq v params)) fvl in
  let tvl1 = List.map make_variance fvl in
  let tvl2 = List.map make_variance fvl in
  let tvl = tvl0 @ tvl1 in
  begin match decl.type_kind with
    Type_abstract ->
      begin match decl.type_manifest with
        None -> assert false
      | Some ty -> compute_variance env tvl true false false ty
      end
  | Type_variant tll ->
      List.iter
        (fun (_,tl) ->
          List.iter (compute_variance env tvl true false false) tl)
        tll
  | Type_record (ftl, _) ->
      List.iter
        (fun (_, mut, ty) ->
          let cn = (mut = Mutable) in
          compute_variance env tvl true cn cn ty)
        ftl
  end;
  let required =
    List.map (fun (c,n as r) -> if c || n then r else (true,true))
      required
  in
  List.iter2
    (fun (ty, co, cn, ct) (c, n) ->
      if ty.desc <> Tvar then begin
        co := c; cn := n; ct := n;
        compute_variance env tvl2 c n n ty
      end)
    tvl0 required;
  List.iter2
    (fun (ty, c1, n1, t1) (_, c2, n2, t2) ->
      if !c1 && not !c2 || !n1 && not !n2
      (* || !t1 && not !t2 && decl.type_kind = Type_abstract *)
      then raise (Error(loc,
                        if not (!c2 || !n2) then Unbound_type_var (ty, decl)
                        else Bad_variance (0, (!c1,!n1), (!c2,!n2)))))
    tvl1 tvl2;
  let pos = ref 0 in
  List.map2
    (fun (_, co, cn, ct) (c, n) ->
      incr pos;
      if !co && not c || !cn && not n
      then raise (Error(loc, Bad_variance (!pos, (!co,!cn), (c,n))));
      if decl.type_private = Private then (c,n,n) else
      let ct = if decl.type_kind = Type_abstract then ct else cn in
      (!co, !cn, !ct))
    tvl0 required

let is_sharp id =
  let s = Ident.name id in
  String.length s > 0 && s.[0] = '#'

let rec compute_variance_fixpoint env decls required variances =
  let new_decls =
    List.map2
      (fun (id, decl) variance -> id, {decl with type_variance = variance})
      decls variances
  in
  let new_env =
    List.fold_right (fun (id, decl) env -> Env.add_type id decl env)
      new_decls env
  in
  let new_variances =
    List.map2
      (fun (id, decl) -> compute_variance_decl new_env false decl)
      new_decls required
  in
  let new_variances =
    List.map2
      (List.map2 (fun (c1,n1,t1) (c2,n2,t2) -> c1||c2, n1||n2, t1||t2))
      new_variances variances in
  if new_variances <> variances then
    compute_variance_fixpoint env decls required new_variances
  else begin
    List.iter2
      (fun (id, decl) req -> if not (is_sharp id) then
        ignore (compute_variance_decl new_env true decl req))
      new_decls required;
    new_decls, new_env
  end

let init_variance (id, decl) =
  List.map (fun _ -> (false, false, false)) decl.type_params

(* for typeclass.ml *)
let compute_variance_decls env cldecls =
  let decls, required =
    List.fold_right
      (fun (obj_id, obj_abbr, cl_abbr, clty, cltydef, required) (decls, req) ->
        (obj_id, obj_abbr) :: decls, required :: req)
      cldecls ([],[])
  in
  let variances = List.map init_variance decls in
  let (decls, _) = compute_variance_fixpoint env decls required variances in
  List.map2
    (fun (_,decl) (_, _, cl_abbr, clty, cltydef, _) ->
      let variance = List.map (fun (c,n,t) -> (c,n)) decl.type_variance in
      (decl, {cl_abbr with type_variance = decl.type_variance},
       {clty with cty_variance = variance},
       {cltydef with clty_variance = variance}))
    decls cldecls

