This file is indexed.

/usr/share/doc/gcc-4.6-base/gcc.html is in gcc-4.6-doc 4.6.3-1ubuntu5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
 4244
 4245
 4246
 4247
 4248
 4249
 4250
 4251
 4252
 4253
 4254
 4255
 4256
 4257
 4258
 4259
 4260
 4261
 4262
 4263
 4264
 4265
 4266
 4267
 4268
 4269
 4270
 4271
 4272
 4273
 4274
 4275
 4276
 4277
 4278
 4279
 4280
 4281
 4282
 4283
 4284
 4285
 4286
 4287
 4288
 4289
 4290
 4291
 4292
 4293
 4294
 4295
 4296
 4297
 4298
 4299
 4300
 4301
 4302
 4303
 4304
 4305
 4306
 4307
 4308
 4309
 4310
 4311
 4312
 4313
 4314
 4315
 4316
 4317
 4318
 4319
 4320
 4321
 4322
 4323
 4324
 4325
 4326
 4327
 4328
 4329
 4330
 4331
 4332
 4333
 4334
 4335
 4336
 4337
 4338
 4339
 4340
 4341
 4342
 4343
 4344
 4345
 4346
 4347
 4348
 4349
 4350
 4351
 4352
 4353
 4354
 4355
 4356
 4357
 4358
 4359
 4360
 4361
 4362
 4363
 4364
 4365
 4366
 4367
 4368
 4369
 4370
 4371
 4372
 4373
 4374
 4375
 4376
 4377
 4378
 4379
 4380
 4381
 4382
 4383
 4384
 4385
 4386
 4387
 4388
 4389
 4390
 4391
 4392
 4393
 4394
 4395
 4396
 4397
 4398
 4399
 4400
 4401
 4402
 4403
 4404
 4405
 4406
 4407
 4408
 4409
 4410
 4411
 4412
 4413
 4414
 4415
 4416
 4417
 4418
 4419
 4420
 4421
 4422
 4423
 4424
 4425
 4426
 4427
 4428
 4429
 4430
 4431
 4432
 4433
 4434
 4435
 4436
 4437
 4438
 4439
 4440
 4441
 4442
 4443
 4444
 4445
 4446
 4447
 4448
 4449
 4450
 4451
 4452
 4453
 4454
 4455
 4456
 4457
 4458
 4459
 4460
 4461
 4462
 4463
 4464
 4465
 4466
 4467
 4468
 4469
 4470
 4471
 4472
 4473
 4474
 4475
 4476
 4477
 4478
 4479
 4480
 4481
 4482
 4483
 4484
 4485
 4486
 4487
 4488
 4489
 4490
 4491
 4492
 4493
 4494
 4495
 4496
 4497
 4498
 4499
 4500
 4501
 4502
 4503
 4504
 4505
 4506
 4507
 4508
 4509
 4510
 4511
 4512
 4513
 4514
 4515
 4516
 4517
 4518
 4519
 4520
 4521
 4522
 4523
 4524
 4525
 4526
 4527
 4528
 4529
 4530
 4531
 4532
 4533
 4534
 4535
 4536
 4537
 4538
 4539
 4540
 4541
 4542
 4543
 4544
 4545
 4546
 4547
 4548
 4549
 4550
 4551
 4552
 4553
 4554
 4555
 4556
 4557
 4558
 4559
 4560
 4561
 4562
 4563
 4564
 4565
 4566
 4567
 4568
 4569
 4570
 4571
 4572
 4573
 4574
 4575
 4576
 4577
 4578
 4579
 4580
 4581
 4582
 4583
 4584
 4585
 4586
 4587
 4588
 4589
 4590
 4591
 4592
 4593
 4594
 4595
 4596
 4597
 4598
 4599
 4600
 4601
 4602
 4603
 4604
 4605
 4606
 4607
 4608
 4609
 4610
 4611
 4612
 4613
 4614
 4615
 4616
 4617
 4618
 4619
 4620
 4621
 4622
 4623
 4624
 4625
 4626
 4627
 4628
 4629
 4630
 4631
 4632
 4633
 4634
 4635
 4636
 4637
 4638
 4639
 4640
 4641
 4642
 4643
 4644
 4645
 4646
 4647
 4648
 4649
 4650
 4651
 4652
 4653
 4654
 4655
 4656
 4657
 4658
 4659
 4660
 4661
 4662
 4663
 4664
 4665
 4666
 4667
 4668
 4669
 4670
 4671
 4672
 4673
 4674
 4675
 4676
 4677
 4678
 4679
 4680
 4681
 4682
 4683
 4684
 4685
 4686
 4687
 4688
 4689
 4690
 4691
 4692
 4693
 4694
 4695
 4696
 4697
 4698
 4699
 4700
 4701
 4702
 4703
 4704
 4705
 4706
 4707
 4708
 4709
 4710
 4711
 4712
 4713
 4714
 4715
 4716
 4717
 4718
 4719
 4720
 4721
 4722
 4723
 4724
 4725
 4726
 4727
 4728
 4729
 4730
 4731
 4732
 4733
 4734
 4735
 4736
 4737
 4738
 4739
 4740
 4741
 4742
 4743
 4744
 4745
 4746
 4747
 4748
 4749
 4750
 4751
 4752
 4753
 4754
 4755
 4756
 4757
 4758
 4759
 4760
 4761
 4762
 4763
 4764
 4765
 4766
 4767
 4768
 4769
 4770
 4771
 4772
 4773
 4774
 4775
 4776
 4777
 4778
 4779
 4780
 4781
 4782
 4783
 4784
 4785
 4786
 4787
 4788
 4789
 4790
 4791
 4792
 4793
 4794
 4795
 4796
 4797
 4798
 4799
 4800
 4801
 4802
 4803
 4804
 4805
 4806
 4807
 4808
 4809
 4810
 4811
 4812
 4813
 4814
 4815
 4816
 4817
 4818
 4819
 4820
 4821
 4822
 4823
 4824
 4825
 4826
 4827
 4828
 4829
 4830
 4831
 4832
 4833
 4834
 4835
 4836
 4837
 4838
 4839
 4840
 4841
 4842
 4843
 4844
 4845
 4846
 4847
 4848
 4849
 4850
 4851
 4852
 4853
 4854
 4855
 4856
 4857
 4858
 4859
 4860
 4861
 4862
 4863
 4864
 4865
 4866
 4867
 4868
 4869
 4870
 4871
 4872
 4873
 4874
 4875
 4876
 4877
 4878
 4879
 4880
 4881
 4882
 4883
 4884
 4885
 4886
 4887
 4888
 4889
 4890
 4891
 4892
 4893
 4894
 4895
 4896
 4897
 4898
 4899
 4900
 4901
 4902
 4903
 4904
 4905
 4906
 4907
 4908
 4909
 4910
 4911
 4912
 4913
 4914
 4915
 4916
 4917
 4918
 4919
 4920
 4921
 4922
 4923
 4924
 4925
 4926
 4927
 4928
 4929
 4930
 4931
 4932
 4933
 4934
 4935
 4936
 4937
 4938
 4939
 4940
 4941
 4942
 4943
 4944
 4945
 4946
 4947
 4948
 4949
 4950
 4951
 4952
 4953
 4954
 4955
 4956
 4957
 4958
 4959
 4960
 4961
 4962
 4963
 4964
 4965
 4966
 4967
 4968
 4969
 4970
 4971
 4972
 4973
 4974
 4975
 4976
 4977
 4978
 4979
 4980
 4981
 4982
 4983
 4984
 4985
 4986
 4987
 4988
 4989
 4990
 4991
 4992
 4993
 4994
 4995
 4996
 4997
 4998
 4999
 5000
 5001
 5002
 5003
 5004
 5005
 5006
 5007
 5008
 5009
 5010
 5011
 5012
 5013
 5014
 5015
 5016
 5017
 5018
 5019
 5020
 5021
 5022
 5023
 5024
 5025
 5026
 5027
 5028
 5029
 5030
 5031
 5032
 5033
 5034
 5035
 5036
 5037
 5038
 5039
 5040
 5041
 5042
 5043
 5044
 5045
 5046
 5047
 5048
 5049
 5050
 5051
 5052
 5053
 5054
 5055
 5056
 5057
 5058
 5059
 5060
 5061
 5062
 5063
 5064
 5065
 5066
 5067
 5068
 5069
 5070
 5071
 5072
 5073
 5074
 5075
 5076
 5077
 5078
 5079
 5080
 5081
 5082
 5083
 5084
 5085
 5086
 5087
 5088
 5089
 5090
 5091
 5092
 5093
 5094
 5095
 5096
 5097
 5098
 5099
 5100
 5101
 5102
 5103
 5104
 5105
 5106
 5107
 5108
 5109
 5110
 5111
 5112
 5113
 5114
 5115
 5116
 5117
 5118
 5119
 5120
 5121
 5122
 5123
 5124
 5125
 5126
 5127
 5128
 5129
 5130
 5131
 5132
 5133
 5134
 5135
 5136
 5137
 5138
 5139
 5140
 5141
 5142
 5143
 5144
 5145
 5146
 5147
 5148
 5149
 5150
 5151
 5152
 5153
 5154
 5155
 5156
 5157
 5158
 5159
 5160
 5161
 5162
 5163
 5164
 5165
 5166
 5167
 5168
 5169
 5170
 5171
 5172
 5173
 5174
 5175
 5176
 5177
 5178
 5179
 5180
 5181
 5182
 5183
 5184
 5185
 5186
 5187
 5188
 5189
 5190
 5191
 5192
 5193
 5194
 5195
 5196
 5197
 5198
 5199
 5200
 5201
 5202
 5203
 5204
 5205
 5206
 5207
 5208
 5209
 5210
 5211
 5212
 5213
 5214
 5215
 5216
 5217
 5218
 5219
 5220
 5221
 5222
 5223
 5224
 5225
 5226
 5227
 5228
 5229
 5230
 5231
 5232
 5233
 5234
 5235
 5236
 5237
 5238
 5239
 5240
 5241
 5242
 5243
 5244
 5245
 5246
 5247
 5248
 5249
 5250
 5251
 5252
 5253
 5254
 5255
 5256
 5257
 5258
 5259
 5260
 5261
 5262
 5263
 5264
 5265
 5266
 5267
 5268
 5269
 5270
 5271
 5272
 5273
 5274
 5275
 5276
 5277
 5278
 5279
 5280
 5281
 5282
 5283
 5284
 5285
 5286
 5287
 5288
 5289
 5290
 5291
 5292
 5293
 5294
 5295
 5296
 5297
 5298
 5299
 5300
 5301
 5302
 5303
 5304
 5305
 5306
 5307
 5308
 5309
 5310
 5311
 5312
 5313
 5314
 5315
 5316
 5317
 5318
 5319
 5320
 5321
 5322
 5323
 5324
 5325
 5326
 5327
 5328
 5329
 5330
 5331
 5332
 5333
 5334
 5335
 5336
 5337
 5338
 5339
 5340
 5341
 5342
 5343
 5344
 5345
 5346
 5347
 5348
 5349
 5350
 5351
 5352
 5353
 5354
 5355
 5356
 5357
 5358
 5359
 5360
 5361
 5362
 5363
 5364
 5365
 5366
 5367
 5368
 5369
 5370
 5371
 5372
 5373
 5374
 5375
 5376
 5377
 5378
 5379
 5380
 5381
 5382
 5383
 5384
 5385
 5386
 5387
 5388
 5389
 5390
 5391
 5392
 5393
 5394
 5395
 5396
 5397
 5398
 5399
 5400
 5401
 5402
 5403
 5404
 5405
 5406
 5407
 5408
 5409
 5410
 5411
 5412
 5413
 5414
 5415
 5416
 5417
 5418
 5419
 5420
 5421
 5422
 5423
 5424
 5425
 5426
 5427
 5428
 5429
 5430
 5431
 5432
 5433
 5434
 5435
 5436
 5437
 5438
 5439
 5440
 5441
 5442
 5443
 5444
 5445
 5446
 5447
 5448
 5449
 5450
 5451
 5452
 5453
 5454
 5455
 5456
 5457
 5458
 5459
 5460
 5461
 5462
 5463
 5464
 5465
 5466
 5467
 5468
 5469
 5470
 5471
 5472
 5473
 5474
 5475
 5476
 5477
 5478
 5479
 5480
 5481
 5482
 5483
 5484
 5485
 5486
 5487
 5488
 5489
 5490
 5491
 5492
 5493
 5494
 5495
 5496
 5497
 5498
 5499
 5500
 5501
 5502
 5503
 5504
 5505
 5506
 5507
 5508
 5509
 5510
 5511
 5512
 5513
 5514
 5515
 5516
 5517
 5518
 5519
 5520
 5521
 5522
 5523
 5524
 5525
 5526
 5527
 5528
 5529
 5530
 5531
 5532
 5533
 5534
 5535
 5536
 5537
 5538
 5539
 5540
 5541
 5542
 5543
 5544
 5545
 5546
 5547
 5548
 5549
 5550
 5551
 5552
 5553
 5554
 5555
 5556
 5557
 5558
 5559
 5560
 5561
 5562
 5563
 5564
 5565
 5566
 5567
 5568
 5569
 5570
 5571
 5572
 5573
 5574
 5575
 5576
 5577
 5578
 5579
 5580
 5581
 5582
 5583
 5584
 5585
 5586
 5587
 5588
 5589
 5590
 5591
 5592
 5593
 5594
 5595
 5596
 5597
 5598
 5599
 5600
 5601
 5602
 5603
 5604
 5605
 5606
 5607
 5608
 5609
 5610
 5611
 5612
 5613
 5614
 5615
 5616
 5617
 5618
 5619
 5620
 5621
 5622
 5623
 5624
 5625
 5626
 5627
 5628
 5629
 5630
 5631
 5632
 5633
 5634
 5635
 5636
 5637
 5638
 5639
 5640
 5641
 5642
 5643
 5644
 5645
 5646
 5647
 5648
 5649
 5650
 5651
 5652
 5653
 5654
 5655
 5656
 5657
 5658
 5659
 5660
 5661
 5662
 5663
 5664
 5665
 5666
 5667
 5668
 5669
 5670
 5671
 5672
 5673
 5674
 5675
 5676
 5677
 5678
 5679
 5680
 5681
 5682
 5683
 5684
 5685
 5686
 5687
 5688
 5689
 5690
 5691
 5692
 5693
 5694
 5695
 5696
 5697
 5698
 5699
 5700
 5701
 5702
 5703
 5704
 5705
 5706
 5707
 5708
 5709
 5710
 5711
 5712
 5713
 5714
 5715
 5716
 5717
 5718
 5719
 5720
 5721
 5722
 5723
 5724
 5725
 5726
 5727
 5728
 5729
 5730
 5731
 5732
 5733
 5734
 5735
 5736
 5737
 5738
 5739
 5740
 5741
 5742
 5743
 5744
 5745
 5746
 5747
 5748
 5749
 5750
 5751
 5752
 5753
 5754
 5755
 5756
 5757
 5758
 5759
 5760
 5761
 5762
 5763
 5764
 5765
 5766
 5767
 5768
 5769
 5770
 5771
 5772
 5773
 5774
 5775
 5776
 5777
 5778
 5779
 5780
 5781
 5782
 5783
 5784
 5785
 5786
 5787
 5788
 5789
 5790
 5791
 5792
 5793
 5794
 5795
 5796
 5797
 5798
 5799
 5800
 5801
 5802
 5803
 5804
 5805
 5806
 5807
 5808
 5809
 5810
 5811
 5812
 5813
 5814
 5815
 5816
 5817
 5818
 5819
 5820
 5821
 5822
 5823
 5824
 5825
 5826
 5827
 5828
 5829
 5830
 5831
 5832
 5833
 5834
 5835
 5836
 5837
 5838
 5839
 5840
 5841
 5842
 5843
 5844
 5845
 5846
 5847
 5848
 5849
 5850
 5851
 5852
 5853
 5854
 5855
 5856
 5857
 5858
 5859
 5860
 5861
 5862
 5863
 5864
 5865
 5866
 5867
 5868
 5869
 5870
 5871
 5872
 5873
 5874
 5875
 5876
 5877
 5878
 5879
 5880
 5881
 5882
 5883
 5884
 5885
 5886
 5887
 5888
 5889
 5890
 5891
 5892
 5893
 5894
 5895
 5896
 5897
 5898
 5899
 5900
 5901
 5902
 5903
 5904
 5905
 5906
 5907
 5908
 5909
 5910
 5911
 5912
 5913
 5914
 5915
 5916
 5917
 5918
 5919
 5920
 5921
 5922
 5923
 5924
 5925
 5926
 5927
 5928
 5929
 5930
 5931
 5932
 5933
 5934
 5935
 5936
 5937
 5938
 5939
 5940
 5941
 5942
 5943
 5944
 5945
 5946
 5947
 5948
 5949
 5950
 5951
 5952
 5953
 5954
 5955
 5956
 5957
 5958
 5959
 5960
 5961
 5962
 5963
 5964
 5965
 5966
 5967
 5968
 5969
 5970
 5971
 5972
 5973
 5974
 5975
 5976
 5977
 5978
 5979
 5980
 5981
 5982
 5983
 5984
 5985
 5986
 5987
 5988
 5989
 5990
 5991
 5992
 5993
 5994
 5995
 5996
 5997
 5998
 5999
 6000
 6001
 6002
 6003
 6004
 6005
 6006
 6007
 6008
 6009
 6010
 6011
 6012
 6013
 6014
 6015
 6016
 6017
 6018
 6019
 6020
 6021
 6022
 6023
 6024
 6025
 6026
 6027
 6028
 6029
 6030
 6031
 6032
 6033
 6034
 6035
 6036
 6037
 6038
 6039
 6040
 6041
 6042
 6043
 6044
 6045
 6046
 6047
 6048
 6049
 6050
 6051
 6052
 6053
 6054
 6055
 6056
 6057
 6058
 6059
 6060
 6061
 6062
 6063
 6064
 6065
 6066
 6067
 6068
 6069
 6070
 6071
 6072
 6073
 6074
 6075
 6076
 6077
 6078
 6079
 6080
 6081
 6082
 6083
 6084
 6085
 6086
 6087
 6088
 6089
 6090
 6091
 6092
 6093
 6094
 6095
 6096
 6097
 6098
 6099
 6100
 6101
 6102
 6103
 6104
 6105
 6106
 6107
 6108
 6109
 6110
 6111
 6112
 6113
 6114
 6115
 6116
 6117
 6118
 6119
 6120
 6121
 6122
 6123
 6124
 6125
 6126
 6127
 6128
 6129
 6130
 6131
 6132
 6133
 6134
 6135
 6136
 6137
 6138
 6139
 6140
 6141
 6142
 6143
 6144
 6145
 6146
 6147
 6148
 6149
 6150
 6151
 6152
 6153
 6154
 6155
 6156
 6157
 6158
 6159
 6160
 6161
 6162
 6163
 6164
 6165
 6166
 6167
 6168
 6169
 6170
 6171
 6172
 6173
 6174
 6175
 6176
 6177
 6178
 6179
 6180
 6181
 6182
 6183
 6184
 6185
 6186
 6187
 6188
 6189
 6190
 6191
 6192
 6193
 6194
 6195
 6196
 6197
 6198
 6199
 6200
 6201
 6202
 6203
 6204
 6205
 6206
 6207
 6208
 6209
 6210
 6211
 6212
 6213
 6214
 6215
 6216
 6217
 6218
 6219
 6220
 6221
 6222
 6223
 6224
 6225
 6226
 6227
 6228
 6229
 6230
 6231
 6232
 6233
 6234
 6235
 6236
 6237
 6238
 6239
 6240
 6241
 6242
 6243
 6244
 6245
 6246
 6247
 6248
 6249
 6250
 6251
 6252
 6253
 6254
 6255
 6256
 6257
 6258
 6259
 6260
 6261
 6262
 6263
 6264
 6265
 6266
 6267
 6268
 6269
 6270
 6271
 6272
 6273
 6274
 6275
 6276
 6277
 6278
 6279
 6280
 6281
 6282
 6283
 6284
 6285
 6286
 6287
 6288
 6289
 6290
 6291
 6292
 6293
 6294
 6295
 6296
 6297
 6298
 6299
 6300
 6301
 6302
 6303
 6304
 6305
 6306
 6307
 6308
 6309
 6310
 6311
 6312
 6313
 6314
 6315
 6316
 6317
 6318
 6319
 6320
 6321
 6322
 6323
 6324
 6325
 6326
 6327
 6328
 6329
 6330
 6331
 6332
 6333
 6334
 6335
 6336
 6337
 6338
 6339
 6340
 6341
 6342
 6343
 6344
 6345
 6346
 6347
 6348
 6349
 6350
 6351
 6352
 6353
 6354
 6355
 6356
 6357
 6358
 6359
 6360
 6361
 6362
 6363
 6364
 6365
 6366
 6367
 6368
 6369
 6370
 6371
 6372
 6373
 6374
 6375
 6376
 6377
 6378
 6379
 6380
 6381
 6382
 6383
 6384
 6385
 6386
 6387
 6388
 6389
 6390
 6391
 6392
 6393
 6394
 6395
 6396
 6397
 6398
 6399
 6400
 6401
 6402
 6403
 6404
 6405
 6406
 6407
 6408
 6409
 6410
 6411
 6412
 6413
 6414
 6415
 6416
 6417
 6418
 6419
 6420
 6421
 6422
 6423
 6424
 6425
 6426
 6427
 6428
 6429
 6430
 6431
 6432
 6433
 6434
 6435
 6436
 6437
 6438
 6439
 6440
 6441
 6442
 6443
 6444
 6445
 6446
 6447
 6448
 6449
 6450
 6451
 6452
 6453
 6454
 6455
 6456
 6457
 6458
 6459
 6460
 6461
 6462
 6463
 6464
 6465
 6466
 6467
 6468
 6469
 6470
 6471
 6472
 6473
 6474
 6475
 6476
 6477
 6478
 6479
 6480
 6481
 6482
 6483
 6484
 6485
 6486
 6487
 6488
 6489
 6490
 6491
 6492
 6493
 6494
 6495
 6496
 6497
 6498
 6499
 6500
 6501
 6502
 6503
 6504
 6505
 6506
 6507
 6508
 6509
 6510
 6511
 6512
 6513
 6514
 6515
 6516
 6517
 6518
 6519
 6520
 6521
 6522
 6523
 6524
 6525
 6526
 6527
 6528
 6529
 6530
 6531
 6532
 6533
 6534
 6535
 6536
 6537
 6538
 6539
 6540
 6541
 6542
 6543
 6544
 6545
 6546
 6547
 6548
 6549
 6550
 6551
 6552
 6553
 6554
 6555
 6556
 6557
 6558
 6559
 6560
 6561
 6562
 6563
 6564
 6565
 6566
 6567
 6568
 6569
 6570
 6571
 6572
 6573
 6574
 6575
 6576
 6577
 6578
 6579
 6580
 6581
 6582
 6583
 6584
 6585
 6586
 6587
 6588
 6589
 6590
 6591
 6592
 6593
 6594
 6595
 6596
 6597
 6598
 6599
 6600
 6601
 6602
 6603
 6604
 6605
 6606
 6607
 6608
 6609
 6610
 6611
 6612
 6613
 6614
 6615
 6616
 6617
 6618
 6619
 6620
 6621
 6622
 6623
 6624
 6625
 6626
 6627
 6628
 6629
 6630
 6631
 6632
 6633
 6634
 6635
 6636
 6637
 6638
 6639
 6640
 6641
 6642
 6643
 6644
 6645
 6646
 6647
 6648
 6649
 6650
 6651
 6652
 6653
 6654
 6655
 6656
 6657
 6658
 6659
 6660
 6661
 6662
 6663
 6664
 6665
 6666
 6667
 6668
 6669
 6670
 6671
 6672
 6673
 6674
 6675
 6676
 6677
 6678
 6679
 6680
 6681
 6682
 6683
 6684
 6685
 6686
 6687
 6688
 6689
 6690
 6691
 6692
 6693
 6694
 6695
 6696
 6697
 6698
 6699
 6700
 6701
 6702
 6703
 6704
 6705
 6706
 6707
 6708
 6709
 6710
 6711
 6712
 6713
 6714
 6715
 6716
 6717
 6718
 6719
 6720
 6721
 6722
 6723
 6724
 6725
 6726
 6727
 6728
 6729
 6730
 6731
 6732
 6733
 6734
 6735
 6736
 6737
 6738
 6739
 6740
 6741
 6742
 6743
 6744
 6745
 6746
 6747
 6748
 6749
 6750
 6751
 6752
 6753
 6754
 6755
 6756
 6757
 6758
 6759
 6760
 6761
 6762
 6763
 6764
 6765
 6766
 6767
 6768
 6769
 6770
 6771
 6772
 6773
 6774
 6775
 6776
 6777
 6778
 6779
 6780
 6781
 6782
 6783
 6784
 6785
 6786
 6787
 6788
 6789
 6790
 6791
 6792
 6793
 6794
 6795
 6796
 6797
 6798
 6799
 6800
 6801
 6802
 6803
 6804
 6805
 6806
 6807
 6808
 6809
 6810
 6811
 6812
 6813
 6814
 6815
 6816
 6817
 6818
 6819
 6820
 6821
 6822
 6823
 6824
 6825
 6826
 6827
 6828
 6829
 6830
 6831
 6832
 6833
 6834
 6835
 6836
 6837
 6838
 6839
 6840
 6841
 6842
 6843
 6844
 6845
 6846
 6847
 6848
 6849
 6850
 6851
 6852
 6853
 6854
 6855
 6856
 6857
 6858
 6859
 6860
 6861
 6862
 6863
 6864
 6865
 6866
 6867
 6868
 6869
 6870
 6871
 6872
 6873
 6874
 6875
 6876
 6877
 6878
 6879
 6880
 6881
 6882
 6883
 6884
 6885
 6886
 6887
 6888
 6889
 6890
 6891
 6892
 6893
 6894
 6895
 6896
 6897
 6898
 6899
 6900
 6901
 6902
 6903
 6904
 6905
 6906
 6907
 6908
 6909
 6910
 6911
 6912
 6913
 6914
 6915
 6916
 6917
 6918
 6919
 6920
 6921
 6922
 6923
 6924
 6925
 6926
 6927
 6928
 6929
 6930
 6931
 6932
 6933
 6934
 6935
 6936
 6937
 6938
 6939
 6940
 6941
 6942
 6943
 6944
 6945
 6946
 6947
 6948
 6949
 6950
 6951
 6952
 6953
 6954
 6955
 6956
 6957
 6958
 6959
 6960
 6961
 6962
 6963
 6964
 6965
 6966
 6967
 6968
 6969
 6970
 6971
 6972
 6973
 6974
 6975
 6976
 6977
 6978
 6979
 6980
 6981
 6982
 6983
 6984
 6985
 6986
 6987
 6988
 6989
 6990
 6991
 6992
 6993
 6994
 6995
 6996
 6997
 6998
 6999
 7000
 7001
 7002
 7003
 7004
 7005
 7006
 7007
 7008
 7009
 7010
 7011
 7012
 7013
 7014
 7015
 7016
 7017
 7018
 7019
 7020
 7021
 7022
 7023
 7024
 7025
 7026
 7027
 7028
 7029
 7030
 7031
 7032
 7033
 7034
 7035
 7036
 7037
 7038
 7039
 7040
 7041
 7042
 7043
 7044
 7045
 7046
 7047
 7048
 7049
 7050
 7051
 7052
 7053
 7054
 7055
 7056
 7057
 7058
 7059
 7060
 7061
 7062
 7063
 7064
 7065
 7066
 7067
 7068
 7069
 7070
 7071
 7072
 7073
 7074
 7075
 7076
 7077
 7078
 7079
 7080
 7081
 7082
 7083
 7084
 7085
 7086
 7087
 7088
 7089
 7090
 7091
 7092
 7093
 7094
 7095
 7096
 7097
 7098
 7099
 7100
 7101
 7102
 7103
 7104
 7105
 7106
 7107
 7108
 7109
 7110
 7111
 7112
 7113
 7114
 7115
 7116
 7117
 7118
 7119
 7120
 7121
 7122
 7123
 7124
 7125
 7126
 7127
 7128
 7129
 7130
 7131
 7132
 7133
 7134
 7135
 7136
 7137
 7138
 7139
 7140
 7141
 7142
 7143
 7144
 7145
 7146
 7147
 7148
 7149
 7150
 7151
 7152
 7153
 7154
 7155
 7156
 7157
 7158
 7159
 7160
 7161
 7162
 7163
 7164
 7165
 7166
 7167
 7168
 7169
 7170
 7171
 7172
 7173
 7174
 7175
 7176
 7177
 7178
 7179
 7180
 7181
 7182
 7183
 7184
 7185
 7186
 7187
 7188
 7189
 7190
 7191
 7192
 7193
 7194
 7195
 7196
 7197
 7198
 7199
 7200
 7201
 7202
 7203
 7204
 7205
 7206
 7207
 7208
 7209
 7210
 7211
 7212
 7213
 7214
 7215
 7216
 7217
 7218
 7219
 7220
 7221
 7222
 7223
 7224
 7225
 7226
 7227
 7228
 7229
 7230
 7231
 7232
 7233
 7234
 7235
 7236
 7237
 7238
 7239
 7240
 7241
 7242
 7243
 7244
 7245
 7246
 7247
 7248
 7249
 7250
 7251
 7252
 7253
 7254
 7255
 7256
 7257
 7258
 7259
 7260
 7261
 7262
 7263
 7264
 7265
 7266
 7267
 7268
 7269
 7270
 7271
 7272
 7273
 7274
 7275
 7276
 7277
 7278
 7279
 7280
 7281
 7282
 7283
 7284
 7285
 7286
 7287
 7288
 7289
 7290
 7291
 7292
 7293
 7294
 7295
 7296
 7297
 7298
 7299
 7300
 7301
 7302
 7303
 7304
 7305
 7306
 7307
 7308
 7309
 7310
 7311
 7312
 7313
 7314
 7315
 7316
 7317
 7318
 7319
 7320
 7321
 7322
 7323
 7324
 7325
 7326
 7327
 7328
 7329
 7330
 7331
 7332
 7333
 7334
 7335
 7336
 7337
 7338
 7339
 7340
 7341
 7342
 7343
 7344
 7345
 7346
 7347
 7348
 7349
 7350
 7351
 7352
 7353
 7354
 7355
 7356
 7357
 7358
 7359
 7360
 7361
 7362
 7363
 7364
 7365
 7366
 7367
 7368
 7369
 7370
 7371
 7372
 7373
 7374
 7375
 7376
 7377
 7378
 7379
 7380
 7381
 7382
 7383
 7384
 7385
 7386
 7387
 7388
 7389
 7390
 7391
 7392
 7393
 7394
 7395
 7396
 7397
 7398
 7399
 7400
 7401
 7402
 7403
 7404
 7405
 7406
 7407
 7408
 7409
 7410
 7411
 7412
 7413
 7414
 7415
 7416
 7417
 7418
 7419
 7420
 7421
 7422
 7423
 7424
 7425
 7426
 7427
 7428
 7429
 7430
 7431
 7432
 7433
 7434
 7435
 7436
 7437
 7438
 7439
 7440
 7441
 7442
 7443
 7444
 7445
 7446
 7447
 7448
 7449
 7450
 7451
 7452
 7453
 7454
 7455
 7456
 7457
 7458
 7459
 7460
 7461
 7462
 7463
 7464
 7465
 7466
 7467
 7468
 7469
 7470
 7471
 7472
 7473
 7474
 7475
 7476
 7477
 7478
 7479
 7480
 7481
 7482
 7483
 7484
 7485
 7486
 7487
 7488
 7489
 7490
 7491
 7492
 7493
 7494
 7495
 7496
 7497
 7498
 7499
 7500
 7501
 7502
 7503
 7504
 7505
 7506
 7507
 7508
 7509
 7510
 7511
 7512
 7513
 7514
 7515
 7516
 7517
 7518
 7519
 7520
 7521
 7522
 7523
 7524
 7525
 7526
 7527
 7528
 7529
 7530
 7531
 7532
 7533
 7534
 7535
 7536
 7537
 7538
 7539
 7540
 7541
 7542
 7543
 7544
 7545
 7546
 7547
 7548
 7549
 7550
 7551
 7552
 7553
 7554
 7555
 7556
 7557
 7558
 7559
 7560
 7561
 7562
 7563
 7564
 7565
 7566
 7567
 7568
 7569
 7570
 7571
 7572
 7573
 7574
 7575
 7576
 7577
 7578
 7579
 7580
 7581
 7582
 7583
 7584
 7585
 7586
 7587
 7588
 7589
 7590
 7591
 7592
 7593
 7594
 7595
 7596
 7597
 7598
 7599
 7600
 7601
 7602
 7603
 7604
 7605
 7606
 7607
 7608
 7609
 7610
 7611
 7612
 7613
 7614
 7615
 7616
 7617
 7618
 7619
 7620
 7621
 7622
 7623
 7624
 7625
 7626
 7627
 7628
 7629
 7630
 7631
 7632
 7633
 7634
 7635
 7636
 7637
 7638
 7639
 7640
 7641
 7642
 7643
 7644
 7645
 7646
 7647
 7648
 7649
 7650
 7651
 7652
 7653
 7654
 7655
 7656
 7657
 7658
 7659
 7660
 7661
 7662
 7663
 7664
 7665
 7666
 7667
 7668
 7669
 7670
 7671
 7672
 7673
 7674
 7675
 7676
 7677
 7678
 7679
 7680
 7681
 7682
 7683
 7684
 7685
 7686
 7687
 7688
 7689
 7690
 7691
 7692
 7693
 7694
 7695
 7696
 7697
 7698
 7699
 7700
 7701
 7702
 7703
 7704
 7705
 7706
 7707
 7708
 7709
 7710
 7711
 7712
 7713
 7714
 7715
 7716
 7717
 7718
 7719
 7720
 7721
 7722
 7723
 7724
 7725
 7726
 7727
 7728
 7729
 7730
 7731
 7732
 7733
 7734
 7735
 7736
 7737
 7738
 7739
 7740
 7741
 7742
 7743
 7744
 7745
 7746
 7747
 7748
 7749
 7750
 7751
 7752
 7753
 7754
 7755
 7756
 7757
 7758
 7759
 7760
 7761
 7762
 7763
 7764
 7765
 7766
 7767
 7768
 7769
 7770
 7771
 7772
 7773
 7774
 7775
 7776
 7777
 7778
 7779
 7780
 7781
 7782
 7783
 7784
 7785
 7786
 7787
 7788
 7789
 7790
 7791
 7792
 7793
 7794
 7795
 7796
 7797
 7798
 7799
 7800
 7801
 7802
 7803
 7804
 7805
 7806
 7807
 7808
 7809
 7810
 7811
 7812
 7813
 7814
 7815
 7816
 7817
 7818
 7819
 7820
 7821
 7822
 7823
 7824
 7825
 7826
 7827
 7828
 7829
 7830
 7831
 7832
 7833
 7834
 7835
 7836
 7837
 7838
 7839
 7840
 7841
 7842
 7843
 7844
 7845
 7846
 7847
 7848
 7849
 7850
 7851
 7852
 7853
 7854
 7855
 7856
 7857
 7858
 7859
 7860
 7861
 7862
 7863
 7864
 7865
 7866
 7867
 7868
 7869
 7870
 7871
 7872
 7873
 7874
 7875
 7876
 7877
 7878
 7879
 7880
 7881
 7882
 7883
 7884
 7885
 7886
 7887
 7888
 7889
 7890
 7891
 7892
 7893
 7894
 7895
 7896
 7897
 7898
 7899
 7900
 7901
 7902
 7903
 7904
 7905
 7906
 7907
 7908
 7909
 7910
 7911
 7912
 7913
 7914
 7915
 7916
 7917
 7918
 7919
 7920
 7921
 7922
 7923
 7924
 7925
 7926
 7927
 7928
 7929
 7930
 7931
 7932
 7933
 7934
 7935
 7936
 7937
 7938
 7939
 7940
 7941
 7942
 7943
 7944
 7945
 7946
 7947
 7948
 7949
 7950
 7951
 7952
 7953
 7954
 7955
 7956
 7957
 7958
 7959
 7960
 7961
 7962
 7963
 7964
 7965
 7966
 7967
 7968
 7969
 7970
 7971
 7972
 7973
 7974
 7975
 7976
 7977
 7978
 7979
 7980
 7981
 7982
 7983
 7984
 7985
 7986
 7987
 7988
 7989
 7990
 7991
 7992
 7993
 7994
 7995
 7996
 7997
 7998
 7999
 8000
 8001
 8002
 8003
 8004
 8005
 8006
 8007
 8008
 8009
 8010
 8011
 8012
 8013
 8014
 8015
 8016
 8017
 8018
 8019
 8020
 8021
 8022
 8023
 8024
 8025
 8026
 8027
 8028
 8029
 8030
 8031
 8032
 8033
 8034
 8035
 8036
 8037
 8038
 8039
 8040
 8041
 8042
 8043
 8044
 8045
 8046
 8047
 8048
 8049
 8050
 8051
 8052
 8053
 8054
 8055
 8056
 8057
 8058
 8059
 8060
 8061
 8062
 8063
 8064
 8065
 8066
 8067
 8068
 8069
 8070
 8071
 8072
 8073
 8074
 8075
 8076
 8077
 8078
 8079
 8080
 8081
 8082
 8083
 8084
 8085
 8086
 8087
 8088
 8089
 8090
 8091
 8092
 8093
 8094
 8095
 8096
 8097
 8098
 8099
 8100
 8101
 8102
 8103
 8104
 8105
 8106
 8107
 8108
 8109
 8110
 8111
 8112
 8113
 8114
 8115
 8116
 8117
 8118
 8119
 8120
 8121
 8122
 8123
 8124
 8125
 8126
 8127
 8128
 8129
 8130
 8131
 8132
 8133
 8134
 8135
 8136
 8137
 8138
 8139
 8140
 8141
 8142
 8143
 8144
 8145
 8146
 8147
 8148
 8149
 8150
 8151
 8152
 8153
 8154
 8155
 8156
 8157
 8158
 8159
 8160
 8161
 8162
 8163
 8164
 8165
 8166
 8167
 8168
 8169
 8170
 8171
 8172
 8173
 8174
 8175
 8176
 8177
 8178
 8179
 8180
 8181
 8182
 8183
 8184
 8185
 8186
 8187
 8188
 8189
 8190
 8191
 8192
 8193
 8194
 8195
 8196
 8197
 8198
 8199
 8200
 8201
 8202
 8203
 8204
 8205
 8206
 8207
 8208
 8209
 8210
 8211
 8212
 8213
 8214
 8215
 8216
 8217
 8218
 8219
 8220
 8221
 8222
 8223
 8224
 8225
 8226
 8227
 8228
 8229
 8230
 8231
 8232
 8233
 8234
 8235
 8236
 8237
 8238
 8239
 8240
 8241
 8242
 8243
 8244
 8245
 8246
 8247
 8248
 8249
 8250
 8251
 8252
 8253
 8254
 8255
 8256
 8257
 8258
 8259
 8260
 8261
 8262
 8263
 8264
 8265
 8266
 8267
 8268
 8269
 8270
 8271
 8272
 8273
 8274
 8275
 8276
 8277
 8278
 8279
 8280
 8281
 8282
 8283
 8284
 8285
 8286
 8287
 8288
 8289
 8290
 8291
 8292
 8293
 8294
 8295
 8296
 8297
 8298
 8299
 8300
 8301
 8302
 8303
 8304
 8305
 8306
 8307
 8308
 8309
 8310
 8311
 8312
 8313
 8314
 8315
 8316
 8317
 8318
 8319
 8320
 8321
 8322
 8323
 8324
 8325
 8326
 8327
 8328
 8329
 8330
 8331
 8332
 8333
 8334
 8335
 8336
 8337
 8338
 8339
 8340
 8341
 8342
 8343
 8344
 8345
 8346
 8347
 8348
 8349
 8350
 8351
 8352
 8353
 8354
 8355
 8356
 8357
 8358
 8359
 8360
 8361
 8362
 8363
 8364
 8365
 8366
 8367
 8368
 8369
 8370
 8371
 8372
 8373
 8374
 8375
 8376
 8377
 8378
 8379
 8380
 8381
 8382
 8383
 8384
 8385
 8386
 8387
 8388
 8389
 8390
 8391
 8392
 8393
 8394
 8395
 8396
 8397
 8398
 8399
 8400
 8401
 8402
 8403
 8404
 8405
 8406
 8407
 8408
 8409
 8410
 8411
 8412
 8413
 8414
 8415
 8416
 8417
 8418
 8419
 8420
 8421
 8422
 8423
 8424
 8425
 8426
 8427
 8428
 8429
 8430
 8431
 8432
 8433
 8434
 8435
 8436
 8437
 8438
 8439
 8440
 8441
 8442
 8443
 8444
 8445
 8446
 8447
 8448
 8449
 8450
 8451
 8452
 8453
 8454
 8455
 8456
 8457
 8458
 8459
 8460
 8461
 8462
 8463
 8464
 8465
 8466
 8467
 8468
 8469
 8470
 8471
 8472
 8473
 8474
 8475
 8476
 8477
 8478
 8479
 8480
 8481
 8482
 8483
 8484
 8485
 8486
 8487
 8488
 8489
 8490
 8491
 8492
 8493
 8494
 8495
 8496
 8497
 8498
 8499
 8500
 8501
 8502
 8503
 8504
 8505
 8506
 8507
 8508
 8509
 8510
 8511
 8512
 8513
 8514
 8515
 8516
 8517
 8518
 8519
 8520
 8521
 8522
 8523
 8524
 8525
 8526
 8527
 8528
 8529
 8530
 8531
 8532
 8533
 8534
 8535
 8536
 8537
 8538
 8539
 8540
 8541
 8542
 8543
 8544
 8545
 8546
 8547
 8548
 8549
 8550
 8551
 8552
 8553
 8554
 8555
 8556
 8557
 8558
 8559
 8560
 8561
 8562
 8563
 8564
 8565
 8566
 8567
 8568
 8569
 8570
 8571
 8572
 8573
 8574
 8575
 8576
 8577
 8578
 8579
 8580
 8581
 8582
 8583
 8584
 8585
 8586
 8587
 8588
 8589
 8590
 8591
 8592
 8593
 8594
 8595
 8596
 8597
 8598
 8599
 8600
 8601
 8602
 8603
 8604
 8605
 8606
 8607
 8608
 8609
 8610
 8611
 8612
 8613
 8614
 8615
 8616
 8617
 8618
 8619
 8620
 8621
 8622
 8623
 8624
 8625
 8626
 8627
 8628
 8629
 8630
 8631
 8632
 8633
 8634
 8635
 8636
 8637
 8638
 8639
 8640
 8641
 8642
 8643
 8644
 8645
 8646
 8647
 8648
 8649
 8650
 8651
 8652
 8653
 8654
 8655
 8656
 8657
 8658
 8659
 8660
 8661
 8662
 8663
 8664
 8665
 8666
 8667
 8668
 8669
 8670
 8671
 8672
 8673
 8674
 8675
 8676
 8677
 8678
 8679
 8680
 8681
 8682
 8683
 8684
 8685
 8686
 8687
 8688
 8689
 8690
 8691
 8692
 8693
 8694
 8695
 8696
 8697
 8698
 8699
 8700
 8701
 8702
 8703
 8704
 8705
 8706
 8707
 8708
 8709
 8710
 8711
 8712
 8713
 8714
 8715
 8716
 8717
 8718
 8719
 8720
 8721
 8722
 8723
 8724
 8725
 8726
 8727
 8728
 8729
 8730
 8731
 8732
 8733
 8734
 8735
 8736
 8737
 8738
 8739
 8740
 8741
 8742
 8743
 8744
 8745
 8746
 8747
 8748
 8749
 8750
 8751
 8752
 8753
 8754
 8755
 8756
 8757
 8758
 8759
 8760
 8761
 8762
 8763
 8764
 8765
 8766
 8767
 8768
 8769
 8770
 8771
 8772
 8773
 8774
 8775
 8776
 8777
 8778
 8779
 8780
 8781
 8782
 8783
 8784
 8785
 8786
 8787
 8788
 8789
 8790
 8791
 8792
 8793
 8794
 8795
 8796
 8797
 8798
 8799
 8800
 8801
 8802
 8803
 8804
 8805
 8806
 8807
 8808
 8809
 8810
 8811
 8812
 8813
 8814
 8815
 8816
 8817
 8818
 8819
 8820
 8821
 8822
 8823
 8824
 8825
 8826
 8827
 8828
 8829
 8830
 8831
 8832
 8833
 8834
 8835
 8836
 8837
 8838
 8839
 8840
 8841
 8842
 8843
 8844
 8845
 8846
 8847
 8848
 8849
 8850
 8851
 8852
 8853
 8854
 8855
 8856
 8857
 8858
 8859
 8860
 8861
 8862
 8863
 8864
 8865
 8866
 8867
 8868
 8869
 8870
 8871
 8872
 8873
 8874
 8875
 8876
 8877
 8878
 8879
 8880
 8881
 8882
 8883
 8884
 8885
 8886
 8887
 8888
 8889
 8890
 8891
 8892
 8893
 8894
 8895
 8896
 8897
 8898
 8899
 8900
 8901
 8902
 8903
 8904
 8905
 8906
 8907
 8908
 8909
 8910
 8911
 8912
 8913
 8914
 8915
 8916
 8917
 8918
 8919
 8920
 8921
 8922
 8923
 8924
 8925
 8926
 8927
 8928
 8929
 8930
 8931
 8932
 8933
 8934
 8935
 8936
 8937
 8938
 8939
 8940
 8941
 8942
 8943
 8944
 8945
 8946
 8947
 8948
 8949
 8950
 8951
 8952
 8953
 8954
 8955
 8956
 8957
 8958
 8959
 8960
 8961
 8962
 8963
 8964
 8965
 8966
 8967
 8968
 8969
 8970
 8971
 8972
 8973
 8974
 8975
 8976
 8977
 8978
 8979
 8980
 8981
 8982
 8983
 8984
 8985
 8986
 8987
 8988
 8989
 8990
 8991
 8992
 8993
 8994
 8995
 8996
 8997
 8998
 8999
 9000
 9001
 9002
 9003
 9004
 9005
 9006
 9007
 9008
 9009
 9010
 9011
 9012
 9013
 9014
 9015
 9016
 9017
 9018
 9019
 9020
 9021
 9022
 9023
 9024
 9025
 9026
 9027
 9028
 9029
 9030
 9031
 9032
 9033
 9034
 9035
 9036
 9037
 9038
 9039
 9040
 9041
 9042
 9043
 9044
 9045
 9046
 9047
 9048
 9049
 9050
 9051
 9052
 9053
 9054
 9055
 9056
 9057
 9058
 9059
 9060
 9061
 9062
 9063
 9064
 9065
 9066
 9067
 9068
 9069
 9070
 9071
 9072
 9073
 9074
 9075
 9076
 9077
 9078
 9079
 9080
 9081
 9082
 9083
 9084
 9085
 9086
 9087
 9088
 9089
 9090
 9091
 9092
 9093
 9094
 9095
 9096
 9097
 9098
 9099
 9100
 9101
 9102
 9103
 9104
 9105
 9106
 9107
 9108
 9109
 9110
 9111
 9112
 9113
 9114
 9115
 9116
 9117
 9118
 9119
 9120
 9121
 9122
 9123
 9124
 9125
 9126
 9127
 9128
 9129
 9130
 9131
 9132
 9133
 9134
 9135
 9136
 9137
 9138
 9139
 9140
 9141
 9142
 9143
 9144
 9145
 9146
 9147
 9148
 9149
 9150
 9151
 9152
 9153
 9154
 9155
 9156
 9157
 9158
 9159
 9160
 9161
 9162
 9163
 9164
 9165
 9166
 9167
 9168
 9169
 9170
 9171
 9172
 9173
 9174
 9175
 9176
 9177
 9178
 9179
 9180
 9181
 9182
 9183
 9184
 9185
 9186
 9187
 9188
 9189
 9190
 9191
 9192
 9193
 9194
 9195
 9196
 9197
 9198
 9199
 9200
 9201
 9202
 9203
 9204
 9205
 9206
 9207
 9208
 9209
 9210
 9211
 9212
 9213
 9214
 9215
 9216
 9217
 9218
 9219
 9220
 9221
 9222
 9223
 9224
 9225
 9226
 9227
 9228
 9229
 9230
 9231
 9232
 9233
 9234
 9235
 9236
 9237
 9238
 9239
 9240
 9241
 9242
 9243
 9244
 9245
 9246
 9247
 9248
 9249
 9250
 9251
 9252
 9253
 9254
 9255
 9256
 9257
 9258
 9259
 9260
 9261
 9262
 9263
 9264
 9265
 9266
 9267
 9268
 9269
 9270
 9271
 9272
 9273
 9274
 9275
 9276
 9277
 9278
 9279
 9280
 9281
 9282
 9283
 9284
 9285
 9286
 9287
 9288
 9289
 9290
 9291
 9292
 9293
 9294
 9295
 9296
 9297
 9298
 9299
 9300
 9301
 9302
 9303
 9304
 9305
 9306
 9307
 9308
 9309
 9310
 9311
 9312
 9313
 9314
 9315
 9316
 9317
 9318
 9319
 9320
 9321
 9322
 9323
 9324
 9325
 9326
 9327
 9328
 9329
 9330
 9331
 9332
 9333
 9334
 9335
 9336
 9337
 9338
 9339
 9340
 9341
 9342
 9343
 9344
 9345
 9346
 9347
 9348
 9349
 9350
 9351
 9352
 9353
 9354
 9355
 9356
 9357
 9358
 9359
 9360
 9361
 9362
 9363
 9364
 9365
 9366
 9367
 9368
 9369
 9370
 9371
 9372
 9373
 9374
 9375
 9376
 9377
 9378
 9379
 9380
 9381
 9382
 9383
 9384
 9385
 9386
 9387
 9388
 9389
 9390
 9391
 9392
 9393
 9394
 9395
 9396
 9397
 9398
 9399
 9400
 9401
 9402
 9403
 9404
 9405
 9406
 9407
 9408
 9409
 9410
 9411
 9412
 9413
 9414
 9415
 9416
 9417
 9418
 9419
 9420
 9421
 9422
 9423
 9424
 9425
 9426
 9427
 9428
 9429
 9430
 9431
 9432
 9433
 9434
 9435
 9436
 9437
 9438
 9439
 9440
 9441
 9442
 9443
 9444
 9445
 9446
 9447
 9448
 9449
 9450
 9451
 9452
 9453
 9454
 9455
 9456
 9457
 9458
 9459
 9460
 9461
 9462
 9463
 9464
 9465
 9466
 9467
 9468
 9469
 9470
 9471
 9472
 9473
 9474
 9475
 9476
 9477
 9478
 9479
 9480
 9481
 9482
 9483
 9484
 9485
 9486
 9487
 9488
 9489
 9490
 9491
 9492
 9493
 9494
 9495
 9496
 9497
 9498
 9499
 9500
 9501
 9502
 9503
 9504
 9505
 9506
 9507
 9508
 9509
 9510
 9511
 9512
 9513
 9514
 9515
 9516
 9517
 9518
 9519
 9520
 9521
 9522
 9523
 9524
 9525
 9526
 9527
 9528
 9529
 9530
 9531
 9532
 9533
 9534
 9535
 9536
 9537
 9538
 9539
 9540
 9541
 9542
 9543
 9544
 9545
 9546
 9547
 9548
 9549
 9550
 9551
 9552
 9553
 9554
 9555
 9556
 9557
 9558
 9559
 9560
 9561
 9562
 9563
 9564
 9565
 9566
 9567
 9568
 9569
 9570
 9571
 9572
 9573
 9574
 9575
 9576
 9577
 9578
 9579
 9580
 9581
 9582
 9583
 9584
 9585
 9586
 9587
 9588
 9589
 9590
 9591
 9592
 9593
 9594
 9595
 9596
 9597
 9598
 9599
 9600
 9601
 9602
 9603
 9604
 9605
 9606
 9607
 9608
 9609
 9610
 9611
 9612
 9613
 9614
 9615
 9616
 9617
 9618
 9619
 9620
 9621
 9622
 9623
 9624
 9625
 9626
 9627
 9628
 9629
 9630
 9631
 9632
 9633
 9634
 9635
 9636
 9637
 9638
 9639
 9640
 9641
 9642
 9643
 9644
 9645
 9646
 9647
 9648
 9649
 9650
 9651
 9652
 9653
 9654
 9655
 9656
 9657
 9658
 9659
 9660
 9661
 9662
 9663
 9664
 9665
 9666
 9667
 9668
 9669
 9670
 9671
 9672
 9673
 9674
 9675
 9676
 9677
 9678
 9679
 9680
 9681
 9682
 9683
 9684
 9685
 9686
 9687
 9688
 9689
 9690
 9691
 9692
 9693
 9694
 9695
 9696
 9697
 9698
 9699
 9700
 9701
 9702
 9703
 9704
 9705
 9706
 9707
 9708
 9709
 9710
 9711
 9712
 9713
 9714
 9715
 9716
 9717
 9718
 9719
 9720
 9721
 9722
 9723
 9724
 9725
 9726
 9727
 9728
 9729
 9730
 9731
 9732
 9733
 9734
 9735
 9736
 9737
 9738
 9739
 9740
 9741
 9742
 9743
 9744
 9745
 9746
 9747
 9748
 9749
 9750
 9751
 9752
 9753
 9754
 9755
 9756
 9757
 9758
 9759
 9760
 9761
 9762
 9763
 9764
 9765
 9766
 9767
 9768
 9769
 9770
 9771
 9772
 9773
 9774
 9775
 9776
 9777
 9778
 9779
 9780
 9781
 9782
 9783
 9784
 9785
 9786
 9787
 9788
 9789
 9790
 9791
 9792
 9793
 9794
 9795
 9796
 9797
 9798
 9799
 9800
 9801
 9802
 9803
 9804
 9805
 9806
 9807
 9808
 9809
 9810
 9811
 9812
 9813
 9814
 9815
 9816
 9817
 9818
 9819
 9820
 9821
 9822
 9823
 9824
 9825
 9826
 9827
 9828
 9829
 9830
 9831
 9832
 9833
 9834
 9835
 9836
 9837
 9838
 9839
 9840
 9841
 9842
 9843
 9844
 9845
 9846
 9847
 9848
 9849
 9850
 9851
 9852
 9853
 9854
 9855
 9856
 9857
 9858
 9859
 9860
 9861
 9862
 9863
 9864
 9865
 9866
 9867
 9868
 9869
 9870
 9871
 9872
 9873
 9874
 9875
 9876
 9877
 9878
 9879
 9880
 9881
 9882
 9883
 9884
 9885
 9886
 9887
 9888
 9889
 9890
 9891
 9892
 9893
 9894
 9895
 9896
 9897
 9898
 9899
 9900
 9901
 9902
 9903
 9904
 9905
 9906
 9907
 9908
 9909
 9910
 9911
 9912
 9913
 9914
 9915
 9916
 9917
 9918
 9919
 9920
 9921
 9922
 9923
 9924
 9925
 9926
 9927
 9928
 9929
 9930
 9931
 9932
 9933
 9934
 9935
 9936
 9937
 9938
 9939
 9940
 9941
 9942
 9943
 9944
 9945
 9946
 9947
 9948
 9949
 9950
 9951
 9952
 9953
 9954
 9955
 9956
 9957
 9958
 9959
 9960
 9961
 9962
 9963
 9964
 9965
 9966
 9967
 9968
 9969
 9970
 9971
 9972
 9973
 9974
 9975
 9976
 9977
 9978
 9979
 9980
 9981
 9982
 9983
 9984
 9985
 9986
 9987
 9988
 9989
 9990
 9991
 9992
 9993
 9994
 9995
 9996
 9997
 9998
 9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
23806
23807
23808
23809
23810
23811
23812
23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
23828
23829
23830
23831
23832
23833
23834
23835
23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
23851
23852
23853
23854
23855
23856
23857
23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
23922
23923
23924
23925
23926
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
23945
23946
23947
23948
23949
23950
23951
23952
23953
23954
23955
23956
23957
23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
23986
23987
23988
23989
23990
23991
23992
23993
23994
23995
23996
23997
23998
23999
24000
24001
24002
24003
24004
24005
24006
24007
24008
24009
24010
24011
24012
24013
24014
24015
24016
24017
24018
24019
24020
24021
24022
24023
24024
24025
24026
24027
24028
24029
24030
24031
24032
24033
24034
24035
24036
24037
24038
24039
24040
24041
24042
24043
24044
24045
24046
24047
24048
24049
24050
24051
24052
24053
24054
24055
24056
24057
24058
24059
24060
24061
24062
24063
24064
24065
24066
24067
24068
24069
24070
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
24092
24093
24094
24095
24096
24097
24098
24099
24100
24101
24102
24103
24104
24105
24106
24107
24108
24109
24110
24111
24112
24113
24114
24115
24116
24117
24118
24119
24120
24121
24122
24123
24124
24125
24126
24127
24128
24129
24130
24131
24132
24133
24134
24135
24136
24137
24138
24139
24140
24141
24142
24143
24144
24145
24146
24147
24148
24149
24150
24151
24152
24153
24154
24155
24156
24157
24158
24159
24160
24161
24162
24163
24164
24165
24166
24167
24168
24169
24170
24171
24172
24173
24174
24175
24176
24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24200
24201
24202
24203
24204
24205
24206
24207
24208
24209
24210
24211
24212
24213
24214
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
24230
24231
24232
24233
24234
24235
24236
24237
24238
24239
24240
24241
24242
24243
24244
24245
24246
24247
24248
24249
24250
24251
24252
24253
24254
24255
24256
24257
24258
24259
24260
24261
24262
24263
24264
24265
24266
24267
24268
24269
24270
24271
24272
24273
24274
24275
24276
24277
24278
24279
24280
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290
24291
24292
24293
24294
24295
24296
24297
24298
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
24313
24314
24315
24316
24317
24318
24319
24320
24321
24322
24323
24324
24325
24326
24327
24328
24329
24330
24331
24332
24333
24334
24335
24336
24337
24338
24339
24340
24341
24342
24343
24344
24345
24346
24347
24348
24349
24350
24351
24352
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378
24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389
24390
24391
24392
24393
24394
24395
24396
24397
24398
24399
24400
24401
24402
24403
24404
24405
24406
24407
24408
24409
24410
24411
24412
24413
24414
24415
24416
24417
24418
24419
24420
24421
24422
24423
24424
24425
24426
24427
24428
24429
24430
24431
24432
24433
24434
24435
24436
24437
24438
24439
24440
24441
24442
24443
24444
24445
24446
24447
24448
24449
24450
24451
24452
24453
24454
24455
24456
24457
24458
24459
24460
24461
24462
24463
24464
24465
24466
24467
24468
24469
24470
24471
24472
24473
24474
24475
24476
24477
24478
24479
24480
24481
24482
24483
24484
24485
24486
24487
24488
24489
24490
24491
24492
24493
24494
24495
24496
24497
24498
24499
24500
24501
24502
24503
24504
24505
24506
24507
24508
24509
24510
24511
24512
24513
24514
24515
24516
24517
24518
24519
24520
24521
24522
24523
24524
24525
24526
24527
24528
24529
24530
24531
24532
24533
24534
24535
24536
24537
24538
24539
24540
24541
24542
24543
24544
24545
24546
24547
24548
24549
24550
24551
24552
24553
24554
24555
24556
24557
24558
24559
24560
24561
24562
24563
24564
24565
24566
24567
24568
24569
24570
24571
24572
24573
24574
24575
24576
24577
24578
24579
