This file is indexed.

/usr/lib/ocaml/compiler-libs/typing/typeclass.ml is in ocaml-compiler-libs 3.12.1-2ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
(***********************************************************************)
(*                                                                     *)
(*                           Objective Caml                            *)
(*                                                                     *)
(*         Jerome Vouillon, projet Cristal, INRIA Rocquencourt         *)
(*                                                                     *)
(*  Copyright 1996 Institut National de Recherche en Informatique et   *)
(*  en Automatique.  All rights reserved.  This file is distributed    *)
(*  under the terms of the Q Public License version 1.0.               *)
(*                                                                     *)
(***********************************************************************)

(* $Id: typeclass.ml 10702 2010-10-02 08:56:39Z garrigue $ *)

open Misc
open Parsetree
open Asttypes
open Path
open Types
open Typedtree
open Typecore
open Typetexp
open Format

type error =
    Unconsistent_constraint of (type_expr * type_expr) list
  | Field_type_mismatch of string * string * (type_expr * type_expr) list
  | Structure_expected of class_type
  | Cannot_apply of class_type
  | Apply_wrong_label of label
  | Pattern_type_clash of type_expr
  | Repeated_parameter
  | Unbound_class_2 of Longident.t
  | Unbound_class_type_2 of Longident.t
  | Abbrev_type_clash of type_expr * type_expr * type_expr
  | Constructor_type_mismatch of string * (type_expr * type_expr) list
  | Virtual_class of bool * string list * string list
  | Parameter_arity_mismatch of Longident.t * int * int
  | Parameter_mismatch of (type_expr * type_expr) list
  | Bad_parameters of Ident.t * type_expr * type_expr
  | Class_match_failure of Ctype.class_match_failure list
  | Unbound_val of string
  | Unbound_type_var of (formatter -> unit) * Ctype.closed_class_failure
  | Make_nongen_seltype of type_expr
  | Non_generalizable_class of Ident.t * Types.class_declaration
  | Cannot_coerce_self of type_expr
  | Non_collapsable_conjunction of
      Ident.t * Types.class_declaration * (type_expr * type_expr) list
  | Final_self_clash of (type_expr * type_expr) list
  | Mutability_mismatch of string * mutable_flag
  | No_overriding of string * string

exception Error of Location.t * error


                       (**********************)
                       (*  Useful constants  *)
                       (**********************)


(*
   Self type have a dummy private method, thus preventing it to become
   closed.
*)
let dummy_method = Ctype.dummy_method

(*
   Path associated to the temporary class type of a class being typed
   (its constructor is not available).
*)
let unbound_class = Path.Pident (Ident.create "")


                (************************************)
                (*  Some operations on class types  *)
                (************************************)


(* Fully expand the head of a class type *)
let rec scrape_class_type =
  function
    Tcty_constr (_, _, cty) -> scrape_class_type cty
  | cty                     -> cty

(* Generalize a class type *)
let rec generalize_class_type =
  function
    Tcty_constr (_, params, cty) ->
      List.iter Ctype.generalize params;
      generalize_class_type cty
  | Tcty_signature {cty_self = sty; cty_vars = vars; cty_inher = inher} ->
      Ctype.generalize sty;
      Vars.iter (fun _ (_, _, ty) -> Ctype.generalize ty) vars;
      List.iter (fun (_,tl) -> List.iter Ctype.generalize tl) inher
  | Tcty_fun (_, ty, cty) ->
      Ctype.generalize ty;
      generalize_class_type cty

(* Return the virtual methods of a class type *)
let virtual_methods sign =
  let (fields, _) = Ctype.flatten_fields (Ctype.object_fields sign.cty_self) in
  List.fold_left
    (fun virt (lab, _, _) ->
       if lab = dummy_method then virt else
       if Concr.mem lab sign.cty_concr then virt else
       lab::virt)
    [] fields

(* Return the constructor type associated to a class type *)
let rec constructor_type constr cty =
  match cty with
    Tcty_constr (_, _, cty) ->
      constructor_type constr cty
  | Tcty_signature sign ->
      constr
  | Tcty_fun (l, ty, cty) ->
      Ctype.newty (Tarrow (l, ty, constructor_type constr cty, Cok))

let rec class_body cty =
  match cty with
    Tcty_constr (_, _, cty') ->
      cty (* Only class bodies can be abbreviated *)
  | Tcty_signature sign ->
      cty
  | Tcty_fun (_, ty, cty) ->
      class_body cty

let rec extract_constraints cty =
  let sign = Ctype.signature_of_class_type cty in
  (Vars.fold (fun lab _ vars -> lab :: vars) sign.cty_vars [],
   begin let (fields, _) =
     Ctype.flatten_fields (Ctype.object_fields sign.cty_self)
   in
   List.fold_left
     (fun meths (lab, _, _) ->
        if lab = dummy_method then meths else lab::meths)
     [] fields
   end,
   sign.cty_concr)

let rec abbreviate_class_type path params cty =
  match cty with
    Tcty_constr (_, _, _) | Tcty_signature _ ->
      Tcty_constr (path, params, cty)
  | Tcty_fun (l, ty, cty) ->
      Tcty_fun (l, ty, abbreviate_class_type path params cty)

let rec closed_class_type =
  function
    Tcty_constr (_, params, _) ->
      List.for_all Ctype.closed_schema params
  | Tcty_signature sign ->
      Ctype.closed_schema sign.cty_self
        &&
      Vars.fold (fun _ (_, _, ty) cc -> Ctype.closed_schema ty && cc)
        sign.cty_vars
        true
  | Tcty_fun (_, ty, cty) ->
      Ctype.closed_schema ty
        &&
      closed_class_type cty

let closed_class cty =
  List.for_all Ctype.closed_schema cty.cty_params
    &&
  closed_class_type cty.cty_type

let rec limited_generalize rv =
  function
    Tcty_constr (path, params, cty) ->
      List.iter (Ctype.limited_generalize rv) params;
      limited_generalize rv cty
  | Tcty_signature sign ->
      Ctype.limited_generalize rv sign.cty_self;
      Vars.iter (fun _ (_, _, ty) -> Ctype.limited_generalize rv ty)
        sign.cty_vars;
      List.iter (fun (_, tl) -> List.iter (Ctype.limited_generalize rv) tl)
        sign.cty_inher
  | Tcty_fun (_, ty, cty) ->
      Ctype.limited_generalize rv ty;
      limited_generalize rv cty

(* Record a class type *)
let rc node =
  Stypes.record (Stypes.Ti_class node);
  node


                (***********************************)
                (*  Primitives for typing classes  *)
                (***********************************)


(* Enter a value in the method environment only *)
let enter_met_env lab kind ty val_env met_env par_env =
  let (id, val_env) =
    Env.enter_value lab {val_type = ty; val_kind = Val_unbound} val_env
  in
  (id, val_env,
   Env.add_value id {val_type = ty; val_kind = kind} met_env,
   Env.add_value id {val_type = ty; val_kind = Val_unbound} par_env)

(* Enter an instance variable in the environment *)
let enter_val cl_num vars inh lab mut virt ty val_env met_env par_env loc =
  let (id, virt) =
    try
      let (id, mut', virt', ty') = Vars.find lab !vars in
      if mut' <> mut then raise (Error(loc, Mutability_mismatch(lab, mut)));
      Ctype.unify val_env (Ctype.instance ty) (Ctype.instance ty');
      (if not inh then Some id else None),
      (if virt' = Concrete then virt' else virt)
    with
      Ctype.Unify tr ->
        raise (Error(loc, Field_type_mismatch("instance variable", lab, tr)))
    | Not_found -> None, virt
  in
  let (id, _, _, _) as result =
    match id with Some id -> (id, val_env, met_env, par_env)
    | None ->
        enter_met_env lab (Val_ivar (mut, cl_num)) ty val_env met_env par_env
  in
  vars := Vars.add lab (id, mut, virt, ty) !vars;
  result

let concr_vals vars =
  Vars.fold
    (fun id (_, vf, _) s -> if vf = Virtual then s else Concr.add id s)
    vars Concr.empty

let inheritance self_type env ovf concr_meths warn_vals loc parent =
  match scrape_class_type parent with
    Tcty_signature cl_sig ->