(* Check multiple declarations of labels/constructors *)

let check_duplicates name_sdecl_list =
  let labels = Hashtbl.create 7 and constrs = Hashtbl.create 7 in
  List.iter
    (fun (name, sdecl) -> match sdecl.ptype_kind with
      Ptype_variant cl ->
        List.iter
          (fun (cname, _, loc) ->
            try
              let name' = Hashtbl.find constrs cname in
              Location.prerr_warning loc
                (Warnings.Duplicate_definitions
                   ("constructor", cname, name', name))
            with Not_found -> Hashtbl.add constrs cname name)
          cl
    | Ptype_record fl ->
        List.iter
          (fun (cname, _, _, loc) ->
            try
              let name' = Hashtbl.find labels cname in
              Location.prerr_warning loc
                (Warnings.Duplicate_definitions ("label", cname, name', name))
            with Not_found -> Hashtbl.add labels cname name)
          fl
    | Ptype_abstract -> ())
    name_sdecl_list

(* Force recursion to go through id for private types*)
let name_recursion sdecl id decl =
  match decl with
  | { type_kind = Type_abstract;
      type_manifest = Some ty;
      type_private = Private; } when is_fixed_type sdecl ->
    let ty = Ctype.repr ty in
    let ty' = Btype.newty2 ty.level ty.desc in
    if Ctype.deep_occur ty ty' then
      let td = Tconstr(Path.Pident id, decl.type_params, ref Mnil) in
      Btype.link_type ty (Btype.newty2 ty.level td);
      {decl with type_manifest = Some ty'}
    else decl
  | _ -> decl

(* Translate a set of mutually recursive type declarations *)
let transl_type_decl env name_sdecl_list =
  (* Add dummy types for fixed rows *)
  let fixed_types =
    List.filter (fun (_, sd) -> is_fixed_type sd) name_sdecl_list
  in
  let name_sdecl_list =
    List.map
      (fun (name,sdecl) ->
        name^"#row",
        {sdecl with ptype_kind = Ptype_abstract; ptype_manifest = None})
      fixed_types
    @ name_sdecl_list
  in
  (* Create identifiers. *)
  let id_list =
    List.map (fun (name, _) -> Ident.create name) name_sdecl_list
  in
  (*
     Since we've introduced fresh idents, make sure the definition
     level is at least the binding time of these events. Otherwise,
     passing one of the recursively-defined type constrs as argument
     to an abbreviation may fail.
  *)
  Ctype.init_def(Ident.current_time());
  Ctype.begin_def();
  (* Enter types. *)
  let temp_env = List.fold_left2 enter_type env name_sdecl_list id_list in
  (* Translate each declaration. *)
  let decls =
    List.map2 (transl_declaration temp_env) name_sdecl_list id_list in
  (* Check for duplicates *)
  check_duplicates name_sdecl_list;
  (* Build the final env. *)
  let newenv =
    List.fold_right
      (fun (id, decl) env -> Env.add_type id decl env)
      decls env
  in
  (* Update stubs *)
  List.iter2
    (fun id (_, sdecl) -> update_type temp_env newenv id sdecl.ptype_loc)
    id_list name_sdecl_list;
  (* Generalize type declarations. *)
  Ctype.end_def();
  List.iter (fun (_, decl) -> generalize_decl decl) decls;
  (* Check for ill-formed abbrevs *)
  let id_loc_list =
    List.map2 (fun id (_,sdecl) -> (id, sdecl.ptype_loc))
      id_list name_sdecl_list
  in
  List.iter (check_abbrev_recursion newenv id_loc_list) decls;
  (* Check that all type variable are closed *)
  List.iter2
    (fun (_, sdecl) (id, decl) ->
       match Ctype.closed_type_decl decl with
         Some ty -> raise(Error(sdecl.ptype_loc, Unbound_type_var(ty,decl)))
       | None   -> ())
    name_sdecl_list decls;
  (* Check re-exportation *)
  List.iter2 (check_abbrev newenv) name_sdecl_list decls;
  (* Check that constraints are enforced *)
  List.iter2 (check_constraints newenv) name_sdecl_list decls;
  (* Name recursion *)
  let decls =
    List.map2 (fun (_, sdecl) (id, decl) -> id, name_recursion sdecl id decl)
      name_sdecl_list decls
  in
  (* Add variances to the environment *)
  let required =
    List.map (fun (_, sdecl) -> sdecl.ptype_variance, sdecl.ptype_loc)
      name_sdecl_list
  in
  let final_decls, final_env =
    compute_variance_fixpoint env decls required (List.map init_variance decls)
  in
  (* Done *)
  (final_decls, final_env)