24580
24581
24582
24583
24584
24585
24586
24587
24588
24589
24590
24591
24592
24593
24594
24595
24596
24597
24598
24599
24600
24601
24602
24603
24604
24605
24606
24607
24608
24609
24610
24611
24612
24613
24614
24615
24616
24617
24618
24619
24620
24621
24622
24623
24624
24625
24626
24627
24628
24629
24630
24631
24632
24633
24634
24635
24636
24637
24638
24639
24640
24641
24642
24643
24644
24645
24646
24647
24648
24649
24650
24651
24652
24653
24654
24655
24656
24657
24658
24659
24660
24661
24662
24663
24664
24665
24666
24667
24668
24669
24670
24671
24672
24673
24674
24675
24676
24677
24678
24679
24680
24681
24682
24683
24684
24685
24686
24687
24688
24689
24690
24691
24692
24693
24694
24695
24696
24697
24698
24699
24700
24701
24702
24703
24704
24705
24706
24707
24708
24709
24710
24711
24712
24713
24714
24715
24716
24717
24718
24719
24720
24721
24722
24723
24724
24725
24726
24727
24728
24729
24730
24731
24732
24733
24734
24735
24736
24737
24738
24739
24740
24741
24742
24743
24744
24745
24746
24747
24748
24749
24750
24751
24752
24753
24754
24755
24756
24757
24758
24759
24760
24761
24762
24763
24764
24765
24766
24767
24768
24769
24770
24771
24772
24773
24774
24775
24776
24777
24778
24779
24780
24781
24782
24783
24784
24785
24786
24787
24788
24789
24790
24791
24792
24793
24794
24795
24796
24797
24798
24799
24800
24801
24802
24803
24804
24805
24806
24807
24808
24809
24810
24811
24812
24813
24814
24815
24816
24817
24818
24819
24820
24821
24822
24823
24824
24825
24826
24827
24828
24829
24830
24831
24832
24833
24834
24835
24836
24837
24838
24839
24840
24841
24842
24843
24844
24845
24846
24847
24848
24849
24850
24851
24852
24853
24854
24855
24856
24857
24858
24859
24860
24861
24862
24863
24864
24865
24866
24867
24868
24869
24870
24871
24872
24873
24874
24875
24876
24877
24878
24879
24880
24881
24882
24883
24884
24885
24886
24887
24888
24889
24890
24891
24892
24893
24894
24895
24896
24897
24898
24899
24900
24901
24902
24903
24904
24905
24906
24907
24908
24909
24910
24911
24912
24913
24914
24915
24916
24917
24918
24919
24920
24921
24922
24923
24924
24925
24926
24927
24928
24929
24930
24931
24932
24933
24934
24935
24936
24937
24938
24939
24940
24941
24942
24943
24944
24945
24946
24947
24948
24949
24950
24951
24952
24953
24954
24955
24956
24957
24958
24959
24960
24961
24962
24963
24964
24965
24966
24967
24968
24969
24970
24971
24972
24973
24974
24975
24976
24977
24978
24979
24980
24981
24982
24983
24984
24985
24986
24987
24988
24989
24990
24991
24992
24993
24994
24995
24996
24997
24998
24999
25000
25001
25002
25003
25004
25005
25006
25007
25008
25009
25010
25011
25012
25013
25014
25015
25016
25017
25018
25019
25020
25021
25022
25023
25024
25025
25026
25027
25028
25029
25030
25031
25032
25033
25034
25035
25036
25037
25038
25039
25040
25041
25042
25043
25044
25045
25046
25047
25048
25049
25050
25051
25052
25053
25054
25055
25056
25057
25058
25059
25060
25061
25062
25063
25064
25065
25066
25067
25068
25069
25070
25071
25072
25073
25074
25075
25076
25077
25078
25079
25080
25081
25082
25083
25084
25085
25086
25087
25088
25089
25090
25091
25092
25093
25094
25095
25096
25097
25098
25099
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
25310
25311
25312
25313
25314
25315
25316
25317
25318
25319
25320
25321
25322
25323
25324
25325
25326
25327
25328
25329
25330
25331
25332
25333
25334
25335
25336
25337
25338
25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
25355
25356
25357
25358
25359
25360
25361
25362
25363
25364
25365
25366
25367
25368
25369
25370
25371
25372
25373
25374
25375
25376
25377
25378
25379
25380
25381
25382
25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464
25465
25466
25467
25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497
25498
25499
25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519
25520
25521
25522
25523
25524
25525
25526
25527
25528
25529
25530
25531
25532
25533
25534
25535
25536
25537
25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
25574
25575
25576
25577
25578
25579
25580
25581
25582
25583
25584
25585
25586
25587
25588
25589
25590
25591
25592
25593
25594
25595
25596
25597
25598
25599
25600
25601
25602
25603
25604
25605
25606
25607
25608
25609
25610
25611
25612
25613
25614
25615
25616
25617
25618
25619
25620
25621
25622
25623
25624
25625
25626
25627
25628
25629
25630
25631
25632
25633
25634
25635
25636
25637
25638
25639
25640
25641
25642
25643
25644
25645
25646
25647
25648
25649
25650
25651
25652
25653
25654
25655
25656
25657
25658
25659
25660
25661
25662
25663
25664
25665
25666
25667
25668
25669
25670
25671
25672
25673
25674
25675
25676
25677
25678
25679
25680
25681
25682
25683
25684
25685
25686
25687
25688
25689
25690
25691
25692
25693
25694
25695
25696
25697
25698
25699
25700
25701
25702
25703
25704
25705
25706
25707
25708
25709
25710
25711
25712
25713
25714
25715
25716
25717
25718
25719
25720
25721
25722
25723
25724
25725
25726
25727
25728
25729
25730
25731
25732
25733
25734
25735
25736
25737
25738
25739
25740
25741
25742
25743
25744
25745
25746
25747
25748
25749
25750
25751
25752
25753
25754
25755
25756
25757
25758
25759
25760
25761
25762
25763
25764
25765
25766
25767
25768
25769
25770
25771
25772
25773
25774
25775
25776
25777
25778
25779
25780
25781
25782
25783
25784
25785
25786
25787
25788
25789
25790
25791
25792
25793
25794
25795
25796
25797
25798
25799
25800
25801
25802
25803
25804
25805
25806
25807
25808
25809
25810
25811
25812
25813
25814
25815
25816
25817
25818
25819
25820
25821
25822
25823
25824
25825
25826
25827
25828
25829
25830
25831
25832
25833
25834
25835
25836
25837
25838
25839
25840
25841
25842
25843
25844
25845
25846
25847
25848
25849
25850
25851
25852
25853
25854
25855
25856
25857
25858
25859
25860
25861
25862
25863
25864
25865
25866
25867
25868
25869
25870
25871
25872
25873
25874
25875
25876
25877
25878
25879
25880
25881
25882
25883
25884
25885
25886
25887
25888
25889
25890
25891
25892
25893
25894
25895
25896
25897
25898
25899
25900
25901
25902
25903
25904
25905
25906
25907
25908
25909
25910
25911
25912
25913
25914
25915
25916
25917
25918
25919
25920
25921
25922
25923
25924
25925
25926
25927
25928
25929
25930
25931
25932
25933
25934
25935
25936
25937
25938
25939
25940
25941
25942
25943
25944
25945
25946
25947
25948
25949
25950
25951
25952
25953
25954
25955
25956
25957
25958
25959
25960
25961
25962
25963
25964
25965
25966
25967
25968
25969
25970
25971
25972
25973
25974
25975
25976
25977
25978
25979
25980
25981
25982
25983
25984
25985
25986
25987
25988
25989
25990
25991
25992
25993
25994
25995
25996
25997
25998
25999
26000
26001
26002
26003
26004
26005
26006
26007
26008
26009
26010
26011
26012
26013
26014
26015
26016
26017
26018
26019
26020
26021
26022
26023
26024
26025
26026
26027
26028
26029
26030
26031
26032
26033
26034
26035
26036
26037
26038
26039
26040
26041
26042
26043
26044
26045
26046
26047
26048
26049
26050
26051
26052
26053
26054
26055
26056
26057
26058
26059
26060
26061
26062
26063
26064
26065
26066
26067
26068
26069
26070
26071
26072
26073
26074
26075
26076
26077
26078
26079
26080
26081
26082
26083
26084
26085
26086
26087
26088
26089
26090
26091
26092
26093
26094
26095
26096
26097
26098
26099
26100
26101
26102
26103
26104
26105
26106
26107
26108
26109
26110
26111
26112
26113
26114
26115
26116
26117
26118
26119
26120
26121
26122
26123
26124
26125
26126
26127
26128
26129
26130
26131
26132
26133
26134
26135
26136
26137
26138
26139
26140
26141
26142
26143
26144
26145
26146
26147
26148
26149
26150
26151
26152
26153
26154
26155
26156
26157
26158
26159
26160
26161
26162
26163
26164
26165
26166
26167
26168
26169
26170
26171
26172
26173
26174
26175
26176
26177
26178
26179
26180
26181
26182
26183
26184
26185
26186
26187
26188
26189
26190
26191
26192
26193
26194
26195
26196
26197
26198
26199
26200
26201
26202
26203
26204
26205
26206
26207
26208
26209
26210
26211
26212
26213
26214
26215
26216
26217
26218
26219
26220
26221
26222
26223
26224
26225
26226
26227
26228
26229
26230
26231
26232
26233
26234
26235
26236
26237
26238
26239
26240
26241
26242
26243
26244
26245
26246
26247
26248
26249
26250
26251
26252
26253
26254
26255
26256
26257
26258
26259
26260
26261
26262
26263
26264
26265
26266
26267
26268
26269
26270
26271
26272
26273
26274
26275
26276
26277
26278
26279
26280
26281
26282
26283
26284
26285
26286
26287
26288
26289
26290
26291
26292
26293
26294
26295
26296
26297
26298
26299
26300
26301
26302
26303
26304
26305
26306
26307
26308
26309
26310
26311
26312
26313
26314
26315
26316
26317
26318
26319
26320
26321
26322
26323
26324
26325
26326
26327
26328
26329
26330
26331
26332
26333
26334
26335
26336
26337
26338
26339
26340
26341
26342
26343
26344
26345
26346
26347
26348
26349
26350
26351
26352
26353
26354
26355
26356
26357
26358
26359
26360
26361
26362
26363
26364
26365
26366
26367
26368
26369
26370
26371
26372
26373
26374
26375
26376
26377
26378
26379
26380
26381
26382
26383
26384
26385
26386
26387
26388
26389
26390
26391
26392
26393
26394
26395
26396
26397
26398
26399
26400
26401
26402
26403
26404
26405
26406
26407
26408
26409
26410
26411
26412
26413
26414
26415
26416
26417
26418
26419
26420
26421
26422
26423
26424
26425
26426
26427
26428
26429
26430
26431
26432
26433
26434
26435
26436
26437
26438
26439
26440
26441
26442
26443
26444
26445
26446
26447
26448
26449
26450
26451
26452
26453
26454
26455
26456
26457
26458
26459
26460
26461
26462
26463
26464
26465
26466
26467
26468
26469
26470
26471
26472
26473
26474
26475
26476
26477
26478
26479
26480
26481
26482
26483
26484
26485
26486
26487
26488
26489
26490
26491
26492
26493
26494
26495
26496
26497
26498
26499
26500
26501
26502
26503
26504
26505
26506
26507
26508
26509
26510
26511
26512
26513
26514
26515
26516
26517
26518
26519
26520
26521
26522
26523
26524
26525
26526
26527
26528
26529
26530
26531
26532
26533
26534
26535
26536
26537
26538
26539
26540
26541
26542
26543
26544
26545
26546
26547
26548
26549
26550
26551
26552
26553
26554
26555
26556
26557
26558
26559
26560
26561
26562
26563
26564
26565
26566
26567
26568
26569
26570
26571
26572
26573
26574
26575
26576
26577
26578
26579
26580
26581
26582
26583
26584
26585
26586
26587
26588
26589
26590
26591
26592
26593
26594
26595
26596
26597
26598
26599
26600
26601
26602
26603
26604
26605
26606
26607
26608
26609
26610
26611
26612
26613
26614
26615
26616
26617
26618
26619
26620
26621
26622
26623
26624
26625
26626
26627
26628
26629
26630
26631
26632
26633
26634
26635
26636
26637
26638
26639
26640
26641
26642
26643
26644
26645
26646
26647
26648
26649
26650
26651
26652
26653
26654
26655
26656
26657
26658
26659
26660
26661
26662
26663
26664
26665
26666
26667
26668
26669
26670
26671
26672
26673
26674
26675
26676
26677
26678
26679
26680
26681
26682
26683
26684
26685
26686
26687
26688
26689
26690
26691
26692
26693
26694
26695
26696
26697
26698
26699
26700
26701
26702
26703
26704
26705
26706
26707
26708
26709
26710
26711
26712
26713
26714
26715
26716
26717
26718
26719
26720
26721
26722
26723
26724
26725
26726
26727
26728
26729
26730
26731
26732
26733
26734
26735
26736
26737
26738
26739
26740
26741
26742
26743
26744
26745
26746
26747
26748
26749
26750
26751
26752
26753
26754
26755
26756
26757
26758
26759
26760
26761
26762
26763
26764
26765
26766
26767
26768
26769
26770
26771
26772
26773
26774
26775
26776
26777
26778
26779
26780
26781
26782
26783
26784
26785
26786
26787
26788
26789
26790
26791
26792
26793
26794
26795
26796
26797
26798
26799
26800
26801
26802
26803
26804
26805
26806
26807
26808
26809
26810
26811
26812
26813
26814
26815
26816
26817
26818
26819
26820
26821
26822
26823
26824
26825
26826
26827
26828
26829
26830
26831
26832
26833
26834
26835
26836
26837
26838
26839
26840
26841
26842
26843
26844
26845
26846
26847
26848
26849
26850
26851
26852
26853
26854
26855
26856
26857
26858
26859
26860
26861
26862
26863
26864
26865
26866
26867
26868
26869
26870
26871
26872
26873
26874
26875
26876
26877
26878
26879
26880
26881
26882
26883
26884
26885
26886
26887
26888
26889
26890
26891
26892
26893
26894
26895
26896
26897
26898
26899
26900
26901
26902
26903
26904
26905
26906
26907
26908
26909
26910
26911
26912
26913
26914
26915
26916
26917
26918
26919
26920
26921
26922
26923
26924
26925
26926
26927
26928
26929
26930
26931
26932
26933
26934
26935
26936
26937
26938
26939
26940
26941
26942
26943
26944
26945
26946
26947
26948
26949
26950
26951
26952
26953
26954
26955
26956
26957
26958
26959
26960
26961
26962
26963
26964
26965
26966
26967
26968
26969
26970
26971
26972
26973
26974
26975
26976
26977
26978
26979
26980
26981
26982
26983
26984
26985
26986
26987
26988
26989
26990
26991
26992
26993
26994
26995
26996
26997
26998
26999
27000
27001
27002
27003
27004
27005
27006
27007
27008
27009
27010
27011
27012
27013
27014
27015
27016
27017
27018
27019
27020
27021
27022
27023
27024
27025
27026
27027
27028
27029
27030
27031
27032
27033
27034
27035
27036
27037
27038
27039
27040
27041
27042
27043
27044
27045
27046
27047
27048
27049
27050
27051
27052
27053
27054
27055
27056
27057
27058
27059
27060
27061
27062
27063
27064
27065
27066
27067
27068
27069
27070
27071
27072
27073
27074
27075
27076
27077
27078
27079
27080
27081
27082
27083
27084
27085
27086
27087
27088
27089
27090
27091
27092
27093
27094
27095
27096
27097
27098
27099
27100
27101
27102
27103
27104
27105
27106
27107
27108
27109
27110
27111
27112
27113
27114
27115
27116
27117
27118
27119
27120
27121
27122
27123
27124
27125
27126
27127
27128
27129
27130
27131
27132
27133
27134
27135
27136
27137
27138
27139
27140
27141
27142
27143
27144
27145
27146
27147
27148
27149
27150
27151
27152
27153
27154
27155
27156
27157
27158
27159
27160
27161
27162
27163
27164
27165
27166
27167
27168
27169
27170
27171
27172
27173
27174
27175
27176
27177
27178
27179
27180
27181
27182
27183
27184
27185
27186
27187
27188
27189
27190
27191
27192
27193
27194
27195
27196
27197
27198
27199
27200
27201
27202
27203
27204
27205
27206
27207
27208
27209
27210
27211
27212
27213
27214
27215
27216
27217
27218
27219
27220
27221
27222
27223
27224
27225
27226
27227
27228
27229
27230
27231
27232
27233
27234
27235
27236
27237
27238
27239
27240
27241
27242
27243
27244
27245
27246
27247
27248
27249
27250
27251
27252
27253
27254
27255
27256
27257
27258
27259
27260
27261
27262
27263
27264
27265
27266
27267
27268
27269
27270
27271
27272
27273
27274
27275
27276
27277
27278
27279
27280
27281
27282
27283
27284
27285
27286
27287
27288
27289
27290
27291
27292
27293
27294
27295
27296
27297
27298
27299
27300
27301
27302
27303
27304
27305
27306
27307
27308
27309
27310
27311
27312
27313
27314
27315
27316
27317
27318
27319
27320
27321
27322
27323
27324
27325
27326
27327
27328
27329
27330
27331
27332
27333
27334
27335
27336
27337
27338
27339
27340
27341
27342
27343
27344
27345
27346
27347
27348
27349
27350
27351
27352
27353
27354
27355
27356
27357
27358
27359
27360
27361
27362
27363
27364
27365
27366
27367
27368
27369
27370
27371
27372
27373
27374
27375
27376
27377
27378
27379
27380
27381
27382
27383
27384
27385
27386
27387
27388
27389
27390
27391
27392
27393
27394
27395
27396
27397
27398
27399
27400
27401
27402
27403
27404
27405
27406
27407
27408
27409
27410
27411
27412
27413
27414
27415
27416
27417
27418
27419
27420
27421
27422
27423
27424
27425
27426
27427
27428
27429
27430
27431
27432
27433
27434
27435
27436
27437
27438
27439
27440
27441
27442
27443
27444
27445
27446
27447
27448
27449
27450
27451
27452
27453
27454
27455
27456
27457
27458
27459
27460
27461
27462
27463
27464
27465
27466
27467
27468
27469
27470
27471
27472
27473
27474
27475
27476
27477
27478
27479
27480
27481
27482
27483
27484
27485
27486
27487
27488
27489
27490
27491
27492
27493
27494
27495
27496
27497
27498
27499
27500
27501
27502
27503
27504
27505
27506
27507
27508
27509
27510
27511
27512
27513
27514
27515
27516
27517
27518
27519
27520
27521
27522
27523
27524
27525
27526
27527
27528
27529
27530
27531
27532
27533
27534
27535
27536
27537
27538
27539
27540
27541
27542
27543
27544
27545
27546
27547
27548
27549
27550
27551
27552
27553
27554
27555
27556
27557
27558
27559
27560
27561
27562
27563
27564
27565
27566
27567
27568
27569
27570
27571
27572
27573
27574
27575
27576
27577
27578
27579
27580
27581
27582
27583
27584
27585
27586
27587
27588
27589
27590
27591
27592
27593
27594
27595
27596
27597
27598
27599
27600
27601
27602
27603
27604
27605
27606
27607
27608
27609
27610
27611
27612
27613
27614
27615
27616
27617
27618
27619
27620
27621
27622
27623
27624
27625
27626
27627
27628
27629
27630
27631
27632
27633
27634
27635
27636
27637
27638
27639
27640
27641
27642
27643
27644
27645
27646
27647
27648
27649
27650
27651
27652
27653
27654
27655
27656
27657
27658
27659
27660
27661
27662
27663
27664
27665
27666
27667
27668
27669
27670
27671
27672
27673
27674
27675
27676
27677
27678
27679
27680
27681
27682
27683
27684
27685
27686
27687
27688
27689
27690
27691
27692
27693
27694
27695
27696
27697
27698
27699
27700
27701
27702
27703
27704
27705
27706
27707
27708
27709
27710
27711
27712
27713
27714
27715
27716
27717
27718
27719
27720
27721
27722
27723
27724
27725
27726
27727
27728
27729
27730
27731
27732
27733
27734
27735
27736
27737
27738
27739
27740
27741
27742
27743
27744
27745
27746
27747
27748
27749
27750
27751
27752
27753
27754
27755
27756
27757
27758
27759
27760
27761
27762
27763
27764
27765
27766
27767
27768
27769
27770
27771
27772
27773
27774
27775
27776
27777
27778
27779
27780
27781
27782
27783
27784
27785
27786
27787
27788
27789
27790
27791
27792
27793
27794
27795
27796
27797
27798
27799
27800
27801
27802
27803
27804
27805
27806
27807
27808
27809
27810
27811
27812
27813
27814
27815
27816
27817
27818
27819
27820
27821
27822
27823
27824
27825
27826
27827
27828
27829
27830
27831
27832
27833
27834
27835
27836
27837
27838
27839
27840
27841
27842
27843
27844
27845
27846
27847
27848
27849
27850
27851
27852
27853
27854
27855
27856
27857
27858
27859
27860
27861
27862
27863
27864
27865
27866
27867
27868
27869
27870
27871
27872
27873
27874
27875
27876
27877
27878
27879
27880
27881
27882
27883
27884
27885
27886
27887
27888
27889
27890
27891
27892
27893
27894
27895
27896
27897
27898
27899
27900
27901
27902
27903
27904
27905
27906
27907
27908
27909
27910
27911
27912
27913
27914
27915
27916
27917
27918
27919
27920
27921
27922
27923
27924
27925
27926
27927
27928
27929
27930
27931
27932
27933
27934
27935
27936
27937
27938
27939
27940
27941
27942
27943
27944
27945
27946
27947
27948
27949
27950
27951
27952
27953
27954
27955
27956
27957
27958
27959
27960
27961
27962
27963
27964
27965
27966
27967
27968
27969
27970
27971
27972
27973
27974
27975
27976
27977
27978
27979
27980
27981
27982
27983
27984
27985
27986
27987
27988
27989
27990
27991
27992
27993
27994
27995
27996
27997
27998
27999
28000
28001
28002
28003
28004
28005
28006
28007
28008
28009
28010
28011
28012
28013
28014
28015
28016
28017
28018
28019
28020
28021
28022
28023
28024
28025
28026
28027
28028
28029
28030
28031
28032
28033
28034
28035
28036
28037
28038
28039
28040
28041
28042
28043
28044
28045
28046
28047
28048
28049
28050
28051
28052
28053
28054
28055
28056
28057
28058
28059
28060
28061
28062
28063
28064
28065
28066
28067
28068
28069
28070
28071
28072
28073
28074
28075
28076
28077
28078
28079
28080
28081
28082
28083
28084
28085
28086
28087
28088
28089
28090
28091
28092
28093
28094
28095
28096
28097
28098
28099
28100
28101
28102
28103
28104
28105
28106
28107
28108
28109
28110
28111
28112
28113
28114
28115
28116
28117
28118
28119
28120
28121
28122
28123
28124
28125
28126
28127
28128
28129
28130
28131
28132
28133
28134
28135
28136
28137
28138
28139
28140
28141
28142
28143
28144
28145
28146
28147
28148
28149
28150
28151
28152
28153
28154
28155
28156
28157
28158
28159
28160
28161
28162
28163
28164
28165
28166
28167
28168
28169
28170
28171
28172
28173
28174
28175
28176
28177
28178
28179
28180
28181
28182
28183
28184
28185
28186
28187
28188
28189
28190
28191
28192
28193
28194
28195
28196
28197
28198
28199
28200
28201
28202
28203
28204
28205
28206
28207
28208
28209
28210
28211
28212
28213
28214
28215
28216
28217
28218
28219
28220
28221
28222
28223
28224
28225
28226
28227
28228
28229
28230
28231
28232
28233
28234
28235
28236
28237
28238
28239
28240
28241
28242
28243
28244
28245
28246
28247
28248
28249
28250
28251
28252
28253
28254
28255
28256
28257
28258
28259
28260
28261
28262
28263
28264
28265
28266
28267
28268
28269
28270
28271
28272
28273
28274
28275
28276
28277
28278
28279
28280
28281
28282
28283
28284
28285
28286
28287
28288
28289
28290
28291
28292
28293
28294
28295
28296
28297
28298
28299
28300
28301
28302
28303
28304
28305
28306
28307
28308
28309
28310
28311
28312
28313
28314
28315
28316
28317
28318
28319
28320
28321
28322
28323
28324
28325
28326
28327
28328
28329
28330
28331
28332
28333
28334
28335
28336
28337
28338
28339
28340
28341
28342
28343
28344
28345
28346
28347
28348
28349
28350
28351
28352
28353
28354
28355
28356
28357
28358
28359
28360
28361
28362
28363
28364
28365
28366
28367
28368
28369
28370
28371
28372
28373
28374
28375
28376
28377
28378
28379
28380
28381
28382
28383
28384
28385
28386
28387
28388
28389
28390
28391
28392
28393
28394
28395
28396
28397
28398
28399
28400
28401
28402
28403
28404
28405
28406
28407
28408
28409
28410
28411
28412
28413
28414
28415
28416
28417
28418
28419
28420
28421
28422
28423
28424
28425
28426
28427
28428
28429
28430
28431
28432
28433
28434
28435
28436
28437
28438
28439
28440
28441
28442
28443
28444
28445
28446
28447
28448
28449
28450
28451
28452
28453
28454
28455
28456
28457
28458
28459
28460
28461
28462
28463
28464
28465
28466
28467
28468
28469
28470
28471
28472
28473
28474
28475
28476
28477
28478
28479
28480
28481
28482
28483
28484
28485
28486
28487
28488
28489
28490
28491
28492
28493
28494
28495
28496
28497
28498
28499
28500
28501
28502
28503
28504
28505
28506
28507
28508
28509
28510
28511
28512
28513
28514
28515
28516
28517
28518
28519
28520
28521
28522
28523
28524
28525
28526
28527
28528
28529
28530
28531
28532
28533
28534
28535
28536
28537
28538
28539
28540
28541
28542
28543
28544
28545
28546
28547
28548
28549
28550
28551
28552
28553
28554
28555
28556
28557
28558
28559
28560
28561
28562
28563
28564
28565
28566
28567
28568
28569
28570
28571
28572
28573
28574
28575
28576
28577
28578
28579
28580
28581
28582
28583
28584
28585
28586
28587
28588
28589
28590
28591
28592
28593
28594
28595
28596
28597
28598
28599
28600
28601
28602
28603
28604
28605
28606
28607
28608
28609
28610
28611
28612
28613
28614
28615
28616
28617
28618
28619
28620
28621
28622
28623
28624
28625
28626
28627
28628
28629
28630
28631
28632
28633
28634
28635
28636
28637
28638
28639
28640
28641
28642
28643
28644
28645
28646
28647
28648
28649
28650
28651
28652
28653
28654
28655
28656
28657
28658
28659
28660
28661
28662
28663
28664
28665
28666
28667
28668
28669
28670
28671
28672
28673
28674
28675
28676
28677
28678
28679
28680
28681
28682
28683
28684
28685
28686
28687
28688
28689
28690
28691
28692
28693
28694
28695
28696
28697
28698
28699
28700
28701
28702
28703
28704
28705
28706
28707
28708
28709
28710
28711
28712
28713
28714
28715
28716
28717
28718
28719
28720
28721
28722
28723
28724
28725
28726
28727
28728
28729
28730
28731
28732
28733
28734
28735
28736
28737
28738
28739
28740
28741
28742
28743
28744
28745
28746
28747
28748
28749
28750
28751
28752
28753
28754
28755
28756
28757
28758
28759
28760
28761
28762
28763
28764
28765
28766
28767
28768
28769
28770
28771
28772
28773
28774
28775
28776
28777
28778
28779
28780
28781
28782
28783
28784
28785
28786
28787
28788
28789
28790
28791
28792
28793
28794
28795
28796
28797
28798
28799
28800
28801
28802
28803
28804
28805
28806
28807
28808
28809
28810
28811
28812
28813
28814
28815
28816
28817
28818
28819
28820
28821
28822
28823
28824
28825
28826
28827
28828
28829
28830
28831
28832
28833
28834
28835
28836
28837
28838
28839
28840
28841
28842
28843
28844
28845
28846
28847
28848
28849
28850
28851
28852
28853
28854
28855
28856
28857
28858
28859
28860
28861
28862
28863
28864
28865
28866
28867
28868
28869
28870
28871
28872
28873
28874
28875
28876
28877
28878
28879
28880
28881
28882
28883
28884
28885
28886
28887
28888
28889
28890
28891
28892
28893
28894
28895
28896
28897
28898
28899
28900
28901
28902
28903
28904
28905
28906
28907
28908
28909
28910
28911
28912
28913
28914
28915
28916
28917
28918
28919
28920
28921
28922
28923
28924
28925
28926
28927
28928
28929
28930
28931
28932
28933
28934
28935
28936
28937
28938
28939
28940
28941
28942
28943
28944
28945
28946
28947
28948
28949
28950
28951
28952
28953
28954
28955
28956
28957
28958
28959
28960
28961
28962
28963
28964
28965
28966
28967
28968
28969
28970
28971
28972
28973
28974
28975
28976
28977
28978
28979
28980
28981
28982
28983
28984
28985
28986
28987
28988
28989
28990
28991
28992
28993
28994
28995
28996
28997
28998
28999
29000
29001
29002
29003
29004
29005
29006
29007
29008
29009
29010
29011
29012
29013
29014
29015
29016
29017
29018
29019
29020
29021
29022
29023
29024
29025
29026
29027
29028
29029
29030
29031
29032
29033
29034
29035
29036
29037
29038
29039
29040
29041
29042
29043
29044
29045
29046
29047
29048
29049
29050
29051
29052
29053
29054
29055
29056
29057
29058
29059
29060
29061
29062
29063
29064
29065
29066
29067
29068
29069
29070
29071
29072
29073
29074
29075
29076
29077
29078
29079
29080
29081
29082
29083
29084
29085
29086
29087
29088
29089
29090
29091
29092
29093
29094
29095
29096
29097
29098
29099
29100
29101
29102
29103
29104
29105
29106
29107
29108
29109
29110
29111
29112
29113
29114
29115
29116
29117
29118
29119
29120
29121
29122
29123
29124
29125
29126
29127
29128
29129
29130
29131
29132
29133
29134
29135
29136
29137
29138
29139
29140
29141
29142
29143
29144
29145
29146
29147
29148
29149
29150
29151
29152
29153
29154
29155
29156
29157
29158
29159
29160
29161
29162
29163
29164
29165
29166
29167
29168
29169
29170
29171
29172
29173
29174
29175
29176
29177
29178
29179
29180
29181
29182
29183
29184
29185
29186
29187
29188
29189
29190
29191
29192
29193
29194
29195
29196
29197
29198
29199
29200
29201
29202
29203
29204
29205
29206
29207
29208
29209
29210
29211
29212
29213
29214
29215
29216
29217
29218
29219
29220
29221
29222
29223
29224
29225
29226
29227
29228
29229
29230
29231
29232
29233
29234
29235
29236
29237
29238
29239
29240
29241
29242
29243
29244
29245
29246
29247
29248
29249
29250
29251
29252
29253
29254
29255
29256
29257
29258
29259
29260
29261
29262
29263
29264
29265
29266
29267
29268
29269
29270
29271
29272
29273
29274
29275
29276
29277
29278
29279
29280
29281
29282
29283
29284
29285
29286
29287
29288
29289
29290
29291
29292
29293
29294
29295
29296
29297
29298
29299
29300
29301
29302
29303
29304
29305
29306
29307
29308
29309
29310
29311
29312
29313
29314
29315
29316
29317
29318
29319
29320
29321
29322
29323
29324
29325
29326
29327
29328
29329
29330
29331
29332
29333
29334
29335
29336
29337
29338
29339
29340
29341
29342
29343
29344
29345
29346
29347
29348
29349
29350
29351
29352
29353
29354
29355
29356
29357
29358
29359
29360
29361
29362
29363
29364
29365
29366
29367
29368
29369
29370
29371
29372
29373
29374
29375
29376
29377
29378
29379
29380
29381
29382
29383
29384
29385
29386
29387
29388
29389
29390
29391
29392
29393
29394
29395
29396
29397
29398
29399
29400
29401
29402
29403
29404
29405
29406
29407
29408
29409
29410
29411
29412
29413
29414
29415
29416
29417
29418
29419
29420
29421
29422
29423
29424
29425
29426
29427
29428
29429
29430
29431
29432
29433
29434
29435
29436
29437
29438
29439
29440
29441
29442
29443
29444
29445
29446
29447
29448
29449
29450
29451
29452
29453
29454
29455
29456
29457
29458
29459
29460
29461
29462
29463
29464
29465
29466
29467
29468
29469
29470
29471
29472
29473
29474
29475
29476
29477
29478
29479
29480
29481
29482
29483
29484
29485
29486
29487
29488
29489
29490
29491
29492
29493
29494
29495
29496
29497
29498
29499
29500
29501
29502
29503
29504
29505
29506
29507
29508
29509
29510
29511
29512
29513
29514
29515
29516
29517
29518
29519
29520
29521
29522
29523
29524
29525
29526
29527
29528
29529
29530
29531
29532
29533
29534
29535
29536
29537
29538
29539
29540
29541
29542
29543
29544
29545
29546
29547
29548
29549
29550
29551
29552
29553
29554
29555
29556
29557
29558
29559
29560
29561
29562
29563
29564
29565
29566
29567
29568
29569
29570
29571
29572
29573
29574
29575
29576
29577
29578
29579
29580
29581
29582
29583
29584
29585
29586
29587
29588
29589
29590
29591
29592
29593
29594
29595
29596
29597
29598
29599
29600
29601
29602
29603
29604
29605
29606
29607
29608
29609
29610
29611
29612
29613
29614
29615
29616
29617
29618
29619
29620
29621
29622
29623
29624
29625
29626
29627
29628
29629
29630
29631
29632
29633
29634
29635
29636
29637
29638
29639
29640
29641
29642
29643
29644
29645
29646
29647
29648
29649
29650
29651
29652
29653
29654
29655
29656
29657
29658
29659
29660
29661
29662
29663
29664
29665
29666
29667
29668
29669
29670
29671
29672
29673
29674
29675
29676
29677
29678
29679
29680
29681
29682
29683
29684
29685
29686
29687
29688
29689
29690
29691
29692
29693
29694
29695
29696
29697
29698
29699
29700
29701
29702
29703
29704
29705
29706
29707
29708
29709
29710
29711
29712
29713
29714
29715
29716
29717
29718
29719
29720
29721
29722
29723
29724
29725
29726
29727
29728
29729
29730
29731
29732
29733
29734
29735
29736
29737
29738
29739
29740
29741
29742
29743
29744
29745
29746
29747
29748
29749
29750
29751
29752
29753
29754
29755
29756
29757
29758
29759
29760
29761
29762
29763
29764
29765
29766
29767
29768
29769
29770
29771
29772
29773
29774
29775
29776
29777
29778
29779
29780
29781
29782
29783
29784
29785
29786
29787
29788
29789
29790
29791
29792
29793
29794
29795
29796
29797
29798
29799
29800
29801
29802
29803
29804
29805
29806
29807
29808
29809
29810
29811
29812
29813
29814
29815
29816
29817
29818
29819
29820
29821
29822
29823
29824
29825
29826
29827
29828
29829
29830
29831
29832
29833
29834
29835
29836
29837
29838
29839
29840
29841
29842
29843
29844
29845
29846
29847
29848
29849
29850
29851
29852
29853
29854
29855
29856
29857
29858
29859
29860
29861
29862
29863
29864
29865
29866
29867
29868
29869
29870
29871
29872
29873
29874
29875
29876
29877
29878
29879
29880
29881
29882
29883
29884
29885
29886
29887
29888
29889
29890
29891
29892
29893
29894
29895
29896
29897
29898
29899
29900
29901
29902
29903
29904
29905
29906
29907
29908
29909
29910
29911
29912
29913
29914
29915
29916
29917
29918
29919
29920
29921
29922
29923
29924
29925
29926
29927
29928
29929
29930
29931
29932
29933
29934
29935
29936
29937
29938
29939
29940
29941
29942
29943
29944
29945
29946
29947
29948
29949
29950
29951
29952
29953
29954
29955
29956
29957
29958
29959
29960
29961
29962
29963
29964
29965
29966
29967
29968
29969
29970
29971
29972
29973
29974
29975
29976
29977
29978
29979
29980
29981
29982
29983
29984
29985
29986
29987
29988
29989
29990
29991
29992
29993
29994
29995
29996
29997
29998
29999
30000
30001
30002
30003
30004
30005
30006
30007
30008
30009
30010
30011
30012
30013
30014
30015
30016
30017
30018
30019
30020
30021
30022
30023
30024
30025
30026
30027
30028
30029
30030
30031
30032
30033
30034
30035
30036
30037
30038
30039
30040
30041
30042
30043
30044
30045
30046
30047
30048
30049
30050
30051
30052
30053
30054
30055
30056
30057
30058
30059
30060
30061
30062
30063
30064
30065
30066
30067
30068
30069
30070
30071
30072
30073
30074
30075
30076
30077
30078
30079
30080
30081
30082
30083
30084
30085
30086
30087
30088
30089
30090
30091
30092
30093
30094
30095
30096
30097
30098
30099
30100
30101
30102
30103
30104
30105
30106
30107
30108
30109
30110
30111
30112
30113
30114
30115
30116
30117
30118
30119
30120
30121
30122
30123
30124
30125
30126
30127
30128
30129
30130
30131
30132
30133
30134
30135
30136
30137
30138
30139
30140
30141
30142
30143
30144
30145
30146
30147
30148
30149
30150
30151
30152
30153
30154
30155
30156
30157
30158
30159
30160
30161
30162
30163
30164
30165
30166
30167
30168
30169
30170
30171
30172
30173
30174
30175
30176
30177
30178
30179
30180
30181
30182
30183
30184
30185
30186
30187
30188
30189
30190
30191
30192
30193
30194
30195
30196
30197
30198
30199
30200
30201
30202
30203
30204
30205
30206
30207
30208
30209
30210
30211
30212
30213
30214
30215
30216
30217
30218
30219
30220
30221
30222
30223
30224
30225
30226
30227
30228
30229
30230
30231
30232
30233
30234
30235
30236
30237
30238
30239
30240
30241
30242
30243
30244
30245
30246
30247
30248
30249
30250
30251
30252
30253
30254
30255
30256
30257
30258
30259
30260
30261
30262
30263
30264
30265
30266
30267
30268
30269
30270
30271
30272
30273
30274
30275
30276
30277
30278
30279
30280
30281
30282
30283
30284
30285
30286
30287
30288
30289
30290
30291
30292
30293
30294
30295
30296
30297
30298
30299
30300
30301
30302
30303
30304
30305
30306
30307
30308
30309
30310
30311
30312
30313
30314
30315
30316
30317
30318
30319
30320
30321
30322
30323
30324
30325
30326
30327
30328
30329
30330
30331
30332
30333
30334
30335
30336
30337
30338
30339
30340
30341
30342
30343
30344
30345
30346
30347
30348
30349
30350
30351
30352
30353
30354
30355
30356
30357
30358
30359
30360
30361
30362
30363
30364
30365
30366
30367
30368
30369
30370
30371
30372
30373
30374
30375
30376
30377
30378
30379
30380
30381
30382
30383
30384
30385
30386
30387
30388
30389
30390
30391
30392
30393
30394
30395
30396
30397
30398
30399
30400
30401
30402
30403
30404
30405
30406
30407
30408
30409
30410
30411
30412
30413
30414
30415
30416
30417
30418
30419
30420
30421
30422
30423
30424
30425
30426
30427
30428
30429
30430
30431
30432
30433
30434
30435
30436
30437
30438
30439
30440
30441
30442
30443
30444
30445
30446
30447
30448
30449
30450
30451
30452
30453
30454
30455
30456
30457
30458
30459
30460
30461
30462
30463
30464
30465
30466
30467
30468
30469
30470
30471
30472
30473
30474
30475
30476
30477
30478
30479
30480
30481
30482
30483
30484
30485
30486
30487
30488
30489
30490
30491
30492
30493
30494
30495
30496
30497
30498
30499
30500
30501
30502
30503
30504
30505
30506
30507
30508
30509
30510
30511
30512
30513
30514
30515
30516
30517
30518
30519
30520
30521
30522
30523
30524
30525
30526
30527
30528
30529
30530
30531
30532
30533
30534
30535
30536
30537
30538
30539
30540
30541
30542
30543
30544
30545
30546
30547
30548
30549
30550
30551
30552
30553
30554
30555
30556
30557
30558
30559
30560
30561
30562
30563
30564
30565
30566
30567
30568
30569
30570
30571
30572
30573
30574
30575
30576
30577
30578
30579
30580
30581
30582
30583
30584
30585
30586
30587
30588
30589
30590
30591
30592
30593
30594
30595
30596
30597
30598
30599
30600
30601
30602
30603
30604
30605
30606
30607
30608
30609
30610
30611
30612
30613
30614
30615
30616
30617
30618
30619
30620
30621
30622
30623
30624
30625
30626
30627
30628
30629
30630
30631
30632
30633
30634
30635
30636
30637
30638
30639
30640
30641
30642
30643
30644
30645
30646
30647
30648
30649
30650
30651
30652
30653
30654
30655
30656
30657
30658
30659
30660
30661
30662
30663
30664
30665
30666
30667
30668
30669
30670
30671
30672
30673
30674
30675
30676
30677
30678
30679
30680
30681
30682
30683
30684
30685
30686
30687
30688
30689
30690
30691
30692
30693
30694
30695
30696
30697
30698
30699
30700
30701
30702
30703
30704
30705
30706
30707
30708
30709
30710
30711
30712
30713
30714
30715
30716
30717
30718
30719
30720
30721
30722
30723
30724
30725
30726
30727
30728
30729
30730
30731
30732
30733
30734
30735
30736
30737
30738
30739
30740
30741
30742
30743
30744
30745
30746
30747
30748
30749
30750
30751
30752
30753
30754
30755
30756
30757
30758
30759
30760
30761
30762
30763
30764
30765
30766
30767
30768
30769
30770
30771
30772
30773
30774
30775
30776
30777
30778
30779
30780
30781
30782
30783
30784
30785
30786
30787
30788
30789
30790
30791
30792
30793
30794
30795
30796
30797
30798
30799
30800
30801
30802
30803
30804
30805
30806
30807
30808
30809
30810
30811
30812
30813
30814
30815
30816
30817
30818
30819
30820
30821
30822
30823
30824
30825
30826
30827
30828
30829
30830
30831
30832
30833
30834
30835
30836
30837
30838
30839
30840
30841
30842
30843
30844
30845
30846
30847
30848
30849
30850
30851
30852
30853
30854
30855
30856
30857
30858
30859
30860
30861
30862
30863
30864
30865
30866
30867
30868
30869
30870
30871
30872
30873
30874
30875
30876
30877
30878
30879
30880
30881
30882
30883
30884
30885
30886
30887
30888
30889
30890
30891
30892
30893
30894
30895
30896
30897
30898
30899
30900
30901
30902
30903
30904
30905
30906
30907
30908
30909
30910
30911
30912
30913
30914
30915
30916
30917
30918
30919
30920
30921
30922
30923
30924
30925
30926
30927
30928
30929
30930
30931
30932
30933
30934
30935
30936
30937
30938
30939
30940
30941
30942
30943
30944
30945
30946
30947
30948
30949
30950
30951
30952
30953
30954
30955
30956
30957
30958
30959
30960
30961
30962
30963
30964
30965
30966
30967
30968
30969
30970
30971
30972
30973
30974
30975
30976
30977
30978
30979
30980
30981
30982
30983
30984
30985
30986
30987
30988
30989
30990
30991
30992
30993
30994
30995
30996
30997
30998
30999
31000
31001
31002
31003
31004
31005
31006
31007
31008
31009
31010
31011
31012
31013
31014
31015
31016
31017
31018
31019
31020
31021
31022
31023
31024
31025
31026
31027
31028
31029
31030
31031
31032
31033
31034
31035
31036
31037
31038
31039
31040
31041
31042
31043
31044
31045
31046
31047
31048
31049
31050
31051
31052
31053
31054
31055
31056
31057
31058
31059
31060
31061
31062
31063
31064
31065
31066
31067
31068
31069
31070
31071
31072
31073
31074
31075
31076
31077
31078
31079
31080
31081
31082
31083
31084
31085
31086
31087
31088
31089
31090
31091
31092
31093
31094
31095
31096
31097
31098
31099
31100
31101
31102
31103
31104
31105
31106
31107
31108
31109
31110
31111
31112
31113
31114
31115
31116
31117
31118
31119
31120
31121
31122
31123
31124
31125
31126
31127
31128
31129
31130
31131
31132
31133
31134
31135
31136
31137
31138
31139
31140
31141
31142
31143
31144
31145
31146
31147
31148
31149
31150
31151
31152
31153
31154
31155
31156
31157
31158
31159
31160
31161
31162
31163
31164
31165
31166
31167
31168
31169
31170
31171
31172
31173
31174
31175
31176
31177
31178
31179
31180
31181
31182
31183
31184
31185
31186
31187
31188
31189
31190
31191
31192
31193
31194
31195
31196
31197
31198
31199
31200
31201
31202
31203
31204
31205
31206
31207
31208
31209
31210
31211
31212
31213
31214
31215
31216
31217
31218
31219
31220
31221
31222
31223
31224
31225
31226
31227
31228
31229
31230
31231
31232
31233
31234
31235
31236
31237
31238
31239
31240
31241
31242
31243
31244
31245
31246
31247
31248
31249
31250
31251
31252
31253
31254
31255
31256
31257
31258
31259
31260
31261
31262
31263
31264
31265
31266
31267
31268
31269
31270
31271
31272
31273
31274
31275
31276
31277
31278
31279
31280
31281
31282
31283
31284
31285
31286
31287
31288
31289
31290
31291
31292
31293
31294
31295
31296
31297
31298
31299
31300
31301
31302
31303
31304
31305
31306
31307
31308
31309
31310
31311
31312
31313
31314
31315
31316
31317
31318
31319
31320
31321
31322
31323
31324
31325
31326
31327
31328
31329