      (* Methods *)
      begin try
        Ctype.unify env self_type cl_sig.cty_self
      with Ctype.Unify trace ->
        match trace with
          _::_::_::({desc = Tfield(n, _, _, _)}, _)::rem ->
            raise(Error(loc, Field_type_mismatch ("method", n, rem)))
        | _ ->
            assert false
      end;

      (* Overriding *)
      let over_meths = Concr.inter cl_sig.cty_concr concr_meths in
      let concr_vals = concr_vals cl_sig.cty_vars in
      let over_vals = Concr.inter concr_vals warn_vals in
      begin match ovf with
        Some Fresh ->
          let cname =
            match parent with
              Tcty_constr (p, _, _) -> Path.name p
            | _ -> "inherited"
          in
          if not (Concr.is_empty over_meths) then
            Location.prerr_warning loc
              (Warnings.Method_override (cname :: Concr.elements over_meths));
          if not (Concr.is_empty over_vals) then
            Location.prerr_warning loc
              (Warnings.Instance_variable_override
                 (cname :: Concr.elements over_vals));
      | Some Override
        when Concr.is_empty over_meths && Concr.is_empty over_vals ->
        raise (Error(loc, No_overriding ("","")))
      | _ -> ()
      end;

      let concr_meths = Concr.union cl_sig.cty_concr concr_meths
      and warn_vals = Concr.union concr_vals warn_vals in

      (cl_sig, concr_meths, warn_vals)

  | _ ->
      raise(Error(loc, Structure_expected parent))

let virtual_method val_env meths self_type lab priv sty loc =
  let (_, ty') =
     Ctype.filter_self_method val_env lab priv meths self_type
  in
  let ty = transl_simple_type val_env false sty in
  try Ctype.unify val_env ty ty' with Ctype.Unify trace ->
    raise(Error(loc, Field_type_mismatch ("method", lab, trace)))

let delayed_meth_specs = ref []

let declare_method val_env meths self_type lab priv sty loc =
  let (_, ty') =
     Ctype.filter_self_method val_env lab priv meths self_type
  in
  let unif ty =
    try Ctype.unify val_env ty ty' with Ctype.Unify trace ->
      raise(Error(loc, Field_type_mismatch ("method", lab, trace)))
  in
  match sty.ptyp_desc, priv with
    Ptyp_poly ([],sty), Public ->
      delayed_meth_specs :=
        lazy (unif (transl_simple_type_univars val_env sty)) ::
        !delayed_meth_specs
  | _ -> unif (transl_simple_type val_env false sty)

let type_constraint val_env sty sty' loc =
  let ty  = transl_simple_type val_env false sty in
  let ty' = transl_simple_type val_env false sty' in
  try Ctype.unify val_env ty ty' with Ctype.Unify trace ->
    raise(Error(loc, Unconsistent_constraint trace))

let mkpat d = { ppat_desc = d; ppat_loc = Location.none }
let make_method cl_num expr =
  { pexp_desc =
      Pexp_function ("", None,
                     [mkpat (Ppat_alias (mkpat(Ppat_var "self-*"),
                                         "self-" ^ cl_num)),
                      expr]);
    pexp_loc = expr.pexp_loc }

(*******************************)

let add_val env loc lab (mut, virt, ty) val_sig =
  let virt =
    try
      let (mut', virt', ty') = Vars.find lab val_sig in
      if virt' = Concrete then virt' else virt
    with Not_found -> virt
  in
  Vars.add lab (mut, virt, ty) val_sig

let rec class_type_field env self_type meths (val_sig, concr_meths, inher) =
  function
    Pctf_inher sparent ->
      let parent = class_type env sparent in
      let inher =
        match parent with
          Tcty_constr (p, tl, _) -> (p, tl) :: inher
        | _ -> inher
      in
      let (cl_sig, concr_meths, _) =
        inheritance self_type env None concr_meths Concr.empty sparent.pcty_loc
          parent
      in
      let val_sig =
        Vars.fold (add_val env sparent.pcty_loc) cl_sig.cty_vars val_sig in
      (val_sig, concr_meths, inher)

  | Pctf_val (lab, mut, virt, sty, loc) ->
      let ty = transl_simple_type env false sty in
      (add_val env loc lab (mut, virt, ty) val_sig, concr_meths, inher)

  | Pctf_virt (lab, priv, sty, loc) ->
      declare_method env meths self_type lab priv sty loc;
      (val_sig, concr_meths, inher)

  | Pctf_meth (lab, priv, sty, loc)  ->
      declare_method env meths self_type lab priv sty loc;
      (val_sig, Concr.add lab concr_meths, inher)

  | Pctf_cstr (sty, sty', loc) ->
      type_constraint env sty sty' loc;
      (val_sig, concr_meths, inher)

and class_signature env sty sign =
  let meths = ref Meths.empty in
  let self_type = Ctype.expand_head env (transl_simple_type env false sty) in

  (* Check that the binder is a correct type, and introduce a dummy
     method preventing self type from being closed. *)
  let dummy_obj = Ctype.newvar () in
  Ctype.unify env (Ctype.filter_method env dummy_method Private dummy_obj)
    (Ctype.newty (Ttuple []));
  begin try
    Ctype.unify env self_type dummy_obj
  with Ctype.Unify _ ->
    raise(Error(sty.ptyp_loc, Pattern_type_clash self_type))
  end;

  (* Class type fields *)
  let (val_sig, concr_meths, inher) =
    List.fold_left (class_type_field env self_type meths)
      (Vars.empty, Concr.empty, [])
      sign
  in

  {cty_self = self_type;
   cty_vars = val_sig;
   cty_concr = concr_meths;
   cty_inher = inher}

and class_type env scty =
  match scty.pcty_desc with
    Pcty_constr (lid, styl) ->
      let (path, decl) = Typetexp.find_cltype env scty.pcty_loc lid in
      if Path.same decl.clty_path unbound_class then
        raise(Error(scty.pcty_loc, Unbound_class_type_2 lid));
      let (params, clty) =
        Ctype.instance_class decl.clty_params decl.clty_type
      in
      if List.length params <> List.length styl then
        raise(Error(scty.pcty_loc,
                    Parameter_arity_mismatch (lid, List.length params,
                                                   List.length styl)));
      List.iter2
        (fun sty ty ->
           let ty' = transl_simple_type env false sty in
           try Ctype.unify env ty' ty with Ctype.Unify trace ->
             raise(Error(sty.ptyp_loc, Parameter_mismatch trace)))
        styl params;
      Tcty_constr (path, params, clty)

  | Pcty_signature (sty, sign) ->
      Tcty_signature (class_signature env sty sign)

  | Pcty_fun (l, sty, scty) ->
      let ty = transl_simple_type env false sty in
      let cty = class_type env scty in
      Tcty_fun (l, ty, cty)

let class_type env scty =
  delayed_meth_specs := [];
  let cty = class_type env scty in
  List.iter Lazy.force (List.rev !delayed_meth_specs);
  delayed_meth_specs := [];
  cty