(* Translate an exception declaration *)
let transl_closed_type env sty =
  let ty = transl_simple_type env true sty in
  match Ctype.free_variables ty with
  | []      -> ty
  | tv :: _ -> raise (Error (sty.ptyp_loc, Unbound_type_var_exc (tv, ty)))

let transl_exception env excdecl =
  reset_type_variables();
  Ctype.begin_def();
  let types = List.map (transl_closed_type env) excdecl in
  Ctype.end_def();
  List.iter Ctype.generalize types;
  types

(* Translate an exception rebinding *)
let transl_exn_rebind env loc lid =
  let cdescr =
    try
      Env.lookup_constructor lid env
    with Not_found ->
      raise(Error(loc, Unbound_exception lid)) in
  match cdescr.cstr_tag with
    Cstr_exception path -> (path, cdescr.cstr_args)
  | _ -> raise(Error(loc, Not_an_exception lid))

(* Translate a value declaration *)
let transl_value_decl env valdecl =
  let ty = Typetexp.transl_type_scheme env valdecl.pval_type in
  match valdecl.pval_prim with
    [] ->
      { val_type = ty; val_kind = Val_reg }
  | decl ->
      let arity = Ctype.arity ty in
      if arity = 0 then
        raise(Error(valdecl.pval_type.ptyp_loc, Null_arity_external));
      let prim = Primitive.parse_declaration arity decl in
      if !Clflags.native_code
      && prim.prim_arity > 5
      && prim.prim_native_name = ""
      then raise(Error(valdecl.pval_type.ptyp_loc, Missing_native_external));
      { val_type = ty; val_kind = Val_prim prim }

(* Translate a "with" constraint -- much simplified version of
    transl_type_decl. *)
let transl_with_constraint env id row_path orig_decl sdecl =
  reset_type_variables();
  Ctype.begin_def();
  let params =
    try
      List.map (enter_type_variable true sdecl.ptype_loc) sdecl.ptype_params
    with Already_bound ->
      raise(Error(sdecl.ptype_loc, Repeated_parameter)) in
  let orig_decl = Ctype.instance_declaration orig_decl in
  let arity_ok = List.length params = orig_decl.type_arity in
  if arity_ok then
    List.iter2 (Ctype.unify_var env) params orig_decl.type_params;
  List.iter
    (function (ty, ty', loc) ->
       try
         Ctype.unify env (transl_simple_type env false ty)
                         (transl_simple_type env false ty')
       with Ctype.Unify tr ->
         raise(Error(loc, Unconsistent_constraint tr)))
    sdecl.ptype_cstrs;
  let no_row = not (is_fixed_type sdecl) in
  let decl =
    { type_params = params;
      type_arity = List.length params;
      type_kind = if arity_ok then orig_decl.type_kind else Type_abstract;
      type_private = sdecl.ptype_private;
      type_manifest =
        begin match sdecl.ptype_manifest with
          None -> None
        | Some sty ->
            Some(transl_simple_type env no_row sty)
        end;
      type_variance = [];
    }
  in
  begin match row_path with None -> ()
  | Some p -> set_fixed_row env sdecl.ptype_loc p decl
  end;
  begin match Ctype.closed_type_decl decl with None -> ()
  | Some ty -> raise(Error(sdecl.ptype_loc, Unbound_type_var(ty,decl)))
  end;
  let decl = name_recursion sdecl id decl in
  let decl =
    {decl with type_variance =
     compute_variance_decl env false decl
       (sdecl.ptype_variance, sdecl.ptype_loc)} in
  Ctype.end_def();
  generalize_decl decl;
  decl