31330
31331
31332
31333
31334
31335
31336
31337
31338
31339
31340
31341
31342
31343
31344
31345
31346
31347
31348
31349
31350
31351
31352
31353
31354
31355
31356
31357
31358
31359
31360
31361
31362
31363
31364
31365
31366
31367
31368
31369
31370
31371
31372
31373
31374
31375
31376
31377
31378
31379
31380
31381
31382
31383
31384
31385
31386
31387
31388
31389
31390
31391
31392
31393
31394
31395
31396
31397
31398
31399
31400
31401
31402
31403
31404
31405
31406
31407
31408
31409
31410
31411
31412
31413
31414
31415
31416
31417
31418
31419
31420
31421
31422
31423
31424
31425
31426
31427
31428
31429
31430
31431
31432
31433
31434
31435
31436
31437
31438
31439
31440
31441
31442
31443
31444
31445
31446
31447
31448
31449
31450
31451
31452
31453
31454
31455
31456
31457
31458
31459
31460
31461
31462
31463
31464
31465
31466
31467
31468
31469
31470
31471
31472
31473
31474
31475
31476
31477
31478
31479
31480
31481
31482
31483
31484
31485
31486
31487
31488
31489
31490
31491
31492
31493
31494
31495
31496
31497
31498
31499
31500
31501
31502
31503
31504
31505
31506
31507
31508
31509
31510
31511
31512
31513
31514
31515
31516
31517
31518
31519
31520
31521
31522
31523
31524
31525
31526
31527
31528
31529
31530
31531
31532
31533
31534
31535
31536
31537
31538
31539
31540
31541
31542
31543
31544
31545
31546
31547
31548
31549
31550
31551
31552
31553
31554
31555
31556
31557
31558
31559
31560
31561
31562
31563
31564
31565
31566
31567
31568
31569
31570
31571
31572
31573
31574
31575
31576
31577
31578
31579
31580
31581
31582
31583
31584
31585
31586
31587
31588
31589
31590
31591
31592
31593
31594
31595
31596
31597
31598
31599
31600
31601
31602
31603
31604
31605
31606
31607
31608
31609
31610
31611
31612
31613
31614
31615
31616
31617
31618
31619
31620
31621
31622
31623
31624
31625
31626
31627
31628
31629
31630
31631
31632
31633
31634
31635
31636
31637
31638
31639
31640
31641
31642
31643
31644
31645
31646
31647
31648
31649
31650
31651
31652
31653
31654
31655
31656
31657
31658
31659
31660
31661
31662
31663
31664
31665
31666
31667
31668
31669
31670
31671
31672
31673
31674
31675
31676
31677
31678
31679
31680
31681
31682
31683
31684
31685
31686
31687
31688
31689
31690
31691
31692
31693
31694
31695
31696
31697
31698
31699
31700
31701
31702
31703
31704
31705
31706
31707
31708
31709
31710
31711
31712
31713
31714
31715
31716
31717
31718
31719
31720
31721
31722
31723
31724
31725
31726
31727
31728
31729
31730
31731
31732
31733
31734
31735
31736
31737
31738
31739
31740
31741
31742
31743
31744
31745
31746
31747
31748
31749
31750
31751
31752
31753
31754
31755
31756
31757
31758
31759
31760
31761
31762
31763
31764
31765
31766
31767
31768
31769
31770
31771
31772
31773
31774
31775
31776
31777
31778
31779
31780
31781
31782
31783
31784
31785
31786
31787
31788
31789
31790
31791
31792
31793
31794
31795
31796
31797
31798
31799
31800
31801
31802
31803
31804
31805
31806
31807
31808
31809
31810
31811
31812
31813
31814
31815
31816
31817
31818
31819
31820
31821
31822
31823
31824
31825
31826
31827
31828
31829
31830
31831
31832
31833
31834
31835
31836
31837
31838
31839
31840
31841
31842
31843
31844
31845
31846
31847
31848
31849
31850
31851
31852
31853
31854
31855
31856
31857
31858
31859
31860
31861
31862
31863
31864
31865
31866
31867
31868
31869
31870
31871
31872
31873
31874
31875
31876
31877
31878
31879
31880
31881
31882
31883
31884
31885
31886
31887
31888
31889
31890
31891
31892
31893
31894
31895
31896
31897
31898
31899
31900
31901
31902
31903
31904
31905
31906
31907
31908
31909
31910
31911
31912
31913
31914
31915
31916
31917
31918
31919
31920
31921
31922
31923
31924
31925
31926
31927
31928
31929
31930
31931
31932
31933
31934
31935
31936
31937
31938
31939
31940
31941
31942
31943
31944
31945
31946
31947
31948
31949
31950
31951
31952
31953
31954
31955
31956
31957
31958
31959
31960
31961
31962
31963
31964
31965
31966
31967
31968
31969
31970
31971
31972
31973
31974
31975
31976
31977
31978
31979
31980
31981
31982
31983
31984
31985
31986
31987
31988
31989
31990
31991
31992
31993
31994
31995
31996
31997
31998
31999
32000
32001
32002
32003
32004
32005
32006
32007
32008
32009
32010
32011
32012
32013
32014
32015
32016
32017
32018
32019
32020
32021
32022
32023
32024
32025
32026
32027
32028
32029
32030
32031
32032
32033
32034
32035
32036
32037
32038
32039
32040
32041
32042
32043
32044
32045
32046
32047
32048
32049
32050
32051
32052
32053
32054
32055
32056
32057
32058
32059
32060
32061
32062
32063
32064
32065
32066
32067
32068
32069
32070
32071
32072
32073
32074
32075
32076
32077
32078
32079
32080
32081
32082
32083
32084
32085
32086
32087
32088
32089
32090
32091
32092
32093
32094
32095
32096
32097
32098
32099
32100
32101
32102
32103
32104
32105
32106
32107
32108
32109
32110
32111
32112
32113
32114
32115
32116
32117
32118
32119
32120
32121
32122
32123
32124
32125
32126
32127
32128
32129
32130
32131
32132
32133
32134
32135
32136
32137
32138
32139
32140
32141
32142
32143
32144
32145
32146
32147
32148
32149
32150
32151
32152
32153
32154
32155
32156
32157
32158
32159
32160
32161
32162
32163
32164
32165
32166
32167
32168
32169
32170
32171
32172
32173
32174
32175
32176
32177
32178
32179
32180
32181
32182
32183
32184
32185
32186
32187
32188
32189
32190
32191
32192
32193
32194
32195
32196
32197
32198
32199
32200
32201
32202
32203
32204
32205
32206
32207
32208
32209
32210
32211
32212
32213
32214
32215
32216
32217
32218
32219
32220
32221
32222
32223
32224
32225
32226
32227
32228
32229
32230
32231
32232
32233
32234
32235
32236
32237
32238
32239
32240
32241
32242
32243
32244
32245
32246
32247
32248
32249
32250
32251
32252
32253
32254
32255
32256
32257
32258
32259
32260
32261
32262
32263
32264
32265
32266
32267
32268
32269
32270
32271
32272
32273
32274
32275
32276
32277
32278
32279
32280
32281
32282
32283
32284
32285
32286
32287
32288
32289
32290
32291
32292
32293
32294
32295
32296
32297
32298
32299
32300
32301
32302
32303
32304
32305
32306
32307
32308
32309
32310
32311
32312
32313
32314
32315
32316
32317
32318
32319
32320
32321
32322
32323
32324
32325
32326
32327
32328
32329
32330
32331
32332
32333
32334
32335
32336
32337
32338
32339
32340
32341
32342
32343
32344
32345
32346
32347
32348
32349
32350
32351
32352
32353
32354
32355
32356
32357
32358
32359
32360
32361
32362
32363
32364
32365
32366
32367
32368
32369
32370
32371
32372
32373
32374
32375
32376
32377
32378
32379
32380
32381
32382
32383
32384
32385
32386
32387
32388
32389
32390
32391
32392
32393
32394
32395
32396
32397
32398
32399
32400
32401
32402
32403
32404
32405
32406
32407
32408
32409
32410
32411
32412
32413
32414
32415
32416
32417
32418
32419
32420
32421
32422
32423
32424
32425
32426
32427
32428
32429
32430
32431
32432
32433
32434
32435
32436
32437
32438
32439
32440
32441
32442
32443
32444
32445
32446
32447
32448
32449
32450
32451
32452
32453
32454
32455
32456
32457
32458
32459
32460
32461
32462
32463
32464
32465
32466
32467
32468
32469
32470
32471
32472
32473
32474
32475
32476
32477
32478
32479
32480
32481
32482
32483
32484
32485
32486
32487
32488
32489
32490
32491
32492
32493
32494
32495
32496
32497
32498
32499
32500
32501
32502
32503
32504
32505
32506
32507
32508
32509
32510
32511
32512
32513
32514
32515
32516
32517
32518
32519
32520
32521
32522
32523
32524
32525
32526
32527
32528
32529
32530
32531
32532
32533
32534
32535
32536
32537
32538
32539
32540
32541
32542
32543
32544
32545
32546
32547
32548
32549
32550
32551
32552
32553
32554
32555
32556
32557
32558
32559
32560
32561
32562
32563
32564
32565
32566
32567
32568
32569
32570
32571
32572
32573
32574
32575
32576
32577
32578
32579
32580
32581
32582
32583
32584
32585
32586
32587
32588
32589
32590
32591
32592
32593
32594
32595
32596
32597
32598
32599
32600
32601
32602
32603
32604
32605
32606
32607
32608
32609
32610
32611
32612
32613
32614
32615
32616
32617
32618
32619
32620
32621
32622
32623
32624
32625
32626
32627
32628
32629
32630
32631
32632
32633
32634
32635
32636
32637
32638
32639
32640
32641
32642
32643
32644
32645
32646
32647
32648
32649
32650
32651
32652
32653
32654
32655
32656
32657
32658
32659
32660
32661
32662
32663
32664
32665
32666
32667
32668
32669
32670
32671
32672
32673
32674
32675
32676
32677
32678
32679
32680
32681
32682
32683
32684
32685
32686
32687
32688
32689
32690
32691
32692
32693
32694
32695
32696
32697
32698
32699
32700
32701
32702
32703
32704
32705
32706
32707
32708
32709
32710
32711
32712
32713
32714
32715
32716
32717
32718
32719
32720
32721
32722
32723
32724
32725
32726
32727
32728
32729
32730
32731
32732
32733
32734
32735
32736
32737
32738
32739
32740
32741
32742
32743
32744
32745
32746
32747
32748
32749
32750
32751
32752
32753
32754
32755
32756
32757
32758
32759
32760
32761
32762
32763
32764
32765
32766
32767
32768
32769
32770
32771
32772
32773
32774
32775
32776
32777
32778
32779
32780
32781
32782
32783
32784
32785
32786
32787
32788
32789
32790
32791
32792
32793
32794
32795
32796
32797
32798
32799
32800
32801
32802
32803
32804
32805
32806
32807
32808
32809
32810
32811
32812
32813
32814
32815
32816
32817
32818
32819
32820
32821
32822
32823
32824
32825
32826
32827
32828
32829
32830
32831
32832
32833
32834
32835
32836
32837
32838
32839
32840
32841
32842
32843
32844
32845
32846
32847
32848
32849
32850
32851
32852
32853
32854
32855
32856
32857
32858
32859
32860
32861
32862
32863
32864
32865
32866
32867
32868
32869
32870
32871
32872
32873
32874
32875
32876
32877
32878
32879
32880
32881
32882
32883
32884
32885
32886
32887
32888
32889
32890
32891
32892
32893
32894
32895
32896
32897
32898
32899
32900
32901
32902
32903
32904
32905
32906
32907
32908
32909
32910
32911
32912
32913
32914
32915
32916
32917
32918
32919
32920
32921
32922
32923
32924
32925
32926
32927
32928
32929
32930
32931
32932
32933
32934
32935
32936
32937
32938
32939
32940
32941
32942
32943
32944
32945
32946
32947
32948
32949
32950
32951
32952
32953
32954
32955
32956
32957
32958
32959
32960
32961
32962
32963
32964
32965
32966
32967
32968
32969
32970
32971
32972
32973
32974
32975
32976
32977
32978
32979
32980
32981
32982
32983
32984
32985
32986
32987
32988
32989
32990
32991
32992
32993
32994
32995
32996
32997
32998
32999
33000
33001
33002
33003
33004
33005
33006
33007
33008
33009
33010
33011
33012
33013
33014
33015
33016
33017
33018
33019
33020
33021
33022
33023
33024
33025
33026
33027
33028
33029
33030
33031
33032
33033
33034
33035
33036
33037
33038
33039
33040
33041
33042
33043
33044
33045
33046
33047
33048
33049
33050
33051
33052
33053
33054
33055
33056
33057
33058
33059
33060
33061
33062
33063
33064
33065
33066
33067
33068
33069
33070
33071
33072
33073
33074
33075
33076
33077
33078
33079
33080
33081
33082
33083
33084
33085
33086
33087
33088
33089
33090
33091
33092
33093
33094
33095
33096
33097
33098
33099
33100
33101
33102
33103
33104
33105
33106
33107
33108
33109
33110
33111
33112
33113
33114
33115
33116
33117
33118
33119
33120
33121
33122
33123
33124
33125
33126
33127
33128
33129
33130
33131
33132
33133
33134
33135
33136
33137
33138
33139
33140
33141
33142
33143
33144
33145
33146
33147
33148
33149
33150
33151
33152
33153
33154
33155
33156
33157
33158
33159
33160
33161
33162
33163
33164
33165
33166
33167
33168
33169
33170
33171
33172
33173
33174
33175
33176
33177
33178
33179
33180
33181
33182
33183
33184
33185
33186
33187
33188
33189
33190
33191
33192
33193
33194
33195
33196
33197
33198
33199
33200
33201
33202
33203
33204
33205
33206
33207
33208
33209
33210
33211
33212
33213
33214
33215
33216
33217
33218
33219
33220
33221
33222
33223
33224
33225
33226
33227
33228
33229
33230
33231
33232
33233
33234
33235
33236
33237
33238
33239
33240
33241
33242
33243
33244
33245
33246
33247
33248
33249
33250
33251
33252
33253
33254
33255
33256
33257
33258
33259
33260
33261
33262
33263
33264
33265
33266
33267
33268
33269
33270
33271
33272
33273
33274
33275
33276
33277
33278
33279
33280
33281
33282
33283
33284
33285
33286
33287
33288
33289
33290
33291
33292
33293
33294
33295
33296
33297
33298
33299
33300
33301
33302
33303
33304
33305
33306
33307
33308
33309
33310
33311
33312
33313
33314
33315
33316
33317
33318
33319
33320
33321
33322
33323
33324
33325
33326
33327
33328
33329
33330
33331
33332
33333
33334
33335
33336
33337
33338
33339
33340
33341
33342
33343
33344
33345
33346
33347
33348
33349
33350
33351
33352
33353
33354
33355
33356
33357
33358
33359
33360
33361
33362
33363
33364
33365
33366
33367
33368
33369
33370
33371
33372
33373
33374
33375
33376
33377
33378
33379
33380
33381
33382
33383
33384
33385
33386
33387
33388
33389
33390
33391
33392
33393
33394
33395
33396
33397
33398
33399
33400
33401
33402
33403
33404
33405
33406
33407
33408
33409
33410
33411
33412
33413
33414
33415
33416
33417
33418
33419
33420
33421
33422
33423
33424
33425
33426
33427
33428
33429
33430
33431
33432
33433
33434
33435
33436
33437
33438
33439
33440
33441
33442
33443
33444
33445
33446
33447
33448
33449
33450
33451
33452
33453
33454
33455
33456
33457
33458
33459
33460
33461
33462
33463
33464
33465
33466
33467
33468
33469
33470
33471
33472
33473
33474
33475
33476
33477
33478
33479
33480
33481
33482
33483
33484
33485
33486
33487
33488
33489
33490
33491
33492
33493
33494
33495
33496
33497
33498
33499
33500
33501
33502
33503
33504
33505
33506
33507
33508
33509
33510
33511
33512
33513
33514
33515
33516
33517
33518
33519
33520
33521
33522
33523
33524
33525
33526
33527
33528
33529
33530
33531
33532
33533
33534
33535
33536
33537
33538
33539
33540
33541
33542
33543
33544
33545
33546
33547
33548
33549
33550
33551
33552
33553
33554
33555
33556
33557
33558
33559
33560
33561
33562
33563
33564
33565
33566
33567
33568
33569
33570
33571
33572
33573
33574
33575
33576
33577
33578
33579
33580
33581
33582
33583
33584
33585
33586
33587
33588
33589
33590
33591
33592
33593
33594
33595
33596
33597
33598
33599
33600
33601
33602
33603
33604
33605
33606
33607
33608
33609
33610
33611
33612
33613
33614
33615
33616
33617
33618
33619
33620
33621
33622
33623
33624
33625
33626
33627
33628
33629
33630
33631
33632
33633
33634
33635
33636
33637
33638
33639
33640
33641
33642
33643
33644
33645
33646
33647
33648
33649
33650
33651
33652
33653
33654
33655
33656
33657
33658
33659
33660
33661
33662
33663
33664
33665
33666
33667
33668
33669
33670
33671
33672
33673
33674
33675
33676
33677
33678
33679
33680
33681
33682
33683
33684
33685
33686
33687
33688
33689
33690
33691
33692
33693
33694
33695
33696
33697
33698
33699
33700
33701
33702
33703
33704
33705
33706
33707
33708
33709
33710
33711
33712
33713
33714
33715
33716
33717
33718
33719
33720
33721
33722
33723
33724
33725
33726
33727
33728
33729
33730
33731
33732
33733
33734
33735
33736
33737
33738
33739
33740
33741
33742
33743
33744
33745
33746
33747
33748
33749
33750
33751
33752
33753
33754
33755
33756
33757
33758
33759
33760
33761
33762
33763
33764
33765
33766
33767
33768
33769
33770
33771
33772
33773
33774
33775
33776
33777
33778
33779
33780
33781
33782
33783
33784
33785
33786
33787
33788
33789
33790
33791
33792
33793
33794
33795
33796
33797
33798
33799
33800
33801
33802
33803
33804
33805
33806
33807
33808
33809
33810
33811
33812
33813
33814
33815
33816
33817
33818
33819
33820
33821
33822
33823
33824
33825
33826
33827
33828
33829
33830
33831
33832
33833
33834
33835
33836
33837
33838
33839
33840
33841
33842
33843
33844
33845
33846
33847
33848
33849
33850
33851
33852
33853
33854
33855
33856
33857
33858
33859
33860
33861
33862
33863
33864
33865
33866
33867
33868
33869
33870
33871
33872
33873
33874
33875
33876
33877
33878
33879
33880
33881
33882
33883
33884
33885
33886
33887
33888
33889
33890
33891
33892
33893
33894
33895
33896
33897
33898
33899
33900
33901
33902
33903
33904
33905
33906
33907
33908
33909
33910
33911
33912
33913
33914
33915
33916
33917
33918
33919
33920
33921
33922
33923
33924
33925
33926
33927
33928
33929
33930
33931
33932
33933
33934
33935
33936
33937
33938
33939
33940
33941
33942
33943
33944
33945
33946
33947
33948
33949
33950
33951
33952
33953
33954
33955
33956
33957
33958
33959
33960
33961
33962
33963
33964
33965
33966
33967
33968
33969
33970
33971
33972
33973
33974
33975
33976
33977
33978
33979
33980
33981
33982
33983
33984
33985
33986
33987
33988
33989
33990
33991
33992
33993
33994
33995
33996
33997
33998
33999
34000
34001
34002
34003
34004
34005
34006
34007
34008
34009
34010
34011
34012
34013
34014
34015
34016
34017
34018
34019
34020
34021
34022
34023
34024
34025
34026
34027
34028
34029
34030
34031
34032
34033
34034
34035
34036
34037
34038
34039
34040
34041
34042
34043
34044
34045
34046
34047
34048
34049
34050
34051
34052
34053
34054
34055
34056
34057
34058
34059
34060
34061
34062
34063
34064
34065
34066
34067
34068
34069
34070
34071
34072
34073
34074
34075
34076
34077
34078
34079
34080
34081
34082
34083
34084
34085
34086
34087
34088
34089
34090
34091
34092
34093
34094
34095
34096
34097
34098
34099
34100
34101
34102
34103
34104
34105
34106
34107
34108
34109
34110
34111
34112
34113
34114
34115
34116
34117
34118
34119
34120
34121
34122
34123
34124
34125
34126
34127
34128
34129
34130
34131
34132
34133
34134
34135
34136
34137
34138
34139
34140
34141
34142
34143
34144
34145
34146
34147
34148
34149
34150
34151
34152
34153
34154
34155
34156
34157
34158
34159
34160
34161
34162
34163
34164
34165
34166
34167
34168
34169
34170
34171
34172
34173
34174
34175
34176
34177
34178
34179
34180
34181
34182
34183
34184
34185
34186
34187
34188
34189
34190
34191
34192
34193
34194
34195
34196
34197
34198
34199
34200
34201
34202
34203
34204
34205
34206
34207
34208
34209
34210
34211
34212
34213
34214
34215
34216
34217
34218
34219
34220
34221
34222
34223
34224
34225
34226
34227
34228
34229
34230
34231
34232
34233
34234
34235
34236
34237
34238
34239
34240
34241
34242
34243
34244
34245
34246
34247
34248
34249
34250
34251
34252
34253
34254
34255
34256
34257
34258
34259
34260
34261
34262
34263
34264
34265
34266
34267
34268
34269
34270
34271
34272
34273
34274
34275
34276
34277
34278
34279
34280
34281
34282
34283
34284
34285
34286
34287
34288
34289
34290
34291
34292
34293
34294
34295
34296
34297
34298
34299
34300
34301
34302
34303
34304
34305
34306
34307
34308
34309
34310
34311
34312
34313
34314
34315
34316
34317
34318
34319
34320
34321
34322
34323
34324
34325
34326
34327
34328
34329
34330
34331
34332
34333
34334
34335
34336
34337
34338
34339
34340
34341
34342
34343
34344
34345
34346
34347
34348
34349
34350
34351
34352
34353
34354
34355
34356
34357
34358
34359
34360
34361
34362
34363
34364
34365
34366
34367
34368
34369
34370
34371
34372
34373
34374
34375
34376
34377
34378
34379
34380
34381
34382
34383
34384
34385
34386
34387
34388
34389
34390
34391
34392
34393
34394
34395
34396
34397
34398
34399
34400
34401
34402
34403
34404
34405
34406
34407
34408
34409
34410
34411
34412
34413
34414
34415
34416
34417
34418
34419
34420
34421
34422
34423
34424
34425
34426
34427
34428
34429
34430
34431
34432
34433
34434
34435
34436
34437
34438
34439
34440
34441
34442
34443
34444
34445
34446
34447
34448
34449
34450
34451
34452
34453
34454
34455
34456
34457
34458
34459
34460
34461
34462
34463
34464
34465
34466
34467
34468
34469
34470
34471
34472
34473
34474
34475
34476
34477
34478
34479
34480
34481
34482
34483
34484
34485
34486
34487
34488
34489
34490
34491
34492
34493
34494
34495
34496
34497
34498
34499
34500
34501
34502
34503
34504
34505
34506
34507
34508
34509
34510
34511
34512
34513
34514
34515
34516
34517
34518
34519
34520
34521
34522
34523
34524
34525
34526
34527
34528
34529
34530
34531
34532
34533
34534
34535
34536
34537
34538
34539
34540
34541
34542
34543
34544
34545
34546
34547
34548
34549
34550
34551
34552
34553
34554
34555
34556
34557
34558
34559
34560
34561
34562
34563
34564
34565
34566
34567
34568
34569
34570
34571
34572
34573
34574
34575
34576
34577
34578
34579
34580
34581
34582
34583
34584
34585
34586
34587
34588
34589
34590
34591
34592
34593
34594
34595
34596
34597
34598
34599
34600
34601
34602
34603
34604
34605
34606
34607
34608
34609
34610
34611
34612
34613
34614
34615
34616
34617
34618
34619
34620
34621
34622
34623
34624
34625
34626
34627
34628
34629
34630
34631
34632
34633
34634
34635
34636
34637
34638
34639
34640
34641
34642
34643
34644
34645
34646
34647
34648
34649
34650
34651
34652
34653
34654
34655
34656
34657
34658
34659
34660
34661
34662
34663
34664
34665
34666
34667
34668
34669
34670
34671
34672
34673
34674
34675
34676
34677
34678
34679
34680
34681
34682
34683
34684
34685
34686
34687
34688
34689
34690
34691
34692
34693
34694
34695
34696
34697
34698
34699
34700
34701
34702
34703
34704
34705
34706
34707
34708
34709
34710
34711
34712
34713
34714
34715
34716
34717
34718
34719
34720
34721
34722
34723
34724
34725
34726
34727
34728
34729
34730
34731
34732
34733
34734
34735
34736
34737
34738
34739
34740
34741
34742
34743
34744
34745
34746
34747
34748
34749
34750
34751
34752
34753
34754
34755
34756
34757
34758
34759
34760
34761
34762
34763
34764
34765
34766
34767
34768
34769
34770
34771
34772
34773
34774
34775
34776
34777
34778
34779
34780
34781
34782
34783
34784
34785
34786
34787
34788
34789
34790
34791
34792
34793
34794
34795
34796
34797
34798
34799
34800
34801
34802
34803
34804
34805
34806
34807
34808
34809
34810
34811
34812
34813
34814
34815
34816
34817
34818
34819
34820
34821
34822
34823
34824
34825
34826
34827
34828
34829
34830
34831
34832
34833
34834
34835
34836
34837
34838
34839
34840
34841
34842
34843
34844
34845
34846
34847
34848
34849
34850
34851
34852
34853
34854
34855
34856
34857
34858
34859
34860
34861
34862
34863
34864
34865
34866
34867
34868
34869
34870
34871
34872
34873
34874
34875
34876
34877
34878
34879
34880
34881
34882
34883
34884
34885
34886
34887
34888
34889
34890
34891
34892
34893
34894
34895
34896
34897
34898
34899
34900
34901
34902
34903
34904
34905
34906
34907
34908
34909
34910
34911
34912
34913
34914
34915
34916
34917
34918
34919
34920
34921
34922
34923
34924
34925
34926
34927
34928
34929
34930
34931
34932
34933
34934
34935
34936
34937
34938
34939
34940
34941
34942
34943
34944
34945
34946
34947
34948
34949
34950
34951
34952
34953
34954
34955
34956
34957
34958
34959
34960
34961
34962
34963
34964
34965
34966
34967
34968
34969
34970
34971
34972
34973
34974
34975
34976
34977
34978
34979
34980
34981
34982
34983
34984
34985
34986
34987
34988
34989
34990
34991
34992
34993
34994
34995
34996
34997
34998
34999
35000
35001
35002
35003
35004
35005
35006
35007
35008
35009
35010
35011
35012
35013
35014
35015
35016
35017
35018
35019
35020
35021
35022
35023
35024
35025
35026
35027
35028
35029
35030
35031
35032
35033
35034
35035
35036
35037
35038
35039
35040
35041
35042
35043
35044
35045
35046
35047
35048
35049
35050
35051
35052
35053
35054
35055
35056
35057
35058
35059
35060
35061
35062
35063
35064
35065
35066
35067
35068
35069
35070
35071
35072
35073
35074
35075
35076
35077
35078
35079
35080
35081
35082
35083
35084
35085
35086
35087
35088
35089
35090
35091
35092
35093
35094
35095
35096
35097
35098
35099
35100
35101
35102
35103
35104
35105
35106
35107
35108
35109
35110
35111
35112
35113
35114
35115
35116
35117
35118
35119
35120
35121
35122
35123
35124
35125
35126
35127
35128
35129
35130
35131
35132
35133
35134
35135
35136
35137
35138
35139
35140
35141
35142
35143
35144
35145
35146
35147
35148
35149
35150
35151
35152
35153
35154
35155
35156
35157
35158
35159
35160
35161
35162
35163
35164
35165
35166
35167
35168
35169
35170
35171
35172
35173
35174
35175
35176
35177
35178
35179
35180
35181
35182
35183
35184
35185
35186
35187
35188
35189
35190
35191
35192
35193
35194
35195
35196
35197
35198
35199
35200
35201
35202
35203
35204
35205
35206
35207
35208
35209
35210
35211
35212
35213
35214
35215
35216
35217
35218
35219
35220
35221
35222
35223
35224
35225
35226
35227
35228
35229
35230
35231
35232
35233
35234
35235
35236
35237
35238
35239
35240
35241
35242
35243
35244
35245
35246
35247
35248
35249
35250
35251
35252
35253
35254
35255
35256
35257
35258
35259
35260
35261
35262
35263
35264
35265
35266
35267
35268
35269
35270
35271
35272
35273
35274
35275
35276
35277
35278
35279
35280
35281
35282
35283
35284
35285
35286
35287
35288
35289
35290
35291
35292
35293
35294
35295
35296
35297
35298
35299
35300
35301
35302
35303
35304
35305
35306
35307
35308
35309
35310
35311
35312
35313
35314
35315
35316
35317
35318
35319
35320
35321
35322
35323
35324
35325
35326
35327
35328
35329
35330
35331
35332
35333
35334
35335
35336
35337
35338
35339
35340
35341
35342
35343
35344
35345
35346
35347
35348
35349
35350
35351
35352
35353
35354
35355
35356
35357
35358
35359
35360
35361
35362
35363
35364
35365
35366
35367
35368
35369
35370
35371
35372
35373
35374
35375
35376
35377
35378
35379
35380
35381
35382
35383
35384
35385
35386
35387
35388
35389
35390
35391
35392
35393
35394
35395
35396
35397
35398
35399
35400
35401
35402
35403
35404
35405
35406
35407
35408
35409
35410
35411
35412
35413
35414
35415
35416
35417
35418
35419
35420
35421
35422
35423
35424
35425
35426
35427
35428
35429
35430
35431
35432
35433
35434
35435
35436
35437
35438
35439
35440
35441
35442
35443
35444
35445
35446
35447
35448
35449
35450
35451
35452
35453
35454
35455
35456
35457
35458
35459
35460
35461
35462
35463
35464
35465
35466
35467
35468
35469
35470
35471
35472
35473
35474
35475
35476
35477
35478
35479
35480
35481
35482
35483
35484
35485
35486
35487
35488
35489
35490
35491
35492
35493
35494
35495
35496
35497
35498
35499
35500
35501
35502
35503
35504
35505
35506
35507
35508
35509
35510
35511
35512
35513
35514
35515
35516
35517
35518
35519
35520
35521
35522
35523
35524
35525
35526
35527
35528
35529
35530
35531
35532
35533
35534
35535
35536
35537
35538
35539
35540
35541
35542
35543
35544
35545
35546
35547
35548
35549
35550
35551
35552
35553
35554
35555
35556
35557
35558
35559
35560
35561
35562
35563
35564
35565
35566
35567
35568
35569
35570
35571
35572
35573
35574
35575
35576
35577
35578
35579
35580
35581
35582
35583
35584
35585
35586
35587
35588
35589
35590
35591
35592
35593
35594
35595
35596
35597
35598
35599
35600
35601
35602
35603
35604
35605
35606
35607
35608
35609
35610
35611
35612
35613
35614
35615
35616
35617
35618
35619
35620
35621
35622
35623
35624
35625
35626
35627
35628
35629
35630
35631
35632
35633
35634
35635
35636
35637
35638
35639
35640
35641
35642
35643
35644
35645
35646
35647
35648
35649
35650
35651
35652
35653
35654
35655
35656
35657
35658
35659
35660
35661
35662
35663
35664
35665
35666
35667
35668
35669
35670
35671
35672
35673
35674
35675
35676
35677
35678
35679
35680
35681
35682
35683
35684
35685
35686
35687
35688
35689
35690
35691
35692
35693
35694
35695
35696
35697
35698
35699
35700
35701
35702
35703
35704
35705
35706
35707
35708
35709
35710
35711
35712
35713
35714
35715
35716
35717
35718
35719
35720
35721
35722
35723
35724
35725
35726
35727
35728
35729
35730
35731
35732
35733
35734
35735
35736
35737
35738
35739
35740
35741
35742
35743
35744
35745
35746
35747
35748
35749
35750
35751
35752
35753
35754
35755
35756
35757
35758
35759
35760
35761
35762
35763
35764
35765
35766
35767
35768
35769
35770
35771
35772
35773
35774
35775
35776
35777
35778
35779
35780
35781
35782
35783
35784
35785
35786
35787
35788
35789
35790
35791
35792
35793
35794
35795
35796
35797
35798
35799
35800
35801
35802
35803
35804
35805
35806
35807
35808
35809
35810
35811
35812
35813
35814
35815
35816
35817
35818
35819
35820
35821
35822
35823
35824
35825
35826
35827
35828
35829
35830
35831
35832
35833
35834
35835
35836
35837
35838
35839
35840
35841
35842
35843
35844
35845
35846
35847
35848
35849
35850
35851
35852
35853
35854
35855
35856
35857
35858
35859
35860
35861
35862
35863
35864
35865
35866
35867
35868
35869
35870
35871
35872
35873
35874
35875
35876
35877
35878
35879
35880
35881
35882
35883
35884
35885
35886
35887
35888
35889
35890
35891
35892
35893
35894
35895
35896
35897
35898
35899
35900
35901
35902
35903
35904
35905
35906
35907
35908
35909
35910
35911
35912
35913
35914
35915
35916
35917
35918
35919
35920
35921
35922
35923
35924
35925
35926
35927
35928
35929
35930
35931
35932
35933
35934
35935
35936
35937
35938
35939
35940
35941
35942
35943
35944
35945
35946
35947
35948
35949
35950
35951
35952
35953
35954
35955
35956
35957
35958
35959
35960
35961
35962
35963
35964
35965
35966
35967
35968
35969
35970
35971
35972
35973
35974
35975
35976
35977
35978
35979
35980
35981
35982
35983
35984
35985
35986
35987
35988
35989
35990
35991
35992
35993
35994
35995
35996
35997
35998
35999
36000
36001
36002
36003
36004
36005
36006
36007
36008
36009
36010
36011
36012
36013
36014
36015
36016
36017
36018
36019
36020
36021
36022
36023
36024
36025
36026
36027
36028
36029
36030
36031
36032
36033
36034
36035
36036
36037
36038
36039
36040
36041
36042
36043
36044
36045
36046
36047
36048
36049
36050
36051
36052
36053
36054
36055
36056
36057
36058
36059
36060
36061
36062
36063
36064
36065
36066
36067
36068
36069
36070
36071
36072
36073
36074
36075
36076
36077
36078
36079
36080
36081
36082
36083
36084
36085
36086
36087
36088
36089
36090
36091
36092
36093
36094
36095
36096
36097
36098
36099
36100
36101
36102
36103
36104
36105
36106
36107
36108
36109
36110
36111
36112
36113
36114
36115
36116
36117
36118
36119
36120
36121
36122
36123
36124
36125
36126
36127
36128
36129
36130
36131
36132
36133
36134
36135
36136
36137
36138
36139
36140
36141
36142
36143
36144
36145
36146
36147
36148
36149
36150
36151
36152
36153
36154
36155
36156
36157
36158
36159
36160
36161
36162
36163
36164
36165
36166
36167
36168
36169
36170
36171
36172
36173
36174
36175
36176
36177
36178
36179
36180
36181
36182
36183
36184
36185
36186
36187
36188
36189
36190
36191
36192
36193
36194
36195
36196
36197
36198
36199
36200
36201
36202
36203
36204
36205
36206
36207
36208
36209
36210
36211
36212
36213
36214
36215
36216
36217
36218
36219
36220
36221
36222
36223
36224
36225
36226
36227
36228
36229
36230
36231
36232
36233
36234
36235
36236
36237
36238
36239
36240
36241
36242
36243
36244
36245
36246
36247
36248
36249
36250
36251
36252
36253
36254
36255
36256
36257
36258
36259
36260
36261
36262
36263
36264
36265
36266
36267
36268
36269
36270
36271
36272
36273
36274
36275
36276
36277
36278
36279
36280
36281
36282
36283
36284
36285
36286
36287
36288
36289
36290
36291
36292
36293
36294
36295
36296
36297
36298
36299
36300
36301
36302
36303
36304
36305
36306
36307
36308
36309
36310
36311
36312
36313
36314
36315
36316
36317
36318
36319
36320
36321
36322
36323
36324
36325
36326
36327
36328
36329
36330
36331
36332
36333
36334
36335
36336
36337
36338
36339
36340
36341
36342
36343
36344
36345
36346
36347
36348
36349
36350
36351
36352
36353
36354
36355
36356
36357
36358
36359
36360
36361
36362
36363
36364
36365
36366
36367
36368
36369
36370
36371
36372
36373
36374
36375
36376
36377
36378
36379
36380
36381
36382
36383
36384
36385
36386
36387
36388
36389
36390
36391
36392
36393
36394
36395
36396
36397
36398
36399
36400
36401
36402
36403
36404
36405
36406
36407
36408
36409
36410
36411
36412
36413
36414
36415
36416
36417
36418
36419
36420
36421
36422
36423
36424
36425
36426
36427
36428
36429
36430
36431
36432
36433
36434
36435
36436
36437
36438
36439
36440
36441
36442
36443
36444
36445
36446
36447
36448
36449
36450
36451
36452
36453
36454
36455
36456
36457
36458
36459
36460
36461
36462
36463
36464
36465
36466
36467
36468
36469
36470
36471
36472
36473
36474
36475
36476
36477
36478
36479
36480
36481
36482
36483
36484
36485
36486
36487
36488
36489
36490
36491
36492
36493
36494
36495
36496
36497
36498
36499
36500
36501
36502
36503
36504
36505
36506
36507
36508
36509
36510
36511
36512
36513
36514
36515
36516
36517
36518
36519
36520
36521
36522
36523
36524
36525
36526
36527
36528
36529
36530
36531
36532
36533
36534
36535
36536
36537
36538
36539
36540
36541
36542
36543
36544
36545
36546
36547
36548
36549
36550
36551
36552
36553
36554
36555
36556
36557
36558
36559
36560
36561
36562
36563
36564
36565
36566
36567
36568
36569
36570
36571
36572
36573
36574
36575
36576
36577
36578
36579
36580
36581
36582
36583
36584
36585
36586
36587
36588
36589
36590
36591
36592
36593
36594
36595
36596
36597
36598
36599
36600
36601
36602
36603
36604
36605
36606
36607
36608
36609
36610
36611
36612
36613
36614
36615
36616
36617
36618
36619
36620
36621
36622
36623
36624
36625
36626
36627
36628
36629
36630
36631
36632
36633
36634
36635
36636
36637
36638
36639
36640
36641
36642
36643
36644
36645
36646
36647
36648
36649
36650
36651
36652
36653
36654
36655
36656
36657
36658
36659
36660
36661
36662
36663
36664
36665
36666
36667
36668
36669
36670
36671
36672
36673
36674
36675
36676
36677
36678
36679
36680
36681
36682
36683
36684
36685
36686
36687
36688
36689
36690
36691
36692
36693
36694
36695
36696
36697
36698
36699
36700
36701
36702
36703
36704
36705
36706
36707
36708
36709
36710
36711
36712
36713
36714
36715
36716
36717
36718
36719
36720
36721
36722
36723
36724
36725
36726
36727
36728
36729
36730
36731
36732
36733
36734
36735
36736
36737
36738
36739
36740
36741
36742
36743
36744
36745
36746
36747
36748
36749
36750
36751
36752
36753
36754
36755
36756
36757
36758
36759
36760
36761
36762
36763
36764
36765
36766
36767
36768
36769
36770
36771
36772
36773
36774
36775
36776
36777
36778
36779
36780
36781
36782
36783
36784
36785
36786
36787
36788
36789
36790
36791
36792
36793
36794
36795
36796
36797
36798
36799
36800
36801
36802
36803
36804
36805
36806
36807
36808
36809
36810
36811
36812
36813
36814
36815
36816
36817
36818
36819
36820
36821
36822
36823
36824
36825
36826
36827
36828
36829
36830
36831
36832
36833
36834
36835
36836
36837
36838
36839
36840
36841
36842
36843
36844
36845
36846
36847
36848
36849
36850
36851
36852
36853
36854
36855
36856
36857
36858
36859
36860
36861
36862
36863
36864
36865
36866
36867
36868
36869
36870
36871
36872
36873
36874
36875
36876
36877
36878
36879
36880
36881
36882
36883
36884
36885
36886
36887
36888
36889
36890
36891
36892
36893
36894
36895
36896
36897
36898
36899
36900
36901
36902
36903
36904
36905
36906
36907
36908
36909
36910
36911
36912
36913
36914
36915
36916
36917
36918
36919
36920
36921
36922
36923
36924
36925
36926
36927
36928
36929
36930
36931
36932
36933
36934
36935
36936
36937
36938
36939
36940
36941
36942
36943
36944
36945
36946
36947
36948
36949
36950
36951
36952
36953
36954
36955
36956
36957
36958
36959
36960
36961
36962
36963
36964
36965
36966
36967
36968
36969
36970
36971
36972
36973
36974
36975
36976
36977
36978
36979
36980
36981
36982
36983
36984
36985
36986
36987
36988
36989
36990
36991
36992
36993
36994
36995
36996
36997
36998
36999
37000
37001
37002
37003
37004
37005
37006
37007
37008
37009
37010
37011
37012
37013
37014
37015
37016
37017
37018
37019
37020
37021
37022
37023
37024
37025
37026
37027
37028
37029
37030
37031
37032
37033
37034
37035
37036
37037
37038
37039
37040
37041
37042
37043
37044
37045
37046
37047
37048
37049
37050
37051
37052
37053
37054
37055
37056
37057
37058
37059
37060
37061
37062
37063
37064
37065
37066
37067
37068
37069
37070
37071
37072
37073
37074
37075
37076
37077
37078
37079
37080
37081
37082
37083
37084
37085
37086
37087
37088
37089
37090
37091
37092
37093
37094
37095
37096
37097
37098
37099
37100
37101
37102
37103
37104
37105
37106
37107
37108
37109
37110
37111
37112
37113
37114
37115
37116
37117
37118
37119
37120
37121
37122
37123
37124
37125
37126
37127
37128
37129
37130
37131
37132
37133
37134
37135
37136
37137
37138
37139
37140
37141
37142
37143
37144
37145
37146
37147
37148
37149
37150
37151
37152
37153
37154
37155
37156
37157
37158
37159
37160
37161
37162
37163
37164
37165
37166
37167
37168
37169
37170
37171
37172
37173
37174
37175
37176
37177
37178
37179
37180
37181
37182
37183
37184
37185
37186
37187
37188
37189
37190
37191
37192
37193
37194
37195
37196
37197
37198
37199
37200
37201
37202
37203
37204
37205
37206
37207
37208
37209
37210
37211
37212
37213
37214
37215
37216
37217
37218
37219
37220
37221
37222
37223
37224
37225
37226
37227
37228
37229
37230
37231
37232
37233
37234
37235
37236
37237
37238
37239
37240
37241
37242
37243
37244
37245
37246
37247
37248
37249
37250
37251
37252
37253
37254
37255
37256
37257
37258
37259
37260
37261
37262
37263
37264
37265
37266
37267
37268
37269
37270
37271
37272
37273
37274
37275
37276
37277
37278
37279
37280
37281
37282
37283
37284
37285
37286
37287
37288
37289
37290
37291
37292
37293
37294
37295
37296
37297
37298
37299
37300
37301
37302
37303
37304
37305
37306
37307
37308
37309
37310
37311
37312
37313
37314
37315
37316
37317
37318
37319
37320
37321
37322
37323
37324
37325
37326
37327
37328
37329
37330
37331
37332
37333
37334
37335
37336
37337
37338
37339
37340
37341
37342
37343
37344
37345
37346
37347
37348
37349
37350
37351
37352
37353
37354
37355
37356
37357
37358
37359
37360
37361
37362
37363
37364
37365
37366
37367
37368
37369
37370
37371
37372
37373
37374
37375
37376
37377
37378
37379
37380
37381
37382
37383
37384
37385
37386
37387
37388
37389
37390
37391
37392
37393
37394
37395
37396
37397
37398
37399
37400
37401
37402
37403
37404
37405
37406
37407
37408
37409
37410
37411
37412
37413
37414
37415
37416
37417
37418
37419
37420
37421
37422
37423
37424
37425
37426
37427
37428
37429
37430
37431
37432
37433
37434
37435
37436
37437
37438
37439
37440
37441
37442
37443
37444
37445
37446
37447
37448
37449
37450
37451
37452
37453
37454
37455
37456
37457
37458
37459
37460
37461
37462
37463
37464
37465
37466
37467
37468
37469
37470
37471
37472
37473
37474
37475
37476
37477
37478
37479
37480
37481
37482
37483
37484
37485
37486
37487
37488
37489
37490
37491
37492
37493
37494
37495
37496
37497
37498
37499
37500
37501
37502
37503
37504
37505
37506
37507
37508
37509
37510
37511
37512
37513
37514
37515
37516
37517
37518
37519
37520
37521
37522
37523
37524
37525
37526
37527
37528
37529
37530
37531
37532
37533
37534
37535
37536
37537
37538
37539
37540
37541
37542
37543
37544
37545
37546
37547
37548
37549
37550
37551
37552
37553
37554
37555
37556
37557
37558
37559
37560
37561
37562
37563
37564
37565
37566
37567
37568
37569
37570
37571
37572
37573
37574
37575
37576
37577
37578
37579
37580
37581
37582
37583
37584
37585
37586
37587
37588
37589
37590
37591
37592
37593
37594
37595
37596
37597
37598
37599
37600
37601
37602
37603
37604
37605
37606
37607
37608
37609
37610
37611
37612
37613
37614
37615
37616
37617
37618
37619
37620
37621
37622
37623
37624
37625
37626
37627
37628
37629
37630
37631
37632
37633
37634
37635
37636
37637
37638
37639
37640
37641
37642
37643
37644
37645
37646
37647
37648
37649
37650
37651
37652
37653
37654
37655
37656
37657
37658
37659
37660
37661
37662
37663
37664
37665
37666
37667
37668
37669
37670
37671
37672
37673
37674
37675
37676
37677
37678
37679
37680
37681
37682
37683
37684
37685
37686
37687
37688
37689
37690
37691
37692
37693
37694
37695
37696
37697
37698
37699
37700
37701
37702
37703
37704
37705
37706
37707
37708
37709
37710
37711
37712
37713
37714
37715
37716
37717
37718
37719
37720
37721
37722
37723
37724
37725
37726
37727
37728
37729
37730
37731
37732
37733
37734
37735
37736
37737
37738
37739
37740
37741
37742
37743