(*******************************)

let rec class_field cl_num self_type meths vars
    (val_env, met_env, par_env, fields, concr_meths, warn_vals, inher) =
  function
    Pcf_inher (ovf, sparent, super) ->
      let parent = class_expr cl_num val_env par_env sparent in
      let inher =
        match parent.cl_type with
          Tcty_constr (p, tl, _) -> (p, tl) :: inher
        | _ -> inher
      in
      let (cl_sig, concr_meths, warn_vals) =
        inheritance self_type val_env (Some ovf) concr_meths warn_vals
          sparent.pcl_loc parent.cl_type
      in
      (* Variables *)
      let (val_env, met_env, par_env, inh_vars) =
        Vars.fold
          (fun lab info (val_env, met_env, par_env, inh_vars) ->
             let mut, vr, ty = info in
             let (id, val_env, met_env, par_env) =
               enter_val cl_num vars true lab mut vr ty val_env met_env par_env
                 sparent.pcl_loc
             in
             (val_env, met_env, par_env, (lab, id) :: inh_vars))
          cl_sig.cty_vars (val_env, met_env, par_env, [])
      in
      (* Inherited concrete methods *)
      let inh_meths =
        Concr.fold (fun lab rem -> (lab, Ident.create lab)::rem)
          cl_sig.cty_concr []
      in
      (* Super *)
      let (val_env, met_env, par_env) =
        match super with
          None ->
            (val_env, met_env, par_env)
        | Some name ->
            let (id, val_env, met_env, par_env) =
              enter_met_env name (Val_anc (inh_meths, cl_num)) self_type
                val_env met_env par_env
            in
            (val_env, met_env, par_env)
      in
      (val_env, met_env, par_env,
       lazy(Cf_inher (parent, inh_vars, inh_meths))::fields,
       concr_meths, warn_vals, inher)

  | Pcf_valvirt (lab, mut, styp, loc) ->
      if !Clflags.principal then Ctype.begin_def ();
      let ty = Typetexp.transl_simple_type val_env false styp in
      if !Clflags.principal then begin
        Ctype.end_def ();
        Ctype.generalize_structure ty
      end;
      let (id, val_env, met_env', par_env) =
        enter_val cl_num vars false lab mut Virtual ty
          val_env met_env par_env loc
      in
      (val_env, met_env', par_env,
       lazy(Cf_val (lab, id, None, met_env' == met_env)) :: fields,
       concr_meths, warn_vals, inher)

  | Pcf_val (lab, mut, ovf, sexp, loc) ->
      if Concr.mem lab warn_vals then begin
        if ovf = Fresh then
          Location.prerr_warning loc (Warnings.Instance_variable_override[lab])
      end else begin
        if ovf = Override then
          raise(Error(loc, No_overriding ("instance variable", lab)))
      end;
      if !Clflags.principal then Ctype.begin_def ();
      let exp =
        try type_exp val_env sexp with Ctype.Unify [(ty, _)] ->
          raise(Error(loc, Make_nongen_seltype ty))
      in
      if !Clflags.principal then begin
        Ctype.end_def ();
        Ctype.generalize_structure exp.exp_type
      end;
      let (id, val_env, met_env', par_env) =
        enter_val cl_num vars false lab mut Concrete exp.exp_type
          val_env met_env par_env loc
      in
      (val_env, met_env', par_env,
       lazy(Cf_val (lab, id, Some exp, met_env' == met_env)) :: fields,
       concr_meths, Concr.add lab warn_vals, inher)

  | Pcf_virt (lab, priv, sty, loc) ->
      virtual_method val_env meths self_type lab priv sty loc;
      (val_env, met_env, par_env, fields, concr_meths, warn_vals, inher)

  | Pcf_meth (lab, priv, ovf, expr, loc)  ->
      if Concr.mem lab concr_meths then begin
        if ovf = Fresh then
          Location.prerr_warning loc (Warnings.Method_override [lab])
      end else begin
        if ovf = Override then raise(Error(loc, No_overriding("method", lab)))
      end;
      let (_, ty) =
        Ctype.filter_self_method val_env lab priv meths self_type
      in
      begin try match expr.pexp_desc with
        Pexp_poly (sbody, sty) ->
          begin match sty with None -> ()
          | Some sty ->
              Ctype.unify val_env
                (Typetexp.transl_simple_type val_env false sty) ty
          end;
          begin match (Ctype.repr ty).desc with
            Tvar ->
              let ty' = Ctype.newvar () in
              Ctype.unify val_env (Ctype.newty (Tpoly (ty', []))) ty;
              Ctype.unify val_env (type_approx val_env sbody) ty'
          | Tpoly (ty1, tl) ->
              let _, ty1' = Ctype.instance_poly false tl ty1 in
              let ty2 = type_approx val_env sbody in
              Ctype.unify val_env ty2 ty1'
          | _ -> assert false
          end
      | _ -> assert false
      with Ctype.Unify trace ->
        raise(Error(loc, Field_type_mismatch ("method", lab, trace)))
      end;
      let meth_expr = make_method cl_num expr in
      (* backup variables for Pexp_override *)
      let vars_local = !vars in

      let field =
        lazy begin
          let meth_type =
            Ctype.newty (Tarrow("", self_type, Ctype.instance ty, Cok)) in
          Ctype.raise_nongen_level ();
          vars := vars_local;
          let texp = type_expect met_env meth_expr meth_type in
          Ctype.end_def ();
          Cf_meth (lab, texp)
        end in
      (val_env, met_env, par_env, field::fields,
       Concr.add lab concr_meths, warn_vals, inher)

  | Pcf_cstr (sty, sty', loc) ->
      type_constraint val_env sty sty' loc;
      (val_env, met_env, par_env, fields, concr_meths, warn_vals, inher)

  | Pcf_let (rec_flag, sdefs, loc) ->
      let (defs, val_env) =
        try
          Typecore.type_let val_env rec_flag sdefs None
        with Ctype.Unify [(ty, _)] ->
          raise(Error(loc, Make_nongen_seltype ty))
      in
      let (vals, met_env, par_env) =
        List.fold_right
          (fun id (vals, met_env, par_env) ->
             let expr =
               Typecore.type_exp val_env
                 {pexp_desc = Pexp_ident (Longident.Lident (Ident.name id));
                  pexp_loc = Location.none}
             in
             let desc =
               {val_type = expr.exp_type;
                val_kind = Val_ivar (Immutable, cl_num)}
             in
             let id' = Ident.create (Ident.name id) in
             ((id', expr)
              :: vals,
              Env.add_value id' desc met_env,
              Env.add_value id' desc par_env))
          (let_bound_idents defs)
          ([], met_env, par_env)
      in
      (val_env, met_env, par_env, lazy(Cf_let(rec_flag, defs, vals))::fields,
       concr_meths, warn_vals, inher)

  | Pcf_init expr ->
      let expr = make_method cl_num expr in
      let vars_local = !vars in
      let field =
        lazy begin
          Ctype.raise_nongen_level ();
          let meth_type =
            Ctype.newty
              (Tarrow ("", self_type, Ctype.instance Predef.type_unit, Cok)) in
          vars := vars_local;
          let texp = type_expect met_env expr meth_type in
          Ctype.end_def ();
          Cf_init texp
        end in
      (val_env, met_env, par_env, field::fields, concr_meths, warn_vals, inher)

and class_structure cl_num final val_env met_env loc (spat, str) =
  (* Environment for substructures *)
  let par_env = met_env in

  (* Self type, with a dummy method preventing it from being closed/escaped. *)
  let self_type = Ctype.newvar () in
  Ctype.unify val_env
    (Ctype.filter_method val_env dummy_method Private self_type)
    (Ctype.newty (Ttuple []));