(* Approximate a type declaration: just make all types abstract *)

let abstract_type_decl arity =
  let rec make_params n =
    if n <= 0 then [] else Ctype.newvar() :: make_params (n-1) in
  Ctype.begin_def();
  let decl =
    { type_params = make_params arity;
      type_arity = arity;
      type_kind = Type_abstract;
      type_private = Public;
      type_manifest = None;
      type_variance = replicate_list (true, true, true) arity } in
  Ctype.end_def();
  generalize_decl decl;
  decl

let approx_type_decl env name_sdecl_list =
  List.map
    (fun (name, sdecl) ->
      (Ident.create name,
       abstract_type_decl (List.length sdecl.ptype_params)))
    name_sdecl_list

(* Variant of check_abbrev_recursion to check the well-formedness
   conditions on type abbreviations defined within recursive modules. *)

let check_recmod_typedecl env loc recmod_ids path decl =
  (* recmod_ids is the list of recursively-defined module idents.
     (path, decl) is the type declaration to be checked. *)
  check_recursion env loc path decl
    (fun path -> List.exists (fun id -> Path.isfree id path) recmod_ids)


(**** Error report ****)

open Format

let explain_unbound ppf tv tl typ kwd lab =
  try
    let ti = List.find (fun ti -> Ctype.deep_occur tv (typ ti)) tl in
    let ty0 = (* Hack to force aliasing when needed *)
      Btype.newgenty (Tobject(tv, ref None)) in
    Printtyp.reset_and_mark_loops_list [typ ti; ty0];
    fprintf ppf
      ".@.@[<hov2>In %s@ %s%a@;<1 -2>the variable %a is unbound@]"
      kwd (lab ti) Printtyp.type_expr (typ ti) Printtyp.type_expr tv
  with Not_found -> ()

let explain_unbound_single ppf tv ty =
  let trivial ty =
    explain_unbound ppf tv [ty] (fun t -> t) "type" (fun _ -> "") in
  match (Ctype.repr ty).desc with
    Tobject(fi,_) ->
      let (tl, rv) = Ctype.flatten_fields fi in
      if rv == tv then trivial ty else
      explain_unbound ppf tv tl (fun (_,_,t) -> t)
        "method" (fun (lab,_,_) -> lab ^ ": ")
  | Tvariant row ->
      let row = Btype.row_repr row in
      if row.row_more == tv then trivial ty else
      explain_unbound ppf tv row.row_fields
        (fun (l,f) -> match Btype.row_field_repr f with
          Rpresent (Some t) -> t
        | Reither (_,[t],_,_) -> t
        | Reither (_,tl,_,_) -> Btype.newgenty (Ttuple tl)
        | _ -> Btype.newgenty (Ttuple[]))
        "case" (fun (lab,_) -> "`" ^ lab ^ " of ")
  | _ -> trivial ty