37744
37745
37746
37747
37748
37749
37750
37751
37752
37753
37754
37755
37756
37757
37758
37759
37760
37761
37762
37763
37764
37765
37766
37767
37768
37769
37770
37771
37772
37773
37774
37775
37776
37777
37778
37779
37780
37781
37782
37783
37784
37785
37786
37787
37788
37789
37790
37791
37792
37793
37794
37795
37796
37797
37798
37799
37800
37801
37802
37803
37804
37805
37806
37807
37808
37809
37810
37811
37812
37813
37814
37815
37816
37817
37818
37819
37820
37821
37822
37823
37824
37825
37826
37827
37828
37829
37830
37831
37832
37833
37834
37835
37836
37837
37838
37839
37840
37841
37842
37843
37844
37845
37846
37847
37848
37849
37850
37851
37852
37853
37854
37855
37856
37857
37858
37859
37860
37861
37862
37863
37864
37865
37866
37867
37868
37869
37870
37871
37872
37873
37874
37875
37876
37877
37878
37879
37880
37881
37882
37883
37884
37885
37886
37887
37888
37889
37890
37891
37892
37893
37894
37895
37896
37897
37898
37899
37900
37901
37902
37903
37904
37905
37906
37907
37908
37909
37910
37911
37912
37913
37914
37915
37916
37917
37918
37919
37920
37921
37922
37923
37924
37925
37926
37927
37928
37929
37930
37931
37932
37933
37934
37935
37936
37937
37938
37939
37940
37941
37942
37943
37944
37945
37946
37947
37948
37949
37950
37951
37952
37953
37954
37955
37956
37957
37958
37959
37960
37961
37962
37963
37964
37965
37966
37967
37968
37969
37970
37971
37972
37973
37974
37975
37976
37977
37978
37979
37980
37981
37982
37983
37984
37985
37986
37987
37988
37989
37990
37991
37992
37993
37994
37995
37996
37997
37998
37999
38000
38001
38002
38003
38004
38005
38006
38007
38008
38009
38010
38011
38012
38013
38014
38015
38016
38017
38018
38019
38020
38021
38022
38023
38024
38025
38026
38027
38028
38029
38030
38031
38032
38033
38034
38035
38036
38037
38038
38039
38040
38041
38042
38043
38044
38045
38046
38047
38048
38049
38050
38051
38052
38053
38054
38055
38056
38057
38058
38059
38060
38061
38062
38063
38064
38065
38066
38067
38068
38069
38070
38071
38072
38073
38074
38075
38076
38077
38078
38079
38080
38081
38082
38083
38084
38085
38086
38087
38088
38089
38090
38091
38092
38093
38094
38095
38096
38097
38098
38099
38100
38101
38102
38103
38104
38105
38106
38107
38108
38109
38110
38111
38112
38113
38114
38115
38116
38117
38118
38119
38120
38121
38122
38123
38124
38125
38126
38127
38128
38129
38130
38131
38132
38133
38134
38135
38136
38137
38138
38139
38140
38141
38142
38143
38144
38145
38146
38147
38148
38149
38150
38151
38152
38153
38154
38155
38156
38157
38158
38159
38160
38161
38162
38163
38164
38165
38166
38167
38168
38169
38170
38171
38172
38173
38174
38175
38176
38177
38178
38179
38180
38181
38182
38183
38184
38185
38186
38187
38188
38189
38190
38191
38192
38193
38194
38195
38196
38197
38198
38199
38200
38201
38202
38203
38204
38205
38206
38207
38208
38209
38210
38211
38212
38213
38214
38215
38216
38217
38218
38219
38220
38221
38222
38223
38224
38225
38226
38227
38228
38229
38230
38231
38232
38233
38234
38235
38236
38237
38238
38239
38240
38241
38242
38243
38244
38245
38246
38247
38248
38249
38250
38251
38252
38253
38254
38255
38256
38257
38258
38259
38260
38261
38262
38263
38264
38265
38266
38267
38268
38269
38270
38271
38272
38273
38274
38275
38276
38277
38278
38279
38280
38281
38282
38283
38284
38285
38286
38287
38288
38289
38290
38291
38292
38293
38294
38295
38296
38297
38298
38299
38300
38301
38302
38303
38304
38305
38306
38307
38308
38309
38310
38311
38312
38313
38314
38315
38316
38317
38318
38319
38320
38321
38322
38323
38324
38325
38326
38327
38328
38329
38330
38331
38332
38333
38334
38335
38336
38337
38338
38339
38340
38341
38342
38343
38344
38345
38346
38347
38348
38349
38350
38351
38352
38353
38354
38355
38356
38357
38358
38359
38360
38361
38362
38363
38364
38365
38366
38367
38368
38369
38370
38371
38372
38373
38374
38375
38376
38377
38378
38379
38380
38381
38382
38383
38384
38385
38386
38387
38388
38389
38390
38391
38392
38393
38394
38395
38396
38397
38398
38399
38400
38401
38402
38403
38404
38405
38406
38407
38408
38409
38410
38411
38412
38413
38414
38415
38416
38417
38418
38419
38420
38421
38422
38423
38424
38425
38426
38427
38428
38429
38430
38431
38432
38433
38434
38435
38436
38437
38438
38439
38440
38441
38442
38443
38444
38445
38446
38447
38448
38449
38450
38451
38452
38453
38454
38455
38456
38457
38458
38459
38460
38461
38462
38463
38464
38465
38466
38467
38468
38469
38470
38471
38472
38473
38474
38475
38476
38477
38478
38479
38480
38481
38482
38483
38484
38485
38486
38487
38488
38489
38490
38491
38492
38493
38494
38495
38496
38497
38498
38499
38500
38501
38502
38503
38504
38505
38506
38507
38508
38509
38510
38511
38512
38513
38514
38515
38516
38517
38518
38519
38520
38521
38522
38523
38524
38525
38526
38527
38528
38529
38530
38531
38532
38533
38534
38535
38536
38537
38538
38539
38540
38541
38542
38543
38544
38545
38546
38547
38548
38549
38550
38551
38552
38553
38554
38555
38556
38557
38558
38559
38560
38561
38562
38563
38564
38565
38566
38567
38568
38569
38570
38571
38572
38573
38574
38575
38576
38577
38578
38579
38580
38581
38582
38583
38584
38585
38586
38587
38588
38589
38590
38591
38592
38593
38594
38595
38596
38597
38598
38599
38600
38601
38602
38603
38604
38605
38606
38607
38608
38609
38610
38611
38612
38613
38614
38615
38616
38617
38618
38619
38620
38621
38622
38623
38624
38625
38626
38627
38628
38629
38630
38631
38632
38633
38634
38635
38636
38637
38638
38639
38640
38641
38642
38643
38644
38645
38646
38647
38648
38649
38650
38651
38652
38653
38654
38655
38656
38657
38658
38659
38660
38661
38662
38663
38664
38665
38666
38667
38668
38669
38670
38671
38672
38673
38674
38675
38676
38677
38678
38679
38680
38681
38682
38683
38684
38685
38686
38687
38688
38689
38690
38691
38692
38693
38694
38695
38696
38697
38698
38699
38700
38701
38702
38703
38704
38705
38706
38707
38708
38709
38710
38711
38712
38713
38714
38715
38716
38717
38718
38719
38720
38721
38722
38723
38724
38725
38726
38727
38728
38729
38730
38731
38732
38733
38734
38735
38736
38737
38738
38739
38740
38741
38742
38743
38744
38745
38746
38747
38748
38749
38750
38751
38752
38753
38754
38755
38756
38757
38758
38759
38760
38761
38762
38763
38764
38765
38766
38767
38768
38769
38770
38771
38772
38773
38774
38775
38776
38777
38778
38779
38780
38781
38782
38783
38784
38785
38786
38787
38788
38789
38790
38791
38792
38793
38794
38795
38796
38797
38798
38799
38800
38801
38802
38803
38804
38805
38806
38807
38808
38809
38810
38811
38812
38813
38814
38815
38816
38817
38818
38819
38820
38821
38822
38823
38824
38825
38826
38827
38828
38829
38830
38831
38832
38833
38834
38835
38836
38837
38838
38839
38840
38841
38842
38843
38844
38845
38846
38847
38848
38849
38850
38851
38852
38853
38854
38855
38856
38857
38858
38859
38860
38861
38862
38863
38864
38865
38866
38867
38868
38869
38870
38871
38872
38873
38874
38875
38876
38877
38878
38879
38880
38881
38882
38883
38884
38885
38886
38887
38888
38889
38890
38891
38892
38893
38894
38895
38896
38897
38898
38899
38900
38901
38902
38903
38904
38905
38906
38907
38908
38909
38910
38911
38912
38913
38914
38915
38916
38917
38918
38919
38920
38921
38922
38923
38924
38925
38926
38927
38928
38929
38930
38931
38932
38933
38934
38935
38936
38937
38938
38939
38940
38941
38942
38943
38944
38945
38946
38947
38948
38949
38950
38951
38952
38953
38954
38955
38956
38957
38958
38959
38960
38961
38962
38963
38964
38965
38966
38967
38968
38969
38970
38971
38972
38973
38974
38975
38976
38977
38978
38979
38980
38981
38982
38983
38984
38985
38986
38987
38988
38989
38990
38991
38992
38993
38994
38995
38996
38997
38998
38999
39000
39001
39002
39003
39004
39005
39006
39007
39008
39009
39010
39011
39012
39013
39014
39015
39016
39017
39018
39019
39020
39021
39022
39023
39024
39025
39026
39027
39028
39029
39030
39031
39032
39033
39034
39035
39036
39037
39038
39039
39040
39041
39042
39043
39044
39045
39046
39047
39048
39049
39050
39051
39052
39053
39054
39055
39056
39057
39058
39059
39060
39061
39062
39063
39064
39065
39066
39067
39068
39069
39070
39071
39072
39073
39074
39075
39076
39077
39078
39079
39080
39081
39082
39083
39084
39085
39086
39087
39088
39089
39090
39091
39092
39093
39094
39095
39096
39097
39098
39099
39100
39101
39102
39103
39104
39105
39106
39107
39108
39109
39110
39111
39112
39113
39114
39115
39116
39117
39118
39119
39120
39121
39122
39123
39124
39125
39126
39127
39128
39129
39130
39131
39132
39133
39134
39135
39136
39137
39138
39139
39140
39141
39142
39143
39144
39145
39146
39147
39148
39149
39150
39151
39152
39153
39154
39155
39156
39157
39158
39159
39160
39161
39162
39163
39164
39165
39166
39167
39168
39169
39170
39171
39172
39173
39174
39175
39176
39177
39178
39179
39180
39181
39182
39183
39184
39185
39186
39187
39188
39189
39190
39191
39192
39193
39194
39195
39196
39197
39198
39199
39200
39201
39202
39203
39204
39205
39206
39207
39208
39209
39210
39211
39212
39213
39214
39215
39216
39217
39218
39219
39220
39221
39222
39223
39224
39225
39226
39227
39228
39229
39230
39231
39232
39233
39234
39235
39236
39237
39238
39239
39240
39241
39242
39243
39244
39245
39246
39247
39248
39249
39250
39251
39252
39253
39254
39255
39256
39257
39258
39259
39260
39261
39262
39263
39264
39265
39266
39267
39268
39269
39270
39271
39272
39273
39274
39275
39276
39277
39278
39279
39280
39281
39282
39283
39284
39285
39286
39287
39288
39289
39290
39291
39292
39293
39294
39295
39296
39297
39298
39299
39300
39301
39302
39303
39304
39305
39306
39307
39308
39309
39310
39311
39312
39313
39314
39315
39316
39317
39318
39319
39320
39321
39322
39323
39324
39325
39326
39327
39328
39329
39330
39331
39332
39333
39334
39335
39336
39337
39338
39339
39340
39341
39342
39343
39344
39345
39346
39347
39348
39349
39350
39351
39352
39353
39354
39355
39356
39357
39358
39359
39360
39361
39362
39363
39364
39365
39366
39367
39368
39369
39370
39371
39372
39373
39374
39375
39376
39377
39378
39379
39380
39381
39382
39383
39384
39385
39386
39387
39388
39389
39390
39391
39392
39393
39394
39395
39396
39397
39398
39399
39400
39401
39402
39403
39404
39405
39406
39407
39408
39409
39410
39411
39412
39413
39414
39415
39416
39417
39418
39419
39420
39421
39422
39423
39424
39425
39426
39427
39428
39429
39430
39431
39432
39433
39434
39435
39436
39437
39438
39439
39440
39441
39442
39443
39444
39445
39446
39447
39448
39449
39450
39451
39452
39453
39454
39455
39456
39457
39458
39459
39460
39461
39462
39463
39464
39465
39466
39467
39468
39469
39470
39471
39472
39473
39474
39475
39476
39477
39478
39479
39480
39481
39482
39483
39484
39485
39486
39487
39488
39489
39490
39491
39492
39493
39494
39495
39496
39497
39498
39499
39500
39501
39502
39503
39504
39505
39506
39507
39508
39509
39510
39511
39512
39513
39514
39515
39516
39517
39518
39519
39520
39521
39522
39523
39524
39525
39526
39527
39528
39529
39530
39531
39532
39533
39534
39535
39536
39537
39538
39539
39540
39541
39542
39543
39544
39545
39546
39547
39548
39549
39550
39551
39552
39553
39554
39555
39556
39557
39558
39559
39560
39561
39562
39563
39564
39565
39566
39567
39568
39569
39570
39571
39572
39573
39574
39575
39576
39577
39578
39579
39580
39581
39582
39583
39584
39585
39586
39587
39588
39589
39590
39591
39592
39593
39594
39595
39596
39597
39598
39599
39600
39601
39602
39603
39604
39605
39606
39607
39608
39609
39610
39611
39612
39613
39614
39615
39616
39617
39618
39619
39620
39621
39622
39623
39624
39625
39626
39627
39628
39629
39630
39631
39632
39633
39634
39635
39636
39637
39638
39639
39640
39641
39642
39643
39644
39645
39646
39647
39648
39649
39650
39651
39652
39653
39654
39655
39656
39657
39658
39659
39660
39661
39662
39663
39664
39665
39666
39667
39668
39669
39670
39671
39672
39673
39674
39675
39676
39677
39678
39679
39680
39681
39682
39683
39684
39685
39686
39687
39688
39689
39690
39691
39692
39693
39694
39695
39696
39697
39698
39699
39700
39701
39702
39703
39704
39705
39706
39707
39708
39709
39710
39711
39712
39713
39714
39715
39716
39717
39718
39719
39720
39721
39722
39723
39724
39725
39726
39727
39728
39729
39730
39731
39732
39733
39734
39735
39736
39737
39738
39739
39740
39741
39742
39743
39744
39745
39746
39747
39748
39749
39750
39751
39752
39753
39754
39755
39756
39757
39758
39759
39760
39761
39762
39763
39764
39765
39766
39767
39768
39769
39770
39771
39772
39773
39774
39775
39776
39777
39778
39779
39780
39781
39782
39783
39784
39785
39786
39787
39788
39789
39790
39791
39792
39793
39794
39795
39796
39797
39798
39799
39800
39801
39802
39803
39804
39805
39806
39807
39808
39809
39810
39811
39812
39813
39814
39815
39816
39817
39818
39819
39820
39821
39822
39823
39824
39825
39826
39827
39828
39829
39830
39831
39832
39833
39834
39835
39836
39837
39838
39839
39840
39841
39842
39843
39844
39845
39846
39847
39848
39849
39850
39851
39852
39853
39854
39855
39856
39857
39858
39859
39860
39861
39862
39863
39864
39865
39866
39867
39868
39869
39870
39871
39872
39873
39874
39875
39876
39877
39878
39879
39880
39881
39882
39883
39884
39885
39886
39887
39888
39889
39890
39891
39892
39893
39894
39895
39896
39897
39898
39899
39900
39901
39902
39903
39904
39905
39906
39907
39908
39909
39910
39911
39912
39913
39914
39915
39916
39917
39918
39919
39920
39921
39922
39923
39924
39925
39926
39927
39928
39929
39930
39931
39932
39933
39934
39935
39936
39937
39938
39939
39940
39941
39942
39943
39944
39945
39946
39947
39948
39949
39950
39951
39952
39953
39954
39955
39956
39957
39958
39959
39960
39961
39962
39963
39964
39965
39966
39967
39968
39969
39970
39971
39972
39973
39974
39975
39976
39977
39978
39979
39980
39981
39982
39983
39984
39985
39986
39987
39988
39989
39990
39991
39992
39993
39994
39995
39996
39997
39998
39999
40000
40001
40002
40003
40004
40005
40006
40007
40008
40009
40010
40011
40012
40013
40014
40015
40016
40017
40018
40019
40020
40021
40022
40023
40024
40025
40026
40027
40028
40029
40030
40031
40032
40033
40034
40035
40036
40037
40038
40039
40040
40041
40042
40043
40044
40045
40046
40047
40048
40049
40050
40051
40052
40053
40054
40055
40056
40057
40058
40059
40060
40061
40062
40063
40064
40065
40066
40067
40068
40069
40070
40071
40072
40073
40074
40075
40076
40077
40078
40079
40080
40081
40082
40083
40084
40085
40086
40087
40088
40089
40090
40091
40092
40093
40094
40095
40096
40097
40098
40099
40100
40101
40102
40103
40104
40105
40106
40107
40108
40109
40110
40111
40112
40113
40114
40115
40116
40117
40118
40119
40120
40121
40122
40123
40124
40125
40126
40127
40128
40129
40130
40131
40132
40133
40134
40135
40136
40137
40138
40139
40140
40141
40142
40143
40144
40145
40146
40147
40148
40149
40150
40151
40152
40153
40154
40155
40156
40157
40158
40159
40160
40161
40162
40163
40164
40165
40166
40167
40168
40169
40170
40171
40172
40173
40174
40175
40176
40177
40178
40179
40180
40181
40182
40183
40184
40185
40186
40187
40188
40189
40190
40191
40192
40193
40194
40195
40196
40197
40198
40199
40200
40201
40202
40203
40204
40205
40206
40207
40208
40209
40210
40211
40212
40213
40214
40215
40216
40217
40218
40219
40220
40221
40222
40223
40224
40225
40226
40227
40228
40229
40230
40231
40232
40233
40234
40235
40236
40237
40238
40239
40240
40241
40242
40243
40244
40245
40246
40247
40248
40249
40250
40251
40252
40253
40254
40255
40256
40257
40258
40259
40260
40261
40262
40263
40264
40265
40266
40267
40268
40269
40270
40271
40272
40273
40274
40275
40276
40277
40278
40279
40280
40281
40282
40283
40284
40285
40286
40287
40288
40289
40290
40291
40292
40293
40294
40295
40296
40297
40298
40299
40300
40301
40302
40303
40304
40305
40306
40307
40308
40309
40310
40311
40312
40313
40314
40315
40316
40317
40318
40319
40320
40321
40322
40323
40324
40325
40326
40327
40328
40329
40330
40331
40332
40333
40334
40335
40336
40337
40338
40339
40340
40341
40342
40343
40344
40345
40346
40347
40348
40349
40350
40351
40352
40353
40354
40355
40356
40357
40358
40359
40360
40361
40362
40363
40364
40365
40366
40367
40368
40369
40370
40371
40372
40373
40374
40375
40376
40377
40378
40379
40380
40381
40382
40383
40384
40385
40386
40387
40388
40389
40390
40391
40392
40393
40394
40395
40396
40397
40398
40399
40400
40401
40402
40403
40404
40405
40406
40407
40408
40409
40410
40411
40412
40413
40414
40415
40416
40417
40418
40419
40420
40421
40422
40423
40424
40425
40426
40427
40428
40429
40430
40431
40432
40433
40434
40435
40436
40437
40438
40439
40440
40441
40442
40443
40444
40445
40446
40447
40448
40449
40450
40451
40452
40453
40454
40455
40456
40457
40458
40459
40460
40461
40462
40463
40464
40465
40466
40467
40468
40469
40470
40471
40472
40473
40474
40475
40476
40477
40478
40479
40480
40481
40482
40483
40484
40485
40486
40487
40488
40489
40490
40491
40492
40493
40494
40495
40496
40497
40498
40499
40500
40501
40502
40503
40504
40505
40506
40507
40508
40509
40510
40511
40512
40513
40514
40515
40516
40517
40518
40519
40520
40521
40522
40523
40524
40525
40526
40527
40528
40529
40530
40531
40532
40533
40534
40535
40536
40537
40538
40539
40540
40541
40542
40543
40544
40545
40546
40547
40548
40549
40550
40551
40552
40553
40554
40555
40556
40557
40558
40559
40560
40561
40562
40563
40564
40565
40566
40567
40568
40569
40570
40571
40572
40573
40574
40575
40576
40577
40578
40579
40580
40581
40582
40583
40584
40585
40586
40587
40588
40589
40590
40591
40592
40593
40594
40595
40596
40597
40598
40599
40600
40601
40602
40603
40604
40605
40606
40607
40608
40609
40610
40611
40612
40613
40614
40615
40616
40617
40618
40619
40620
40621
40622
40623
40624
40625
40626
40627
40628
40629
40630
40631
40632
40633
40634
40635
40636
40637
40638
40639
40640
40641
40642
40643
40644
40645
40646
40647
40648
40649
40650
40651
40652
40653
40654
40655
40656
40657
40658
40659
40660
40661
40662
40663
40664
40665
40666
40667
40668
40669
40670
40671
40672
40673
40674
40675
40676
40677
40678
40679
40680
40681
40682
40683
40684
40685
40686
40687
40688
40689
40690
40691
40692
40693
40694
40695
40696
40697
40698
40699
40700
40701
40702
40703
40704
40705
40706
40707
40708
40709
40710
40711
40712
40713
40714
40715
40716
40717
40718
40719
40720
40721
40722
40723
40724
40725
40726
40727
40728
40729
40730
40731
40732
40733
40734
40735
40736
40737
40738
40739
40740
40741
40742
40743
40744
40745
40746
40747
40748
40749
40750
40751
40752
40753
40754
40755
40756
40757
40758
40759
40760
40761
40762
40763
40764
40765
40766
40767
40768
40769
40770
40771
40772
40773
40774
40775
40776
40777
40778
40779
40780
40781
40782
40783
40784
40785
40786
40787
40788
40789
40790
40791
40792
40793
40794
40795
40796
40797
40798
40799
40800
40801
40802
40803
40804
40805
40806
40807
40808
40809
40810
40811
40812
40813
40814
40815
40816
40817
40818
40819
40820
40821
40822
40823
40824
40825
40826
40827
40828
40829
40830
40831
40832
40833
40834
40835
40836
40837
40838
40839
40840
40841
40842
40843
40844
40845
40846
40847
40848
40849
40850
40851
40852
40853
40854
40855
40856
40857
40858
40859
40860
40861
40862
40863
40864
40865
40866
40867
40868
40869
40870
40871
40872
40873
40874
40875
40876
40877
40878
40879
40880
40881
40882
40883
40884
40885
40886
40887
40888
40889
40890
40891
40892
40893
40894
40895
40896
40897
40898
40899
40900
40901
40902
40903
40904
40905
40906
40907
40908
40909
40910
40911
40912
40913
40914
40915
40916
40917
40918
40919
40920
40921
40922
40923
40924
40925
40926
40927
40928
40929
40930
40931
40932
40933
40934
40935
40936
40937
40938
40939
40940
40941
40942
40943
40944
40945
40946
40947
40948
40949
40950
40951
40952
40953
40954
40955
40956
40957
40958
40959
40960
40961
40962
40963
40964
40965
40966
40967
40968
40969
40970
40971
40972
40973
40974
40975
40976
40977
40978
40979
40980
40981
40982
40983
40984
40985
40986
40987
40988
40989
40990
40991
40992
40993
40994
40995
40996
40997
40998
40999
41000
41001
41002
41003
41004
41005
41006
41007
41008
41009
41010
41011
41012
41013
41014
41015
41016
41017
41018
41019
41020
41021
41022
41023
41024
41025
41026
41027
41028
41029
41030
41031
41032
41033
41034
41035
41036
41037
41038
41039
41040
41041
41042
41043
41044
41045
41046
41047
41048
41049
41050
41051
41052
41053
41054
41055
41056
41057
41058
41059
41060
41061
41062
41063
41064
41065
41066
41067
41068
41069
41070
41071
41072
41073
41074
41075
41076
41077
41078
41079
41080
41081
41082
41083
41084
41085
41086
41087
41088
41089
41090
41091
41092
41093
41094
41095
41096
41097
41098
41099
41100
41101
41102
41103
41104
41105
41106
41107
41108
41109
41110
41111
41112
41113
41114
41115
41116
41117
41118
41119
41120
41121
41122
41123
41124
41125
41126
41127
41128
41129
41130
41131
41132
41133
41134
41135
41136
41137
41138
41139
41140
41141
41142
41143
41144
41145
41146
41147
41148
41149
41150
41151
41152
41153
41154
41155
41156
41157
41158
41159
41160
41161
41162
41163
41164
41165
41166
41167
41168
41169
41170
41171
41172
41173
41174
41175
41176
41177
41178
41179
41180
41181
41182
41183
41184
41185
41186
41187
41188
41189
41190
41191
41192
41193
41194
41195
41196
41197
41198
41199
41200
41201
41202
41203
41204
41205
41206
41207
41208
41209
41210
41211
41212
41213
41214
41215
41216
41217
41218
41219
41220
41221
41222
41223
41224
41225
41226
41227
41228
41229
41230
41231
41232
41233
41234
41235
41236
41237
41238
41239
41240
41241
41242
41243
41244
41245
41246
41247
41248
41249
41250
41251
41252
41253
41254
41255
41256
41257
41258
41259
41260
41261
41262
41263
41264
41265
41266
41267
41268
41269
41270
41271
41272
41273
41274
41275
41276
41277
41278
41279
41280
41281
41282
41283
41284
41285
41286
41287
41288
41289
41290
41291
41292
41293
41294
41295
41296
41297
41298
41299
41300
41301
41302
41303
41304
41305
41306
41307
41308
41309
41310
41311
41312
41313
41314
41315
41316
41317
41318
41319
41320
41321
41322
41323
41324
41325
41326
41327
41328
41329
41330
41331
41332
41333
41334
41335
41336
41337
41338
41339
41340
41341
41342
41343
41344
41345
41346
41347
41348
41349
41350
41351
41352
41353
41354
41355
41356
41357
41358
41359
41360
41361
41362
41363
41364
41365
41366
41367
41368
41369
41370
41371
41372
41373
41374
41375
41376
41377
41378
41379
41380
41381
41382
41383
41384
41385
41386
41387
41388
41389
41390
41391
41392
41393
41394
41395
41396
41397
41398
41399
41400
41401
41402
41403
41404
41405
41406
41407
41408
41409
41410
41411
41412
41413
41414
41415
41416
41417
41418
41419
41420
41421
41422
41423
41424
41425
41426
41427
41428
41429
41430
41431
41432
41433
41434
41435
41436
41437
41438
41439
41440
41441
41442
41443
41444
41445
41446
41447
41448
41449
41450
41451
41452
41453
41454
41455
41456
41457
41458
41459
41460
41461
41462
41463
41464
41465
41466
41467
41468
41469
41470
41471
41472
41473
41474
41475
41476
41477
41478
41479
41480
41481
41482
41483
41484
41485
41486
41487
41488
41489
41490
41491
41492
41493
41494
41495
41496
41497
41498
41499
41500
41501
41502
41503
41504
41505
41506
41507
41508
41509
41510
41511
41512
41513
41514
41515
41516
41517
41518
41519
41520
41521
41522
41523
41524
41525
41526
41527
41528
41529
41530
41531
41532
41533
41534
41535
41536
41537
41538
41539
41540
41541
41542
41543
41544
41545
41546
41547
41548
41549
41550
41551
41552
41553
41554
41555
41556
41557
41558
41559
41560
41561
41562
41563
41564
41565
41566
41567
41568
41569
41570
41571
41572
41573
41574
41575
41576
41577
41578
41579
41580
41581
41582
41583
41584
41585
41586
41587
41588
41589
41590
41591
41592
41593
41594
41595
41596
41597
41598
41599
41600
41601
41602
41603
41604
41605
41606
41607
41608
41609
41610
41611
41612
41613
41614
41615
41616
41617
41618
41619
41620
41621
41622
41623
41624
41625
41626
41627
41628
41629
41630
41631
41632
41633
41634
41635
41636
41637
41638
41639
41640
41641
41642
41643
41644
41645
41646
41647
41648
41649
41650
41651
41652
41653
41654
41655
41656
41657
41658
41659
41660
41661
41662
41663
41664
41665
41666
41667
41668
41669
41670
41671
41672
41673
41674
41675
41676
41677
41678
41679
41680
41681
41682
41683
41684
41685
41686
41687
41688
41689
41690
41691
41692
41693
41694
41695
41696
41697
41698
41699
41700
41701
41702
41703
41704
41705
41706
41707
41708
41709
41710
41711
41712
41713
41714
41715
41716
41717
41718
41719
41720
41721
41722
41723
41724
41725
41726
41727
41728
41729
41730
41731
41732
41733
41734
41735
41736
41737
41738
41739
41740
41741
41742
41743
41744
41745
41746
41747
41748
41749
41750
41751
41752
41753
41754
41755
41756
41757
41758
41759
41760
41761
41762
41763
41764
41765
41766
41767
41768
41769
41770
41771
41772
41773
41774
41775
41776
41777
41778
41779
41780
41781
41782
41783
41784
41785
41786
41787
41788
41789
41790
41791
41792
41793
41794
41795
41796
41797
41798
41799
41800
41801
41802
41803
41804
41805
41806
41807
41808
41809
41810
41811
41812
41813
41814
41815
41816
41817
41818
41819
41820
41821
41822
41823
41824
41825
41826
41827
41828
41829
41830
41831
41832
41833
41834
41835
41836
41837
41838
41839
41840
41841
41842
41843
41844
41845
41846
41847
41848
41849
41850
41851
41852
41853
41854
41855
41856
41857
41858
41859
41860
41861
41862
41863
41864
41865
41866
41867
41868
41869
41870
41871
41872
41873
41874
41875
41876
41877
41878
41879
41880
41881
41882
41883
41884
41885
41886
41887
41888
41889
41890
41891
41892
41893
41894
41895
41896
41897
41898
41899
41900
41901
41902
41903
41904
41905
41906
41907
41908
41909
41910
41911
41912
41913
41914
41915
41916
41917
41918
41919
41920
41921
41922
41923
41924
41925
41926
41927
41928
41929
41930
41931
41932
41933
41934
41935
41936
41937
41938
41939
41940
41941
41942
41943
41944
41945
41946
41947
41948
41949
41950
41951
41952
41953
41954
41955
41956
41957
41958
41959
41960
41961
41962
41963
41964
41965
41966
41967
41968
41969
41970
41971
41972
41973
41974
41975
41976
41977
41978
41979
41980
41981
41982
41983
41984
41985
41986
41987
41988
41989
41990
41991
41992
41993
41994
41995
41996
41997
41998
41999
42000
42001
42002
42003
42004
42005
42006
42007
42008
42009
42010
42011
42012
42013
42014
42015
42016
42017
42018
42019
42020
42021
42022
42023
42024
42025
42026
42027
42028
42029
42030
42031
42032
42033
42034
42035
42036
42037
42038
42039
42040
42041
42042
42043
42044
42045
42046
42047
42048
42049
42050
42051
42052
42053
42054
42055
42056
42057
42058
42059
42060
42061
42062
42063
42064
42065
42066
42067
42068
42069
42070
42071
42072
42073
42074
42075
42076
42077
42078
42079
42080
42081
42082
42083
42084
42085
42086
42087
42088
42089
42090
42091
42092
42093
42094
42095
42096
42097
42098
42099
42100
42101
42102
42103
42104
42105
42106
42107
42108
42109
42110
42111
42112
42113
42114
42115
42116
42117
42118
42119
42120
42121
42122
42123
42124
42125
42126
42127
42128
42129
42130
42131
42132
42133
42134
42135
42136
42137
42138
42139
42140
42141
42142
42143
42144
42145
42146
42147
42148
42149
42150
42151
42152
42153
42154
42155
42156
42157
42158
42159
42160
42161
42162
42163
42164
42165
42166
42167
42168
42169
42170
42171
42172
42173
42174
42175
42176
42177
42178
42179
42180
42181
42182
42183
42184
42185
42186
42187
42188
42189
42190
42191
42192
42193
42194
42195
42196
42197
42198
42199
42200
42201
42202
42203
42204
42205
42206
42207
42208
42209
42210
42211
42212
42213
42214
42215
42216
42217
42218
42219
42220
42221
42222
42223
42224
42225
42226
42227
42228
42229
42230
42231
42232
42233
42234
42235
42236
42237
42238
42239
42240
42241
42242
42243
42244
42245
42246
42247
42248
42249
42250
42251
42252
42253
42254
42255
42256
42257
42258
42259
42260
42261
42262
42263
42264
42265
42266
42267
42268
42269
42270
42271
42272
42273
42274
42275
42276
42277
42278
42279
42280
42281
42282
42283
42284
42285
42286
42287
42288
42289
42290
42291
42292
42293
42294
42295
42296
42297
42298
42299
42300
42301
42302
42303
42304
42305
42306
42307
42308
42309
42310
42311
42312
42313
42314
42315
42316
42317
42318
42319
42320
42321
42322
42323
42324
42325
42326
42327
42328
42329
42330
42331
42332
42333
42334
42335
42336
42337
42338
42339
42340
42341
42342
42343
42344
42345
42346
42347
42348
42349
42350
42351
42352
42353
42354
42355
42356
42357
42358
42359
42360
42361
42362
42363
42364
42365
42366
42367
42368
42369
42370
42371
42372
42373
42374
42375
42376
42377
42378
42379
42380
42381
42382
42383
42384
42385
42386
42387
42388
42389
42390
42391
42392
42393
42394
42395
42396
42397
42398
42399
42400
42401
42402
42403
42404
42405
42406
42407
42408
42409
42410
42411
42412
42413
42414
42415
42416
42417
42418
42419
42420
42421
42422
42423
42424
42425
42426
42427
42428
42429
42430
42431
42432
42433
42434
42435
42436
42437
42438
42439
42440
42441
42442
42443
42444
42445
42446
42447
42448
42449
42450
42451
42452
42453
42454
42455
42456
42457
42458
42459
42460
42461
42462
42463
42464
42465
42466
42467
42468
42469
42470
42471
42472
42473
42474
42475
42476
42477
42478
42479
42480
42481
42482
42483
42484
42485
42486
42487
42488
42489
42490
42491
42492
42493
42494
42495
42496
42497
42498
42499
42500
42501
42502
42503
42504
42505
42506
42507
42508
42509
42510
42511
42512
42513
42514
42515
42516
42517
42518
42519
42520
42521
42522
42523
42524
42525
42526
42527
42528
42529
42530
42531
42532
42533
42534
42535
42536
42537
42538
42539
42540
42541
42542
42543
42544
42545
42546
42547
42548
42549
42550
42551
42552
42553
42554
42555
42556
42557
42558
42559
42560
42561
42562
42563
42564
42565
42566
42567
42568
42569
42570
42571
42572
42573
42574
42575
42576
42577
42578
42579
42580
42581
42582
42583
42584
42585
42586
42587
42588
42589
42590
42591
42592
42593
42594
42595
42596
42597
42598
42599
42600
42601
42602
42603
42604
42605
42606
42607
42608
42609
42610
42611
42612
42613
42614
42615
42616
42617
42618
42619
42620
42621
42622
42623
42624
42625
42626
42627
42628
42629
42630
42631
42632
42633
42634
42635
42636
42637
42638
42639
42640
42641
42642
42643
42644
42645
42646
42647
42648
42649
42650
42651
42652
42653
42654
42655
42656
42657
42658
42659
42660
42661
42662
42663
42664
42665
42666
42667
42668
42669
42670
42671
42672
42673
42674
42675
42676
42677
42678
42679
42680
42681
42682
42683
42684
42685
42686
42687
42688
42689
42690
42691
42692
42693
42694
42695
42696
42697
42698
42699
42700
42701
42702
42703
42704
42705
42706
42707
42708
42709
42710
42711
42712
42713
42714
42715
42716
42717
42718
42719
42720
42721
42722
42723
42724
42725
42726
42727
42728
42729
42730
42731
42732
42733
42734
42735
42736
42737
42738
42739
42740
42741
42742
42743
42744
42745
42746
42747
42748
42749
42750
42751
42752
42753
42754
42755
42756
42757
42758
42759
42760
42761
42762
42763
42764
42765
42766
42767
42768
42769
42770
42771
42772
42773
42774
42775
42776
42777
42778
42779
42780
42781
42782
42783
42784
42785
42786
42787
42788
42789
42790
42791
42792
42793
42794
42795
42796
42797
42798
42799
42800
42801
42802
42803
42804
42805
42806
42807
42808
42809
42810
42811
42812
42813
42814
42815
42816
42817
42818
42819
42820
42821
42822
42823
42824
42825
42826
42827
42828
42829
42830
42831
42832
42833
42834
42835
42836
42837
42838
42839
42840
42841
42842
42843
42844
42845
42846
42847
42848
42849
42850
42851
42852
42853
42854
42855
42856
42857
42858
42859
42860
42861
42862
42863
42864
42865
42866
42867
42868
42869
42870
42871
42872
42873
42874
42875
42876
42877
42878
42879
42880
42881
42882
42883
42884
42885
42886
42887
42888
42889
42890
42891
42892
42893
42894
42895
42896
42897
42898
42899
42900
42901
42902
42903
42904
42905
42906
42907
42908
42909
42910
42911
42912
42913
42914
42915
42916
42917
42918
42919
42920
42921
42922
42923
42924
42925
42926
42927
42928
42929
42930
42931
42932
42933
42934
42935
42936
42937
42938
42939
42940
42941
42942
42943
42944
42945
42946
42947
42948
42949
42950
42951
42952
42953
42954
42955
42956
42957
42958
42959
42960
42961
42962
42963
42964
42965
42966
42967
42968
42969
42970
42971
42972
42973
42974
42975
42976
42977
42978
42979
42980
42981
42982
42983
42984
42985
42986
42987
42988
42989
42990
42991
42992
42993
42994
42995
42996
42997
42998
42999
43000
43001
43002
43003
43004
43005
43006
43007
43008
43009
43010
43011
43012
43013
43014
43015
43016
43017
43018
43019
43020
43021
43022
43023
43024
43025
43026
43027
43028
43029
43030
43031
43032
43033
43034
43035
43036
43037
43038
43039
43040
43041
43042
43043
43044
43045
43046
43047
43048
43049
43050
43051
43052
43053
43054
43055
43056
43057
43058
43059
43060
43061
43062
43063
43064
43065
43066
43067
43068
43069
43070
43071
43072
43073
43074
43075
43076
43077
43078
43079
43080
43081
43082
43083
43084
43085
43086
43087
43088
43089
43090
43091
43092
43093
43094
43095
43096
43097
43098
43099
43100
43101
43102
43103
43104
43105
43106
43107
43108
43109
43110
43111
43112
43113
43114
43115
43116
43117
43118
43119
43120
43121
43122
43123
43124
43125
43126
43127
43128
43129
43130
43131
43132
43133
43134
43135
43136
43137
43138
43139
43140
43141
43142
43143
43144
43145
43146
43147
43148
43149
43150
43151
43152
43153
43154
43155
43156
43157
43158
43159
43160
43161
43162
43163
43164
43165
43166
43167
43168
43169
43170
43171
43172
43173
43174
43175
43176
43177
43178
43179
43180
43181
43182
43183
43184
43185
43186
43187
43188
43189
43190
43191
43192
43193
43194
43195
43196
43197
43198
43199
43200
43201
43202
43203
43204
43205
43206
43207
43208
43209
43210
43211
43212
43213
43214
43215
43216
43217
43218
43219
43220
43221
43222
43223
43224
43225
43226
43227
43228
43229
43230
43231
43232
43233
43234
43235
43236
43237
43238
43239
43240
43241
43242
43243
43244
43245
43246
43247
43248
43249
43250
43251
43252
43253
43254
43255
43256
43257
43258
43259
43260
43261
43262
43263
43264
43265
43266
43267
43268
43269
43270
43271
43272
43273
43274
43275
43276
43277
43278
43279
43280
43281
43282
43283
43284
43285
43286
43287
43288
43289
43290
43291
43292
43293
43294
43295
43296
43297
43298
43299
43300
43301
43302
43303
43304
43305
43306
43307
43308
43309
43310
43311
43312
43313
43314
43315
43316
43317
43318
43319
43320
43321
43322
43323
43324
43325
43326
43327
43328
43329
43330
43331
43332
43333
43334
43335
43336
43337
43338
43339
43340
43341
43342
43343
43344
43345
43346
43347
43348
43349
43350
43351
43352
43353
43354
43355
43356
43357
43358
43359
43360
43361
43362
43363
43364
43365
43366
43367
43368
43369
43370
43371
43372
43373
43374
43375
43376
43377
43378
43379
43380
43381
43382
43383
43384
43385
43386
43387
43388
43389
43390
43391
43392
43393
43394
43395
43396
43397
43398
43399
43400
43401
43402
43403
43404
43405
43406
43407
43408
43409
43410
43411
43412
43413
43414
43415
43416
43417
43418
43419
43420
43421
43422
43423
43424
43425
43426
43427
43428
43429
43430
43431
43432
43433
43434
43435
43436
43437
43438
43439
43440
43441
43442
43443
43444
43445
43446
43447
43448
43449
43450
43451
43452
43453
43454
43455
43456
43457
43458
43459
43460
43461
43462
43463
43464
43465
43466
43467
43468
43469
43470
43471
43472
43473
43474
43475
43476
43477
43478
43479
43480
43481
43482
43483
43484
43485
43486
43487
43488
43489
43490
43491
43492
43493
43494
43495
43496
43497
43498
43499
43500
43501
43502
43503
43504
43505
43506
43507
43508
43509
43510
43511
43512
43513
43514
43515
43516
43517
43518
43519
43520
43521
43522
43523
43524
43525
43526
43527
43528
43529
43530
43531
43532
43533
43534
43535
43536
43537
43538
43539
43540
43541
43542
43543
43544
43545
43546
43547
43548
43549
43550
43551
43552
43553
43554
43555
43556
43557
43558
43559
43560
43561
43562
43563
43564
43565
43566
43567
43568
43569
43570
43571
43572
43573
43574
43575
43576
43577
43578
43579
43580
43581
43582
43583
43584
43585
43586
43587
43588
43589
43590
43591
43592
43593
43594
43595
43596
43597
43598
43599
43600
43601
43602
43603
43604
43605
43606
43607
43608
43609
43610
43611
43612
43613
43614
43615
43616
43617
43618
43619
43620
43621
43622
43623
43624
43625
43626
43627
43628
43629
43630
43631
43632
43633
43634
43635
43636
43637
43638
43639
43640
43641
43642
43643
43644
43645
43646
43647
43648
43649
43650
43651
43652
43653
43654
43655
43656
43657
43658
43659
43660
43661
43662
43663
43664
43665
43666
43667
43668
43669
43670
43671
43672
43673
43674
43675
43676
43677
43678
43679
43680
43681
43682
43683
43684
43685
43686
43687
43688
43689
43690
43691
43692
43693
43694
43695
43696
43697
43698
43699
43700
43701
43702
43703
43704
43705
43706
43707
43708
43709
43710
43711
43712
43713
43714
43715
43716
43717
43718
43719
43720
43721
43722
43723
43724
43725
43726
43727
43728
43729
43730
43731
43732
43733
43734
43735
43736
43737
43738
43739
43740
43741
43742
43743
43744
43745
43746
43747
43748
43749
43750
43751
43752
43753
43754
43755
43756
43757
43758
43759
43760
43761
43762
43763
43764
43765
43766
43767
43768
43769
43770
43771
43772
43773
43774
43775
43776
43777
43778
43779
43780
43781
43782
43783
43784
43785
43786
43787
43788
43789
43790
43791
43792
43793
43794
43795
43796
43797
43798
43799
43800
43801
43802
43803
43804
43805
43806
43807
43808
43809
43810
43811
43812
43813
43814
43815
43816
43817
43818
43819
43820
43821
43822
43823
43824
43825
43826
43827
43828
43829
43830
43831
43832
43833
43834
43835
43836
43837
43838
43839
43840
43841
43842
43843
43844
43845
43846
43847
43848
43849
43850
43851
43852
43853
43854
43855
43856
43857
43858
43859
43860
43861
43862
43863
43864
43865
43866
43867
43868
43869
43870
43871
43872
43873
43874
43875
43876
43877
43878
43879
43880
43881
43882
43883
43884
43885
43886
43887
43888
43889
43890
43891
43892
43893
43894
43895
43896
43897
43898
43899
43900
43901
43902
43903
43904
43905
43906
43907
43908
43909
43910
43911
43912
43913
43914
43915
43916
43917
43918
43919
43920
43921
43922
43923
43924
43925
43926
43927
43928
43929
43930
43931
43932
43933
43934
43935
43936
43937
43938
43939
43940
43941
43942
43943
43944
43945
43946
43947
43948
43949
43950
43951
43952
43953
43954
43955
43956
43957
43958
43959
43960
43961
43962
43963
43964
43965
43966
43967
43968
43969
43970
43971
43972
43973
43974
43975
43976
43977
43978
43979
43980
43981
43982
43983
43984
43985
43986
43987
43988
43989
43990
43991
43992
43993
43994
43995
43996
43997
43998
43999
44000
44001
44002
44003
44004
44005
44006
44007
44008
44009
44010
44011
44012
44013
44014
44015
44016
44017
44018
44019
44020
44021
44022
44023
44024
44025
44026
44027
44028
44029
44030
44031
44032
44033
44034
44035
44036
44037
44038
44039
44040
44041
44042
44043
44044
44045
44046
44047
44048
44049
44050
44051
44052
44053
44054
44055
44056
44057
44058
44059
44060
44061
44062
44063
44064
44065
44066
44067
44068
44069
44070
44071
44072
44073
44074
44075
44076
44077
44078
44079
44080
44081
44082
44083
44084
44085
44086
44087
44088
44089
44090
44091
44092
44093
44094
44095
44096
44097
44098
44099
44100
44101
44102
44103
44104
44105
44106
44107
44108
44109
44110
44111
44112
44113
44114
44115
44116
44117
44118
44119
44120
44121
44122
44123
44124
44125
44126
44127
44128
44129
44130
44131
44132
44133
44134
44135
44136
44137
44138
44139
44140
44141
44142
44143
44144
44145
44146
44147
44148
44149
44150
44151
44152
44153
44154
44155
44156
44157