  (* Private self is used for private method calls *)
  let private_self = if final then Ctype.newvar () else self_type in

  (* Self binder *)
  let (pat, meths, vars, val_env, meth_env, par_env) =
    type_self_pattern cl_num private_self val_env met_env par_env spat
  in
  let public_self = pat.pat_type in

  (* Check that the binder has a correct type *)
  let ty =
    if final then Ctype.newty (Tobject (Ctype.newvar(), ref None))
    else self_type in
  begin try Ctype.unify val_env public_self ty with
    Ctype.Unify _ ->
      raise(Error(spat.ppat_loc, Pattern_type_clash public_self))
  end;
  let get_methods ty =
    (fst (Ctype.flatten_fields
            (Ctype.object_fields (Ctype.expand_head val_env ty)))) in
  if final then begin
    (* Copy known information to still empty self_type *)
    List.iter
      (fun (lab,kind,ty) ->
        let k =
          if Btype.field_kind_repr kind = Fpresent then Public else Private in
        try Ctype.unify val_env ty
            (Ctype.filter_method val_env lab k self_type)
        with _ -> assert false)
      (get_methods public_self)
  end;

  (* Typing of class fields *)
  let (_, _, _, fields, concr_meths, _, inher) =
    List.fold_left (class_field cl_num self_type meths vars)
      (val_env, meth_env, par_env, [], Concr.empty, Concr.empty, [])
      str
  in
  Ctype.unify val_env self_type (Ctype.newvar ());
  let sign =
    {cty_self = public_self;
     cty_vars = Vars.map (fun (id, mut, vr, ty) -> (mut, vr, ty)) !vars;
     cty_concr = concr_meths;
     cty_inher = inher} in
  let methods = get_methods self_type in
  let priv_meths =
    List.filter (fun (_,kind,_) -> Btype.field_kind_repr kind <> Fpresent)
      methods in
  if final then begin
    (* Unify private_self and a copy of self_type. self_type will not
       be modified after this point *)
    Ctype.close_object self_type;
    let mets = virtual_methods {sign with cty_self = self_type} in
    let vals =
      Vars.fold
        (fun name (mut, vr, ty) l -> if vr = Virtual then name :: l else l)
        sign.cty_vars [] in
    if mets <> [] || vals <> [] then
      raise(Error(loc, Virtual_class(true, mets, vals)));
    let self_methods =
      List.fold_right
        (fun (lab,kind,ty) rem ->
          if lab = dummy_method then
            (* allow public self and private self to be unified *)
            match Btype.field_kind_repr kind with
              Fvar r -> Btype.set_kind r Fabsent; rem
            | _ -> rem
          else
            Ctype.newty(Tfield(lab, Btype.copy_kind kind, ty, rem)))
        methods (Ctype.newty Tnil) in
    begin try
      Ctype.unify val_env private_self
        (Ctype.newty (Tobject(self_methods, ref None)));
      Ctype.unify val_env public_self self_type
    with Ctype.Unify trace -> raise(Error(loc, Final_self_clash trace))
    end;
  end;

  (* Typing of method bodies *)
  if !Clflags.principal then
    List.iter (fun (_,_,ty) -> Ctype.generalize_spine ty) methods;
  let fields = List.map Lazy.force (List.rev fields) in
  if !Clflags.principal then
    List.iter (fun (_,_,ty) -> Ctype.unify val_env ty (Ctype.newvar ()))
      methods;
  let meths = Meths.map (function (id, ty) -> id) !meths in

  (* Check for private methods made public *)
  let pub_meths' =
    List.filter (fun (_,kind,_) -> Btype.field_kind_repr kind = Fpresent)
      (get_methods public_self) in
  let names = List.map (fun (x,_,_) -> x) in
  let l1 = names priv_meths and l2 = names pub_meths' in
  let added = List.filter (fun x -> List.mem x l1) l2 in
  if added <> [] then
    Location.prerr_warning loc (Warnings.Implicit_public_methods added);
  {cl_field = fields; cl_meths = meths},
  if final then sign else
  {sign with cty_self = Ctype.expand_head val_env public_self}