let report_error ppf = function
  | Repeated_parameter ->
      fprintf ppf "A type parameter occurs several times"
  | Duplicate_constructor s ->
      fprintf ppf "Two constructors are named %s" s
  | Too_many_constructors ->
      fprintf ppf
        "@[Too many non-constant constructors@ -- maximum is %i %s@]"
        (Config.max_tag + 1) "non-constant constructors"
  | Duplicate_label s ->
      fprintf ppf "Two labels are named %s" s
  | Recursive_abbrev s ->
      fprintf ppf "The type abbreviation %s is cyclic" s
  | Definition_mismatch (ty, errs) ->
      Printtyp.reset_and_mark_loops ty;
      fprintf ppf "@[<v>@[<hov>%s@ %s@;<1 2>%a@]%a@]"
        "This variant or record definition" "does not match that of type"
        Printtyp.type_expr ty
        (Includecore.report_type_mismatch "the original" "this" "definition")
        errs
  | Constraint_failed (ty, ty') ->
      fprintf ppf "Constraints are not satisfied in this type.@.";
      Printtyp.reset_and_mark_loops ty;
      Printtyp.mark_loops ty';
      fprintf ppf "@[<hv>Type@ %a@ should be an instance of@ %a@]"
        Printtyp.type_expr ty Printtyp.type_expr ty'
  | Parameters_differ (path, ty, ty') ->
      Printtyp.reset_and_mark_loops ty;
      Printtyp.mark_loops ty';
      fprintf ppf
        "@[<hv>In the definition of %s, type@ %a@ should be@ %a@]"
        (Path.name path) Printtyp.type_expr ty Printtyp.type_expr ty'
  | Unconsistent_constraint trace ->
      fprintf ppf "The type constraints are not consistent.@.";
      Printtyp.report_unification_error ppf trace
        (fun ppf -> fprintf ppf "Type")
        (fun ppf -> fprintf ppf "is not compatible with type")
  | Type_clash trace ->
      Printtyp.report_unification_error ppf trace
        (function ppf ->
           fprintf ppf "This type constructor expands to type")
        (function ppf ->
           fprintf ppf "but is used here with type")
  | Null_arity_external ->
      fprintf ppf "External identifiers must be functions"
  | Missing_native_external ->
      fprintf ppf "@[<hv>An external function with more than 5 arguments \
                   requires a second stub function@ \
                   for native-code compilation@]"
  | Unbound_type_var (ty, decl) ->
      fprintf ppf "A type variable is unbound in this type declaration";
      let ty = Ctype.repr ty in
      begin match decl.type_kind, decl.type_manifest with
        Type_variant tl, _ ->
          explain_unbound ppf ty tl (fun (_,tl) -> Btype.newgenty (Ttuple tl))
            "case" (fun (lab,_) -> lab ^ " of ")
      | Type_record (tl, _), _ ->
          explain_unbound ppf ty tl (fun (_,_,t) -> t)
            "field" (fun (lab,_,_) -> lab ^ ": ")
      | Type_abstract, Some ty' ->
          explain_unbound_single ppf ty ty'
      | _ -> ()
      end
  | Unbound_type_var_exc (tv, ty) ->
      fprintf ppf "A type variable is unbound in this exception declaration";
      explain_unbound_single ppf (Ctype.repr tv) ty
  | Unbound_exception lid ->
      fprintf ppf "Unbound exception constructor@ %a" Printtyp.longident lid
  | Not_an_exception lid ->
      fprintf ppf "The constructor@ %a@ is not an exception"
        Printtyp.longident lid
  | Bad_variance (n, v1, v2) ->
      let variance = function
          (true, true)  -> "invariant"
        | (true, false) -> "covariant"
        | (false,true)  -> "contravariant"
        | (false,false) -> "unrestricted"
      in
      let suffix n =
        let teen = (n mod 100)/10 = 1 in
        match n mod 10 with
        | 1 when not teen -> "st"
        | 2 when not teen -> "nd"
        | 3 when not teen -> "rd"
        | _ -> "th"
      in
      if n < 1 then
        fprintf ppf "%s@ %s@ %s"
          "In this definition, a type variable"
          "has a variance that is not reflected"
          "by its occurrence in type parameters."
      else
        fprintf ppf "%s@ %s@ %s %d%s %s %s,@ %s %s"
          "In this definition, expected parameter"
          "variances are not satisfied."
          "The" n (suffix n)
          "type parameter was expected to be" (variance v2)
          "but it is" (variance v1)
  | Unavailable_type_constructor p ->
      fprintf ppf "The definition of type %a@ is unavailable" Printtyp.path p
  | Bad_fixed_type r ->
      fprintf ppf "This fixed type %s" r