44158
44159
44160
44161
44162
44163
44164
44165
44166
44167
44168
44169
44170
44171
44172
44173
44174
44175
44176
44177
44178
44179
44180
44181
44182
44183
44184
44185
44186
44187
44188
44189
44190
44191
44192
44193
44194
44195
44196
44197
44198
44199
44200
44201
44202
44203
44204
44205
44206
44207
44208
44209
44210
44211
44212
44213
44214
44215
44216
44217
44218
44219
44220
44221
44222
44223
44224
44225
44226
44227
44228
44229
44230
44231
44232
44233
44234
44235
44236
44237
44238
44239
44240
44241
44242
44243
44244
44245
44246
44247
44248
44249
44250
44251
44252
44253
44254
44255
44256
44257
44258
44259
44260
44261
44262
44263
44264
44265
44266
44267
44268
44269
44270
44271
44272
44273
44274
44275
44276
44277
44278
44279
44280
44281
44282
44283
44284
44285
44286
44287
44288
44289
44290
44291
44292
44293
44294
44295
44296
44297
44298
44299
44300
44301
44302
44303
44304
44305
44306
44307
44308
44309
44310
44311
44312
44313
44314
44315
44316
44317
44318
44319
44320
44321
44322
44323
44324
44325
44326
44327
44328
44329
44330
44331
44332
44333
44334
44335
44336
44337
44338
44339
44340
44341
44342
44343
44344
44345
44346
44347
44348
44349
44350
44351
44352
44353
44354
44355
44356
44357
44358
44359
44360
44361
44362
44363
44364
44365
44366
44367
44368
44369
44370
44371
44372
44373
44374
44375
44376
44377
44378
44379
44380
44381
44382
44383
44384
44385
44386
44387
44388
44389
44390
44391
44392
44393
44394
44395
44396
44397
44398
44399
44400
44401
44402
44403
44404
44405
44406
44407
44408
44409
44410
44411
44412
44413
44414
44415
44416
44417
44418
44419
44420
44421
44422
44423
44424
44425
44426
44427
44428
44429
44430
44431
44432
44433
44434
44435
44436
44437
44438
44439
44440
44441
44442
44443
44444
44445
44446
44447
44448
44449
44450
44451
44452
44453
44454
44455
44456
44457
44458
44459
44460
44461
44462
44463
44464
44465
44466
44467
44468
44469
44470
44471
44472
44473
44474
44475
44476
44477
44478
44479
44480
44481
44482
44483
44484
44485
44486
44487
44488
44489
44490
44491
44492
44493
44494
44495
44496
44497
44498
44499
44500
44501
44502
44503
44504
44505
44506
44507
44508
44509
44510
44511
44512
44513
44514
44515
44516
44517
44518
44519
44520
44521
44522
44523
44524
44525
44526
44527
44528
44529
44530
44531
44532
44533
44534
44535
44536
44537
44538
44539
44540
44541
44542
44543
44544
44545
44546
44547
44548
44549
44550
44551
44552
44553
44554
44555
44556
44557
44558
44559
44560
44561
44562
44563
44564
44565
44566
44567
44568
44569
44570
44571
44572
44573
44574
44575
44576
44577
44578
44579
44580
44581
44582
44583
44584
44585
44586
44587
44588
44589
44590
44591
44592
44593
44594
44595
44596
44597
44598
44599
44600
44601
44602
44603
44604
44605
44606
44607
44608
44609
44610
44611
44612
44613
44614
44615
44616
44617
44618
44619
44620
44621
44622
44623
44624
44625
44626
44627
44628
44629
44630
44631
44632
44633
44634
44635
44636
44637
44638
44639
44640
44641
44642
44643
44644
44645
44646
44647
44648
44649
44650
44651
44652
44653
44654
44655
44656
44657
44658
44659
44660
44661
44662
44663
44664
44665
44666
44667
44668
44669
44670
44671
44672
44673
44674
44675
44676
44677
44678
44679
44680
44681
44682
44683
44684
44685
44686
44687
44688
44689
44690
44691
44692
44693
44694
44695
44696
44697
44698
44699
44700
44701
44702
44703
44704
44705
44706
44707
44708
44709
44710
44711
44712
44713
44714
44715
44716
44717
44718
44719
44720
44721
44722
44723
44724
44725
44726
44727
44728
44729
44730
44731
44732
44733
44734
44735
44736
44737
44738
44739
44740
44741
44742
44743
44744
44745
44746
44747
44748
44749
44750
44751
44752
44753
44754
44755
44756
44757
44758
44759
44760
44761
44762
44763
44764
44765
44766
44767
44768
44769
44770
44771
44772
44773
44774
44775
44776
44777
44778
44779
44780
44781
44782
44783
44784
44785
44786
44787
44788
44789
44790
44791
44792
44793
44794
44795
44796
44797
44798
44799
44800
44801
44802
44803
44804
44805
44806
44807
44808
44809
44810
44811
44812
44813
44814
44815
44816
44817
44818
44819
44820
44821
44822
44823
44824
44825
44826
44827
44828
44829
44830
44831
44832
44833
44834
44835
44836
44837
44838
44839
44840
44841
44842
44843
44844
44845
44846
44847
44848
44849
44850
44851
44852
44853
44854
44855
44856
44857
44858
44859
44860
44861
44862
44863
44864
44865
44866
44867
44868
44869
44870
44871
44872
44873
44874
44875
44876
44877
44878
44879
44880
44881
44882
44883
44884
44885
44886
44887
44888
44889
44890
44891
44892
44893
44894
44895
44896
44897
44898
44899
44900
44901
44902
44903
44904
44905
44906
44907
44908
44909
44910
44911
44912
44913
44914
44915
44916
44917
44918
44919
44920
44921
44922
44923
44924
44925
44926
44927
44928
44929
44930
44931
44932
44933
44934
44935
44936
44937
44938
44939
44940
44941
44942
44943
44944
44945
44946
44947
44948
44949
44950
44951
44952
44953
44954
44955
44956
44957
44958
44959
44960
44961
44962
44963
44964
44965
44966
44967
44968
44969
44970
44971
44972
44973
44974
44975
44976
44977
44978
44979
44980
44981
44982
44983
44984
44985
44986
44987
44988
44989
44990
44991
44992
44993
44994
44995
44996
44997
44998
44999
45000
45001
45002
45003
45004
45005
45006
45007
45008
45009
45010
45011
45012
45013
45014
45015
45016
45017
45018
45019
45020
45021
45022
45023
45024
45025
45026
45027
45028
45029
45030
45031
45032
45033
45034
45035
45036
45037
45038
45039
45040
45041
45042
45043
45044
45045
45046
45047
45048
45049
45050
45051
45052
45053
45054
45055
45056
45057
45058
45059
45060
45061
45062
45063
45064
45065
45066
45067
45068
45069
45070
45071
45072
45073
45074
45075
45076
45077
45078
45079
45080
45081
45082
45083
45084
45085
45086
45087
45088
45089
45090
45091
45092
45093
45094
45095
45096
45097
45098
45099
45100
45101
45102
45103
45104
45105
45106
45107
45108
45109
45110
45111
45112
45113
45114
45115
45116
45117
45118
45119
45120
45121
45122
45123
45124
45125
45126
45127
45128
45129
45130
45131
45132
45133
45134
45135
45136
45137
45138
45139
45140
45141
45142
45143
45144
45145
45146
45147
45148
45149
45150
45151
45152
45153
45154
45155
45156
45157
45158
45159
45160
45161
45162
45163
45164
45165
45166
45167
45168
45169
45170
45171
45172
45173
45174
45175
45176
45177
45178
45179
45180
45181
45182
45183
45184
45185
45186
45187
45188
45189
45190
45191
45192
45193
45194
45195
45196
45197
45198
45199
45200
45201
45202
45203
45204
45205
45206
45207
45208
45209
45210
45211
45212
45213
45214
45215
45216
45217
45218
45219
45220
45221
45222
45223
45224
45225
45226
45227
45228
45229
45230
45231
45232
45233
45234
45235
45236
45237
45238
45239
45240
45241
45242
45243
45244
45245
45246
45247
45248
45249
45250
45251
45252
45253
45254
45255
45256
45257
45258
45259
45260
45261
45262
45263
45264
45265
45266
45267
45268
45269
45270
45271
45272
45273
45274
45275
45276
45277
45278
45279
45280
45281
45282
45283
45284
45285
45286
45287
45288
45289
45290
45291
45292
45293
45294
45295
45296
45297
45298
45299
45300
45301
45302
45303
45304
45305
45306
45307
45308
45309
45310
45311
45312
45313
45314
45315
45316
45317
45318
45319
45320
45321
45322
45323
45324
45325
45326
45327
45328
45329
45330
45331
45332
45333
45334
45335
45336
45337
45338
45339
45340
45341
45342
45343
45344
45345
45346
45347
45348
45349
45350
45351
45352
45353
45354
45355
45356
45357
45358
45359
45360
45361
45362
45363
45364
45365
45366
45367
45368
45369
45370
45371
45372
45373
45374
45375
45376
45377
45378
45379
45380
45381
45382
45383
45384
45385
45386
45387
45388
45389
45390
45391
45392
45393
45394
45395
45396
45397
45398
45399
45400
45401
45402
45403
45404
45405
45406
45407
45408
45409
45410
45411
45412
45413
45414
45415
45416
45417
45418
45419
45420
45421
45422
45423
45424
45425
45426
45427
45428
45429
45430
45431
45432
45433
45434
45435
45436
45437
45438
45439
45440
45441
45442
45443
45444
45445
45446
45447
45448
45449
45450
45451
45452
45453
45454
45455
45456
45457
45458
45459
45460
45461
45462
45463
45464
45465
45466
45467
45468
45469
45470
45471
45472
45473
45474
45475
45476
45477
45478
45479
45480
45481
45482
45483
45484
45485
45486
45487
45488
45489
45490
45491
45492
45493
45494
45495
45496
45497
45498
45499
45500
45501
45502
45503
45504
45505
45506
45507
45508
45509
45510
45511
45512
45513
45514
45515
45516
45517
45518
45519
45520
45521
45522
45523
45524
45525
45526
45527
45528
45529
45530
45531
45532
45533
45534
45535
45536
45537
45538
45539
45540
45541
45542
45543
45544
45545
45546
45547
45548
45549
45550
45551
45552
45553
45554
45555
45556
45557
45558
45559
45560
45561
45562
45563
45564
45565
45566
45567
45568
45569
45570
45571
45572
45573
45574
45575
45576
45577
45578
45579
45580
45581
45582
45583
45584
45585
45586
45587
45588
45589
45590
45591
45592
45593
45594
45595
45596
45597
45598
45599
45600
45601
45602
45603
45604
45605
45606
45607
45608
45609
45610
45611
45612
45613
45614
45615
45616
45617
45618
45619
45620
45621
45622
45623
45624
45625
45626
45627
45628
45629
45630
45631
45632
45633
45634
45635
45636
45637
45638
45639
45640
45641
45642
45643
45644
45645
45646
45647
45648
45649
45650
45651
45652
45653
45654
45655
45656
45657
45658
45659
45660
45661
45662
45663
45664
45665
45666
45667
45668
45669
45670
45671
45672
45673
45674
45675
45676
45677
45678
45679
45680
45681
45682
45683
45684
45685
45686
45687
45688
45689
45690
45691
45692
45693
45694
45695
45696
45697
45698
45699
45700
45701
45702
45703
45704
45705
45706
45707
45708
45709
45710
45711
45712
45713
45714
45715
45716
45717
45718
45719
45720
45721
45722
45723
45724
45725
45726
45727
45728
45729
45730
45731
45732
45733
45734
45735
45736
45737
45738
45739
45740
45741
45742
45743
45744
45745
45746
45747
45748
45749
45750
45751
45752
45753
45754
45755
45756
45757
45758
45759
45760
45761
45762
45763
45764
45765
45766
45767
45768
45769
45770
45771
45772
45773
45774
45775
45776
45777
45778
45779
45780
45781
45782
45783
45784
45785
45786
45787
45788
45789
45790
45791
45792
45793
45794
45795
45796
45797
45798
45799
45800
45801
45802
45803
45804
45805
45806
45807
45808
45809
45810
45811
45812
45813
45814
45815
45816
45817
45818
45819
45820
45821
45822
45823
45824
45825
45826
45827
45828
45829
45830
45831
45832
45833
45834
45835
45836
45837
45838
45839
45840
45841
45842
45843
45844
45845
45846
45847
45848
45849
45850
45851
45852
45853
45854
45855
45856
45857
45858
45859
45860
45861
45862
45863
45864
45865
45866
45867
45868
45869
45870
45871
45872
45873
45874
45875
45876
45877
45878
45879
45880
45881
45882
45883
45884
45885
45886
45887
45888
45889
45890
45891
45892
45893
45894
45895
45896
45897
45898
45899
45900
45901
45902
45903
45904
45905
45906
45907
45908
45909
45910
45911
45912
45913
45914
45915
45916
45917
45918
45919
45920
45921
45922
45923
45924
45925
45926
45927
45928
45929
45930
45931
45932
45933
45934
45935
45936
45937
45938
45939
45940
45941
45942
45943
45944
45945
45946
45947
45948
45949
45950
45951
45952
45953
45954
45955
45956
45957
45958
45959
45960
45961
45962
45963
45964
45965
45966
45967
45968
45969
45970
45971
45972
45973
45974
45975
45976
45977
45978
45979
45980
45981
45982
45983
45984
45985
45986
45987
45988
45989
45990
45991
45992
45993
45994
45995
45996
45997
45998
45999
46000
46001
46002
46003
46004
46005
46006
46007
46008
46009
46010
46011
46012
46013
46014
46015
46016
46017
46018
46019
46020
46021
46022
46023
46024
46025
46026
46027
46028
46029
46030
46031
46032
46033
46034
46035
46036
46037
46038
46039
46040
46041
46042
46043
46044
46045
46046
46047
46048
46049
46050
46051
46052
46053
46054
46055
46056
46057
46058
46059
46060
46061
46062
46063
46064
46065
46066
46067
46068
46069
46070
46071
46072
46073
46074
46075
46076
46077
46078
46079
46080
46081
46082
46083
46084
46085
46086
46087
46088
46089
46090
46091
46092
46093
46094
46095
46096
46097
46098
46099
46100
46101
46102
46103
46104
46105
46106
46107
46108
46109
46110
46111
46112
46113
46114
46115
46116
46117
46118
46119
46120
46121
46122
46123
46124
46125
46126
46127
46128
46129
46130
46131
46132
46133
46134
46135
46136
46137
46138
46139
46140
46141
46142
46143
46144
46145
46146
46147
46148
46149
46150
46151
46152
46153
46154
46155
46156
46157
46158
46159
46160
46161
46162
46163
46164
46165
46166
46167
46168
46169
46170
46171
46172
46173
46174
46175
46176
46177
46178
46179
46180
46181
46182
46183
46184
46185
46186
46187
46188
46189
46190
46191
46192
46193
46194
46195
46196
46197
46198
46199
46200
46201
46202
46203
46204
46205
46206
46207
46208
46209
46210
46211
46212
46213
46214
46215
46216
46217
46218
46219
46220
46221
46222
46223
46224
46225
46226
46227
46228
46229
46230
46231
46232
46233
46234
46235
46236
46237
46238
46239
46240
46241
46242
46243
46244
46245
46246
46247
46248
46249
46250
46251
46252
46253
46254
46255
46256
46257
46258
46259
46260
46261
46262
46263
46264
46265
46266
46267
46268
46269
46270
46271
46272
46273
46274
46275
46276
46277
46278
46279
46280
46281
46282
46283
46284
46285
46286
46287
46288
46289
46290
46291
46292
46293
46294
46295
46296
46297
46298
46299
46300
46301
46302
46303
46304
46305
46306
46307
46308
46309
46310
46311
46312
46313
46314
46315
46316
46317
46318
46319
46320
46321
46322
46323
46324
46325
46326
46327
46328
46329
46330
46331
46332
46333
46334
46335
46336
46337
46338
46339
46340
46341
46342
46343
46344
46345
46346
46347
46348
46349
46350
46351
46352
46353
46354
46355
46356
46357
46358
46359
46360
46361
46362
46363
46364
46365
46366
46367
46368
46369
46370
46371
46372
46373
46374
46375
46376
46377
46378
46379
46380
46381
46382
46383
46384
46385
46386
46387
46388
46389
46390
46391
46392
46393
46394
46395
46396
46397
46398
46399
46400
46401
46402
46403
46404
46405
46406
46407
46408
46409
46410
46411
46412
46413
46414
46415
46416
46417
46418
46419
46420
46421
46422
46423
46424
46425
46426
46427
46428
46429
46430
46431
46432
46433
46434
46435
46436
46437
46438
46439
46440
46441
46442
46443
46444
46445
46446
46447
46448
46449
46450
46451
46452
46453
46454
46455
46456
46457
46458
46459
46460
46461
46462
46463
46464
46465
46466
46467
46468
46469
46470
46471
46472
46473
46474
46475
46476
46477
46478
46479
46480
46481
46482
46483
46484
46485
46486
46487
46488
46489
46490
46491
46492
46493
46494
46495
46496
46497
46498
46499
46500
46501
46502
46503
46504
46505
46506
46507
46508
46509
46510
46511
46512
46513
46514
46515
46516
46517
46518
46519
46520
46521
46522
46523
46524
46525
46526
46527
46528
46529
46530
46531
46532
46533
46534
46535
46536
46537
46538
46539
46540
46541
46542
46543
46544
46545
46546
46547
46548
46549
46550
46551
46552
46553
46554
46555
46556
46557
46558
46559
46560
46561
46562
46563
46564
46565
46566
46567
46568
46569
46570
46571
46572
46573
46574
46575
46576
46577
46578
46579
46580
46581
46582
46583
46584
46585
46586
46587
46588
46589
46590
46591
46592
46593
46594
46595
46596
46597
46598
46599
46600
46601
46602
46603
46604
46605
46606
46607
46608
46609
46610
46611
46612
46613
46614
46615
46616
46617
46618
46619
46620
46621
46622
46623
46624
46625
46626
46627
46628
46629
46630
46631
46632
46633
46634
46635
46636
46637
46638
46639
46640
46641
46642
46643
46644
46645
46646
46647
46648
46649
46650
46651
46652
46653
46654
46655
46656
46657
46658
46659
46660
46661
46662
46663
46664
46665
46666
46667
46668
46669
46670
46671
46672
46673
46674
46675
46676
46677
46678
46679
46680
46681
46682
46683
46684
46685
46686
46687
46688
46689
46690
46691
46692
46693
46694
46695
46696
46697
46698
46699
46700
46701
46702
46703
46704
46705
46706
46707
46708
46709
46710
46711
46712
46713
46714
46715
46716
46717
46718
46719
46720
46721
46722
46723
46724
46725
46726
46727
46728
46729
46730
46731
46732
46733
46734
46735
46736
46737
46738
46739
46740
46741
46742
46743
46744
46745
46746
46747
46748
46749
46750
46751
46752
46753
46754
46755
46756
46757
46758
46759
46760
46761
46762
46763
46764
46765
46766
46767
46768
46769
46770
46771
46772
46773
46774
46775
46776
46777
46778
46779
46780
46781
46782
46783
46784
46785
46786
46787
46788
46789
46790
46791
46792
46793
46794
46795
46796
46797
46798
46799
46800
46801
46802
46803
46804
46805
46806
46807
46808
46809
46810
46811
46812
46813
46814
46815
46816
46817
46818
46819
46820
46821
46822
46823
46824
46825
46826
46827
46828
46829
46830
46831
46832
46833
46834
46835
46836
46837
46838
46839
46840
46841
46842
46843
46844
46845
46846
46847
46848
46849
46850
46851
46852
46853
46854
46855
46856
46857
46858
46859
46860
46861
46862
46863
46864
46865
46866
46867
46868
46869
46870
46871
46872
46873
46874
46875
46876
46877
46878
46879
46880
46881
46882
46883
46884
46885
46886
46887
46888
46889
46890
46891
46892
46893
46894
46895
46896
46897
46898
46899
46900
46901
46902
46903
46904
46905
46906
46907
46908
46909
46910
46911
46912
46913
46914
46915
46916
46917
46918
46919
46920
46921
46922
46923
46924
46925
46926
46927
46928
46929
46930
46931
46932
46933
46934
46935
46936
46937
46938
46939
46940
46941
46942
46943
46944
46945
46946
46947
46948
46949
46950
46951
46952
46953
46954
46955
46956
46957
46958
46959
46960
46961
46962
46963
46964
46965
46966
46967
46968
46969
46970
46971
46972
46973
46974
46975
46976
46977
46978
46979
46980
46981
46982
46983
46984
46985
46986
46987
46988
46989
46990
46991
46992
46993
46994
46995
46996
46997
46998
46999
47000
47001
47002
47003
47004
47005
47006
47007
47008
47009
47010
47011
47012
47013
47014
47015
47016
47017
47018
47019
47020
47021
47022
47023
47024
47025
47026
47027
47028
47029
47030
47031
47032
47033
47034
47035
47036
47037
47038
47039
47040
47041
47042
47043
47044
47045
47046
47047
47048
47049
47050
47051
47052
47053
47054
47055
47056
47057
47058
47059
47060
47061
47062
47063
47064
47065
47066
47067
47068
47069
47070
47071
47072
47073
47074
47075
47076
47077
47078
47079
47080
47081
47082
47083
47084
47085
47086
47087
47088
47089
47090
47091
47092
47093
47094
47095
47096
47097
47098
47099
47100
47101
47102
47103
47104
47105
47106
47107
47108
47109
47110
47111
47112
47113
47114
47115
47116
47117
47118
47119
47120
47121
47122
47123
47124
47125
47126
47127
47128
47129
47130
47131
47132
47133
47134
47135
47136
47137
47138
47139
47140
47141
47142
47143
47144
47145
47146
47147
47148
47149
47150
47151
47152
47153
47154
47155
47156
47157
47158
47159
47160
47161
47162
47163
47164
47165
47166
47167
47168
47169
47170
47171
47172
47173
47174
47175
47176
47177
47178
47179
47180
47181
47182
47183
47184
47185
47186
47187
47188
47189
47190
47191
47192
47193
47194
47195
47196
47197
47198
47199
47200
47201
47202
47203
47204
47205
47206
47207
47208
47209
47210
47211
47212
47213
47214
47215
47216
47217
47218
47219
47220
47221
47222
47223
47224
47225
47226
47227
47228
47229
47230
47231
47232
47233
47234
47235
47236
47237
47238
47239
47240
47241
47242
47243
47244
47245
47246
47247
47248
47249
47250
47251
47252
47253
47254
47255
47256
47257
47258
47259
47260
47261
47262
47263
47264
47265
47266
47267
47268
47269
47270
47271
47272
47273
47274
47275
47276
47277
47278
47279
47280
47281
47282
47283
47284
47285
47286
47287
47288
47289
47290
47291
47292
47293
47294
47295
47296
47297
47298
47299
47300
47301
47302
47303
47304
47305
47306
47307
47308
47309
47310
47311
47312
47313
47314
47315
47316
47317
47318
47319
47320
47321
47322
47323
47324
47325
47326
47327
47328
47329
47330
47331
47332
47333
47334
47335
47336
47337
47338
47339
47340
47341
47342
47343
47344
47345
47346
47347
47348
47349
47350
47351
47352
47353
47354
47355
47356
47357
47358
47359
47360
47361
47362
47363
47364
47365
47366
47367
47368
47369
47370
47371
47372
47373
47374
47375
47376
47377
47378
47379
47380
47381
47382
47383
47384
47385
47386
47387
47388
47389
47390
47391
47392
47393
47394
47395
47396
47397
47398
47399
47400
47401
47402
47403
47404
47405
47406
47407
47408
47409
47410
47411
47412
47413
47414
47415
47416
47417
47418
47419
47420
47421
47422
47423
47424
47425
47426
47427
47428
47429
47430
47431
47432
47433
47434
47435
47436
47437
47438
47439
47440
47441
47442
47443
47444
47445
47446
47447
47448
47449
47450
47451
47452
47453
47454
47455
47456
47457
47458
47459
47460
47461
47462
47463
47464
47465
47466
47467
47468
47469
47470
47471
47472
47473
47474
47475
47476
47477
47478
47479
47480
47481
47482
47483
47484
47485
47486
47487
47488
47489
47490
47491
47492
47493
47494
47495
47496
47497
47498
47499
47500
47501
47502
47503
47504
47505
47506
47507
47508
47509
47510
47511
47512
47513
47514
47515
47516
47517
47518
47519
47520
47521
47522
47523
47524
47525
47526
47527
47528
47529
47530
47531
47532
47533
47534
47535
47536
47537
47538
47539
47540
47541
47542
47543
47544
47545
47546
47547
47548
47549
47550
47551
47552
47553
47554
47555
47556
47557
47558
47559
47560
47561
47562
47563
47564
47565
47566
47567
47568
47569
47570
47571
47572
47573
47574
47575
47576
47577
47578
47579
47580
47581
47582
47583
47584
47585
47586
47587
47588
47589
47590
47591
47592
47593
47594
47595
47596
47597
47598
47599
47600
47601
47602
47603
47604
47605
47606
47607
47608
47609
47610
47611
47612
47613
47614
47615
47616
47617
47618
47619
47620
47621
47622
47623
47624
47625
47626
47627
47628
47629
47630
47631
47632
47633
47634
47635
47636
47637
47638
47639
47640
47641
47642
47643
47644
47645
47646
47647
47648
47649
47650
47651
47652
47653
47654
47655
47656
47657
47658
47659
47660
47661
47662
47663
47664
47665
47666
47667
47668
47669
47670
47671
47672
47673
47674
47675
47676
47677
47678
47679
47680
47681
47682
47683
47684
47685
47686
47687
47688
47689
47690
47691
47692
47693
47694
47695
47696
47697
47698
47699
47700
47701
47702
47703
47704
47705
47706
47707
47708
47709
47710
47711
47712
47713
47714
47715
47716
47717
47718
47719
47720
47721
47722
47723
47724
47725
47726
47727
47728
47729
47730
47731
47732
47733
47734
47735
47736
47737
47738
47739
47740
47741
47742
47743
47744
47745
47746
47747
47748
47749
47750
47751
47752
47753
47754
47755
47756
47757
47758
47759
47760
47761
47762
47763
47764
47765
47766
47767
47768
47769
47770
47771
47772
47773
47774
47775
47776
47777
47778
47779
47780
47781
47782
47783
47784
47785
47786
47787
47788
47789
47790
47791
47792
47793
47794
47795
47796
47797
47798
47799
47800
47801
47802
47803
47804
47805
47806
47807
47808
47809
47810
47811
47812
47813
47814
47815
47816
47817
47818
47819
47820
47821
47822
47823
47824
47825
47826
47827
47828
47829
47830
47831
47832
47833
47834
47835
47836
47837
47838
47839
47840
47841
47842
47843
47844
47845
47846
47847
47848
47849
47850
47851
47852
47853
47854
47855
47856
47857
47858
47859
47860
47861
47862
47863
47864
47865
47866
47867
47868
47869
47870
47871
47872
47873
47874
47875
47876
47877
47878
47879
47880
47881
47882
47883
47884
47885
47886
47887
47888
47889
47890
47891
47892
47893
47894
47895
47896
47897
47898
47899
47900
47901
47902
47903
47904
47905
47906
47907
47908
47909
47910
47911
47912
47913
47914
47915
47916
47917
47918
47919
47920
47921
47922
47923
47924
47925
47926
47927
47928
47929
47930
47931
47932
47933
47934
47935
47936
47937
47938
47939
47940
47941
47942
47943
47944
47945
47946
47947
47948
47949
47950
47951
47952
47953
47954
47955
47956
47957
47958
47959
47960
47961
47962
47963
47964
47965
47966
47967
47968
47969
47970
47971
47972
47973
47974
47975
47976
47977
47978
47979
47980
47981
47982
47983
47984
47985
47986
47987
47988
47989
47990
47991
47992
47993
47994
47995
47996
47997
47998
47999
48000
48001
48002
48003
48004
48005
48006
48007
48008
48009
48010
48011
48012
48013
48014
48015
48016
48017
48018
48019
48020
48021
48022
48023
48024
48025
48026
48027
48028
48029
48030
48031
48032
48033
48034
48035
48036
48037
48038
48039
48040
48041
48042
48043
48044
48045
48046
48047
48048
48049
48050
48051
48052
48053
48054
48055
48056
48057
48058
48059
48060
48061
48062
48063
48064
48065
48066
48067
48068
48069
48070
48071
48072
48073
48074
48075
48076
48077
48078
48079
48080
48081
48082
48083
48084
48085
48086
48087
48088
48089
48090
48091
48092
48093
48094
48095
48096
48097
48098
48099
48100
48101
48102
48103
48104
48105
48106
48107
48108
48109
48110
48111
48112
48113
48114
48115
48116
48117
48118
48119
48120
48121
48122
48123
48124
48125
48126
48127
48128
48129
48130
48131
48132
48133
48134
48135
48136
48137
48138
48139
48140
48141
48142
48143
48144
48145
48146
48147
48148
48149
48150
48151
48152
48153
48154
48155
48156
48157
48158
48159
48160
48161
48162
48163
48164
48165
48166
48167
48168
48169
48170
48171
48172
48173
48174
48175
48176
48177
48178
48179
48180
48181
48182
48183
48184
48185
48186
48187
48188
48189
48190
48191
48192
48193
48194
48195
48196
48197
48198
48199
48200
48201
48202
48203
48204
48205
48206
48207
48208
48209
48210
48211
48212
48213
48214
48215
48216
48217
48218
48219
48220
48221
48222
48223
48224
48225
48226
48227
48228
48229
48230
48231
48232
48233
48234
48235
48236
48237
48238
48239
48240
48241
48242
48243
48244
48245
48246
48247
48248
48249
48250
48251
48252
48253
48254
48255
48256
48257
48258
48259
48260
48261
48262
48263
48264
48265
48266
48267
48268
48269
48270
48271
48272
48273
48274
48275
48276
48277
48278
48279
48280
48281
48282
48283
48284
48285
48286
48287
48288
48289
48290
48291
48292
48293
48294
48295
48296
48297
48298
48299
48300
48301
48302
48303
48304
48305
48306
48307
48308
48309
48310
48311
48312
48313
48314
48315
48316
48317
48318
48319
48320
48321
48322
48323
48324
48325
48326
48327
48328
48329
48330
48331
48332
48333
48334
48335
48336
48337
48338
48339
48340
48341
48342
48343
48344
48345
48346
48347
48348
48349
48350
48351
48352
48353
48354
48355
48356
48357
48358
48359
48360
48361
48362
48363
48364
48365
48366
48367
48368
48369
48370
48371
48372
48373
48374
48375
48376
48377
48378
48379
48380
48381
48382
48383
48384
48385
48386
48387
48388
48389
48390
48391
48392
48393
48394
48395
48396
48397
48398
48399
48400
48401
48402
48403
48404
48405
48406
48407
48408
48409
48410
48411
48412
48413
48414
48415
48416
48417
48418
48419
48420
48421
48422
48423
48424
48425
48426
48427
48428
48429
48430
48431
48432
48433
48434
48435
48436
48437
48438
48439
48440
48441
48442
48443
48444
48445
48446
48447
48448
48449
48450
48451
48452
48453
48454
48455
48456
48457
48458
48459
48460
48461
48462
48463
48464
48465
48466
48467
48468
48469
48470
48471
48472
48473
48474
48475
48476
48477
48478
48479
48480
48481
48482
48483
48484
48485
48486
48487
48488
48489
48490
48491
48492
48493
48494
48495
48496
48497
48498
48499
48500
48501
48502
48503
48504
48505
48506
48507
48508
48509
48510
48511
48512
48513
48514
48515
48516
48517
48518
48519
48520
48521
48522
48523
48524
48525
48526
48527
48528
48529
48530
48531
48532
48533
48534
48535
48536
48537
48538
48539
48540
48541
48542
48543
48544
48545
48546
48547
48548
48549
48550
48551
48552
48553
48554
48555
48556
48557
48558
48559
48560
48561
48562
48563
48564
48565
48566
48567
48568
48569
48570
48571
48572
48573
48574
48575
48576
48577
48578
48579
48580
48581
48582
48583
48584
48585
48586
48587
48588
48589
48590
48591
48592
48593
48594
48595
48596
48597
48598
48599
48600
48601
48602
48603
48604
48605
48606
48607
48608
48609
48610
48611
48612
48613
48614
48615
48616
48617
48618
48619
48620
48621
48622
48623
48624
48625
48626
48627
48628
48629
48630
48631
48632
48633
48634
48635
48636
48637
48638
48639
48640
48641
48642
48643
48644
48645
48646
48647
48648
48649
48650
48651
48652
48653
48654
48655
48656
48657
48658
48659
48660
48661
48662
48663
48664
48665
48666
48667
48668
48669
48670
48671
48672
48673
48674
48675
48676
48677
48678
48679
48680
48681
48682
48683
48684
48685
48686
48687
48688
48689
48690
48691
48692
48693
48694
48695
48696
48697
48698
48699
48700
48701
48702
48703
48704
48705
48706
48707
48708
48709
48710
48711
48712
48713
48714
48715
48716
48717
48718
48719
48720
48721
48722
48723
48724
48725
48726
48727
48728
48729
48730
48731
48732
48733
48734
48735
48736
48737
48738
48739
48740
48741
48742
48743
48744
48745
48746
48747
48748
48749
48750
48751
48752
48753
48754
48755
48756
48757
48758
48759
48760
48761
48762
48763
48764
48765
48766
48767
48768
48769
48770
48771
48772
48773
48774
48775
48776
48777
48778
48779
48780
48781
48782
48783
48784
48785
48786
48787
48788
48789
48790
48791
48792
48793
48794
48795
48796
48797
48798
48799
48800
48801
48802
48803
48804
48805
48806
48807
48808
48809
48810
48811
48812
48813
48814
48815
48816
48817
48818
48819
48820
48821
48822
48823
48824
48825
48826
48827
48828
48829
48830
48831
48832
48833
48834
48835
48836
48837
48838
48839
48840
48841
48842
48843
48844
48845
48846
48847
48848
48849
48850
48851
48852
48853
48854
48855
48856
48857
48858
48859
48860
48861
48862
48863
48864
48865
48866
48867
48868
48869
48870
48871
48872
48873
48874
48875
48876
48877
48878
48879
48880
48881
48882
48883
48884
48885
48886
48887
48888
48889
48890
48891
48892
48893
48894
48895
48896
48897
48898
48899
48900
48901
48902
48903
48904
48905
48906
48907
48908
48909
48910
48911
48912
48913
48914
48915
48916
48917
48918
48919
48920
48921
48922
48923
48924
48925
48926
48927
48928
48929
48930
48931
48932
48933
48934
48935
48936
48937
48938
48939
48940
48941
48942
48943
48944
48945
48946
48947
48948
48949
48950
48951
48952
48953
48954
48955
48956
48957
48958
48959
48960
48961
48962
48963
48964
48965
48966
48967
48968
48969
48970
48971
48972
48973
48974
48975
48976
48977
48978
48979
48980
48981
48982
48983
48984
48985
48986
48987
48988
48989
48990
48991
48992
48993
48994
48995
48996
48997
48998
48999
49000
49001
49002
49003
49004
49005
49006
49007
49008
49009
49010
49011
49012
49013
49014
49015
49016
49017
49018
49019
49020
49021
49022
49023
49024
49025
49026
49027
49028
49029
49030
49031
49032
49033
49034
49035
49036
49037
49038
49039
49040
49041
49042
49043
49044
49045
49046
49047
49048
49049
49050
49051
49052
49053
49054
49055
49056
49057
49058
49059
49060
49061
49062
49063
49064
49065
49066
49067
49068
49069
49070
49071
49072
49073
49074
49075
49076
49077
49078
49079
49080
49081
49082
49083
49084
49085
49086
49087
49088
49089
49090
49091
49092
49093
49094
49095
49096
49097
49098
49099
49100
49101
49102
49103
49104
49105
49106
49107
49108
49109
49110
49111
49112
49113
49114
49115
49116
49117
49118
49119
49120
49121
49122
49123
49124
49125
49126
49127
49128
49129
49130
49131
49132
49133
49134
49135
49136
49137
49138
49139
49140
49141
49142
49143
49144
49145
49146
49147
49148
49149
49150
49151
49152
49153
49154
49155
49156
49157
49158
49159
49160
49161
49162
49163
49164
49165
49166
49167
49168
49169
49170
49171
49172
49173
49174
49175
49176
49177
49178
49179
49180
49181
49182
49183
49184
49185
49186
49187
49188
49189
49190
49191
49192
49193
49194
49195
49196
49197
49198
49199
49200
49201
49202
49203
49204
49205
49206
49207
49208
49209
49210
49211
49212
49213
49214
49215
49216
49217
49218
49219
49220
49221
49222
49223
49224
49225
49226
49227
49228
49229
49230
49231
49232
49233
49234
49235
49236
49237
49238
49239
49240
49241
49242
49243
49244
49245
49246
49247
49248
49249
49250
49251
49252
49253
49254
49255
49256
49257
49258
49259
49260
49261
49262
49263
49264
49265
49266
49267
49268
49269
49270
49271
49272
49273
49274
49275
49276
49277
49278
49279
49280
49281
49282
49283
49284
49285
49286
49287
49288
49289
49290
49291
49292
49293
49294
49295
49296
49297
49298
49299
49300
49301
49302
49303
49304
49305
49306
49307
49308
49309
49310
49311
49312
49313
49314
49315
49316
49317
49318
49319
49320
49321
49322
49323
49324
49325
49326
49327
49328
49329
49330
49331
49332
49333
49334
49335
49336
49337
49338
49339
49340
49341
49342
49343
49344
49345
49346
49347
49348
49349
49350
49351
49352
49353
49354
49355
49356
49357
49358
49359
49360
49361
49362
49363
49364
49365
49366
49367
49368
49369
49370
49371
49372
49373
49374
49375
49376
49377
49378
49379
49380
49381
49382
49383
49384
49385
49386
49387
49388
49389
49390
49391
49392
49393
49394
49395
49396
49397
49398
49399
49400
49401
49402
49403
49404
49405
49406
49407
49408
49409
49410
49411
49412
49413
49414
49415
49416
49417
49418
49419
49420
49421
49422
49423
49424
49425
49426
49427
49428
49429
49430
49431
49432
49433
49434
49435
49436
49437
49438
49439
49440
49441
49442
49443
49444
49445
49446
49447
49448
49449
49450
49451
49452
49453
49454
49455
49456
49457
49458
49459
49460
49461
49462
49463
49464
49465
49466
49467
49468
49469
49470
49471
49472
49473
49474
49475
49476
49477
49478
49479
49480
49481
49482
49483
49484
49485
49486
49487
49488
49489
49490
49491
49492
49493
49494
49495
49496
49497
49498
49499
49500
49501
49502
49503
49504
49505
49506
49507
49508
49509
49510
49511
49512
49513
49514
49515
49516
49517
49518
49519
49520
49521
49522
49523
49524
49525
49526
49527
49528
49529
49530
49531
49532
49533
49534
49535
49536
49537
49538
49539
49540
49541
49542
49543
49544
49545
49546
49547
49548
49549
49550
49551
49552
49553
49554
49555
49556
49557
49558
49559
49560
49561
49562
49563
49564
49565
49566
49567
49568
49569
49570
49571
49572
49573
49574
49575
49576
49577
49578
49579
49580
49581
49582
49583
49584
49585
49586
49587
49588
49589
49590
49591
49592
49593
49594
49595
49596
49597
49598
49599
49600
49601
49602
49603
49604
49605
49606
49607
49608
49609
49610
49611
49612
49613
49614
49615
49616
49617
49618
49619
49620
49621
49622
49623
49624
49625
49626
49627
49628
49629
49630
49631
49632
49633
49634
49635
49636
49637
49638
49639
49640
49641
49642
49643
49644
49645
49646
49647
49648
49649
49650
49651
49652
49653
49654
49655
49656
49657
49658
49659
49660
49661
49662
49663
49664
49665
49666
49667
49668
49669
49670
49671
49672
49673
49674
49675
49676
49677
49678
49679
49680
49681
49682
49683
49684
49685
49686
49687
49688
49689
49690
49691
49692
49693
49694
49695
49696
49697
49698
49699
49700
49701
49702
49703
49704
49705
49706
49707
49708
49709
49710
49711
49712
49713
49714
49715
49716
49717
49718
49719
49720
49721
49722
49723
49724
49725
49726
49727
49728
49729
49730
49731
49732
49733
49734
49735
49736
49737
49738
49739
49740
49741
49742
49743
49744
49745
49746
49747
49748
49749
49750
49751
49752
49753
49754
49755
49756
49757
49758
49759
49760
49761
49762
49763
49764
49765
49766
49767
49768
49769
49770
49771
49772
49773
49774
49775
49776
49777
49778
49779
49780
49781
49782
49783
49784
49785
49786
49787
49788
49789
49790
49791
49792
49793
49794
49795
49796
49797
49798
49799
49800
49801
49802
49803
49804
49805
49806
49807
49808
49809
49810
49811
49812
49813
49814
49815
49816
49817
49818
49819
49820
49821
49822
49823
49824
49825
49826
49827
49828
49829
49830
49831
49832
49833
49834
49835
49836
49837
49838
49839
49840
49841
49842
49843
49844
49845
49846
49847
49848
49849
49850
49851
49852
49853
49854
49855
49856
49857
49858
49859
49860
49861
49862
49863
49864
49865
49866
49867
49868
49869
49870
49871
49872
49873
49874
49875
49876
49877
49878
49879
49880
49881
49882
49883
49884
49885
49886
49887
49888
49889
49890
49891
49892
49893
49894
49895
49896
49897
49898
49899
49900
49901
49902
49903
49904
49905
49906
49907
49908
49909
49910
49911
49912
49913
49914
49915
49916
49917
49918
49919
49920
49921
49922
49923
49924
49925
49926
49927
49928
49929
49930
49931
49932
49933
49934
49935
49936
49937
49938
49939
49940
49941
49942
49943
49944
49945
49946
49947
49948
49949
49950
49951
49952
49953
49954
49955
49956
49957
49958
49959
49960
49961
49962
49963
49964
49965
49966
49967
49968
49969
49970
49971
49972
49973
49974
49975
49976
49977
49978
49979
49980
49981
49982
49983
49984
49985
49986
49987
49988
49989
49990
49991
49992
49993
49994
49995
49996
49997
49998
49999
50000
50001
50002
50003
50004
50005
50006
50007
50008
50009
50010
50011
50012
50013
50014
50015
50016
50017
50018
50019
50020
50021
50022
50023
50024
50025
50026
50027
50028
50029
50030
50031
50032
50033
50034
50035
50036
50037
50038
50039
50040
50041
50042
50043
50044
50045
50046
50047
50048
50049
50050
50051
50052
50053
50054
50055
50056
50057
50058
50059
50060
50061
50062
50063
50064
50065
50066
50067
50068
50069
50070
50071
50072
50073
50074
50075
50076
50077
50078
50079
50080
50081
50082
50083
50084
50085
50086
50087
50088
50089
50090
50091
50092
50093
50094
50095
50096
50097
50098
50099
50100
50101
50102
50103
50104
50105
50106
50107
50108
50109
50110
50111
50112
50113
50114
50115
50116
50117
50118
50119
50120
50121
50122
50123
50124
50125
50126
50127
50128
50129
50130
50131
50132
50133
50134
50135
50136
50137
50138
50139
50140
50141
50142
50143
50144
50145
50146
50147
50148
50149
50150
50151
50152
50153
50154
50155
50156
50157
50158
50159
50160
50161
50162
50163
50164
50165
50166
50167
50168
50169
50170
50171
50172
50173
50174
50175
50176
50177
50178
50179
50180
50181
50182
50183
50184
50185
50186
50187
50188
50189
50190
50191
50192
50193
50194
50195
50196
50197
50198
50199
50200
50201
50202
50203
50204
50205
50206
50207
50208
50209
50210
50211
50212
50213
50214
50215
50216
50217
50218
50219
50220
50221
50222
50223
50224
50225
50226
50227
50228
50229
50230
50231
50232
50233
50234
50235
50236
50237
50238
50239
50240
50241
50242
50243
50244
50245
50246
50247
50248
50249
50250
50251
50252
50253
50254
50255
50256
50257
50258
50259
50260
50261
50262
50263
50264
50265
50266
50267
50268
50269
50270
50271
50272
50273
50274
50275
50276
50277
50278
50279
50280
50281
50282
50283
50284
50285
50286
50287
50288
50289
50290
50291
50292
50293
50294
50295
50296
50297
50298
50299
50300
50301
50302
50303
50304
50305
50306
50307
50308
50309
50310
50311
50312
50313
50314
50315
50316
50317
50318
50319
50320
50321
50322
50323
50324
50325
50326
50327
50328
50329
50330
50331
50332
50333
50334
50335
50336
50337
50338
50339
50340
50341
50342
50343
50344
50345
50346
50347
50348
50349
50350
50351
50352
50353
50354
50355
50356
50357
50358
50359
50360
50361
50362
50363
50364
50365
50366
50367
50368
50369
50370
50371
50372
50373
50374
50375
50376
50377
50378
50379
50380
50381
50382
50383
50384
50385
50386
50387
50388
50389
50390
50391
50392
50393
50394
50395
50396
50397
50398
50399
50400
50401
50402
50403
50404
50405
50406
50407
50408
50409
50410
50411
50412
50413
50414
50415
50416
50417
50418
50419
50420
50421
50422
50423
50424
50425
50426
50427
50428
50429
50430
50431
50432
50433
50434
50435
50436
50437
50438
50439
50440
50441
50442
50443
50444
50445
50446
50447
50448
50449
50450
50451
50452
50453
50454
50455
50456
50457
50458
50459
50460
50461
50462
50463
50464
50465
50466
50467
50468
50469
50470
50471
50472
50473
<html lang="en">
<head>
<title>Using the GNU Compiler Collection (GCC)</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="Using the GNU Compiler Collection (GCC)">
<meta name="generator" content="makeinfo 4.13">
<link title="Top" rel="top" href="#Top">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
2010 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "Funding Free Software", the Front-Cover
Texts being (a) (see below), and with the Back-Cover Texts being (b)
(see below).  A copy of the license is included in the section entitled
"GNU Free Documentation License".