and class_expr cl_num val_env met_env scl =
  match scl.pcl_desc with
    Pcl_constr (lid, styl) ->
      let (path, decl) = Typetexp.find_class val_env scl.pcl_loc lid in
      if Path.same decl.cty_path unbound_class then
        raise(Error(scl.pcl_loc, Unbound_class_2 lid));
      let tyl = List.map
          (fun sty -> transl_simple_type val_env false sty, sty.ptyp_loc)
          styl
      in
      let (params, clty) =
        Ctype.instance_class decl.cty_params decl.cty_type
      in
      let clty' = abbreviate_class_type path params clty in
      if List.length params <> List.length tyl then
        raise(Error(scl.pcl_loc,
                    Parameter_arity_mismatch (lid, List.length params,
                                                   List.length tyl)));
      List.iter2
        (fun (ty',loc) ty ->
           try Ctype.unify val_env ty' ty with Ctype.Unify trace ->
             raise(Error(loc, Parameter_mismatch trace)))
        tyl params;
      let cl =
        rc {cl_desc = Tclass_ident path;
            cl_loc = scl.pcl_loc;
            cl_type = clty';
            cl_env = val_env}
      in
      let (vals, meths, concrs) = extract_constraints clty in
      rc {cl_desc = Tclass_constraint (cl, vals, meths, concrs);
          cl_loc = scl.pcl_loc;
          cl_type = clty';
          cl_env = val_env}
  | Pcl_structure cl_str ->
      let (desc, ty) =
        class_structure cl_num false val_env met_env scl.pcl_loc cl_str in
      rc {cl_desc = Tclass_structure desc;
          cl_loc = scl.pcl_loc;
          cl_type = Tcty_signature ty;
          cl_env = val_env}
  | Pcl_fun (l, Some default, spat, sbody) ->
      let loc = default.pexp_loc in
      let scases =
        [{ppat_loc = loc; ppat_desc =
          Ppat_construct(Longident.(Ldot (Lident"*predef*", "Some")),
                         Some{ppat_loc = loc; ppat_desc = Ppat_var"*sth*"},
                         false)},
         {pexp_loc = loc; pexp_desc = Pexp_ident(Longident.Lident"*sth*")};
         {ppat_loc = loc; ppat_desc =
          Ppat_construct(Longident.(Ldot (Lident"*predef*", "None")),
                         None, false)},
         default] in
      let smatch =
        {pexp_loc = loc; pexp_desc =
         Pexp_match({pexp_loc = loc; pexp_desc =
                     Pexp_ident(Longident.Lident"*opt*")},
                    scases)} in
      let sfun =
        {pcl_loc = scl.pcl_loc; pcl_desc =
         Pcl_fun(l, None, {ppat_loc = loc; ppat_desc = Ppat_var"*opt*"},
                 {pcl_loc = scl.pcl_loc; pcl_desc =
                  Pcl_let(Default, [spat, smatch], sbody)})}
      in
      class_expr cl_num val_env met_env sfun
  | Pcl_fun (l, None, spat, scl') ->
      if !Clflags.principal then Ctype.begin_def ();
      let (pat, pv, val_env', met_env) =
        Typecore.type_class_arg_pattern cl_num val_env met_env l spat
      in
      if !Clflags.principal then begin
        Ctype.end_def ();
        iter_pattern (fun {pat_type=ty} -> Ctype.generalize_structure ty) pat
      end;
      let pv =
        List.map
          (function (id, id', ty) ->
            (id,
             Typecore.type_exp val_env'
               {pexp_desc = Pexp_ident (Longident.Lident (Ident.name id));
                pexp_loc = Location.none}))
          pv
      in
      let rec not_function = function
          Tcty_fun _ -> false
        | _ -> true
      in
      let partial =
        Parmatch.check_partial pat.pat_loc
          [pat, (* Dummy expression *)
           {exp_desc = Texp_constant (Asttypes.Const_int 1);
            exp_loc = Location.none;
            exp_type = Ctype.none;
            exp_env = Env.empty }] in
      Ctype.raise_nongen_level ();
      let cl = class_expr cl_num val_env' met_env scl' in
      Ctype.end_def ();
      if Btype.is_optional l && not_function cl.cl_type then
        Location.prerr_warning pat.pat_loc
          Warnings.Unerasable_optional_argument;
      rc {cl_desc = Tclass_fun (pat, pv, cl, partial);
          cl_loc = scl.pcl_loc;
          cl_type = Tcty_fun (l, Ctype.instance pat.pat_type, cl.cl_type);
          cl_env = val_env}
  | Pcl_apply (scl', sargs) ->
      let cl = class_expr cl_num val_env met_env scl' in
      let rec nonopt_labels ls ty_fun =
        match ty_fun with
        | Tcty_fun (l, _, ty_res) ->
            if Btype.is_optional l then nonopt_labels ls ty_res
            else nonopt_labels (l::ls) ty_res
        | _    -> ls
      in
      let ignore_labels =
        !Clflags.classic ||
        let labels = nonopt_labels [] cl.cl_type in
        List.length labels = List.length sargs &&
        List.for_all (fun (l,_) -> l = "") sargs &&
        List.exists (fun l -> l <> "") labels &&
        begin
          Location.prerr_warning cl.cl_loc Warnings.Labels_omitted;
          true
        end
      in
      let rec type_args args omitted ty_fun sargs more_sargs =
        match ty_fun with
        | Tcty_fun (l, ty, ty_fun) when sargs <> [] || more_sargs <> [] ->
            let name = Btype.label_name l
            and optional =
              if Btype.is_optional l then Optional else Required in
            let sargs, more_sargs, arg =
              if ignore_labels && not (Btype.is_optional l) then begin
                match sargs, more_sargs with
                  (l', sarg0)::_, _ ->
                    raise(Error(sarg0.pexp_loc, Apply_wrong_label(l')))
                | _, (l', sarg0)::more_sargs ->
                    if l <> l' && l' <> "" then
                      raise(Error(sarg0.pexp_loc, Apply_wrong_label l'))
                    else ([], more_sargs, Some(type_argument val_env sarg0 ty))
                | _ ->
                    assert false
              end else try
                let (l', sarg0, sargs, more_sargs) =
                  try
                    let (l', sarg0, sargs1, sargs2) =
                      Btype.extract_label name sargs
                    in (l', sarg0, sargs1 @ sargs2, more_sargs)
                  with Not_found ->
                    let (l', sarg0, sargs1, sargs2) =
                      Btype.extract_label name more_sargs
                    in (l', sarg0, sargs @ sargs1, sargs2)
                in
                sargs, more_sargs,
                if Btype.is_optional l' || not (Btype.is_optional l) then
                  Some (type_argument val_env sarg0 ty)
                else
                  let arg = type_argument val_env
                      sarg0 (extract_option_type val_env ty) in
                  Some (option_some arg)
              with Not_found ->
                sargs, more_sargs,
                if Btype.is_optional l &&
                  (List.mem_assoc "" sargs || List.mem_assoc "" more_sargs)
                then
                  Some (option_none ty Location.none)
                else None
            in
            let omitted = if arg = None then (l,ty) :: omitted else omitted in
            type_args ((arg,optional)::args) omitted ty_fun sargs more_sargs
        | _ ->
            match sargs @ more_sargs with
              (l, sarg0)::_ ->
                if omitted <> [] then
                  raise(Error(sarg0.pexp_loc, Apply_wrong_label l))
                else
                  raise(Error(cl.cl_loc, Cannot_apply cl.cl_type))
            | [] ->
                (List.rev args,
                 List.fold_left
                   (fun ty_fun (l,ty) -> Tcty_fun(l,ty,ty_fun))
                   ty_fun omitted)
      in
      let (args, cty) =
        if ignore_labels then
          type_args [] [] cl.cl_type [] sargs
        else
          type_args [] [] cl.cl_type sargs []
      in
      rc {cl_desc = Tclass_apply (cl, args);
          cl_loc = scl.pcl_loc;
          cl_type = cty;
          cl_env = val_env}
  | Pcl_let (rec_flag, sdefs, scl') ->
      let (defs, val_env) =
        try
          Typecore.type_let val_env rec_flag sdefs None
        with Ctype.Unify [(ty, _)] ->
          raise(Error(scl.pcl_loc, Make_nongen_seltype ty))
      in
      let (vals, met_env) =
        List.fold_right
          (fun id (vals, met_env) ->
             Ctype.begin_def ();
             let expr =
               Typecore.type_exp val_env
                 {pexp_desc = Pexp_ident (Longident.Lident (Ident.name id));
                  pexp_loc = Location.none}
             in
             Ctype.end_def ();
             Ctype.generalize expr.exp_type;
             let desc =
               {val_type = expr.exp_type; val_kind = Val_ivar (Immutable,
                                                               cl_num)}
             in
             let id' = Ident.create (Ident.name id) in
             ((id', expr)
              :: vals,
              Env.add_value id' desc met_env))
          (let_bound_idents defs)
          ([], met_env)
      in
      let cl = class_expr cl_num val_env met_env scl' in
      rc {cl_desc = Tclass_let (rec_flag, defs, vals, cl);
          cl_loc = scl.pcl_loc;
          cl_type = cl.cl_type;
          cl_env = val_env}
  | Pcl_constraint (scl', scty) ->
      Ctype.begin_class_def ();
      let context = Typetexp.narrow () in
      let cl = class_expr cl_num val_env met_env scl' in
      Typetexp.widen context;
      let context = Typetexp.narrow () in
      let clty = class_type val_env scty in
      Typetexp.widen context;
      Ctype.end_def ();

      limited_generalize (Ctype.row_variable (Ctype.self_type cl.cl_type))
          cl.cl_type;
      limited_generalize (Ctype.row_variable (Ctype.self_type clty)) clty;

      begin match Includeclass.class_types val_env cl.cl_type clty with
        []    -> ()
      | error -> raise(Error(cl.cl_loc, Class_match_failure error))
      end;
      let (vals, meths, concrs) = extract_constraints clty in
      rc {cl_desc = Tclass_constraint (cl, vals, meths, concrs);
          cl_loc = scl.pcl_loc;
          cl_type = snd (Ctype.instance_class [] clty);
          cl_env = val_env}

(*******************************)

(* Approximate the type of the constructor to allow recursive use *)
(* of optional parameters                                         *)

let var_option = Predef.type_option (Btype.newgenvar ())

let rec approx_declaration cl =
  match cl.pcl_desc with
    Pcl_fun (l, _, _, cl) ->
      let arg =
        if Btype.is_optional l then Ctype.instance var_option
        else Ctype.newvar () in
      Ctype.newty (Tarrow (l, arg, approx_declaration cl, Cok))
  | Pcl_let (_, _, cl) ->
      approx_declaration cl
  | Pcl_constraint (cl, _) ->
      approx_declaration cl
  | _ -> Ctype.newvar ()

let rec approx_description ct =
  match ct.pcty_desc with
    Pcty_fun (l, _, ct) ->
      let arg =
        if Btype.is_optional l then Ctype.instance var_option
        else Ctype.newvar () in
      Ctype.newty (Tarrow (l, arg, approx_description ct, Cok))
  | _ -> Ctype.newvar ()