(a) The FSF's Front-Cover Text is:

     A GNU Manual

(b) The FSF's Back-Cover Text is:

     You have freedom to copy and modify this GNU Manual, like GNU
     software.  Copies published by the Free Software Foundation raise
     funds for GNU development.-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
This file documents the use of the GNU compilers.
 <pre class="sp">

</pre>
Copyright &copy; 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
2010 Free Software Foundation, Inc.

 <p>Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being &ldquo;Funding Free Software&rdquo;, the Front-Cover
Texts being (a) (see below), and with the Back-Cover Texts being (b)
(see below).  A copy of the license is included in the section entitled
&ldquo;GNU Free Documentation License&rdquo;.

 <p>(a) The FSF's Front-Cover Text is:

 <p>A GNU Manual

 <p>(b) The FSF's Back-Cover Text is:

 <p>You have freedom to copy and modify this GNU Manual, like GNU
     software.  Copies published by the Free Software Foundation raise
     funds for GNU development.
 <pre class="sp">

</pre>

 <div class="shortcontents">
<h2>Short Contents</h2>
<ul>
<li><a href="#toc_Top">Introduction</a></li>
<li><a href="#toc_G_002b_002b-and-GCC">1 Programming Languages Supported by GCC</a></li>
<li><a href="#toc_Standards">2 Language Standards Supported by GCC</a></li>
<li><a href="#toc_Invoking-GCC">3 GCC Command Options</a></li>
<li><a href="#toc_C-Implementation">4 C Implementation-defined behavior</a></li>
<li><a href="#toc_C_002b_002b-Implementation">5 C++ Implementation-defined behavior</a></li>
<li><a href="#toc_C-Extensions">6 Extensions to the C Language Family</a></li>
<li><a href="#toc_C_002b_002b-Extensions">7 Extensions to the C++ Language</a></li>
<li><a href="#toc_Objective_002dC">8 GNU Objective-C features</a></li>
<li><a href="#toc_Compatibility">9 Binary Compatibility</a></li>
<li><a href="#toc_Gcov">10 <samp><span class="command">gcov</span></samp>&mdash;a Test Coverage Program</a></li>
<li><a href="#toc_Trouble">11 Known Causes of Trouble with GCC</a></li>
<li><a href="#toc_Bugs">12 Reporting Bugs</a></li>
<li><a href="#toc_Service">13 How To Get Help with GCC</a></li>
<li><a href="#toc_Contributing">14 Contributing to GCC Development</a></li>
<li><a href="#toc_Funding">Funding Free Software</a></li>
<li><a href="#toc_GNU-Project">The GNU Project and GNU/Linux</a></li>
<li><a href="#toc_Copying">GNU General Public License</a></li>
<li><a href="#toc_GNU-Free-Documentation-License">GNU Free Documentation License</a></li>
<li><a href="#toc_Contributors">Contributors to GCC</a></li>
<li><a href="#toc_Option-Index">Option Index</a></li>
<li><a href="#toc_Keyword-Index">Keyword Index</a></li>
</ul>
</div>



 <div class="contents">
<h2>Table of Contents</h2>
<ul>
<li><a name="toc_Top" href="#Top">Introduction</a>
<li><a name="toc_G_002b_002b-and-GCC" href="#G_002b_002b-and-GCC">1 Programming Languages Supported by GCC</a>
<li><a name="toc_Standards" href="#Standards">2 Language Standards Supported by GCC</a>
<ul>
<li><a href="#Standards">2.1 C language</a>
<li><a href="#Standards">2.2 C++ language</a>
<li><a href="#Standards">2.3 Objective-C and Objective-C++ languages</a>
<li><a href="#Standards">2.4 Go language</a>
<li><a href="#Standards">2.5 References for other languages</a>
</li></ul>
<li><a name="toc_Invoking-GCC" href="#Invoking-GCC">3 GCC Command Options</a>
<ul>
<li><a href="#Option-Summary">3.1 Option Summary</a>
<li><a href="#Overall-Options">3.2 Options Controlling the Kind of Output</a>
<li><a href="#Invoking-G_002b_002b">3.3 Compiling C++ Programs</a>
<li><a href="#C-Dialect-Options">3.4 Options Controlling C Dialect</a>
<li><a href="#C_002b_002b-Dialect-Options">3.5 Options Controlling C++ Dialect</a>
<li><a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">3.6 Options Controlling Objective-C and Objective-C++ Dialects</a>
<li><a href="#Language-Independent-Options">3.7 Options to Control Diagnostic Messages Formatting</a>
<li><a href="#Warning-Options">3.8 Options to Request or Suppress Warnings</a>
<li><a href="#Debugging-Options">3.9 Options for Debugging Your Program or GCC</a>
<li><a href="#Optimize-Options">3.10 Options That Control Optimization</a>
<li><a href="#Preprocessor-Options">3.11 Options Controlling the Preprocessor</a>
<li><a href="#Assembler-Options">3.12 Passing Options to the Assembler</a>
<li><a href="#Link-Options">3.13 Options for Linking</a>
<li><a href="#Directory-Options">3.14 Options for Directory Search</a>
<li><a href="#Spec-Files">3.15 Specifying subprocesses and the switches to pass to them</a>
<li><a href="#Target-Options">3.16 Specifying Target Machine and Compiler Version</a>
<li><a href="#Submodel-Options">3.17 Hardware Models and Configurations</a>
<ul>
<li><a href="#ARC-Options">3.17.1 ARC Options</a>
<li><a href="#ARM-Options">3.17.2 ARM Options</a>
<li><a href="#AVR-Options">3.17.3 AVR Options</a>
<ul>
<li><a href="#AVR-Options">3.17.3.1 <code>EIND</code> and Devices with more than 128k Bytes of Flash</a>
</li></ul>
<li><a href="#Blackfin-Options">3.17.4 Blackfin Options</a>
<li><a href="#CRIS-Options">3.17.5 CRIS Options</a>
<li><a href="#CRX-Options">3.17.6 CRX Options</a>
<li><a href="#Darwin-Options">3.17.7 Darwin Options</a>
<li><a href="#DEC-Alpha-Options">3.17.8 DEC Alpha Options</a>
<li><a href="#DEC-Alpha_002fVMS-Options">3.17.9 DEC Alpha/VMS Options</a>
<li><a href="#FR30-Options">3.17.10 FR30 Options</a>
<li><a href="#FRV-Options">3.17.11 FRV Options</a>
<li><a href="#GNU_002fLinux-Options">3.17.12 GNU/Linux Options</a>
<li><a href="#H8_002f300-Options">3.17.13 H8/300 Options</a>
<li><a href="#HPPA-Options">3.17.14 HPPA Options</a>
<li><a href="#i386-and-x86_002d64-Options">3.17.15 Intel 386 and AMD x86-64 Options</a>
<li><a href="#i386-and-x86_002d64-Windows-Options">3.17.16 i386 and x86-64 Windows Options</a>
<li><a href="#IA_002d64-Options">3.17.17 IA-64 Options</a>
<li><a href="#IA_002d64_002fVMS-Options">3.17.18 IA-64/VMS Options</a>
<li><a href="#LM32-Options">3.17.19 LM32 Options</a>
<li><a href="#M32C-Options">3.17.20 M32C Options</a>
<li><a href="#M32R_002fD-Options">3.17.21 M32R/D Options</a>
<li><a href="#M680x0-Options">3.17.22 M680x0 Options</a>
<li><a href="#M68hc1x-Options">3.17.23 M68hc1x Options</a>
<li><a href="#MCore-Options">3.17.24 MCore Options</a>
<li><a href="#MeP-Options">3.17.25 MeP Options</a>
<li><a href="#MicroBlaze-Options">3.17.26 MicroBlaze Options</a>
<li><a href="#MIPS-Options">3.17.27 MIPS Options</a>
<li><a href="#MMIX-Options">3.17.28 MMIX Options</a>
<li><a href="#MN10300-Options">3.17.29 MN10300 Options</a>
<li><a href="#PDP_002d11-Options">3.17.30 PDP-11 Options</a>
<li><a href="#picoChip-Options">3.17.31 picoChip Options</a>
<li><a href="#PowerPC-Options">3.17.32 PowerPC Options</a>
<li><a href="#RS_002f6000-and-PowerPC-Options">3.17.33 IBM RS/6000 and PowerPC Options</a>
<li><a href="#RX-Options">3.17.34 RX Options</a>
<li><a href="#S_002f390-and-zSeries-Options">3.17.35 S/390 and zSeries Options</a>
<li><a href="#Score-Options">3.17.36 Score Options</a>
<li><a href="#SH-Options">3.17.37 SH Options</a>
<li><a href="#Solaris-2-Options">3.17.38 Solaris 2 Options</a>
<li><a href="#SPARC-Options">3.17.39 SPARC Options</a>
<li><a href="#SPU-Options">3.17.40 SPU Options</a>
<li><a href="#System-V-Options">3.17.41 Options for System V</a>
<li><a href="#V850-Options">3.17.42 V850 Options</a>
<li><a href="#VAX-Options">3.17.43 VAX Options</a>
<li><a href="#VxWorks-Options">3.17.44 VxWorks Options</a>
<li><a href="#x86_002d64-Options">3.17.45 x86-64 Options</a>
<li><a href="#Xstormy16-Options">3.17.46 Xstormy16 Options</a>
<li><a href="#Xtensa-Options">3.17.47 Xtensa Options</a>
<li><a href="#zSeries-Options">3.17.48 zSeries Options</a>
</li></ul>
<li><a href="#Code-Gen-Options">3.18 Options for Code Generation Conventions</a>
<li><a href="#Environment-Variables">3.19 Environment Variables Affecting GCC</a>
<li><a href="#Precompiled-Headers">3.20 Using Precompiled Headers</a>
</li></ul>
<li><a name="toc_C-Implementation" href="#C-Implementation">4 C Implementation-defined behavior</a>
<ul>
<li><a href="#Translation-implementation">4.1 Translation</a>
<li><a href="#Environment-implementation">4.2 Environment</a>
<li><a href="#Identifiers-implementation">4.3 Identifiers</a>
<li><a href="#Characters-implementation">4.4 Characters</a>
<li><a href="#Integers-implementation">4.5 Integers</a>
<li><a href="#Floating-point-implementation">4.6 Floating point</a>
<li><a href="#Arrays-and-pointers-implementation">4.7 Arrays and pointers</a>
<li><a href="#Hints-implementation">4.8 Hints</a>
<li><a href="#Structures-unions-enumerations-and-bit_002dfields-implementation">4.9 Structures, unions, enumerations, and bit-fields</a>
<li><a href="#Qualifiers-implementation">4.10 Qualifiers</a>
<li><a href="#Declarators-implementation">4.11 Declarators</a>
<li><a href="#Statements-implementation">4.12 Statements</a>
<li><a href="#Preprocessing-directives-implementation">4.13 Preprocessing directives</a>
<li><a href="#Library-functions-implementation">4.14 Library functions</a>
<li><a href="#Architecture-implementation">4.15 Architecture</a>
<li><a href="#Locale_002dspecific-behavior-implementation">4.16 Locale-specific behavior</a>
</li></ul>
<li><a name="toc_C_002b_002b-Implementation" href="#C_002b_002b-Implementation">5 C++ Implementation-defined behavior</a>
<ul>
<li><a href="#Conditionally_002dsupported-behavior">5.1 Conditionally-supported behavior</a>
<li><a href="#Exception-handling">5.2 Exception handling</a>
</li></ul>
<li><a name="toc_C-Extensions" href="#C-Extensions">6 Extensions to the C Language Family</a>
<ul>
<li><a href="#Statement-Exprs">6.1 Statements and Declarations in Expressions</a>
<li><a href="#Local-Labels">6.2 Locally Declared Labels</a>
<li><a href="#Labels-as-Values">6.3 Labels as Values</a>
<li><a href="#Nested-Functions">6.4 Nested Functions</a>
<li><a href="#Constructing-Calls">6.5 Constructing Function Calls</a>
<li><a href="#Typeof">6.6 Referring to a Type with <code>typeof</code></a>
<li><a href="#Conditionals">6.7 Conditionals with Omitted Operands</a>
<li><a href="#_005f_005fint128">6.8 128-bits integers</a>
<li><a href="#Long-Long">6.9 Double-Word Integers</a>
<li><a href="#Complex">6.10 Complex Numbers</a>
<li><a href="#Floating-Types">6.11 Additional Floating Types</a>
<li><a href="#Half_002dPrecision">6.12 Half-Precision Floating Point</a>
<li><a href="#Decimal-Float">6.13 Decimal Floating Types</a>
<li><a href="#Hex-Floats">6.14 Hex Floats</a>
<li><a href="#Fixed_002dPoint">6.15 Fixed-Point Types</a>
<li><a href="#Named-Address-Spaces">6.16 Named address spaces</a>
<li><a href="#Zero-Length">6.17 Arrays of Length Zero</a>
<li><a href="#Empty-Structures">6.18 Structures With No Members</a>
<li><a href="#Variable-Length">6.19 Arrays of Variable Length</a>
<li><a href="#Variadic-Macros">6.20 Macros with a Variable Number of Arguments.</a>
<li><a href="#Escaped-Newlines">6.21 Slightly Looser Rules for Escaped Newlines</a>
<li><a href="#Subscripting">6.22 Non-Lvalue Arrays May Have Subscripts</a>
<li><a href="#Pointer-Arith">6.23 Arithmetic on <code>void</code>- and Function-Pointers</a>
<li><a href="#Initializers">6.24 Non-Constant Initializers</a>
<li><a href="#Compound-Literals">6.25 Compound Literals</a>
<li><a href="#Designated-Inits">6.26 Designated Initializers</a>
<li><a href="#Case-Ranges">6.27 Case Ranges</a>
<li><a href="#Cast-to-Union">6.28 Cast to a Union Type</a>
<li><a href="#Mixed-Declarations">6.29 Mixed Declarations and Code</a>
<li><a href="#Function-Attributes">6.30 Declaring Attributes of Functions</a>
<li><a href="#Attribute-Syntax">6.31 Attribute Syntax</a>
<li><a href="#Function-Prototypes">6.32 Prototypes and Old-Style Function Definitions</a>
<li><a href="#C_002b_002b-Comments">6.33 C++ Style Comments</a>
<li><a href="#Dollar-Signs">6.34 Dollar Signs in Identifier Names</a>
<li><a href="#Character-Escapes">6.35 The Character &lt;ESC&gt; in Constants</a>
<li><a href="#Variable-Attributes">6.36 Specifying Attributes of Variables</a>
<ul>
<li><a href="#Variable-Attributes">6.36.1 AVR Variable Attributes</a>
<li><a href="#Variable-Attributes">6.36.2 Blackfin Variable Attributes</a>
<li><a href="#Variable-Attributes">6.36.3 M32R/D Variable Attributes</a>
<li><a href="#Variable-Attributes">6.36.4 MeP Variable Attributes</a>
<li><a href="#Variable-Attributes">6.36.5 i386 Variable Attributes</a>
<li><a href="#Variable-Attributes">6.36.6 PowerPC Variable Attributes</a>
<li><a href="#Variable-Attributes">6.36.7 SPU Variable Attributes</a>
<li><a href="#Variable-Attributes">6.36.8 Xstormy16 Variable Attributes</a>
</li></ul>
<li><a href="#Type-Attributes">6.37 Specifying Attributes of Types</a>
<ul>
<li><a href="#Type-Attributes">6.37.1 ARM Type Attributes</a>
<li><a href="#Type-Attributes">6.37.2 MeP Type Attributes</a>
<li><a href="#Type-Attributes">6.37.3 i386 Type Attributes</a>
<li><a href="#Type-Attributes">6.37.4 PowerPC Type Attributes</a>
<li><a href="#Type-Attributes">6.37.5 SPU Type Attributes</a>
</li></ul>
<li><a href="#Alignment">6.38 Inquiring on Alignment of Types or Variables</a>
<li><a href="#Inline">6.39 An Inline Function is As Fast As a Macro</a>
<li><a href="#Volatiles">6.40 When is a Volatile Object Accessed?</a>
<li><a href="#Extended-Asm">6.41 Assembler Instructions with C Expression Operands</a>
<ul>
<li><a href="#Extended-Asm">6.41.1 Size of an <code>asm</code></a>
<li><a href="#Extended-Asm">6.41.2 i386 floating point asm operands</a>
</li></ul>
<li><a href="#Constraints">6.42 Constraints for <code>asm</code> Operands</a>
<ul>
<li><a href="#Simple-Constraints">6.42.1 Simple Constraints</a>
<li><a href="#Multi_002dAlternative">6.42.2 Multiple Alternative Constraints</a>
<li><a href="#Modifiers">6.42.3 Constraint Modifier Characters</a>
<li><a href="#Machine-Constraints">6.42.4 Constraints for Particular Machines</a>
</li></ul>
<li><a href="#Asm-Labels">6.43 Controlling Names Used in Assembler Code</a>
<li><a href="#Explicit-Reg-Vars">6.44 Variables in Specified Registers</a>
<ul>
<li><a href="#Global-Reg-Vars">6.44.1 Defining Global Register Variables</a>
<li><a href="#Local-Reg-Vars">6.44.2 Specifying Registers for Local Variables</a>
</li></ul>
<li><a href="#Alternate-Keywords">6.45 Alternate Keywords</a>
<li><a href="#Incomplete-Enums">6.46 Incomplete <code>enum</code> Types</a>
<li><a href="#Function-Names">6.47 Function Names as Strings</a>
<li><a href="#Return-Address">6.48 Getting the Return or Frame Address of a Function</a>
<li><a href="#Vector-Extensions">6.49 Using vector instructions through built-in functions</a>
<li><a href="#Offsetof">6.50 Offsetof</a>
<li><a href="#Atomic-Builtins">6.51 Built-in functions for atomic memory access</a>
<li><a href="#Object-Size-Checking">6.52 Object Size Checking Builtins</a>
<li><a href="#Other-Builtins">6.53 Other built-in functions provided by GCC</a>
<li><a href="#Target-Builtins">6.54 Built-in Functions Specific to Particular Target Machines</a>
<ul>
<li><a href="#Alpha-Built_002din-Functions">6.54.1 Alpha Built-in Functions</a>
<li><a href="#ARM-iWMMXt-Built_002din-Functions">6.54.2 ARM iWMMXt Built-in Functions</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3 ARM NEON Intrinsics</a>
<ul>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.1 Addition</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.2 Multiplication</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.3 Multiply-accumulate</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.4 Multiply-subtract</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.5 Subtraction</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.6 Comparison (equal-to)</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.7 Comparison (greater-than-or-equal-to)</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.8 Comparison (less-than-or-equal-to)</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.9 Comparison (greater-than)</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.10 Comparison (less-than)</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.11 Comparison (absolute greater-than-or-equal-to)</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.12 Comparison (absolute less-than-or-equal-to)</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.13 Comparison (absolute greater-than)</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.14 Comparison (absolute less-than)</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.15 Test bits</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.16 Absolute difference</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.17 Absolute difference and accumulate</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.18 Maximum</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.19 Minimum</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.20 Pairwise add</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.21 Pairwise add, single_opcode widen and accumulate</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.22 Folding maximum</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.23 Folding minimum</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.24 Reciprocal step</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.25 Vector shift left</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.26 Vector shift left by constant</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.27 Vector shift right by constant</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.28 Vector shift right by constant and accumulate</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.29 Vector shift right and insert</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.30 Vector shift left and insert</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.31 Absolute value</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.32 Negation</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.33 Bitwise not</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.34 Count leading sign bits</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.35 Count leading zeros</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.36 Count number of set bits</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.37 Reciprocal estimate</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.38 Reciprocal square-root estimate</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.39 Get lanes from a vector</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.40 Set lanes in a vector</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.41 Create vector from literal bit pattern</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.42 Set all lanes to the same value</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.43 Combining vectors</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.44 Splitting vectors</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.45 Conversions</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.46 Move, single_opcode narrowing</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.47 Move, single_opcode long</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.48 Table lookup</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.49 Extended table lookup</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.50 Multiply, lane</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.51 Long multiply, lane</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.52 Saturating doubling long multiply, lane</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.53 Saturating doubling multiply high, lane</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.54 Multiply-accumulate, lane</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.55 Multiply-subtract, lane</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.56 Vector multiply by scalar</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.57 Vector long multiply by scalar</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.58 Vector saturating doubling long multiply by scalar</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.59 Vector saturating doubling multiply high by scalar</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.60 Vector multiply-accumulate by scalar</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.61 Vector multiply-subtract by scalar</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.62 Vector extract</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.63 Reverse elements</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.64 Bit selection</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.65 Transpose elements</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.66 Zip elements</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.67 Unzip elements</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.68 Element/structure loads, VLD1 variants</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.69 Element/structure stores, VST1 variants</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.70 Element/structure loads, VLD2 variants</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.71 Element/structure stores, VST2 variants</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.72 Element/structure loads, VLD3 variants</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.73 Element/structure stores, VST3 variants</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.74 Element/structure loads, VLD4 variants</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.75 Element/structure stores, VST4 variants</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.76 Logical operations (AND)</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.77 Logical operations (OR)</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.78 Logical operations (exclusive OR)</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.79 Logical operations (AND-NOT)</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.80 Logical operations (OR-NOT)</a>
<li><a href="#ARM-NEON-Intrinsics">6.54.3.81 Reinterpret casts</a>
</li></ul>
<li><a href="#Blackfin-Built_002din-Functions">6.54.4 Blackfin Built-in Functions</a>
<li><a href="#FR_002dV-Built_002din-Functions">6.54.5 FR-V Built-in Functions</a>
<ul>
<li><a href="#Argument-Types">6.54.5.1 Argument Types</a>
<li><a href="#Directly_002dmapped-Integer-Functions">6.54.5.2 Directly-mapped Integer Functions</a>
<li><a href="#Directly_002dmapped-Media-Functions">6.54.5.3 Directly-mapped Media Functions</a>
<li><a href="#Raw-read_002fwrite-Functions">6.54.5.4 Raw read/write Functions</a>
<li><a href="#Other-Built_002din-Functions">6.54.5.5 Other Built-in Functions</a>
</li></ul>
<li><a href="#X86-Built_002din-Functions">6.54.6 X86 Built-in Functions</a>
<li><a href="#MIPS-DSP-Built_002din-Functions">6.54.7 MIPS DSP Built-in Functions</a>
<li><a href="#MIPS-Paired_002dSingle-Support">6.54.8 MIPS Paired-Single Support</a>
<li><a href="#MIPS-Loongson-Built_002din-Functions">6.54.9 MIPS Loongson Built-in Functions</a>
<ul>
<li><a href="#Paired_002dSingle-Arithmetic">6.54.9.1 Paired-Single Arithmetic</a>
<li><a href="#Paired_002dSingle-Built_002din-Functions">6.54.9.2 Paired-Single Built-in Functions</a>
<li><a href="#MIPS_002d3D-Built_002din-Functions">6.54.9.3 MIPS-3D Built-in Functions</a>
</li></ul>
<li><a href="#picoChip-Built_002din-Functions">6.54.10 picoChip Built-in Functions</a>
<li><a href="#Other-MIPS-Built_002din-Functions">6.54.11 Other MIPS Built-in Functions</a>
<li><a href="#PowerPC-AltiVec_002fVSX-Built_002din-Functions">6.54.12 PowerPC AltiVec Built-in Functions</a>
<li><a href="#RX-Built_002din-Functions">6.54.13 RX Built-in Functions</a>
<li><a href="#SPARC-VIS-Built_002din-Functions">6.54.14 SPARC VIS Built-in Functions</a>
<li><a href="#SPU-Built_002din-Functions">6.54.15 SPU Built-in Functions</a>
</li></ul>
<li><a href="#Target-Format-Checks">6.55 Format Checks Specific to Particular Target Machines</a>
<ul>
<li><a href="#Solaris-Format-Checks">6.55.1 Solaris Format Checks</a>
<li><a href="#Darwin-Format-Checks">6.55.2 Darwin Format Checks</a>
</li></ul>
<li><a href="#Pragmas">6.56 Pragmas Accepted by GCC</a>
<ul>
<li><a href="#ARM-Pragmas">6.56.1 ARM Pragmas</a>
<li><a href="#M32C-Pragmas">6.56.2 M32C Pragmas</a>
<li><a href="#MeP-Pragmas">6.56.3 MeP Pragmas</a>
<li><a href="#RS_002f6000-and-PowerPC-Pragmas">6.56.4 RS/6000 and PowerPC Pragmas</a>
<li><a href="#Darwin-Pragmas">6.56.5 Darwin Pragmas</a>
<li><a href="#Solaris-Pragmas">6.56.6 Solaris Pragmas</a>
<li><a href="#Symbol_002dRenaming-Pragmas">6.56.7 Symbol-Renaming Pragmas</a>
<li><a href="#Structure_002dPacking-Pragmas">6.56.8 Structure-Packing Pragmas</a>
<li><a href="#Weak-Pragmas">6.56.9 Weak Pragmas</a>
<li><a href="#Diagnostic-Pragmas">6.56.10 Diagnostic Pragmas</a>
<li><a href="#Visibility-Pragmas">6.56.11 Visibility Pragmas</a>
<li><a href="#Push_002fPop-Macro-Pragmas">6.56.12 Push/Pop Macro Pragmas</a>
<li><a href="#Function-Specific-Option-Pragmas">6.56.13 Function Specific Option Pragmas</a>
</li></ul>
<li><a href="#Unnamed-Fields">6.57 Unnamed struct/union fields within structs/unions</a>
<li><a href="#Thread_002dLocal">6.58 Thread-Local Storage</a>
<ul>
<li><a href="#C99-Thread_002dLocal-Edits">6.58.1 ISO/IEC 9899:1999 Edits for Thread-Local Storage</a>
<li><a href="#C_002b_002b98-Thread_002dLocal-Edits">6.58.2 ISO/IEC 14882:1998 Edits for Thread-Local Storage</a>
</li></ul>
<li><a href="#Binary-constants">6.59 Binary constants using the &lsquo;<samp><span class="samp">0b</span></samp>&rsquo; prefix</a>
</li></ul>
<li><a name="toc_C_002b_002b-Extensions" href="#C_002b_002b-Extensions">7 Extensions to the C++ Language</a>
<ul>
<li><a href="#C_002b_002b-Volatiles">7.1 When is a Volatile C++ Object Accessed?</a>
<li><a href="#Restricted-Pointers">7.2 Restricting Pointer Aliasing</a>
<li><a href="#Vague-Linkage">7.3 Vague Linkage</a>
<li><a href="#C_002b_002b-Interface">7.4 #pragma interface and implementation</a>
<li><a href="#Template-Instantiation">7.5 Where's the Template?</a>
<li><a href="#Bound-member-functions">7.6 Extracting the function pointer from a bound pointer to member function</a>
<li><a href="#C_002b_002b-Attributes">7.7 C++-Specific Variable, Function, and Type Attributes</a>
<li><a href="#Namespace-Association">7.8 Namespace Association</a>
<li><a href="#Type-Traits">7.9 Type Traits</a>
<li><a href="#Java-Exceptions">7.10 Java Exceptions</a>
<li><a href="#Deprecated-Features">7.11 Deprecated Features</a>
<li><a href="#Backwards-Compatibility">7.12 Backwards Compatibility</a>
</li></ul>
<li><a name="toc_Objective_002dC" href="#Objective_002dC">8 GNU Objective-C features</a>
<ul>
<li><a href="#GNU-Objective_002dC-runtime-API">8.1 GNU Objective-C runtime API</a>
<ul>
<li><a href="#Modern-GNU-Objective_002dC-runtime-API">8.1.1 Modern GNU Objective-C runtime API</a>
<li><a href="#Traditional-GNU-Objective_002dC-runtime-API">8.1.2 Traditional GNU Objective-C runtime API</a>
</li></ul>
<li><a href="#Executing-code-before-main">8.2 <code>+load</code>: Executing code before main</a>
<ul>
<li><a href="#What-you-can-and-what-you-cannot-do-in-_002bload">8.2.1 What you can and what you cannot do in <code>+load</code></a>
</li></ul>
<li><a href="#Type-encoding">8.3 Type encoding</a>
<ul>
<li><a href="#Legacy-type-encoding">8.3.1 Legacy type encoding</a>
<li><a href="#_0040encode">8.3.2 @encode</a>
<li><a href="#Method-signatures">8.3.3 Method signatures</a>
</li></ul>
<li><a href="#Garbage-Collection">8.4 Garbage Collection</a>
<li><a href="#Constant-string-objects">8.5 Constant string objects</a>
<li><a href="#compatibility_005falias">8.6 compatibility_alias</a>
<li><a href="#Exceptions">8.7 Exceptions</a>
<li><a href="#Synchronization">8.8 Synchronization</a>
<li><a href="#Fast-enumeration">8.9 Fast enumeration</a>
<ul>
<li><a href="#Using-fast-enumeration">8.9.1 Using fast enumeration</a>
<li><a href="#c99_002dlike-fast-enumeration-syntax">8.9.2 c99-like fast enumeration syntax</a>
<li><a href="#Fast-enumeration-details">8.9.3 Fast enumeration details</a>
<li><a href="#Fast-enumeration-protocol">8.9.4 Fast enumeration protocol</a>
</li></ul>
<li><a href="#Messaging-with-the-GNU-Objective_002dC-runtime">8.10 Messaging with the GNU Objective-C runtime</a>
<ul>
<li><a href="#Dynamically-registering-methods">8.10.1 Dynamically registering methods</a>
<li><a href="#Forwarding-hook">8.10.2 Forwarding hook</a>
</li></ul>
</li></ul>
<li><a name="toc_Compatibility" href="#Compatibility">9 Binary Compatibility</a>
<li><a name="toc_Gcov" href="#Gcov">10 <samp><span class="command">gcov</span></samp>&mdash;a Test Coverage Program</a>
<ul>
<li><a href="#Gcov-Intro">10.1 Introduction to <samp><span class="command">gcov</span></samp></a>
<li><a href="#Invoking-Gcov">10.2 Invoking <samp><span class="command">gcov</span></samp></a>
<li><a href="#Gcov-and-Optimization">10.3 Using <samp><span class="command">gcov</span></samp> with GCC Optimization</a>
<li><a href="#Gcov-Data-Files">10.4 Brief description of <samp><span class="command">gcov</span></samp> data files</a>
<li><a href="#Cross_002dprofiling">10.5 Data file relocation to support cross-profiling</a>
</li></ul>
<li><a name="toc_Trouble" href="#Trouble">11 Known Causes of Trouble with GCC</a>
<ul>
<li><a href="#Actual-Bugs">11.1 Actual Bugs We Haven't Fixed Yet</a>
<li><a href="#Cross_002dCompiler-Problems">11.2 Cross-Compiler Problems</a>
<li><a href="#Interoperation">11.3 Interoperation</a>
<li><a href="#Incompatibilities">11.4 Incompatibilities of GCC</a>
<li><a href="#Fixed-Headers">11.5 Fixed Header Files</a>
<li><a href="#Standard-Libraries">11.6 Standard Libraries</a>
<li><a href="#Disappointments">11.7 Disappointments and Misunderstandings</a>
<li><a href="#C_002b_002b-Misunderstandings">11.8 Common Misunderstandings with GNU C++</a>
<ul>
<li><a href="#Static-Definitions">11.8.1 Declare <em>and</em> Define Static Members</a>
<li><a href="#Name-lookup">11.8.2 Name lookup, templates, and accessing members of base classes</a>
<li><a href="#Temporaries">11.8.3 Temporaries May Vanish Before You Expect</a>
<li><a href="#Copy-Assignment">11.8.4 Implicit Copy-Assignment for Virtual Bases</a>
</li></ul>
<li><a href="#Non_002dbugs">11.9 Certain Changes We Don't Want to Make</a>
<li><a href="#Warnings-and-Errors">11.10 Warning Messages and Error Messages</a>
</li></ul>
<li><a name="toc_Bugs" href="#Bugs">12 Reporting Bugs</a>
<ul>
<li><a href="#Bug-Criteria">12.1 Have You Found a Bug?</a>
<li><a href="#Bug-Reporting">12.2 How and where to Report Bugs</a>
</li></ul>
<li><a name="toc_Service" href="#Service">13 How To Get Help with GCC</a>
<li><a name="toc_Contributing" href="#Contributing">14 Contributing to GCC Development</a>
<li><a name="toc_Funding" href="#Funding">Funding Free Software</a>
<li><a name="toc_GNU-Project" href="#GNU-Project">The GNU Project and GNU/Linux</a>
<li><a name="toc_Copying" href="#Copying">GNU General Public License</a>
<li><a name="toc_GNU-Free-Documentation-License" href="#GNU-Free-Documentation-License">GNU Free Documentation License</a>
<ul>
<li><a href="#GNU-Free-Documentation-License">ADDENDUM: How to use this License for your documents</a>
</li></ul>
<li><a name="toc_Contributors" href="#Contributors">Contributors to GCC</a>
<li><a name="toc_Option-Index" href="#Option-Index">Option Index</a>
<li><a name="toc_Keyword-Index" href="#Keyword-Index">Keyword Index</a>
</li></ul>
</div>

<div class="node">
<a name="Top"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#G_002b_002b-and-GCC">G++ and GCC</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#DIR">(DIR)</a>

</div>

<h2 class="unnumbered">Introduction</h2>

<p><a name="index-introduction-1"></a>
This manual documents how to use the GNU compilers,
as well as their features and incompatibilities, and how to report
bugs.  It corresponds to the compilers
(Ubuntu/Linaro 4.6.3-1ubuntu5)
version 4.6.3. 
The internals of the GNU compilers, including how to port them to new
targets and some information about how to write front ends for new
languages, are documented in a separate manual.  See <a href="{No value for `fngccint'}.html#Top">Introduction</a>.

<ul class="menu">
<li><a accesskey="1" href="#G_002b_002b-and-GCC">G++ and GCC</a>:      You can compile C or C++ programs. 
<li><a accesskey="2" href="#Standards">Standards</a>:        Language standards supported by GCC. 
<li><a accesskey="3" href="#Invoking-GCC">Invoking GCC</a>:     Command options supported by &lsquo;<samp><span class="samp">gcc</span></samp>&rsquo;. 
<li><a accesskey="4" href="#C-Implementation">C Implementation</a>:  How GCC implements the ISO C specification. 
<li><a accesskey="5" href="#C-Extensions">C Extensions</a>:     GNU extensions to the C language family. 
<li><a accesskey="6" href="#C_002b_002b-Implementation">C++ Implementation</a>:  How GCC implements the ISO C++ specification. 
<li><a accesskey="7" href="#C_002b_002b-Extensions">C++ Extensions</a>:   GNU extensions to the C++ language. 
<li><a accesskey="8" href="#Objective_002dC">Objective-C</a>:      GNU Objective-C runtime features. 
<li><a accesskey="9" href="#Compatibility">Compatibility</a>:    Binary Compatibility
<li><a href="#Gcov">Gcov</a>:             <samp><span class="command">gcov</span></samp>---a test coverage program. 
<li><a href="#Trouble">Trouble</a>:          If you have trouble using GCC. 
<li><a href="#Bugs">Bugs</a>:             How, why and where to report bugs. 
<li><a href="#Service">Service</a>:          How to find suppliers of support for GCC. 
<li><a href="#Contributing">Contributing</a>:     How to contribute to testing and developing GCC.

<li><a href="#Funding">Funding</a>:          How to help assure funding for free software. 
<li><a href="#GNU-Project">GNU Project</a>:      The GNU Project and GNU/Linux.

<li><a href="#Copying">Copying</a>:          GNU General Public License says
                    how you can copy and share GCC. 
<li><a href="#GNU-Free-Documentation-License">GNU Free Documentation License</a>:  How you can copy and share this manual. 
<li><a href="#Contributors">Contributors</a>:     People who have contributed to GCC.

<li><a href="#Option-Index">Option Index</a>:     Index to command line options. 
<li><a href="#Keyword-Index">Keyword Index</a>:    Index of concepts and symbol names. 
</ul>

<!-- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, -->
<!-- 1999, 2000, 2001, 2002, 2004, 2008, 2010 Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="G++-and-GCC"></a>
<a name="G_002b_002b-and-GCC"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Standards">Standards</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Top">Top</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Top">Top</a>

</div>

<h2 class="chapter">1 Programming Languages Supported by GCC</h2>

<p><a name="index-GCC-2"></a><a name="index-GNU-Compiler-Collection-3"></a><a name="index-GNU-C-Compiler-4"></a><a name="index-Ada-5"></a><a name="index-Fortran-6"></a><a name="index-Go-7"></a><a name="index-Java-8"></a><a name="index-Objective_002dC-9"></a><a name="index-Objective_002dC_002b_002b-10"></a>GCC stands for &ldquo;GNU Compiler Collection&rdquo;.  GCC is an integrated
distribution of compilers for several major programming languages.  These
languages currently include C, C++, Objective-C, Objective-C++, Java,
Fortran, Ada, and Go.

 <p>The abbreviation <dfn>GCC</dfn> has multiple meanings in common use.  The
current official meaning is &ldquo;GNU Compiler Collection&rdquo;, which refers
generically to the complete suite of tools.  The name historically stood
for &ldquo;GNU C Compiler&rdquo;, and this usage is still common when the emphasis
is on compiling C programs.  Finally, the name is also used when speaking
of the <dfn>language-independent</dfn> component of GCC: code shared among the
compilers for all supported languages.

 <p>The language-independent component of GCC includes the majority of the
optimizers, as well as the &ldquo;back ends&rdquo; that generate machine code for
various processors.

 <p><a name="index-COBOL-11"></a><a name="index-Mercury-12"></a><a name="index-Pascal-13"></a>The part of a compiler that is specific to a particular language is
called the &ldquo;front end&rdquo;.  In addition to the front ends that are
integrated components of GCC, there are several other front ends that
are maintained separately.  These support languages such as Pascal,
Mercury, and COBOL.  To use these, they must be built together with
GCC proper.

 <p><a name="index-C_002b_002b-14"></a><a name="index-G_002b_002b-15"></a><a name="index-Ada-16"></a><a name="index-GNAT-17"></a>Most of the compilers for languages other than C have their own names. 
The C++ compiler is G++, the Ada compiler is GNAT, and so on.  When we
talk about compiling one of those languages, we might refer to that
compiler by its own name, or as GCC.  Either is correct.

 <p><a name="index-compiler-compared-to-C_002b_002b-preprocessor-18"></a><a name="index-intermediate-C-version_002c-nonexistent-19"></a><a name="index-C-intermediate-output_002c-nonexistent-20"></a>Historically, compilers for many languages, including C++ and Fortran,
have been implemented as &ldquo;preprocessors&rdquo; which emit another high
level language such as C.  None of the compilers included in GCC are
implemented this way; they all generate machine code directly.  This
sort of preprocessor should not be confused with the <dfn>C
preprocessor</dfn>, which is an integral feature of the C, C++, Objective-C
and Objective-C++ languages.

<!-- Copyright (C) 2000, 2001, 2002, 2004, 2006, 2007, 2008, 2010, 2011 -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Standards"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Invoking-GCC">Invoking GCC</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#G_002b_002b-and-GCC">G++ and GCC</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Top">Top</a>

</div>

<h2 class="chapter">2 Language Standards Supported by GCC</h2>

<p>For each language compiled by GCC for which there is a standard, GCC
attempts to follow one or more versions of that standard, possibly
with some exceptions, and possibly with some extensions.

<h3 class="section">2.1 C language</h3>

<p><a name="index-C-standard-21"></a><a name="index-C-standards-22"></a><a name="index-ANSI-C-standard-23"></a><a name="index-ANSI-C-24"></a><a name="index-ANSI-C89-25"></a><a name="index-C89-26"></a><a name="index-ANSI-X3_002e159_002d1989-27"></a><a name="index-X3_002e159_002d1989-28"></a><a name="index-ISO-C-standard-29"></a><a name="index-ISO-C-30"></a><a name="index-ISO-C90-31"></a><a name="index-ISO_002fIEC-9899-32"></a><a name="index-ISO-9899-33"></a><a name="index-C90-34"></a><a name="index-ISO-C94-35"></a><a name="index-C94-36"></a><a name="index-ISO-C95-37"></a><a name="index-C95-38"></a><a name="index-ISO-C99-39"></a><a name="index-C99-40"></a><a name="index-ISO-C9X-41"></a><a name="index-C9X-42"></a><a name="index-ISO-C1X-43"></a><a name="index-C1X-44"></a><a name="index-Technical-Corrigenda-45"></a><a name="index-TC1-46"></a><a name="index-Technical-Corrigendum-1-47"></a><a name="index-TC2-48"></a><a name="index-Technical-Corrigendum-2-49"></a><a name="index-TC3-50"></a><a name="index-Technical-Corrigendum-3-51"></a><a name="index-AMD1-52"></a><a name="index-freestanding-implementation-53"></a><a name="index-freestanding-environment-54"></a><a name="index-hosted-implementation-55"></a><a name="index-hosted-environment-56"></a><a name="index-g_t_005f_005fSTDC_005fHOSTED_005f_005f-57"></a>
GCC supports three versions of the C standard, although support for
the most recent version is not yet complete.

 <p><a name="index-std-58"></a><a name="index-ansi-59"></a><a name="index-pedantic-60"></a><a name="index-pedantic_002derrors-61"></a>The original ANSI C standard (X3.159-1989) was ratified in 1989 and
published in 1990.  This standard was ratified as an ISO standard
(ISO/IEC 9899:1990) later in 1990.  There were no technical
differences between these publications, although the sections of the
ANSI standard were renumbered and became clauses in the ISO standard. 
This standard, in both its forms, is commonly known as <dfn>C89</dfn>, or
occasionally as <dfn>C90</dfn>, from the dates of ratification.  The ANSI
standard, but not the ISO standard, also came with a Rationale
document.  To select this standard in GCC, use one of the options
<samp><span class="option">-ansi</span></samp>, <samp><span class="option">-std=c90</span></samp> or <samp><span class="option">-std=iso9899:1990</span></samp>; to obtain
all the diagnostics required by the standard, you should also specify
<samp><span class="option">-pedantic</span></samp> (or <samp><span class="option">-pedantic-errors</span></samp> if you want them to be
errors rather than warnings).  See <a href="#C-Dialect-Options">Options Controlling C Dialect</a>.

 <p>Errors in the 1990 ISO C standard were corrected in two Technical
Corrigenda published in 1994 and 1996.  GCC does not support the
uncorrected version.

 <p>An amendment to the 1990 standard was published in 1995.  This
amendment added digraphs and <code>__STDC_VERSION__</code> to the language,
but otherwise concerned the library.  This amendment is commonly known
as <dfn>AMD1</dfn>; the amended standard is sometimes known as <dfn>C94</dfn> or
<dfn>C95</dfn>.  To select this standard in GCC, use the option
<samp><span class="option">-std=iso9899:199409</span></samp> (with, as for other standard versions,
<samp><span class="option">-pedantic</span></samp> to receive all required diagnostics).

 <p>A new edition of the ISO C standard was published in 1999 as ISO/IEC
9899:1999, and is commonly known as <dfn>C99</dfn>.  GCC has incomplete
support for this standard version; see
<a href="http://gcc.gnu.org/gcc-4.6/c99status.html">http://gcc.gnu.org/gcc-4.6/c99status.html</a> for details.  To select this
standard, use <samp><span class="option">-std=c99</span></samp> or <samp><span class="option">-std=iso9899:1999</span></samp>.  (While in
development, drafts of this standard version were referred to as
<dfn>C9X</dfn>.)

 <p>Errors in the 1999 ISO C standard were corrected in three Technical
Corrigenda published in 2001, 2004 and 2007.  GCC does not support the
uncorrected version.

 <p>A fourth version of the C standard, known as <dfn>C1X</dfn>, is under
development; GCC has limited preliminary support for parts of this
standard, enabled with <samp><span class="option">-std=c1x</span></samp>.

 <p>By default, GCC provides some extensions to the C language that on
rare occasions conflict with the C standard.  See <a href="#C-Extensions">Extensions to the C Language Family</a>.  Use of the
<samp><span class="option">-std</span></samp> options listed above will disable these extensions where
they conflict with the C standard version selected.  You may also
select an extended version of the C language explicitly with
<samp><span class="option">-std=gnu90</span></samp> (for C90 with GNU extensions), <samp><span class="option">-std=gnu99</span></samp>
(for C99 with GNU extensions) or <samp><span class="option">-std=gnu1x</span></samp> (for C1X with GNU
extensions).  The default, if no C language dialect
options are given, is <samp><span class="option">-std=gnu90</span></samp>; this will change to
<samp><span class="option">-std=gnu99</span></samp> in some future release when the C99 support is
complete.  Some features that are part of the C99 standard are
accepted as extensions in C90 mode.

 <p>The ISO C standard defines (in clause 4) two classes of conforming
implementation.  A <dfn>conforming hosted implementation</dfn> supports the
whole standard including all the library facilities; a <dfn>conforming
freestanding implementation</dfn> is only required to provide certain
library facilities: those in <code>&lt;float.h&gt;</code>, <code>&lt;limits.h&gt;</code>,
<code>&lt;stdarg.h&gt;</code>, and <code>&lt;stddef.h&gt;</code>; since AMD1, also those in
<code>&lt;iso646.h&gt;</code>; and in C99, also those in <code>&lt;stdbool.h&gt;</code> and
<code>&lt;stdint.h&gt;</code>.  In addition, complex types, added in C99, are not
required for freestanding implementations.  The standard also defines
two environments for programs, a <dfn>freestanding environment</dfn>,
required of all implementations and which may not have library
facilities beyond those required of freestanding implementations,
where the handling of program startup and termination are
implementation-defined, and a <dfn>hosted environment</dfn>, which is not
required, in which all the library facilities are provided and startup
is through a function <code>int main (void)</code> or <code>int main (int,
char *[])</code>.  An OS kernel would be a freestanding environment; a
program using the facilities of an operating system would normally be
in a hosted implementation.

 <p><a name="index-ffreestanding-62"></a>GCC aims towards being usable as a conforming freestanding
implementation, or as the compiler for a conforming hosted
implementation.  By default, it will act as the compiler for a hosted
implementation, defining <code>__STDC_HOSTED__</code> as <code>1</code> and
presuming that when the names of ISO C functions are used, they have
the semantics defined in the standard.  To make it act as a conforming
freestanding implementation for a freestanding environment, use the
option <samp><span class="option">-ffreestanding</span></samp>; it will then define
<code>__STDC_HOSTED__</code> to <code>0</code> and not make assumptions about the
meanings of function names from the standard library, with exceptions
noted below.  To build an OS kernel, you may well still need to make
your own arrangements for linking and startup. 
See <a href="#C-Dialect-Options">Options Controlling C Dialect</a>.

 <p>GCC does not provide the library facilities required only of hosted
implementations, nor yet all the facilities required by C99 of
freestanding implementations; to use the facilities of a hosted
environment, you will need to find them elsewhere (for example, in the
GNU C library).  See <a href="#Standard-Libraries">Standard Libraries</a>.

 <p>Most of the compiler support routines used by GCC are present in
<samp><span class="file">libgcc</span></samp>, but there are a few exceptions.  GCC requires the
freestanding environment provide <code>memcpy</code>, <code>memmove</code>,
<code>memset</code> and <code>memcmp</code>. 
Finally, if <code>__builtin_trap</code> is used, and the target does
not implement the <code>trap</code> pattern, then GCC will emit a call
to <code>abort</code>.

 <p>For references to Technical Corrigenda, Rationale documents and
information concerning the history of C that is available online, see
<a href="http://gcc.gnu.org/readings.html">http://gcc.gnu.org/readings.html</a>

<h3 class="section">2.2 C++ language</h3>

<p>GCC supports the ISO C++ standard (1998) and contains experimental
support for the upcoming ISO C++ standard (200x).

 <p>The original ISO C++ standard was published as the ISO standard (ISO/IEC
14882:1998) and amended by a Technical Corrigenda published in 2003
(ISO/IEC 14882:2003). These standards are referred to as C++98 and
C++03, respectively. GCC implements the majority of C++98 (<code>export</code>
is a notable exception) and most of the changes in C++03.  To select
this standard in GCC, use one of the options <samp><span class="option">-ansi</span></samp> or
<samp><span class="option">-std=c++98</span></samp>; to obtain all the diagnostics required by the
standard, you should also specify <samp><span class="option">-pedantic</span></samp> (or
<samp><span class="option">-pedantic-errors</span></samp> if you want them to be errors rather than
warnings).

 <p>The ISO C++ committee is working on a new ISO C++ standard, dubbed
C++0x, that is intended to be published by 2009. C++0x contains several
changes to the C++ language, some of which have been implemented in an
experimental C++0x mode in GCC. The C++0x mode in GCC tracks the draft
working paper for the C++0x standard; the latest working paper is
available on the ISO C++ committee's web site at
<a href="http://www.open-std.org/jtc1/sc22/wg21/">http://www.open-std.org/jtc1/sc22/wg21/</a>. For information
regarding the C++0x features available in the experimental C++0x mode,
see <a href="http://gcc.gnu.org/projects/cxx0x.html">http://gcc.gnu.org/projects/cxx0x.html</a>. To select this
standard in GCC, use the option <samp><span class="option">-std=c++0x</span></samp>; to obtain all the
diagnostics required by the standard, you should also specify
<samp><span class="option">-pedantic</span></samp> (or <samp><span class="option">-pedantic-errors</span></samp> if you want them to be
errors rather than warnings).

 <p>By default, GCC provides some extensions to the C++ language; See <a href="#C_002b_002b-Dialect-Options">Options Controlling C++ Dialect</a>.  Use of the
<samp><span class="option">-std</span></samp> option listed above will disable these extensions.  You
may also select an extended version of the C++ language explicitly with
<samp><span class="option">-std=gnu++98</span></samp> (for C++98 with GNU extensions) or
<samp><span class="option">-std=gnu++0x</span></samp> (for C++0x with GNU extensions).  The default, if
no C++ language dialect options are given, is <samp><span class="option">-std=gnu++98</span></samp>.

<h3 class="section">2.3 Objective-C and Objective-C++ languages</h3>

<p><a name="index-Objective_002dC-63"></a><a name="index-Objective_002dC_002b_002b-64"></a>
GCC supports &ldquo;traditional&rdquo; Objective-C (also known as &ldquo;Objective-C
1.0&rdquo;) and contains support for the Objective-C exception and
synchronization syntax.  It has also support for a number of
&ldquo;Objective-C 2.0&rdquo; language extensions, including properties, fast
enumeration (only for Objective-C), method attributes and the
@optional and @required keywords in protocols.  GCC supports
Objective-C++ and features available in Objective-C are also available
in Objective-C++.

 <p>GCC by default uses the GNU Objective-C runtime library, which is part
of GCC and is not the same as the Apple/NeXT Objective-C runtime
library used on Apple systems.  There are a number of differences
documented in this manual.  The options <samp><span class="option">-fgnu-runtime</span></samp> and
<samp><span class="option">-fnext-runtime</span></samp> allow you to switch between producing output
that works with the GNU Objective-C runtime library and output that
works with the Apple/NeXT Objective-C runtime library.

 <p>There is no formal written standard for Objective-C or Objective-C++. 
The authoritative manual on traditional Objective-C (1.0) is
&ldquo;Object-Oriented Programming and the Objective-C Language&rdquo;,
available at a number of web sites:
     <ul>
<li><a href="http://www.gnustep.org/resources/documentation/ObjectivCBook.pdf">http://www.gnustep.org/resources/documentation/ObjectivCBook.pdf</a>
is the original NeXTstep document;
<li><a href="http://objc.toodarkpark.net">http://objc.toodarkpark.net</a>
is the same document in another format;
<li><a href="http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/">http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/</a>
has an updated version but make sure you search for &ldquo;Object Oriented Programming and the Objective-C Programming Language 1.0&rdquo;,
not documentation on the newer &ldquo;Objective-C 2.0&rdquo; language
</ul>

 <p>The Objective-C exception and synchronization syntax (that is, the
keywords @try, @throw, @catch, @finally and @synchronized) is
supported by GCC and is enabled with the option
<samp><span class="option">-fobjc-exceptions</span></samp>.  The syntax is briefly documented in this
manual and in the Objective-C 2.0 manuals from Apple.

 <p>The Objective-C 2.0 language extensions and features are automatically
enabled; they include properties (via the @property, @synthesize and
@dynamic keywords), fast enumeration (not available in
Objective-C++), attributes for methods (such as deprecated, noreturn,
sentinel, format), the unused attribute for method arguments, the
@package keyword for instance variables and the @optional and
@required keywords in protocols.  You can disable all these
Objective-C 2.0 language extensions with the option
<samp><span class="option">-fobjc-std=objc1</span></samp>, which causes the compiler to recognize the
same Objective-C language syntax recognized by GCC 4.0, and to produce
an error if one of the new features is used.

 <p>GCC has currently no support for non-fragile instance variables.

 <p>The authoritative manual on Objective-C 2.0 is available from Apple:
     <ul>
<li><a href="http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/">http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/</a>
</ul>

 <p>For more information concerning the history of Objective-C that is
available online, see <a href="http://gcc.gnu.org/readings.html">http://gcc.gnu.org/readings.html</a>

<h3 class="section">2.4 Go language</h3>

<p>The Go language continues to evolve as of this writing; see the
<a href="http://golang.org/doc/go_spec.html">current language specifications</a>.  At present there are no specific versions of Go, and
there is no way to describe the language supported by GCC in terms of
a specific version.  In general GCC tracks the evolving specification
closely, and any given release will support the language as of the
date that the release was frozen.

<h3 class="section">2.5 References for other languages</h3>

<p>See <a href="gnat_rm.html#Top">GNAT Reference Manual</a>, for information on standard
conformance and compatibility of the Ada compiler.

 <p>See <a href="{No value for `fngfortran'}.html#Standards">Standards</a>, for details
of standards supported by GNU Fortran.

 <p>See <a href="{No value for `fngcj'}.html#Compatibility">Compatibility with the Java Platform</a>,
for details of compatibility between <samp><span class="command">gcj</span></samp> and the Java Platform.

<!-- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, -->
<!-- 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Invoking-GCC"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#C-Implementation">C Implementation</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Standards">Standards</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Top">Top</a>

</div>

<h2 class="chapter">3 GCC Command Options</h2>

<p><a name="index-GCC-command-options-65"></a><a name="index-command-options-66"></a><a name="index-options_002c-GCC-command-67"></a>
<!-- man begin DESCRIPTION -->
When you invoke GCC, it normally does preprocessing, compilation,
assembly and linking.  The &ldquo;overall options&rdquo; allow you to stop this
process at an intermediate stage.  For example, the <samp><span class="option">-c</span></samp> option
says not to run the linker.  Then the output consists of object files
output by the assembler.

 <p>Other options are passed on to one stage of processing.  Some options
control the preprocessor and others the compiler itself.  Yet other
options control the assembler and linker; most of these are not
documented here, since you rarely need to use any of them.

 <p><a name="index-C-compilation-options-68"></a>Most of the command line options that you can use with GCC are useful
for C programs; when an option is only useful with another language
(usually C++), the explanation says so explicitly.  If the description
for a particular option does not mention a source language, you can use
that option with all supported languages.

 <p><a name="index-C_002b_002b-compilation-options-69"></a>See <a href="#Invoking-G_002b_002b">Compiling C++ Programs</a>, for a summary of special
options for compiling C++ programs.

 <p><a name="index-grouping-options-70"></a><a name="index-options_002c-grouping-71"></a>The <samp><span class="command">gcc</span></samp> program accepts options and file names as operands.  Many
options have multi-letter names; therefore multiple single-letter options
may <em>not</em> be grouped: <samp><span class="option">-dv</span></samp> is very different from &lsquo;<samp><span class="samp">-d&nbsp;-v</span></samp>&rsquo;<!-- /@w -->.

 <p><a name="index-order-of-options-72"></a><a name="index-options_002c-order-73"></a>You can mix options and other arguments.  For the most part, the order
you use doesn't matter.  Order does matter when you use several
options of the same kind; for example, if you specify <samp><span class="option">-L</span></samp> more
than once, the directories are searched in the order specified.  Also,
the placement of the <samp><span class="option">-l</span></samp> option is significant.

 <p>Many options have long names starting with &lsquo;<samp><span class="samp">-f</span></samp>&rsquo; or with
&lsquo;<samp><span class="samp">-W</span></samp>&rsquo;&mdash;for example,
<samp><span class="option">-fmove-loop-invariants</span></samp>, <samp><span class="option">-Wformat</span></samp> and so on.  Most of
these have both positive and negative forms; the negative form of
<samp><span class="option">-ffoo</span></samp> would be <samp><span class="option">-fno-foo</span></samp>.  This manual documents
only one of these two forms, whichever one is not the default.

<!-- man end -->
 <p>See <a href="#Option-Index">Option Index</a>, for an index to GCC's options.

<ul class="menu">
<li><a accesskey="1" href="#Option-Summary">Option Summary</a>:       Brief list of all options, without explanations. 
<li><a accesskey="2" href="#Overall-Options">Overall Options</a>:      Controlling the kind of output:
                        an executable, object files, assembler files,
                        or preprocessed source. 
<li><a accesskey="3" href="#Invoking-G_002b_002b">Invoking G++</a>:         Compiling C++ programs. 
<li><a accesskey="4" href="#C-Dialect-Options">C Dialect Options</a>:    Controlling the variant of C language compiled. 
<li><a accesskey="5" href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a>:  Variations on C++. 
<li><a accesskey="6" href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a>:  Variations on Objective-C
                        and Objective-C++. 
<li><a accesskey="7" href="#Language-Independent-Options">Language Independent Options</a>:  Controlling how diagnostics should be
                        formatted. 
<li><a accesskey="8" href="#Warning-Options">Warning Options</a>:      How picky should the compiler be? 
<li><a accesskey="9" href="#Debugging-Options">Debugging Options</a>:    Symbol tables, measurements, and debugging dumps. 
<li><a href="#Optimize-Options">Optimize Options</a>:     How much optimization? 
<li><a href="#Preprocessor-Options">Preprocessor Options</a>:  Controlling header files and macro definitions. 
                         Also, getting dependency information for Make. 
<li><a href="#Assembler-Options">Assembler Options</a>:    Passing options to the assembler. 
<li><a href="#Link-Options">Link Options</a>:         Specifying libraries and so on. 
<li><a href="#Directory-Options">Directory Options</a>:    Where to find header files and libraries. 
                        Where to find the compiler executable files. 
<li><a href="#Spec-Files">Spec Files</a>:           How to pass switches to sub-processes. 
<li><a href="#Target-Options">Target Options</a>:       Running a cross-compiler, or an old version of GCC. 
<li><a href="#Submodel-Options">Submodel Options</a>:     Specifying minor hardware or convention variations,
                        such as 68010 vs 68020. 
<li><a href="#Code-Gen-Options">Code Gen Options</a>:     Specifying conventions for function calls, data layout
                        and register usage. 
<li><a href="#Environment-Variables">Environment Variables</a>:  Env vars that affect GCC. 
<li><a href="#Precompiled-Headers">Precompiled Headers</a>:  Compiling a header once, and using it many times. 
</ul>

<!-- man begin OPTIONS -->
<div class="node">
<a name="Option-Summary"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Overall-Options">Overall Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>

</div>

<h3 class="section">3.1 Option Summary</h3>

<p>Here is a summary of all the options, grouped by type.  Explanations are
in the following sections.

     <dl>
<dt><em>Overall Options</em><dd>See <a href="#Overall-Options">Options Controlling the Kind of Output</a>.
     <pre class="smallexample">          -c  -S  -E  -o <var>file</var>  -no-canonical-prefixes  
          -pipe  -pass-exit-codes  
          -x <var>language</var>  -v  -###  --help<span class="roman">[</span>=<var>class</var><span class="roman">[</span>,...<span class="roman">]]</span>  --target-help  
          --version -wrapper @<var>file</var> -fplugin=<var>file</var> -fplugin-arg-<var>name</var>=<var>arg</var>  
          -fdump-ada-spec<span class="roman">[</span>-slim<span class="roman">]</span>
</pre>
     <p>-fdump-go-spec=<var>file</var>

     <br><dt><em>C Language Options</em><dd>See <a href="#C-Dialect-Options">Options Controlling C Dialect</a>.
     <pre class="smallexample">          -ansi  -std=<var>standard</var>  -fgnu89-inline 
          -aux-info <var>filename</var> 
          -fno-asm  -fno-builtin  -fno-builtin-<var>function</var> 
          -fhosted  -ffreestanding -fopenmp -fms-extensions -fplan9-extensions 
          -trigraphs  -no-integrated-cpp  -traditional  -traditional-cpp 
          -fallow-single-precision  -fcond-mismatch -flax-vector-conversions 
          -fsigned-bitfields  -fsigned-char 
          -funsigned-bitfields  -funsigned-char
</pre>
     <br><dt><em>C++ Language Options</em><dd>See <a href="#C_002b_002b-Dialect-Options">Options Controlling C++ Dialect</a>.
     <pre class="smallexample">          -fabi-version=<var>n</var>  -fno-access-control  -fcheck-new 
          -fconserve-space  -fconstexpr-depth=<var>n</var>  -ffriend-injection 
          -fno-elide-constructors 
          -fno-enforce-eh-specs 
          -ffor-scope  -fno-for-scope  -fno-gnu-keywords 
          -fno-implicit-templates 
          -fno-implicit-inline-templates 
          -fno-implement-inlines  -fms-extensions 
          -fno-nonansi-builtins  -fnothrow-opt  -fno-operator-names 
          -fno-optional-diags  -fpermissive 
          -fno-pretty-templates 
          -frepo  -fno-rtti  -fstats  -ftemplate-depth=<var>n</var> 
          -fno-threadsafe-statics -fuse-cxa-atexit  -fno-weak  -nostdinc++ 
          -fno-default-inline  -fvisibility-inlines-hidden 
          -fvisibility-ms-compat 
          -Wabi  -Wconversion-null  -Wctor-dtor-privacy 
          -Wnoexcept -Wnon-virtual-dtor  -Wreorder 
          -Weffc++  -Wstrict-null-sentinel 
          -Wno-non-template-friend  -Wold-style-cast 
          -Woverloaded-virtual  -Wno-pmf-conversions 
          -Wsign-promo
</pre>
     <br><dt><em>Objective-C and Objective-C++ Language Options</em><dd>See <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Options Controlling Objective-C and Objective-C++ Dialects</a>.
     <pre class="smallexample">          -fconstant-string-class=<var>class-name</var> 
          -fgnu-runtime  -fnext-runtime 
          -fno-nil-receivers 
          -fobjc-abi-version=<var>n</var> 
          -fobjc-call-cxx-cdtors 
          -fobjc-direct-dispatch 
          -fobjc-exceptions 
          -fobjc-gc 
          -fobjc-nilcheck 
          -fobjc-std=objc1 
          -freplace-objc-classes 
          -fzero-link 
          -gen-decls 
          -Wassign-intercept 
          -Wno-protocol  -Wselector 
          -Wstrict-selector-match 
          -Wundeclared-selector
</pre>
     <br><dt><em>Language Independent Options</em><dd>See <a href="#Language-Independent-Options">Options to Control Diagnostic Messages Formatting</a>.
     <pre class="smallexample">          -fmessage-length=<var>n</var>  
          -fdiagnostics-show-location=<span class="roman">[</span>once<span class="roman">|</span>every-line<span class="roman">]</span>  
          -fno-diagnostics-show-option
</pre>
     <br><dt><em>Warning Options</em><dd>See <a href="#Warning-Options">Options to Request or Suppress Warnings</a>.
     <pre class="smallexample">          -fsyntax-only  -fmax-errors=<var>n</var>  -pedantic 
          -pedantic-errors 
          -w  -Wextra  -Wall  -Waddress  -Waggregate-return  -Warray-bounds 
          -Wno-attributes -Wno-builtin-macro-redefined 
          -Wc++-compat -Wc++0x-compat -Wcast-align  -Wcast-qual  
          -Wchar-subscripts -Wclobbered  -Wcomment 
          -Wconversion  -Wcoverage-mismatch  -Wno-cpp  -Wno-deprecated  
          -Wno-deprecated-declarations -Wdisabled-optimization  
          -Wno-div-by-zero -Wdouble-promotion -Wempty-body  -Wenum-compare 
          -Wno-endif-labels -Werror  -Werror=* 
          -Wfatal-errors  -Wfloat-equal  -Wformat  -Wformat=2 
          -Wno-format-contains-nul -Wno-format-extra-args -Wformat-nonliteral 
          -Wformat-security  -Wformat-y2k 
          -Wframe-larger-than=<var>len</var> -Wjump-misses-init -Wignored-qualifiers 
          -Wimplicit  -Wimplicit-function-declaration  -Wimplicit-int 
          -Winit-self  -Winline 
          -Wno-int-to-pointer-cast -Wno-invalid-offsetof 
          -Winvalid-pch -Wlarger-than=<var>len</var>  -Wunsafe-loop-optimizations 
          -Wlogical-op -Wlong-long 
          -Wmain  -Wmissing-braces  -Wmissing-field-initializers 
          -Wmissing-format-attribute  -Wmissing-include-dirs 
          -Wno-mudflap 
          -Wno-multichar  -Wnonnull  -Wno-overflow 
          -Woverlength-strings  -Wpacked  -Wpacked-bitfield-compat  -Wpadded 
          -Wparentheses  -Wpedantic-ms-format -Wno-pedantic-ms-format 
          -Wpointer-arith  -Wno-pointer-to-int-cast 
          -Wredundant-decls 
          -Wreturn-type  -Wsequence-point  -Wshadow 
          -Wsign-compare  -Wsign-conversion  -Wstack-protector 
          -Wstrict-aliasing -Wstrict-aliasing=n 
          -Wstrict-overflow -Wstrict-overflow=<var>n</var> 
          -Wsuggest-attribute=<span class="roman">[</span>pure<span class="roman">|</span>const<span class="roman">|</span>noreturn<span class="roman">]</span> 
          -Wswitch  -Wswitch-default  -Wswitch-enum -Wsync-nand 
          -Wsystem-headers  -Wtrampolines  -Wtrigraphs  -Wtype-limits  -Wundef 
          -Wuninitialized  -Wunknown-pragmas  -Wno-pragmas 
          -Wunsuffixed-float-constants  -Wunused  -Wunused-function 
          -Wunused-label  -Wunused-parameter -Wno-unused-result -Wunused-value 
          -Wunused-variable -Wunused-but-set-parameter -Wunused-but-set-variable 
          -Wvariadic-macros -Wvla -Wvolatile-register-var  -Wwrite-strings
</pre>
     <br><dt><em>C and Objective-C-only Warning Options</em><dd>
     <pre class="smallexample">          -Wbad-function-cast  -Wmissing-declarations 
          -Wmissing-parameter-type  -Wmissing-prototypes  -Wnested-externs 
          -Wold-style-declaration  -Wold-style-definition 
          -Wstrict-prototypes  -Wtraditional  -Wtraditional-conversion 
          -Wdeclaration-after-statement -Wpointer-sign
</pre>
     <br><dt><em>Debugging Options</em><dd>See <a href="#Debugging-Options">Options for Debugging Your Program or GCC</a>.
     <pre class="smallexample">          -d<var>letters</var>  -dumpspecs  -dumpmachine  -dumpversion 
          -fdbg-cnt-list -fdbg-cnt=<var>counter-value-list</var> 
          -fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links 
          -fdump-translation-unit<span class="roman">[</span>-<var>n</var><span class="roman">]</span> 
          -fdump-class-hierarchy<span class="roman">[</span>-<var>n</var><span class="roman">]</span> 
          -fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline 
          -fdump-statistics 
          -fdump-tree-all 
          -fdump-tree-original<span class="roman">[</span>-<var>n</var><span class="roman">]</span>  
          -fdump-tree-optimized<span class="roman">[</span>-<var>n</var><span class="roman">]</span> 
          -fdump-tree-cfg -fdump-tree-vcg -fdump-tree-alias 
          -fdump-tree-ch 
          -fdump-tree-ssa<span class="roman">[</span>-<var>n</var><span class="roman">]</span> -fdump-tree-pre<span class="roman">[</span>-<var>n</var><span class="roman">]</span> 
          -fdump-tree-ccp<span class="roman">[</span>-<var>n</var><span class="roman">]</span> -fdump-tree-dce<span class="roman">[</span>-<var>n</var><span class="roman">]</span> 
          -fdump-tree-gimple<span class="roman">[</span>-raw<span class="roman">]</span> -fdump-tree-mudflap<span class="roman">[</span>-<var>n</var><span class="roman">]</span> 
          -fdump-tree-dom<span class="roman">[</span>-<var>n</var><span class="roman">]</span> 
          -fdump-tree-dse<span class="roman">[</span>-<var>n</var><span class="roman">]</span> 
          -fdump-tree-phiprop<span class="roman">[</span>-<var>n</var><span class="roman">]</span> 
          -fdump-tree-phiopt<span class="roman">[</span>-<var>n</var><span class="roman">]</span> 
          -fdump-tree-forwprop<span class="roman">[</span>-<var>n</var><span class="roman">]</span> 
          -fdump-tree-copyrename<span class="roman">[</span>-<var>n</var><span class="roman">]</span> 
          -fdump-tree-nrv -fdump-tree-vect 
          -fdump-tree-sink 
          -fdump-tree-sra<span class="roman">[</span>-<var>n</var><span class="roman">]</span> 
          -fdump-tree-forwprop<span class="roman">[</span>-<var>n</var><span class="roman">]</span> 
          -fdump-tree-fre<span class="roman">[</span>-<var>n</var><span class="roman">]</span> 
          -fdump-tree-vrp<span class="roman">[</span>-<var>n</var><span class="roman">]</span> 
          -ftree-vectorizer-verbose=<var>n</var> 
          -fdump-tree-storeccp<span class="roman">[</span>-<var>n</var><span class="roman">]</span> 
          -fdump-final-insns=<var>file</var> 
          -fcompare-debug<span class="roman">[</span>=<var>opts</var><span class="roman">]</span>  -fcompare-debug-second 
          -feliminate-dwarf2-dups -feliminate-unused-debug-types 
          -feliminate-unused-debug-symbols -femit-class-debug-always 
          -fenable-icf-debug 
          -fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report -fprofile-arcs 
          -frandom-seed=<var>string</var> -fsched-verbose=<var>n</var> 
          -fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose 
          -fstack-usage  -ftest-coverage  -ftime-report -fvar-tracking 
          -fvar-tracking-assignments  -fvar-tracking-assignments-toggle 
          -g  -g<var>level</var>  -gtoggle  -gcoff  -gdwarf-<var>version</var> 
          -ggdb  -gstabs  -gstabs+  -gstrict-dwarf  -gno-strict-dwarf 
          -gvms  -gxcoff  -gxcoff+ 
          -fno-merge-debug-strings -fno-dwarf2-cfi-asm 
          -fdebug-prefix-map=<var>old</var>=<var>new</var> 
          -femit-struct-debug-baseonly -femit-struct-debug-reduced 
          -femit-struct-debug-detailed<span class="roman">[</span>=<var>spec-list</var><span class="roman">]</span> 
          -p  -pg  -print-file-name=<var>library</var>  -print-libgcc-file-name 
          -print-multi-directory  -print-multi-lib  -print-multi-os-directory 
          -print-prog-name=<var>program</var>  -print-search-dirs  -Q 
          -print-sysroot -print-sysroot-headers-suffix 
          -save-temps -save-temps=cwd -save-temps=obj -time<span class="roman">[</span>=<var>file</var><span class="roman">]</span>
</pre>
     <br><dt><em>Optimization Options</em><dd>See <a href="#Optimize-Options">Options that Control Optimization</a>.
     <pre class="smallexample">          -falign-functions[=<var>n</var>] -falign-jumps[=<var>n</var>] 
          -falign-labels[=<var>n</var>] -falign-loops[=<var>n</var>] -fassociative-math 
          -fauto-inc-dec -fbranch-probabilities -fbranch-target-load-optimize 
          -fbranch-target-load-optimize2 -fbtr-bb-exclusive -fcaller-saves 
          -fcheck-data-deps -fcombine-stack-adjustments -fconserve-stack 
          -fcompare-elim -fcprop-registers -fcrossjumping 
          -fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules 
          -fcx-limited-range 
          -fdata-sections -fdce -fdce -fdelayed-branch 
          -fdelete-null-pointer-checks -fdse -fdevirtualize -fdse 
          -fearly-inlining -fipa-sra -fexpensive-optimizations -ffast-math 
          -ffinite-math-only -ffloat-store -fexcess-precision=<var>style</var> 
          -fforward-propagate -ffp-contract=<var>style</var> -ffunction-sections 
          -fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity 
          -fgcse-sm -fif-conversion -fif-conversion2 -findirect-inlining 
          -finline-functions -finline-functions-called-once -finline-limit=<var>n</var> 
          -finline-small-functions -fipa-cp -fipa-cp-clone -fipa-matrix-reorg 
          -fipa-pta -fipa-profile -fipa-pure-const -fipa-reference 
          -fipa-struct-reorg -fira-algorithm=<var>algorithm</var> 
          -fira-region=<var>region</var> 
          -fira-loop-pressure -fno-ira-share-save-slots 
          -fno-ira-share-spill-slots -fira-verbose=<var>n</var> 
          -fivopts -fkeep-inline-functions -fkeep-static-consts 
          -floop-block -floop-flatten -floop-interchange -floop-strip-mine 
          -floop-parallelize-all -flto -flto-compression-level
          -flto-partition=<var>alg</var> -flto-report -fmerge-all-constants 
          -fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves 
          -fmove-loop-invariants fmudflap -fmudflapir -fmudflapth -fno-branch-count-reg 
          -fno-default-inline 
          -fno-defer-pop -fno-function-cse -fno-guess-branch-probability 
          -fno-inline -fno-math-errno -fno-peephole -fno-peephole2 
          -fno-sched-interblock -fno-sched-spec -fno-signed-zeros 
          -fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss 
          -fomit-frame-pointer -foptimize-register-move -foptimize-sibling-calls 
          -fpartial-inlining -fpeel-loops -fpredictive-commoning 
          -fprefetch-loop-arrays 
          -fprofile-correction -fprofile-dir=<var>path</var> -fprofile-generate 
          -fprofile-generate=<var>path</var> 
          -fprofile-use -fprofile-use=<var>path</var> -fprofile-values 
          -freciprocal-math -fregmove -frename-registers -freorder-blocks 
          -freorder-blocks-and-partition -freorder-functions 
          -frerun-cse-after-loop -freschedule-modulo-scheduled-loops 
          -frounding-math -fsched2-use-superblocks -fsched-pressure 
          -fsched-spec-load -fsched-spec-load-dangerous 
          -fsched-stalled-insns-dep[=<var>n</var>] -fsched-stalled-insns[=<var>n</var>] 
          -fsched-group-heuristic -fsched-critical-path-heuristic 
          -fsched-spec-insn-heuristic -fsched-rank-heuristic 
          -fsched-last-insn-heuristic -fsched-dep-count-heuristic 
          -fschedule-insns -fschedule-insns2 -fsection-anchors 
          -fselective-scheduling -fselective-scheduling2 
          -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops 
          -fsignaling-nans -fsingle-precision-constant -fsplit-ivs-in-unroller 
          -fsplit-wide-types -fstack-protector -fstack-protector-all 
          -fstrict-aliasing -fstrict-overflow -fthread-jumps -ftracer 
          -ftree-bit-ccp 
          -ftree-builtin-call-dce -ftree-ccp -ftree-ch -ftree-copy-prop 
          -ftree-copyrename -ftree-dce -ftree-dominator-opts -ftree-dse 
          -ftree-forwprop -ftree-fre -ftree-loop-if-convert 
          -ftree-loop-if-convert-stores -ftree-loop-im 
          -ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns 
          -ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize 
          -ftree-parallelize-loops=<var>n</var> -ftree-pre -ftree-pta -ftree-reassoc 
          -ftree-sink -ftree-sra -ftree-switch-conversion 
          -ftree-ter -ftree-vect-loop-version -ftree-vectorize -ftree-vrp 
          -funit-at-a-time -funroll-all-loops -funroll-loops 
          -funsafe-loop-optimizations -funsafe-math-optimizations -funswitch-loops 
          -fvariable-expansion-in-unroller -fvect-cost-model -fvpt -fweb 
          -fwhole-program -fwpa -fuse-linker-plugin 
          --param <var>name</var>=<var>value</var>
          -O  -O0  -O1  -O2  -O3  -Os -Ofast
</pre>
     <br><dt><em>Preprocessor Options</em><dd>See <a href="#Preprocessor-Options">Options Controlling the Preprocessor</a>.
     <pre class="smallexample">          -A<var>question</var>=<var>answer</var> 
          -A-<var>question</var><span class="roman">[</span>=<var>answer</var><span class="roman">]</span> 
          -C  -dD  -dI  -dM  -dN 
          -D<var>macro</var><span class="roman">[</span>=<var>defn</var><span class="roman">]</span>  -E  -H 
          -idirafter <var>dir</var> 
          -include <var>file</var>  -imacros <var>file</var> 
          -iprefix <var>file</var>  -iwithprefix <var>dir</var> 
          -iwithprefixbefore <var>dir</var>  -isystem <var>dir</var> 
          -imultilib <var>dir</var> -isysroot <var>dir</var> 
          -M  -MM  -MF  -MG  -MP  -MQ  -MT  -nostdinc  
          -P  -fworking-directory  -remap 
          -trigraphs  -undef  -U<var>macro</var>  -Wp,<var>option</var> 
          -Xpreprocessor <var>option</var>
</pre>
     <br><dt><em>Assembler Option</em><dd>See <a href="#Assembler-Options">Passing Options to the Assembler</a>.
     <pre class="smallexample">          -Wa,<var>option</var>  -Xassembler <var>option</var>
</pre>
     <br><dt><em>Linker Options</em><dd>See <a href="#Link-Options">Options for Linking</a>.
     <pre class="smallexample">          <var>object-file-name</var>  -l<var>library</var> 
          -nostartfiles  -nodefaultlibs  -nostdlib -pie -rdynamic 
          -s  -static  -static-libgcc  -static-libstdc++ -shared  
          -shared-libgcc  -symbolic 
          -T <var>script</var>  -Wl,<var>option</var>  -Xlinker <var>option</var> 
          -u <var>symbol</var>
</pre>
     <br><dt><em>Directory Options</em><dd>See <a href="#Directory-Options">Options for Directory Search</a>.
     <pre class="smallexample">          -B<var>prefix</var> -I<var>dir</var> -iplugindir=<var>dir</var>
</pre>
     <p>-iquote<var>dir</var> -L<var>dir</var> -specs=<var>file</var> -I-
&ndash;sysroot=<var>dir</var>

     <br><dt><em>Machine Dependent Options</em><dd>See <a href="#Submodel-Options">Hardware Models and Configurations</a>. 
<!-- This list is ordered alphanumerically by subsection name. -->
<!-- Try and put the significant identifier (CPU or system) first, -->
<!-- so users have a clue at guessing where the ones they want will be. -->