(*******************************)

let temp_abbrev env id arity =
  let params = ref [] in
  for i = 1 to arity do
    params := Ctype.newvar () :: !params
  done;
  let ty = Ctype.newobj (Ctype.newvar ()) in
  let env =
    Env.add_type id
      {type_params = !params;
       type_arity = arity;
       type_kind = Type_abstract;
       type_private = Public;
       type_manifest = Some ty;
       type_variance = List.map (fun _ -> true, true, true) !params}
      env
  in
  (!params, ty, env)

let rec initial_env define_class approx
    (res, env) (cl, id, ty_id, obj_id, cl_id) =
  (* Temporary abbreviations *)
  let arity = List.length (fst cl.pci_params) in
  let (obj_params, obj_ty, env) = temp_abbrev env obj_id arity in
  let (cl_params, cl_ty, env) = temp_abbrev env cl_id arity in

  (* Temporary type for the class constructor *)
  let constr_type = approx cl.pci_expr in
  if !Clflags.principal then Ctype.generalize_spine constr_type;
  let dummy_cty =
    Tcty_signature
      { cty_self = Ctype.newvar ();
        cty_vars = Vars.empty;
        cty_concr = Concr.empty;
        cty_inher = [] }
  in
  let dummy_class =
    {cty_params = [];             (* Dummy value *)
     cty_variance = [];
     cty_type = dummy_cty;        (* Dummy value *)
     cty_path = unbound_class;
     cty_new =
       match cl.pci_virt with
         Virtual  -> None
       | Concrete -> Some constr_type}
  in
  let env =
    Env.add_cltype ty_id
      {clty_params = [];            (* Dummy value *)
       clty_variance = [];
       clty_type = dummy_cty;       (* Dummy value *)
       clty_path = unbound_class} (
    if define_class then
      Env.add_class id dummy_class env
    else
      env)
  in
  ((cl, id, ty_id,
    obj_id, obj_params, obj_ty,
    cl_id, cl_params, cl_ty,
    constr_type, dummy_class)::res,
   env)

let class_infos define_class kind
    (cl, id, ty_id,
     obj_id, obj_params, obj_ty,
     cl_id, cl_params, cl_ty,
     constr_type, dummy_class)
    (res, env) =

  reset_type_variables ();
  Ctype.begin_class_def ();

  (* Introduce class parameters *)
  let params =
    try
      let params, loc = cl.pci_params in
      List.map (enter_type_variable true loc) params
    with Already_bound ->
      raise(Error(snd cl.pci_params, Repeated_parameter))
  in

  (* Allow self coercions (only for class declarations) *)
  let coercion_locs = ref [] in

  (* Type the class expression *)
  let (expr, typ) =
    try
      Typecore.self_coercion :=
        (Path.Pident obj_id, coercion_locs) :: !Typecore.self_coercion;
      let res = kind env cl.pci_expr in
      Typecore.self_coercion := List.tl !Typecore.self_coercion;
      res
    with exn ->
      Typecore.self_coercion := []; raise exn
  in

  Ctype.end_def ();

  let sty = Ctype.self_type typ in

  (* Generalize the row variable *)
  let rv = Ctype.row_variable sty in
  List.iter (Ctype.limited_generalize rv) params;
  limited_generalize rv typ;

  (* Check the abbreviation for the object type *)
  let (obj_params', obj_type) = Ctype.instance_class params typ in
  let constr = Ctype.newconstr (Path.Pident obj_id) obj_params in
  begin
    let ty = Ctype.self_type obj_type in
    Ctype.hide_private_methods ty;
    Ctype.close_object ty;
    begin try
      List.iter2 (Ctype.unify env) obj_params obj_params'
    with Ctype.Unify _ ->
      raise(Error(cl.pci_loc,
            Bad_parameters (obj_id, constr,
                            Ctype.newconstr (Path.Pident obj_id)
                                            obj_params')))
    end;
    begin try
      Ctype.unify env ty constr
    with Ctype.Unify _ ->
      raise(Error(cl.pci_loc,
        Abbrev_type_clash (constr, ty, Ctype.expand_head env constr)))
    end
  end;

  (* Check the other temporary abbreviation (#-type) *)
  begin
    let (cl_params', cl_type) = Ctype.instance_class params typ in
    let ty = Ctype.self_type cl_type in
    Ctype.hide_private_methods ty;
    Ctype.set_object_name obj_id (Ctype.row_variable ty) cl_params ty;
    begin try
      List.iter2 (Ctype.unify env) cl_params cl_params'
    with Ctype.Unify _ ->
      raise(Error(cl.pci_loc,
            Bad_parameters (cl_id,
                            Ctype.newconstr (Path.Pident cl_id)
                                            cl_params,
                            Ctype.newconstr (Path.Pident cl_id)
                                            cl_params')))
    end;
    begin try
      Ctype.unify env ty cl_ty
    with Ctype.Unify _ ->
      let constr = Ctype.newconstr (Path.Pident cl_id) params in
      raise(Error(cl.pci_loc, Abbrev_type_clash (constr, ty, cl_ty)))
    end
  end;

  (* Type of the class constructor *)
  begin try
    Ctype.unify env
      (constructor_type constr obj_type)
      (Ctype.instance constr_type)
  with Ctype.Unify trace ->
    raise(Error(cl.pci_loc,
                Constructor_type_mismatch (cl.pci_name, trace)))
  end;

  (* Class and class type temporary definitions *)
  let cty_variance = List.map (fun _ -> true, true) params in
  let cltydef =
    {clty_params = params; clty_type = class_body typ;
     clty_variance = cty_variance;
     clty_path = Path.Pident obj_id}
  and clty =
    {cty_params = params; cty_type = typ;
     cty_variance = cty_variance;
     cty_path = Path.Pident obj_id;
     cty_new =
       match cl.pci_virt with
         Virtual  -> None
       | Concrete -> Some constr_type}
  in
  dummy_class.cty_type <- typ;
  let env =
    Env.add_cltype ty_id cltydef (
    if define_class then Env.add_class id clty env else env)
  in

  if cl.pci_virt = Concrete then begin
    let sign = Ctype.signature_of_class_type typ in
    let mets = virtual_methods sign in
    let vals =
      Vars.fold
        (fun name (mut, vr, ty) l -> if vr = Virtual then name :: l else l)
        sign.cty_vars [] in
    if mets <> []  || vals <> [] then
      raise(Error(cl.pci_loc, Virtual_class(true, mets, vals)));
  end;

  (* Misc. *)
  let arity = Ctype.class_type_arity typ in
  let pub_meths =
    let (fields, _) =
      Ctype.flatten_fields (Ctype.object_fields (Ctype.expand_head env obj_ty))
    in
    List.map (function (lab, _, _) -> lab) fields
  in

  (* Final definitions *)
  let (params', typ') = Ctype.instance_class params typ in
  let cltydef =
    {clty_params = params'; clty_type = class_body typ';
     clty_variance = cty_variance;
     clty_path = Path.Pident obj_id}
  and clty =
    {cty_params = params'; cty_type = typ';
     cty_variance = cty_variance;
     cty_path = Path.Pident obj_id;
     cty_new =
       match cl.pci_virt with
         Virtual  -> None
       | Concrete -> Some (Ctype.instance constr_type)}
  in
  let obj_abbr =
    {type_params = obj_params;
     type_arity = List.length obj_params;
     type_kind = Type_abstract;
     type_private = Public;
     type_manifest = Some obj_ty;
     type_variance = List.map (fun _ -> true, true, true) obj_params}
  in
  let (cl_params, cl_ty) =
    Ctype.instance_parameterized_type params (Ctype.self_type typ)
  in
  Ctype.hide_private_methods cl_ty;
  Ctype.set_object_name obj_id (Ctype.row_variable cl_ty) cl_params cl_ty;
  let cl_abbr =
    {type_params = cl_params;
     type_arity = List.length cl_params;
     type_kind = Type_abstract;
     type_private = Public;
     type_manifest = Some cl_ty;
     type_variance = List.map (fun _ -> true, true, true) cl_params}
  in
  ((cl, id, clty, ty_id, cltydef, obj_id, obj_abbr, cl_id, cl_abbr,
    arity, pub_meths, List.rev !coercion_locs, expr) :: res,
   env)

let final_decl env define_class
    (cl, id, clty, ty_id, cltydef, obj_id, obj_abbr, cl_id, cl_abbr,
     arity, pub_meths, coe, expr) =

  begin try Ctype.collapse_conj_params env clty.cty_params
  with Ctype.Unify trace ->
    raise(Error(cl.pci_loc, Non_collapsable_conjunction (id, clty, trace)))
  end;

  List.iter Ctype.generalize clty.cty_params;
  generalize_class_type clty.cty_type;
  begin match clty.cty_new with
    None -> ()
  | Some ty -> Ctype.generalize ty
  end;
  List.iter Ctype.generalize obj_abbr.type_params;
  begin match obj_abbr.type_manifest with
    None    -> ()
  | Some ty -> Ctype.generalize ty
  end;
  List.iter Ctype.generalize cl_abbr.type_params;
  begin match cl_abbr.type_manifest with
    None    -> ()
  | Some ty -> Ctype.generalize ty
  end;

  if not (closed_class clty) then
    raise(Error(cl.pci_loc, Non_generalizable_class (id, clty)));

  begin match
    Ctype.closed_class clty.cty_params
      (Ctype.signature_of_class_type clty.cty_type)
  with
    None        -> ()
  | Some reason ->
      let printer =
        if define_class
        then function ppf -> Printtyp.class_declaration id ppf clty
        else function ppf -> Printtyp.cltype_declaration id ppf cltydef
      in
      raise(Error(cl.pci_loc, Unbound_type_var(printer, reason)))
  end;

  (id, clty, ty_id, cltydef, obj_id, obj_abbr, cl_id, cl_abbr,
   arity, pub_meths, coe, expr, (cl.pci_variance, cl.pci_loc))

let extract_type_decls
    (id, clty, ty_id, cltydef, obj_id, obj_abbr, cl_id, cl_abbr,
     arity, pub_meths, coe, expr, required) decls =
  (obj_id, obj_abbr, cl_abbr, clty, cltydef, required) :: decls

let merge_type_decls
    (id, _clty, ty_id, _cltydef, obj_id, _obj_abbr, cl_id, _cl_abbr,
     arity, pub_meths, coe, expr, req) (obj_abbr, cl_abbr, clty, cltydef) =
  (id, clty, ty_id, cltydef, obj_id, obj_abbr, cl_id, cl_abbr,
   arity, pub_meths, coe, expr)

let final_env define_class env
    (id, clty, ty_id, cltydef, obj_id, obj_abbr, cl_id, cl_abbr,
     arity, pub_meths, coe, expr) =
  (* Add definitions after cleaning them *)
  Env.add_type obj_id (Subst.type_declaration Subst.identity obj_abbr) (
  Env.add_type cl_id (Subst.type_declaration Subst.identity cl_abbr) (
  Env.add_cltype ty_id (Subst.cltype_declaration Subst.identity cltydef) (
  if define_class then
    Env.add_class id (Subst.class_declaration Subst.identity clty) env
  else env)))

(* Check that #c is coercible to c if there is a self-coercion *)
let check_coercions env
    (id, clty, ty_id, cltydef, obj_id, obj_abbr, cl_id, cl_abbr,
     arity, pub_meths, coercion_locs, expr) =
  begin match coercion_locs with [] -> ()
  | loc :: _ ->
      let cl_ty, obj_ty =
        match cl_abbr.type_manifest, obj_abbr.type_manifest with
          Some cl_ab, Some obj_ab ->
            let cl_params, cl_ty =
              Ctype.instance_parameterized_type cl_abbr.type_params cl_ab
            and obj_params, obj_ty =
              Ctype.instance_parameterized_type obj_abbr.type_params obj_ab
            in
            List.iter2 (Ctype.unify env) cl_params obj_params;
            cl_ty, obj_ty
        | _ -> assert false
      in
      begin try Ctype.subtype env cl_ty obj_ty ()
      with Ctype.Subtype (tr1, tr2) ->
        raise(Typecore.Error(loc, Typecore.Not_subtype(tr1, tr2)))
      end;
      if not (Ctype.opened_object cl_ty) then
        raise(Error(loc, Cannot_coerce_self obj_ty))
  end;
  (id, clty, ty_id, cltydef, obj_id, obj_abbr, cl_id, cl_abbr,
   arity, pub_meths, expr)

(*******************************)

let type_classes define_class approx kind env cls =
  let cls =
    List.map
      (function cl ->
         (cl,
          Ident.create cl.pci_name, Ident.create cl.pci_name,
          Ident.create cl.pci_name, Ident.create ("#" ^ cl.pci_name)))
      cls
  in
  Ctype.init_def (Ident.current_time ());
  Ctype.begin_class_def ();
  let (res, env) =
    List.fold_left (initial_env define_class approx) ([], env) cls
  in
  let (res, env) =
    List.fold_right (class_infos define_class kind) res ([], env)
  in
  Ctype.end_def ();
  let res = List.rev_map (final_decl env define_class) res in
  let decls = List.fold_right extract_type_decls res [] in
  let decls = Typedecl.compute_variance_decls env decls in
  let res = List.map2 merge_type_decls res decls in
  let env = List.fold_left (final_env define_class) env res in
  let res = List.map (check_coercions env) res in
  (res, env)

let class_num = ref 0
let class_declaration env sexpr =
  incr class_num;
  let expr = class_expr (string_of_int !class_num) env env sexpr in
  (expr, expr.cl_type)

let class_description env sexpr =
  let expr = class_type env sexpr in
  (expr, expr)

let class_declarations env cls =
  type_classes true approx_declaration class_declaration env cls

let class_descriptions env cls =
  type_classes true approx_description class_description env cls

let class_type_declarations env cls =
  let (decl, env) =
    type_classes false approx_description class_description env cls
  in
  (List.map
     (function
       (_, _, ty_id, cltydef, obj_id, obj_abbr, cl_id, cl_abbr, _, _, _) ->
        (ty_id, cltydef, obj_id, obj_abbr, cl_id, cl_abbr))
     decl,
   env)

let rec unify_parents env ty cl =
  match cl.cl_desc with
    Tclass_ident p ->
      begin try
        let decl = Env.find_class p env in
        let _, body = Ctype.find_cltype_for_path env decl.cty_path in
        Ctype.unify env ty (Ctype.instance body)
      with exn -> assert (exn = Not_found)
      end
  | Tclass_structure st -> unify_parents_struct env ty st
  | Tclass_fun (_, _, cl, _)
  | Tclass_apply (cl, _)
  | Tclass_let (_, _, _, cl)
  | Tclass_constraint (cl, _, _, _) -> unify_parents env ty cl
and unify_parents_struct env ty st =
  List.iter
    (function Cf_inher (cl, _, _) -> unify_parents env ty cl
      | _ -> ())
    st.cl_field

let type_object env loc s =
  incr class_num;
  let (desc, sign) =
    class_structure (string_of_int !class_num) true env env loc s in
  let sty = Ctype.expand_head env sign.cty_self in
  Ctype.hide_private_methods sty;
  let (fields, _) = Ctype.flatten_fields (Ctype.object_fields sty) in
  let meths = List.map (fun (s,_,_) -> s) fields in
  unify_parents_struct env sign.cty_self desc;
  (desc, sign, meths)

let () =
  Typecore.type_object := type_object

(*******************************)

(* Approximate the class declaration as class ['params] id = object end *)
let approx_class sdecl =
  let self' =
    { ptyp_desc = Ptyp_any; ptyp_loc = Location.none } in
  let clty' =
    { pcty_desc = Pcty_signature(self', []);
      pcty_loc = sdecl.pci_expr.pcty_loc } in
  { sdecl with pci_expr = clty' }

let approx_class_declarations env sdecls =
  fst (class_type_declarations env (List.map approx_class sdecls))

(*******************************)

(* Error report *)

open Format

let report_error ppf = function
  | Repeated_parameter ->
      fprintf ppf "A type parameter occurs several times"
  | Unconsistent_constraint trace ->
      fprintf ppf "The class constraints are not consistent.@.";
      Printtyp.report_unification_error ppf trace
        (fun ppf -> fprintf ppf "Type")
        (fun ppf -> fprintf ppf "is not compatible with type")
  | Field_type_mismatch (k, m, trace) ->
      Printtyp.report_unification_error ppf trace
        (function ppf ->
           fprintf ppf "The %s %s@ has type" k m)
        (function ppf ->
           fprintf ppf "but is expected to have type")
  | Structure_expected clty ->
      fprintf ppf
        "@[This class expression is not a class structure; it has type@ %a@]"
        Printtyp.class_type clty
  | Cannot_apply clty ->
      fprintf ppf
        "This class expression is not a class function, it cannot be applied"
  | Apply_wrong_label l ->
      let mark_label = function
        | "" -> "out label"
        |  l -> sprintf " label ~%s" l in
      fprintf ppf "This argument cannot be applied with%s" (mark_label l)
  | Pattern_type_clash ty ->
      (* XXX Trace *)
      (* XXX Revoir message d'erreur *)
      Printtyp.reset_and_mark_loops ty;
      fprintf ppf "@[%s@ %a@]"
        "This pattern cannot match self: it only matches values of type"
        Printtyp.type_expr ty
  | Unbound_class_2 cl ->
      fprintf ppf "@[The class@ %a@ is not yet completely defined@]"
      Printtyp.longident cl
  | Unbound_class_type_2 cl ->
      fprintf ppf "@[The class type@ %a@ is not yet completely defined@]"
      Printtyp.longident cl
  | Abbrev_type_clash (abbrev, actual, expected) ->
      (* XXX Afficher une trace ? *)
      Printtyp.reset_and_mark_loops_list [abbrev; actual; expected];
      fprintf ppf "@[The abbreviation@ %a@ expands to type@ %a@ \
       but is used with type@ %a@]"
       Printtyp.type_expr abbrev
       Printtyp.type_expr actual
       Printtyp.type_expr expected
  | Constructor_type_mismatch (c, trace) ->
      Printtyp.report_unification_error ppf trace
        (function ppf ->
           fprintf ppf "The expression \"new %s\" has type" c)
        (function ppf ->
           fprintf ppf "but is used with type")
  | Virtual_class (cl, mets, vals) ->
      let print_mets ppf mets =
        List.iter (function met -> fprintf ppf "@ %s" met) mets in
      let cl_mark = if cl then "" else " type" in
      let missings =
        match mets, vals with
          [], _ -> "variables"
        | _, [] -> "methods"
        | _ -> "methods and variables"
      in
      fprintf ppf
        "@[This class%s should be virtual.@ \
           @[<2>The following %s are undefined :%a@]@]"
          cl_mark missings print_mets (mets @ vals)
  | Parameter_arity_mismatch(lid, expected, provided) ->
      fprintf ppf
        "@[The class constructor %a@ expects %i type argument(s),@ \
           but is here applied to %i type argument(s)@]"
        Printtyp.longident lid expected provided
  | Parameter_mismatch trace ->
      Printtyp.report_unification_error ppf trace
        (function ppf ->
           fprintf ppf "The type parameter")
        (function ppf ->
           fprintf ppf "does not meet its constraint: it should be")
  | Bad_parameters (id, params, cstrs) ->
      Printtyp.reset_and_mark_loops_list [params; cstrs];
      fprintf ppf
        "@[The abbreviation %a@ is used with parameters@ %a@ \
           wich are incompatible with constraints@ %a@]"
        Printtyp.ident id Printtyp.type_expr params Printtyp.type_expr cstrs
  | Class_match_failure error ->
      Includeclass.report_error ppf error
  | Unbound_val lab ->
      fprintf ppf "Unbound instance variable %s" lab
  | Unbound_type_var (printer, reason) ->
      let print_common ppf kind ty0 real lab ty =
        let ty1 =
          if real then ty0 else Btype.newgenty(Tobject(ty0, ref None)) in
        Printtyp.mark_loops ty1;
        fprintf ppf
          "The %s %s@ has type@;<1 2>%a@ where@ %a@ is unbound"
            kind lab Printtyp.type_expr ty Printtyp.type_expr ty0
      in
      let print_reason ppf = function
      | Ctype.CC_Method (ty0, real, lab, ty) ->
          print_common ppf "method" ty0 real lab ty
      | Ctype.CC_Value (ty0, real, lab, ty) ->
          print_common ppf "instance variable" ty0 real lab ty
      in
      Printtyp.reset ();
      fprintf ppf
        "@[<v>@[Some type variables are unbound in this type:@;<1 2>%t@]@ \
              @[%a@]@]"
       printer print_reason reason
  | Make_nongen_seltype ty ->
      fprintf ppf
        "@[<v>@[Self type should not occur in the non-generic type@;<1 2>\
                %a@]@,\
           It would escape the scope of its class@]"
        Printtyp.type_scheme ty
  | Non_generalizable_class (id, clty) ->
      fprintf ppf
        "@[The type of this class,@ %a,@ \
           contains type variables that cannot be generalized@]"
        (Printtyp.class_declaration id) clty
  | Cannot_coerce_self ty ->
      fprintf ppf
        "@[The type of self cannot be coerced to@ \
           the type of the current class:@ %a.@.\
           Some occurrences are contravariant@]"
        Printtyp.type_scheme ty
  | Non_collapsable_conjunction (id, clty, trace) ->
      fprintf ppf
        "@[The type of this class,@ %a,@ \
           contains non-collapsible conjunctive types in constraints@]"
        (Printtyp.class_declaration id) clty;
      Printtyp.report_unification_error ppf trace
        (fun ppf -> fprintf ppf "Type")
        (fun ppf -> fprintf ppf "is not compatible with type")
  | Final_self_clash trace ->
      Printtyp.report_unification_error ppf trace
        (function ppf ->
           fprintf ppf "This object is expected to have type")
        (function ppf ->
           fprintf ppf "but actually has type")
  | Mutability_mismatch (lab, mut) ->
      let mut1, mut2 =
        if mut = Immutable then "mutable", "immutable"
        else "immutable", "mutable" in
      fprintf ppf
        "@[The instance variable is %s;@ it cannot be redefined as %s@]"
        mut1 mut2
  | No_overriding (_, "") ->
      fprintf ppf "@[This inheritance does not override any method@ %s@]"
        "instance variable"
  | No_overriding (kind, name) ->
      fprintf ppf "@[The %s `%s'@ has no previous definition@]" kind name