     <p><em>ARC Options</em>
     <pre class="smallexample">          -EB  -EL 
          -mmangle-cpu  -mcpu=<var>cpu</var>  -mtext=<var>text-section</var> 
          -mdata=<var>data-section</var>  -mrodata=<var>readonly-data-section</var>
</pre>
     <p><em>ARM Options</em>
     <pre class="smallexample">          -mapcs-frame  -mno-apcs-frame 
          -mabi=<var>name</var> 
          -mapcs-stack-check  -mno-apcs-stack-check 
          -mapcs-float  -mno-apcs-float 
          -mapcs-reentrant  -mno-apcs-reentrant 
          -msched-prolog  -mno-sched-prolog 
          -mlittle-endian  -mbig-endian  -mwords-little-endian 
          -mfloat-abi=<var>name</var>  -msoft-float  -mhard-float  -mfpe 
          -mfp16-format=<var>name</var>
          -mthumb-interwork  -mno-thumb-interwork 
          -mcpu=<var>name</var>  -march=<var>name</var>  -mfpu=<var>name</var>  
          -mstructure-size-boundary=<var>n</var> 
          -mabort-on-noreturn 
          -mlong-calls  -mno-long-calls 
          -msingle-pic-base  -mno-single-pic-base 
          -mpic-register=<var>reg</var> 
          -mnop-fun-dllimport 
          -mcirrus-fix-invalid-insns -mno-cirrus-fix-invalid-insns 
          -mpoke-function-name 
          -mthumb  -marm 
          -mtpcs-frame  -mtpcs-leaf-frame 
          -mcaller-super-interworking  -mcallee-super-interworking 
          -mtp=<var>name</var> 
          -mword-relocations 
          -mfix-cortex-m3-ldrd
</pre>
     <p><em>AVR Options</em>
     <pre class="smallexample">          -mmcu=<var>mcu</var>  -mno-interrupts 
          -mcall-prologues  -mtiny-stack  -mint8
</pre>
     <p><em>Blackfin Options</em>
     <pre class="smallexample">          -mcpu=<var>cpu</var><span class="roman">[</span>-<var>sirevision</var><span class="roman">]</span> 
          -msim -momit-leaf-frame-pointer  -mno-omit-leaf-frame-pointer 
          -mspecld-anomaly  -mno-specld-anomaly  -mcsync-anomaly  -mno-csync-anomaly 
          -mlow-64k -mno-low64k  -mstack-check-l1  -mid-shared-library 
          -mno-id-shared-library  -mshared-library-id=<var>n</var> 
          -mleaf-id-shared-library  -mno-leaf-id-shared-library 
          -msep-data  -mno-sep-data  -mlong-calls  -mno-long-calls 
          -mfast-fp -minline-plt -mmulticore  -mcorea  -mcoreb  -msdram 
          -micplb
</pre>
     <p><em>CRIS Options</em>
     <pre class="smallexample">          -mcpu=<var>cpu</var>  -march=<var>cpu</var>  -mtune=<var>cpu</var> 
          -mmax-stack-frame=<var>n</var>  -melinux-stacksize=<var>n</var> 
          -metrax4  -metrax100  -mpdebug  -mcc-init  -mno-side-effects 
          -mstack-align  -mdata-align  -mconst-align 
          -m32-bit  -m16-bit  -m8-bit  -mno-prologue-epilogue  -mno-gotplt 
          -melf  -maout  -melinux  -mlinux  -sim  -sim2 
          -mmul-bug-workaround  -mno-mul-bug-workaround
</pre>
     <p><em>CRX Options</em>
     <pre class="smallexample">          -mmac -mpush-args
</pre>
     <p><em>Darwin Options</em>
     <pre class="smallexample">          -all_load  -allowable_client  -arch  -arch_errors_fatal 
          -arch_only  -bind_at_load  -bundle  -bundle_loader 
          -client_name  -compatibility_version  -current_version 
          -dead_strip 
          -dependency-file  -dylib_file  -dylinker_install_name 
          -dynamic  -dynamiclib  -exported_symbols_list 
          -filelist  -flat_namespace  -force_cpusubtype_ALL 
          -force_flat_namespace  -headerpad_max_install_names 
          -iframework 
          -image_base  -init  -install_name  -keep_private_externs 
          -multi_module  -multiply_defined  -multiply_defined_unused 
          -noall_load   -no_dead_strip_inits_and_terms 
          -nofixprebinding -nomultidefs  -noprebind  -noseglinkedit 
          -pagezero_size  -prebind  -prebind_all_twolevel_modules 
          -private_bundle  -read_only_relocs  -sectalign 
          -sectobjectsymbols  -whyload  -seg1addr 
          -sectcreate  -sectobjectsymbols  -sectorder 
          -segaddr -segs_read_only_addr -segs_read_write_addr 
          -seg_addr_table  -seg_addr_table_filename  -seglinkedit 
          -segprot  -segs_read_only_addr  -segs_read_write_addr 
          -single_module  -static  -sub_library  -sub_umbrella 
          -twolevel_namespace  -umbrella  -undefined 
          -unexported_symbols_list  -weak_reference_mismatches 
          -whatsloaded -F -gused -gfull -mmacosx-version-min=<var>version</var> 
          -mkernel -mone-byte-bool
</pre>
     <p><em>DEC Alpha Options</em>
     <pre class="smallexample">          -mno-fp-regs  -msoft-float  -malpha-as  -mgas 
          -mieee  -mieee-with-inexact  -mieee-conformant 
          -mfp-trap-mode=<var>mode</var>  -mfp-rounding-mode=<var>mode</var> 
          -mtrap-precision=<var>mode</var>  -mbuild-constants 
          -mcpu=<var>cpu-type</var>  -mtune=<var>cpu-type</var> 
          -mbwx  -mmax  -mfix  -mcix 
          -mfloat-vax  -mfloat-ieee 
          -mexplicit-relocs  -msmall-data  -mlarge-data 
          -msmall-text  -mlarge-text 
          -mmemory-latency=<var>time</var>
</pre>
     <p><em>DEC Alpha/VMS Options</em>
     <pre class="smallexample">          -mvms-return-codes -mdebug-main=<var>prefix</var> -mmalloc64
</pre>
     <p><em>FR30 Options</em>
     <pre class="smallexample">          -msmall-model -mno-lsim
</pre>
     <p><em>FRV Options</em>
     <pre class="smallexample">          -mgpr-32  -mgpr-64  -mfpr-32  -mfpr-64 
          -mhard-float  -msoft-float 
          -malloc-cc  -mfixed-cc  -mdword  -mno-dword 
          -mdouble  -mno-double 
          -mmedia  -mno-media  -mmuladd  -mno-muladd 
          -mfdpic  -minline-plt -mgprel-ro  -multilib-library-pic 
          -mlinked-fp  -mlong-calls  -malign-labels 
          -mlibrary-pic  -macc-4  -macc-8 
          -mpack  -mno-pack  -mno-eflags  -mcond-move  -mno-cond-move 
          -moptimize-membar -mno-optimize-membar 
          -mscc  -mno-scc  -mcond-exec  -mno-cond-exec 
          -mvliw-branch  -mno-vliw-branch 
          -mmulti-cond-exec  -mno-multi-cond-exec  -mnested-cond-exec 
          -mno-nested-cond-exec  -mtomcat-stats 
          -mTLS -mtls 
          -mcpu=<var>cpu</var>
</pre>
     <p><em>GNU/Linux Options</em>
     <pre class="smallexample">          -mglibc -muclibc -mbionic -mandroid 
          -tno-android-cc -tno-android-ld
</pre>
     <p><em>H8/300 Options</em>
     <pre class="smallexample">          -mrelax  -mh  -ms  -mn  -mint32  -malign-300
</pre>
     <p><em>HPPA Options</em>
     <pre class="smallexample">          -march=<var>architecture-type</var> 
          -mbig-switch  -mdisable-fpregs  -mdisable-indexing 
          -mfast-indirect-calls  -mgas  -mgnu-ld   -mhp-ld 
          -mfixed-range=<var>register-range</var> 
          -mjump-in-delay -mlinker-opt -mlong-calls 
          -mlong-load-store  -mno-big-switch  -mno-disable-fpregs 
          -mno-disable-indexing  -mno-fast-indirect-calls  -mno-gas 
          -mno-jump-in-delay  -mno-long-load-store 
          -mno-portable-runtime  -mno-soft-float 
          -mno-space-regs  -msoft-float  -mpa-risc-1-0 
          -mpa-risc-1-1  -mpa-risc-2-0  -mportable-runtime 
          -mschedule=<var>cpu-type</var>  -mspace-regs  -msio  -mwsio 
          -munix=<var>unix-std</var>  -nolibdld  -static  -threads
</pre>
     <p><em>i386 and x86-64 Options</em>
     <pre class="smallexample">          -mtune=<var>cpu-type</var>  -march=<var>cpu-type</var> 
          -mfpmath=<var>unit</var> 
          -masm=<var>dialect</var>  -mno-fancy-math-387 
          -mno-fp-ret-in-387  -msoft-float 
          -mno-wide-multiply  -mrtd  -malign-double 
          -mpreferred-stack-boundary=<var>num</var>
          -mincoming-stack-boundary=<var>num</var> 
          -mcld -mcx16 -msahf -mmovbe -mcrc32 -mrecip -mvzeroupper 
          -mmmx  -msse  -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx 
          -maes -mpclmul -mfsgsbase -mrdrnd -mf16c -mfused-madd 
          -msse4a -m3dnow -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop -mlwp 
          -mthreads  -mno-align-stringops  -minline-all-stringops 
          -minline-stringops-dynamically -mstringop-strategy=<var>alg</var> 
          -mpush-args  -maccumulate-outgoing-args  -m128bit-long-double 
          -m96bit-long-double  -mregparm=<var>num</var>  -msseregparm 
          -mveclibabi=<var>type</var> -mvect8-ret-in-mem 
          -mpc32 -mpc64 -mpc80 -mstackrealign 
          -momit-leaf-frame-pointer  -mno-red-zone -mno-tls-direct-seg-refs 
          -mcmodel=<var>code-model</var> -mabi=<var>name</var> 
          -m32  -m64 -mlarge-data-threshold=<var>num</var> 
          -msse2avx -mfentry -m8bit-idiv 
          -mavx256-split-unaligned-load -mavx256-split-unaligned-store
</pre>
     <p><em>i386 and x86-64 Windows Options</em>
     <pre class="smallexample">          -mconsole -mcygwin -mno-cygwin -mdll
          -mnop-fun-dllimport -mthread 
          -municode -mwin32 -mwindows -fno-set-stack-executable
</pre>
     <p><em>IA-64 Options</em>
     <pre class="smallexample">          -mbig-endian  -mlittle-endian  -mgnu-as  -mgnu-ld  -mno-pic 
          -mvolatile-asm-stop  -mregister-names  -msdata -mno-sdata 
          -mconstant-gp  -mauto-pic  -mfused-madd 
          -minline-float-divide-min-latency 
          -minline-float-divide-max-throughput 
          -mno-inline-float-divide 
          -minline-int-divide-min-latency 
          -minline-int-divide-max-throughput  
          -mno-inline-int-divide 
          -minline-sqrt-min-latency -minline-sqrt-max-throughput 
          -mno-inline-sqrt 
          -mdwarf2-asm -mearly-stop-bits 
          -mfixed-range=<var>register-range</var> -mtls-size=<var>tls-size</var> 
          -mtune=<var>cpu-type</var> -milp32 -mlp64 
          -msched-br-data-spec -msched-ar-data-spec -msched-control-spec 
          -msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec 
          -msched-spec-ldc -msched-spec-control-ldc 
          -msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns 
          -msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path 
          -msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost 
          -msched-max-memory-insns-hard-limit -msched-max-memory-insns=<var>max-insns</var>
</pre>
     <p><em>IA-64/VMS Options</em>
     <pre class="smallexample">          -mvms-return-codes -mdebug-main=<var>prefix</var> -mmalloc64
</pre>
     <p><em>LM32 Options</em>
     <pre class="smallexample">          -mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled 
          -msign-extend-enabled -muser-enabled
</pre>
     <p><em>M32R/D Options</em>
     <pre class="smallexample">          -m32r2 -m32rx -m32r 
          -mdebug 
          -malign-loops -mno-align-loops 
          -missue-rate=<var>number</var> 
          -mbranch-cost=<var>number</var> 
          -mmodel=<var>code-size-model-type</var> 
          -msdata=<var>sdata-type</var> 
          -mno-flush-func -mflush-func=<var>name</var> 
          -mno-flush-trap -mflush-trap=<var>number</var> 
          -G <var>num</var>
</pre>
     <p><em>M32C Options</em>
     <pre class="smallexample">          -mcpu=<var>cpu</var> -msim -memregs=<var>number</var>
</pre>
     <p><em>M680x0 Options</em>
     <pre class="smallexample">          -march=<var>arch</var>  -mcpu=<var>cpu</var>  -mtune=<var>tune</var>
          -m68000  -m68020  -m68020-40  -m68020-60  -m68030  -m68040 
          -m68060  -mcpu32  -m5200  -m5206e  -m528x  -m5307  -m5407 
          -mcfv4e  -mbitfield  -mno-bitfield  -mc68000  -mc68020 
          -mnobitfield  -mrtd  -mno-rtd  -mdiv  -mno-div  -mshort 
          -mno-short  -mhard-float  -m68881  -msoft-float  -mpcrel 
          -malign-int  -mstrict-align  -msep-data  -mno-sep-data 
          -mshared-library-id=n  -mid-shared-library  -mno-id-shared-library 
          -mxgot -mno-xgot
</pre>
     <p><em>M68hc1x Options</em>
     <pre class="smallexample">          -m6811  -m6812  -m68hc11  -m68hc12   -m68hcs12 
          -mauto-incdec  -minmax  -mlong-calls  -mshort 
          -msoft-reg-count=<var>count</var>
</pre>
     <p><em>MCore Options</em>
     <pre class="smallexample">          -mhardlit  -mno-hardlit  -mdiv  -mno-div  -mrelax-immediates 
          -mno-relax-immediates  -mwide-bitfields  -mno-wide-bitfields 
          -m4byte-functions  -mno-4byte-functions  -mcallgraph-data 
          -mno-callgraph-data  -mslow-bytes  -mno-slow-bytes  -mno-lsim 
          -mlittle-endian  -mbig-endian  -m210  -m340  -mstack-increment
</pre>
     <p><em>MeP Options</em>
     <pre class="smallexample">          -mabsdiff -mall-opts -maverage -mbased=<var>n</var> -mbitops 
          -mc=<var>n</var> -mclip -mconfig=<var>name</var> -mcop -mcop32 -mcop64 -mivc2 
          -mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax 
          -mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf 
          -mtiny=<var>n</var>
</pre>
     <p><em>MicroBlaze Options</em>
     <pre class="smallexample">          -msoft-float -mhard-float -msmall-divides -mcpu=<var>cpu</var> 
          -mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift 
          -mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss 
          -mxl-multiply-high -mxl-float-convert -mxl-float-sqrt 
          -mxl-mode-<var>app-model</var>
</pre>
     <p><em>MIPS Options</em>
     <pre class="smallexample">          -EL  -EB  -march=<var>arch</var>  -mtune=<var>arch</var> 
          -mips1  -mips2  -mips3  -mips4  -mips32  -mips32r2 
          -mips64  -mips64r2 
          -mips16  -mno-mips16  -mflip-mips16 
          -minterlink-mips16  -mno-interlink-mips16 
          -mabi=<var>abi</var>  -mabicalls  -mno-abicalls 
          -mshared  -mno-shared  -mplt  -mno-plt  -mxgot  -mno-xgot 
          -mgp32  -mgp64  -mfp32  -mfp64  -mhard-float  -msoft-float 
          -msingle-float  -mdouble-float  -mdsp  -mno-dsp  -mdspr2  -mno-dspr2 
          -mfpu=<var>fpu-type</var> 
          -msmartmips  -mno-smartmips 
          -mpaired-single  -mno-paired-single  -mdmx  -mno-mdmx 
          -mips3d  -mno-mips3d  -mmt  -mno-mt  -mllsc  -mno-llsc 
          -mlong64  -mlong32  -msym32  -mno-sym32 
          -G<var>num</var>  -mlocal-sdata  -mno-local-sdata 
          -mextern-sdata  -mno-extern-sdata  -mgpopt  -mno-gopt 
          -membedded-data  -mno-embedded-data 
          -muninit-const-in-rodata  -mno-uninit-const-in-rodata 
          -mcode-readable=<var>setting</var> 
          -msplit-addresses  -mno-split-addresses 
          -mexplicit-relocs  -mno-explicit-relocs 
          -mcheck-zero-division  -mno-check-zero-division 
          -mdivide-traps  -mdivide-breaks 
          -mmemcpy  -mno-memcpy  -mlong-calls  -mno-long-calls 
          -mmad  -mno-mad  -mfused-madd  -mno-fused-madd  -nocpp 
          -mfix-r4000  -mno-fix-r4000  -mfix-r4400  -mno-fix-r4400 
          -mfix-r10000 -mno-fix-r10000  -mfix-vr4120  -mno-fix-vr4120 
          -mfix-vr4130  -mno-fix-vr4130  -mfix-sb1  -mno-fix-sb1 
          -mflush-func=<var>func</var>  -mno-flush-func 
          -mbranch-cost=<var>num</var>  -mbranch-likely  -mno-branch-likely 
          -mfp-exceptions -mno-fp-exceptions 
          -mvr4130-align -mno-vr4130-align -msynci -mno-synci 
          -mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address
</pre>
     <p><em>MMIX Options</em>
     <pre class="smallexample">          -mlibfuncs  -mno-libfuncs  -mepsilon  -mno-epsilon  -mabi=gnu 
          -mabi=mmixware  -mzero-extend  -mknuthdiv  -mtoplevel-symbols 
          -melf  -mbranch-predict  -mno-branch-predict  -mbase-addresses 
          -mno-base-addresses  -msingle-exit  -mno-single-exit
</pre>
     <p><em>MN10300 Options</em>
     <pre class="smallexample">          -mmult-bug  -mno-mult-bug 
          -mno-am33 -mam33 -mam33-2 -mam34 
          -mtune=<var>cpu-type</var> 
          -mreturn-pointer-on-d0 
          -mno-crt0  -mrelax -mliw
</pre>
     <p><em>PDP-11 Options</em>
     <pre class="smallexample">          -mfpu  -msoft-float  -mac0  -mno-ac0  -m40  -m45  -m10 
          -mbcopy  -mbcopy-builtin  -mint32  -mno-int16 
          -mint16  -mno-int32  -mfloat32  -mno-float64 
          -mfloat64  -mno-float32  -mabshi  -mno-abshi 
          -mbranch-expensive  -mbranch-cheap 
          -munix-asm  -mdec-asm
</pre>
     <p><em>picoChip Options</em>
     <pre class="smallexample">          -mae=<var>ae_type</var> -mvliw-lookahead=<var>N</var> 
          -msymbol-as-address -mno-inefficient-warnings
</pre>
     <p><em>PowerPC Options</em>
See RS/6000 and PowerPC Options.

     <p><em>RS/6000 and PowerPC Options</em>
     <pre class="smallexample">          -mcpu=<var>cpu-type</var> 
          -mtune=<var>cpu-type</var> 
          -mcmodel=<var>code-model</var> 
          -mpower  -mno-power  -mpower2  -mno-power2 
          -mpowerpc  -mpowerpc64  -mno-powerpc 
          -maltivec  -mno-altivec 
          -mpowerpc-gpopt  -mno-powerpc-gpopt 
          -mpowerpc-gfxopt  -mno-powerpc-gfxopt 
          -mmfcrf  -mno-mfcrf  -mpopcntb  -mno-popcntb -mpopcntd -mno-popcntd 
          -mfprnd  -mno-fprnd 
          -mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp 
          -mnew-mnemonics  -mold-mnemonics 
          -mfull-toc   -mminimal-toc  -mno-fp-in-toc  -mno-sum-in-toc 
          -m64  -m32  -mxl-compat  -mno-xl-compat  -mpe 
          -malign-power  -malign-natural 
          -msoft-float  -mhard-float  -mmultiple  -mno-multiple 
          -msingle-float -mdouble-float -msimple-fpu 
          -mstring  -mno-string  -mupdate  -mno-update 
          -mavoid-indexed-addresses  -mno-avoid-indexed-addresses 
          -mfused-madd  -mno-fused-madd  -mbit-align  -mno-bit-align 
          -mstrict-align  -mno-strict-align  -mrelocatable 
          -mno-relocatable  -mrelocatable-lib  -mno-relocatable-lib 
          -mtoc  -mno-toc  -mlittle  -mlittle-endian  -mbig  -mbig-endian 
          -mdynamic-no-pic  -maltivec -mswdiv  -msingle-pic-base 
          -mprioritize-restricted-insns=<var>priority</var> 
          -msched-costly-dep=<var>dependence_type</var> 
          -minsert-sched-nops=<var>scheme</var> 
          -mcall-sysv  -mcall-netbsd 
          -maix-struct-return  -msvr4-struct-return 
          -mabi=<var>abi-type</var> -msecure-plt -mbss-plt 
          -mblock-move-inline-limit=<var>num</var> 
          -misel -mno-isel 
          -misel=yes  -misel=no 
          -mspe -mno-spe 
          -mspe=yes  -mspe=no 
          -mpaired 
          -mgen-cell-microcode -mwarn-cell-microcode 
          -mvrsave -mno-vrsave 
          -mmulhw -mno-mulhw 
          -mdlmzb -mno-dlmzb 
          -mfloat-gprs=yes  -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double 
          -mprototype  -mno-prototype 
          -msim  -mmvme  -mads  -myellowknife  -memb  -msdata 
          -msdata=<var>opt</var>  -mvxworks  -G <var>num</var>  -pthread 
          -mrecip -mrecip=<var>opt</var> -mno-recip -mrecip-precision
          -mno-recip-precision 
          -mveclibabi=<var>type</var> -mfriz -mno-friz
</pre>
     <p><em>RX Options</em>
     <pre class="smallexample">          -m64bit-doubles  -m32bit-doubles  -fpu  -nofpu
          -mcpu=
          -mbig-endian-data -mlittle-endian-data 
          -msmall-data 
          -msim  -mno-sim
          -mas100-syntax -mno-as100-syntax
          -mrelax
          -mmax-constant-size=
          -mint-register=
          -msave-acc-in-interrupts
</pre>
     <p><em>S/390 and zSeries Options</em>
     <pre class="smallexample">          -mtune=<var>cpu-type</var>  -march=<var>cpu-type</var> 
          -mhard-float  -msoft-float  -mhard-dfp -mno-hard-dfp 
          -mlong-double-64 -mlong-double-128 
          -mbackchain  -mno-backchain -mpacked-stack  -mno-packed-stack 
          -msmall-exec  -mno-small-exec  -mmvcle -mno-mvcle 
          -m64  -m31  -mdebug  -mno-debug  -mesa  -mzarch 
          -mtpf-trace -mno-tpf-trace  -mfused-madd  -mno-fused-madd 
          -mwarn-framesize  -mwarn-dynamicstack  -mstack-size -mstack-guard
</pre>
     <p><em>Score Options</em>
     <pre class="smallexample">          -meb -mel 
          -mnhwloop 
          -muls 
          -mmac 
          -mscore5 -mscore5u -mscore7 -mscore7d
</pre>
     <p><em>SH Options</em>
     <pre class="smallexample">          -m1  -m2  -m2e 
          -m2a-nofpu -m2a-single-only -m2a-single -m2a 
          -m3  -m3e 
          -m4-nofpu  -m4-single-only  -m4-single  -m4 
          -m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al 
          -m5-64media  -m5-64media-nofpu 
          -m5-32media  -m5-32media-nofpu 
          -m5-compact  -m5-compact-nofpu 
          -mb  -ml  -mdalign  -mrelax 
          -mbigtable -mfmovd -mhitachi -mrenesas -mno-renesas -mnomacsave 
          -mieee  -mbitops  -misize  -minline-ic_invalidate -mpadstruct  -mspace 
          -mprefergot  -musermode -multcost=<var>number</var> -mdiv=<var>strategy</var> 
          -mdivsi3_libfunc=<var>name</var> -mfixed-range=<var>register-range</var> 
          -madjust-unroll -mindexed-addressing -mgettrcost=<var>number</var> -mpt-fixed 
          -maccumulate-outgoing-args -minvalid-symbols
</pre>
     <p><em>Solaris 2 Options</em>
     <pre class="smallexample">          -mimpure-text  -mno-impure-text 
          -threads -pthreads -pthread
</pre>
     <p><em>SPARC Options</em>
     <pre class="smallexample">          -mcpu=<var>cpu-type</var> 
          -mtune=<var>cpu-type</var> 
          -mcmodel=<var>code-model</var> 
          -m32  -m64  -mapp-regs  -mno-app-regs 
          -mfaster-structs  -mno-faster-structs 
          -mfpu  -mno-fpu  -mhard-float  -msoft-float 
          -mhard-quad-float  -msoft-quad-float 
          -mlittle-endian 
          -mstack-bias  -mno-stack-bias 
          -munaligned-doubles  -mno-unaligned-doubles 
          -mv8plus  -mno-v8plus  -mvis  -mno-vis 
          -mfix-at697f
</pre>
     <p><em>SPU Options</em>
     <pre class="smallexample">          -mwarn-reloc -merror-reloc 
          -msafe-dma -munsafe-dma 
          -mbranch-hints 
          -msmall-mem -mlarge-mem -mstdmain 
          -mfixed-range=<var>register-range</var> 
          -mea32 -mea64 
          -maddress-space-conversion -mno-address-space-conversion 
          -mcache-size=<var>cache-size</var> 
          -matomic-updates -mno-atomic-updates
</pre>
     <p><em>System V Options</em>
     <pre class="smallexample">          -Qy  -Qn  -YP,<var>paths</var>  -Ym,<var>dir</var>
</pre>
     <p><em>V850 Options</em>
     <pre class="smallexample">          -mlong-calls  -mno-long-calls  -mep  -mno-ep 
          -mprolog-function  -mno-prolog-function  -mspace 
          -mtda=<var>n</var>  -msda=<var>n</var>  -mzda=<var>n</var> 
          -mapp-regs  -mno-app-regs 
          -mdisable-callt  -mno-disable-callt 
          -mv850e2v3 
          -mv850e2 
          -mv850e1 -mv850es 
          -mv850e 
          -mv850  -mbig-switch
</pre>
     <p><em>VAX Options</em>
     <pre class="smallexample">          -mg  -mgnu  -munix
</pre>
     <p><em>VxWorks Options</em>
     <pre class="smallexample">          -mrtp  -non-static  -Bstatic  -Bdynamic 
          -Xbind-lazy  -Xbind-now
</pre>
     <p><em>x86-64 Options</em>
See i386 and x86-64 Options.

     <p><em>Xstormy16 Options</em>
     <pre class="smallexample">          -msim
</pre>
     <p><em>Xtensa Options</em>
     <pre class="smallexample">          -mconst16 -mno-const16 
          -mfused-madd  -mno-fused-madd 
          -mforce-no-pic 
          -mserialize-volatile  -mno-serialize-volatile 
          -mtext-section-literals  -mno-text-section-literals 
          -mtarget-align  -mno-target-align 
          -mlongcalls  -mno-longcalls
</pre>
     <p><em>zSeries Options</em>
See S/390 and zSeries Options.

     <br><dt><em>Code Generation Options</em><dd>See <a href="#Code-Gen-Options">Options for Code Generation Conventions</a>.
     <pre class="smallexample">          -fcall-saved-<var>reg</var>  -fcall-used-<var>reg</var> 
          -ffixed-<var>reg</var>  -fexceptions 
          -fnon-call-exceptions  -funwind-tables 
          -fasynchronous-unwind-tables 
          -finhibit-size-directive  -finstrument-functions 
          -finstrument-functions-exclude-function-list=<var>sym</var>,<var>sym</var>,... 
          -finstrument-functions-exclude-file-list=<var>file</var>,<var>file</var>,... 
          -fno-common  -fno-ident 
          -fpcc-struct-return  -fpic  -fPIC -fpie -fPIE 
          -fno-jump-tables 
          -frecord-gcc-switches 
          -freg-struct-return  -fshort-enums 
          -fshort-double  -fshort-wchar 
          -fverbose-asm  -fpack-struct[=<var>n</var>]  -fstack-check 
          -fstack-limit-register=<var>reg</var>  -fstack-limit-symbol=<var>sym</var> 
          -fno-stack-limit -fsplit-stack 
          -fleading-underscore  -ftls-model=<var>model</var> 
          -ftrapv  -fwrapv  -fbounds-check 
          -fvisibility -fstrict-volatile-bitfields
</pre>
     </dl>

<ul class="menu">
<li><a accesskey="1" href="#Overall-Options">Overall Options</a>:      Controlling the kind of output:
                        an executable, object files, assembler files,
                        or preprocessed source. 
<li><a accesskey="2" href="#C-Dialect-Options">C Dialect Options</a>:    Controlling the variant of C language compiled. 
<li><a accesskey="3" href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a>:  Variations on C++. 
<li><a accesskey="4" href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a>:  Variations on Objective-C
                        and Objective-C++. 
<li><a accesskey="5" href="#Language-Independent-Options">Language Independent Options</a>:  Controlling how diagnostics should be
                        formatted. 
<li><a accesskey="6" href="#Warning-Options">Warning Options</a>:      How picky should the compiler be? 
<li><a accesskey="7" href="#Debugging-Options">Debugging Options</a>:    Symbol tables, measurements, and debugging dumps. 
<li><a accesskey="8" href="#Optimize-Options">Optimize Options</a>:     How much optimization? 
<li><a accesskey="9" href="#Preprocessor-Options">Preprocessor Options</a>:  Controlling header files and macro definitions. 
                         Also, getting dependency information for Make. 
<li><a href="#Assembler-Options">Assembler Options</a>:    Passing options to the assembler. 
<li><a href="#Link-Options">Link Options</a>:         Specifying libraries and so on. 
<li><a href="#Directory-Options">Directory Options</a>:    Where to find header files and libraries. 
                        Where to find the compiler executable files. 
<li><a href="#Spec-Files">Spec Files</a>:           How to pass switches to sub-processes. 
<li><a href="#Target-Options">Target Options</a>:       Running a cross-compiler, or an old version of GCC. 
</ul>

<div class="node">
<a name="Overall-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Invoking-G_002b_002b">Invoking G++</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Option-Summary">Option Summary</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>

</div>

<h3 class="section">3.2 Options Controlling the Kind of Output</h3>

<p>Compilation can involve up to four stages: preprocessing, compilation
proper, assembly and linking, always in that order.  GCC is capable of
preprocessing and compiling several files either into several
assembler input files, or into one assembler input file; then each
assembler input file produces an object file, and linking combines all
the object files (those newly compiled, and those specified as input)
into an executable file.

 <p><a name="index-file-name-suffix-74"></a>For any given input file, the file name suffix determines what kind of
compilation is done:

     <dl>
<dt><var>file</var><code>.c</code><dd>C source code which must be preprocessed.

     <br><dt><var>file</var><code>.i</code><dd>C source code which should not be preprocessed.

     <br><dt><var>file</var><code>.ii</code><dd>C++ source code which should not be preprocessed.

     <br><dt><var>file</var><code>.m</code><dd>Objective-C source code.  Note that you must link with the <samp><span class="file">libobjc</span></samp>
library to make an Objective-C program work.

     <br><dt><var>file</var><code>.mi</code><dd>Objective-C source code which should not be preprocessed.

     <br><dt><var>file</var><code>.mm</code><dt><var>file</var><code>.M</code><dd>Objective-C++ source code.  Note that you must link with the <samp><span class="file">libobjc</span></samp>
library to make an Objective-C++ program work.  Note that &lsquo;<samp><span class="samp">.M</span></samp>&rsquo; refers
to a literal capital M.

     <br><dt><var>file</var><code>.mii</code><dd>Objective-C++ source code which should not be preprocessed.

     <br><dt><var>file</var><code>.h</code><dd>C, C++, Objective-C or Objective-C++ header file to be turned into a
precompiled header (default), or C, C++ header file to be turned into an
Ada spec (via the <samp><span class="option">-fdump-ada-spec</span></samp> switch).

     <br><dt><var>file</var><code>.cc</code><dt><var>file</var><code>.cp</code><dt><var>file</var><code>.cxx</code><dt><var>file</var><code>.cpp</code><dt><var>file</var><code>.CPP</code><dt><var>file</var><code>.c++</code><dt><var>file</var><code>.C</code><dd>C++ source code which must be preprocessed.  Note that in &lsquo;<samp><span class="samp">.cxx</span></samp>&rsquo;,
the last two letters must both be literally &lsquo;<samp><span class="samp">x</span></samp>&rsquo;.  Likewise,
&lsquo;<samp><span class="samp">.C</span></samp>&rsquo; refers to a literal capital C.

     <br><dt><var>file</var><code>.mm</code><dt><var>file</var><code>.M</code><dd>Objective-C++ source code which must be preprocessed.

     <br><dt><var>file</var><code>.mii</code><dd>Objective-C++ source code which should not be preprocessed.

     <br><dt><var>file</var><code>.hh</code><dt><var>file</var><code>.H</code><dt><var>file</var><code>.hp</code><dt><var>file</var><code>.hxx</code><dt><var>file</var><code>.hpp</code><dt><var>file</var><code>.HPP</code><dt><var>file</var><code>.h++</code><dt><var>file</var><code>.tcc</code><dd>C++ header file to be turned into a precompiled header or Ada spec.

     <br><dt><var>file</var><code>.f</code><dt><var>file</var><code>.for</code><dt><var>file</var><code>.ftn</code><dd>Fixed form Fortran source code which should not be preprocessed.

     <br><dt><var>file</var><code>.F</code><dt><var>file</var><code>.FOR</code><dt><var>file</var><code>.fpp</code><dt><var>file</var><code>.FPP</code><dt><var>file</var><code>.FTN</code><dd>Fixed form Fortran source code which must be preprocessed (with the traditional
preprocessor).

     <br><dt><var>file</var><code>.f90</code><dt><var>file</var><code>.f95</code><dt><var>file</var><code>.f03</code><dt><var>file</var><code>.f08</code><dd>Free form Fortran source code which should not be preprocessed.

     <br><dt><var>file</var><code>.F90</code><dt><var>file</var><code>.F95</code><dt><var>file</var><code>.F03</code><dt><var>file</var><code>.F08</code><dd>Free form Fortran source code which must be preprocessed (with the
traditional preprocessor).

     <br><dt><var>file</var><code>.go</code><dd>Go source code.

     <!-- FIXME: Descriptions of Java file types. -->
     <!-- @var{file}.java -->
     <!-- @var{file}.class -->
     <!-- @var{file}.zip -->
     <!-- @var{file}.jar -->
     <br><dt><var>file</var><code>.ads</code><dd>Ada source code file which contains a library unit declaration (a
declaration of a package, subprogram, or generic, or a generic
instantiation), or a library unit renaming declaration (a package,
generic, or subprogram renaming declaration).  Such files are also
called <dfn>specs</dfn>.

     <br><dt><var>file</var><code>.adb</code><dd>Ada source code file containing a library unit body (a subprogram or
package body).  Such files are also called <dfn>bodies</dfn>.

     <!-- GCC also knows about some suffixes for languages not yet included: -->
     <!-- Pascal: -->
     <!-- @var{file}.p -->
     <!-- @var{file}.pas -->
     <!-- Ratfor: -->
     <!-- @var{file}.r -->
     <br><dt><var>file</var><code>.s</code><dd>Assembler code.

     <br><dt><var>file</var><code>.S</code><dt><var>file</var><code>.sx</code><dd>Assembler code which must be preprocessed.

     <br><dt><var>other</var><dd>An object file to be fed straight into linking. 
Any file name with no recognized suffix is treated this way. 
</dl>

 <p><a name="index-x-75"></a>You can specify the input language explicitly with the <samp><span class="option">-x</span></samp> option:

     <dl>
<dt><code>-x </code><var>language</var><dd>Specify explicitly the <var>language</var> for the following input files
(rather than letting the compiler choose a default based on the file
name suffix).  This option applies to all following input files until
the next <samp><span class="option">-x</span></samp> option.  Possible values for <var>language</var> are:
     <pre class="smallexample">          c  c-header  cpp-output
          c++  c++-header  c++-cpp-output
          objective-c  objective-c-header  objective-c-cpp-output
          objective-c++ objective-c++-header objective-c++-cpp-output
          assembler  assembler-with-cpp
          ada
          f77  f77-cpp-input f95  f95-cpp-input
          go
          java
</pre>
     <br><dt><code>-x none</code><dd>Turn off any specification of a language, so that subsequent files are
handled according to their file name suffixes (as they are if <samp><span class="option">-x</span></samp>
has not been used at all).

     <br><dt><code>-pass-exit-codes</code><dd><a name="index-pass_002dexit_002dcodes-76"></a>Normally the <samp><span class="command">gcc</span></samp> program will exit with the code of 1 if any
phase of the compiler returns a non-success return code.  If you specify
<samp><span class="option">-pass-exit-codes</span></samp>, the <samp><span class="command">gcc</span></samp> program will instead return with
numerically highest error produced by any phase that returned an error
indication.  The C, C++, and Fortran frontends return 4, if an internal
compiler error is encountered. 
</dl>

 <p>If you only want some of the stages of compilation, you can use
<samp><span class="option">-x</span></samp> (or filename suffixes) to tell <samp><span class="command">gcc</span></samp> where to start, and
one of the options <samp><span class="option">-c</span></samp>, <samp><span class="option">-S</span></samp>, or <samp><span class="option">-E</span></samp> to say where
<samp><span class="command">gcc</span></samp> is to stop.  Note that some combinations (for example,
&lsquo;<samp><span class="samp">-x cpp-output -E</span></samp>&rsquo;) instruct <samp><span class="command">gcc</span></samp> to do nothing at all.

     <dl>
<dt><code>-c</code><dd><a name="index-c-77"></a>Compile or assemble the source files, but do not link.  The linking
stage simply is not done.  The ultimate output is in the form of an
object file for each source file.

     <p>By default, the object file name for a source file is made by replacing
the suffix &lsquo;<samp><span class="samp">.c</span></samp>&rsquo;, &lsquo;<samp><span class="samp">.i</span></samp>&rsquo;, &lsquo;<samp><span class="samp">.s</span></samp>&rsquo;, etc., with &lsquo;<samp><span class="samp">.o</span></samp>&rsquo;.

     <p>Unrecognized input files, not requiring compilation or assembly, are
ignored.

     <br><dt><code>-S</code><dd><a name="index-S-78"></a>Stop after the stage of compilation proper; do not assemble.  The output
is in the form of an assembler code file for each non-assembler input
file specified.

     <p>By default, the assembler file name for a source file is made by
replacing the suffix &lsquo;<samp><span class="samp">.c</span></samp>&rsquo;, &lsquo;<samp><span class="samp">.i</span></samp>&rsquo;, etc., with &lsquo;<samp><span class="samp">.s</span></samp>&rsquo;.

     <p>Input files that don't require compilation are ignored.

     <br><dt><code>-E</code><dd><a name="index-E-79"></a>Stop after the preprocessing stage; do not run the compiler proper.  The
output is in the form of preprocessed source code, which is sent to the
standard output.

     <p>Input files which don't require preprocessing are ignored.

     <p><a name="index-output-file-option-80"></a><br><dt><code>-o </code><var>file</var><dd><a name="index-o-81"></a>Place output in file <var>file</var>.  This applies regardless to whatever
sort of output is being produced, whether it be an executable file,
an object file, an assembler file or preprocessed C code.

     <p>If <samp><span class="option">-o</span></samp> is not specified, the default is to put an executable
file in <samp><span class="file">a.out</span></samp>, the object file for
<samp><var>source</var><span class="file">.</span><var>suffix</var></samp> in <samp><var>source</var><span class="file">.o</span></samp>, its
assembler file in <samp><var>source</var><span class="file">.s</span></samp>, a precompiled header file in
<samp><var>source</var><span class="file">.</span><var>suffix</var><span class="file">.gch</span></samp>, and all preprocessed C source on
standard output.

     <br><dt><code>-v</code><dd><a name="index-v-82"></a>Print (on standard error output) the commands executed to run the stages
of compilation.  Also print the version number of the compiler driver
program and of the preprocessor and the compiler proper.

     <br><dt><code>-###</code><dd><a name="index-g_t_0023_0023_0023-83"></a>Like <samp><span class="option">-v</span></samp> except the commands are not executed and arguments
are quoted unless they contain only alphanumeric characters or <code>./-_</code>. 
This is useful for shell scripts to capture the driver-generated command lines.

     <br><dt><code>-pipe</code><dd><a name="index-pipe-84"></a>Use pipes rather than temporary files for communication between the
various stages of compilation.  This fails to work on some systems where
the assembler is unable to read from a pipe; but the GNU assembler has
no trouble.

     <br><dt><code>--help</code><dd><a name="index-help-85"></a>Print (on the standard output) a description of the command line options
understood by <samp><span class="command">gcc</span></samp>.  If the <samp><span class="option">-v</span></samp> option is also specified
then <samp><span class="option">--help</span></samp> will also be passed on to the various processes
invoked by <samp><span class="command">gcc</span></samp>, so that they can display the command line options
they accept.  If the <samp><span class="option">-Wextra</span></samp> option has also been specified
(prior to the <samp><span class="option">--help</span></samp> option), then command line options which
have no documentation associated with them will also be displayed.

     <br><dt><code>--target-help</code><dd><a name="index-target_002dhelp-86"></a>Print (on the standard output) a description of target-specific command
line options for each tool.  For some targets extra target-specific
information may also be printed.

     <br><dt><code>--help={</code><var>class</var><span class="roman">|[</span><code>^</code><span class="roman">]</span><var>qualifier</var><code>}</code><span class="roman">[</span><code>,...</code><span class="roman">]</span><dd>Print (on the standard output) a description of the command line
options understood by the compiler that fit into all specified classes
and qualifiers.  These are the supported classes:

          <dl>
<dt>&lsquo;<samp><span class="samp">optimizers</span></samp>&rsquo;<dd>This will display all of the optimization options supported by the
compiler.

          <br><dt>&lsquo;<samp><span class="samp">warnings</span></samp>&rsquo;<dd>This will display all of the options controlling warning messages
produced by the compiler.

          <br><dt>&lsquo;<samp><span class="samp">target</span></samp>&rsquo;<dd>This will display target-specific options.  Unlike the
<samp><span class="option">--target-help</span></samp> option however, target-specific options of the
linker and assembler will not be displayed.  This is because those
tools do not currently support the extended <samp><span class="option">--help=</span></samp> syntax.

          <br><dt>&lsquo;<samp><span class="samp">params</span></samp>&rsquo;<dd>This will display the values recognized by the <samp><span class="option">--param</span></samp>
option.

          <br><dt><var>language</var><dd>This will display the options supported for <var>language</var>, where
<var>language</var> is the name of one of the languages supported in this
version of GCC.

          <br><dt>&lsquo;<samp><span class="samp">common</span></samp>&rsquo;<dd>This will display the options that are common to all languages. 
</dl>

     <p>These are the supported qualifiers:

          <dl>
<dt>&lsquo;<samp><span class="samp">undocumented</span></samp>&rsquo;<dd>Display only those options which are undocumented.

          <br><dt>&lsquo;<samp><span class="samp">joined</span></samp>&rsquo;<dd>Display options which take an argument that appears after an equal
sign in the same continuous piece of text, such as:
&lsquo;<samp><span class="samp">--help=target</span></samp>&rsquo;.

          <br><dt>&lsquo;<samp><span class="samp">separate</span></samp>&rsquo;<dd>Display options which take an argument that appears as a separate word
following the original option, such as: &lsquo;<samp><span class="samp">-o output-file</span></samp>&rsquo;. 
</dl>

     <p>Thus for example to display all the undocumented target-specific
switches supported by the compiler the following can be used:

     <pre class="smallexample">          --help=target,undocumented
</pre>
     <p>The sense of a qualifier can be inverted by prefixing it with the
&lsquo;<samp><span class="samp">^</span></samp>&rsquo; character, so for example to display all binary warning
options (i.e., ones that are either on or off and that do not take an
argument), which have a description the following can be used:

     <pre class="smallexample">          --help=warnings,^joined,^undocumented
</pre>
     <p>The argument to <samp><span class="option">--help=</span></samp> should not consist solely of inverted
qualifiers.

     <p>Combining several classes is possible, although this usually
restricts the output by so much that there is nothing to display.  One
case where it does work however is when one of the classes is
<var>target</var>.  So for example to display all the target-specific
optimization options the following can be used:

     <pre class="smallexample">          --help=target,optimizers
</pre>
     <p>The <samp><span class="option">--help=</span></samp> option can be repeated on the command line.  Each
successive use will display its requested class of options, skipping
those that have already been displayed.

     <p>If the <samp><span class="option">-Q</span></samp> option appears on the command line before the
<samp><span class="option">--help=</span></samp> option, then the descriptive text displayed by
<samp><span class="option">--help=</span></samp> is changed.  Instead of describing the displayed
options, an indication is given as to whether the option is enabled,
disabled or set to a specific value (assuming that the compiler
knows this at the point where the <samp><span class="option">--help=</span></samp> option is used).

     <p>Here is a truncated example from the ARM port of <samp><span class="command">gcc</span></samp>:

     <pre class="smallexample">            % gcc -Q -mabi=2 --help=target -c
            The following options are target specific:
            -mabi=                                2
            -mabort-on-noreturn                   [disabled]
            -mapcs                                [disabled]
</pre>
     <p>The output is sensitive to the effects of previous command line
options, so for example it is possible to find out which optimizations
are enabled at <samp><span class="option">-O2</span></samp> by using:

     <pre class="smallexample">          -Q -O2 --help=optimizers
</pre>
     <p>Alternatively you can discover which binary optimizations are enabled
by <samp><span class="option">-O3</span></samp> by using:

     <pre class="smallexample">          gcc -c -Q -O3 --help=optimizers &gt; /tmp/O3-opts
          gcc -c -Q -O2 --help=optimizers &gt; /tmp/O2-opts
          diff /tmp/O2-opts /tmp/O3-opts | grep enabled
</pre>
     <br><dt><code>-no-canonical-prefixes</code><dd><a name="index-no_002dcanonical_002dprefixes-87"></a>Do not expand any symbolic links, resolve references to &lsquo;<samp><span class="samp">/../</span></samp>&rsquo;
or &lsquo;<samp><span class="samp">/./</span></samp>&rsquo;, or make the path absolute when generating a relative
prefix.

     <br><dt><code>--version</code><dd><a name="index-version-88"></a>Display the version number and copyrights of the invoked GCC.

     <br><dt><code>-wrapper</code><dd><a name="index-wrapper-89"></a>Invoke all subcommands under a wrapper program.  The name of the
wrapper program and its parameters are passed as a comma separated
list.

     <pre class="smallexample">          gcc -c t.c -wrapper gdb,--args
</pre>
     <p>This will invoke all subprograms of <samp><span class="command">gcc</span></samp> under
&lsquo;<samp><span class="samp">gdb --args</span></samp>&rsquo;, thus the invocation of <samp><span class="command">cc1</span></samp> will be
&lsquo;<samp><span class="samp">gdb --args cc1 ...</span></samp>&rsquo;.

     <br><dt><code>-fplugin=</code><var>name</var><code>.so</code><dd>Load the plugin code in file <var>name</var>.so, assumed to be a
shared object to be dlopen'd by the compiler.  The base name of
the shared object file is used to identify the plugin for the
purposes of argument parsing (See
<samp><span class="option">-fplugin-arg-</span><var>name</var><span class="option">-</span><var>key</var><span class="option">=</span><var>value</var></samp> below). 
Each plugin should define the callback functions specified in the
Plugins API.

     <br><dt><code>-fplugin-arg-</code><var>name</var><code>-</code><var>key</var><code>=</code><var>value</var><dd>Define an argument called <var>key</var> with a value of <var>value</var>
for the plugin called <var>name</var>.

     <br><dt><code>-fdump-ada-spec</code><span class="roman">[</span><code>-slim</code><span class="roman">]</span><dd>For C and C++ source and include files, generate corresponding Ada
specs. See <a href="gnat_ugn.html#Generating-Ada-Bindings-for-C-and-C_002b_002b-headers">Generating Ada Bindings for C and C++ headers</a>, which provides detailed documentation on this feature.

     <br><dt><code>-fdump-go-spec=</code><var>file</var><dd>For input files in any language, generate corresponding Go
declarations in <var>file</var>.  This generates Go <code>const</code>,
<code>type</code>, <code>var</code>, and <code>func</code> declarations which may be a
useful way to start writing a Go interface to code written in some
other language.

     <!-- This file is designed to be included in manuals that use -->
     <!-- expandargv. -->
     <br><dt><code>@</code><var>file</var><dd>Read command-line options from <var>file</var>.  The options read are
inserted in place of the original @<var>file</var> option.  If <var>file</var>
does not exist, or cannot be read, then the option will be treated
literally, and not removed.

     <p>Options in <var>file</var> are separated by whitespace.  A whitespace
character may be included in an option by surrounding the entire
option in either single or double quotes.  Any character (including a
backslash) may be included by prefixing the character to be included
with a backslash.  The <var>file</var> may itself contain additional
@<var>file</var> options; any such options will be processed recursively. 
</dl>

<div class="node">
<a name="Invoking-G++"></a>
<a name="Invoking-G_002b_002b"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#C-Dialect-Options">C Dialect Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Overall-Options">Overall Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>

</div>

<h3 class="section">3.3 Compiling C++ Programs</h3>

<p><a name="index-suffixes-for-C_002b_002b-source-90"></a><a name="index-C_002b_002b-source-file-suffixes-91"></a>C++ source files conventionally use one of the suffixes &lsquo;<samp><span class="samp">.C</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">.cc</span></samp>&rsquo;, &lsquo;<samp><span class="samp">.cpp</span></samp>&rsquo;, &lsquo;<samp><span class="samp">.CPP</span></samp>&rsquo;, &lsquo;<samp><span class="samp">.c++</span></samp>&rsquo;, &lsquo;<samp><span class="samp">.cp</span></samp>&rsquo;, or
&lsquo;<samp><span class="samp">.cxx</span></samp>&rsquo;; C++ header files often use &lsquo;<samp><span class="samp">.hh</span></samp>&rsquo;, &lsquo;<samp><span class="samp">.hpp</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">.H</span></samp>&rsquo;, or (for shared template code) &lsquo;<samp><span class="samp">.tcc</span></samp>&rsquo;; and
preprocessed C++ files use the suffix &lsquo;<samp><span class="samp">.ii</span></samp>&rsquo;.  GCC recognizes
files with these names and compiles them as C++ programs even if you
call the compiler the same way as for compiling C programs (usually
with the name <samp><span class="command">gcc</span></samp>).

 <p><a name="index-g_002b_002b-92"></a><a name="index-c_002b_002b-93"></a>However, the use of <samp><span class="command">gcc</span></samp> does not add the C++ library. 
<samp><span class="command">g++</span></samp> is a program that calls GCC and treats &lsquo;<samp><span class="samp">.c</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">.h</span></samp>&rsquo; and &lsquo;<samp><span class="samp">.i</span></samp>&rsquo; files as C++ source files instead of C source
files unless <samp><span class="option">-x</span></samp> is used, and automatically specifies linking
against the C++ library.  This program is also useful when
precompiling a C header file with a &lsquo;<samp><span class="samp">.h</span></samp>&rsquo; extension for use in C++
compilations.  On many systems, <samp><span class="command">g++</span></samp> is also installed with
the name <samp><span class="command">c++</span></samp>.

 <p><a name="index-invoking-_0040command_007bg_002b_002b_007d-94"></a>When you compile C++ programs, you may specify many of the same
command-line options that you use for compiling programs in any
language; or command-line options meaningful for C and related
languages; or options that are meaningful only for C++ programs. 
See <a href="#C-Dialect-Options">Options Controlling C Dialect</a>, for
explanations of options for languages related to C. 
See <a href="#C_002b_002b-Dialect-Options">Options Controlling C++ Dialect</a>, for
explanations of options that are meaningful only for C++ programs.

<div class="node">
<a name="C-Dialect-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Invoking-G_002b_002b">Invoking G++</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>

</div>

<h3 class="section">3.4 Options Controlling C Dialect</h3>

<p><a name="index-dialect-options-95"></a><a name="index-language-dialect-options-96"></a><a name="index-options_002c-dialect-97"></a>
The following options control the dialect of C (or languages derived
from C, such as C++, Objective-C and Objective-C++) that the compiler
accepts:

     
<a name="index-ANSI-support-98"></a>
<a name="index-ISO-support-99"></a>
<dl><dt><code>-ansi</code><dd><a name="index-ansi-100"></a>In C mode, this is equivalent to &lsquo;<samp><span class="samp">-std=c90</span></samp>&rsquo;. In C++ mode, it is
equivalent to &lsquo;<samp><span class="samp">-std=c++98</span></samp>&rsquo;.

     <p>This turns off certain features of GCC that are incompatible with ISO
C90 (when compiling C code), or of standard C++ (when compiling C++ code),
such as the <code>asm</code> and <code>typeof</code> keywords, and
predefined macros such as <code>unix</code> and <code>vax</code> that identify the
type of system you are using.  It also enables the undesirable and
rarely used ISO trigraph feature.  For the C compiler,
it disables recognition of C++ style &lsquo;<samp><span class="samp">//</span></samp>&rsquo; comments as well as
the <code>inline</code> keyword.

     <p>The alternate keywords <code>__asm__</code>, <code>__extension__</code>,
<code>__inline__</code> and <code>__typeof__</code> continue to work despite
<samp><span class="option">-ansi</span></samp>.  You would not want to use them in an ISO C program, of
course, but it is useful to put them in header files that might be included
in compilations done with <samp><span class="option">-ansi</span></samp>.  Alternate predefined macros
such as <code>__unix__</code> and <code>__vax__</code> are also available, with or
without <samp><span class="option">-ansi</span></samp>.

     <p>The <samp><span class="option">-ansi</span></samp> option does not cause non-ISO programs to be
rejected gratuitously.  For that, <samp><span class="option">-pedantic</span></samp> is required in
addition to <samp><span class="option">-ansi</span></samp>.  See <a href="#Warning-Options">Warning Options</a>.

     <p>The macro <code>__STRICT_ANSI__</code> is predefined when the <samp><span class="option">-ansi</span></samp>
option is used.  Some header files may notice this macro and refrain
from declaring certain functions or defining certain macros that the
ISO standard doesn't call for; this is to avoid interfering with any
programs that might use these names for other things.

     <p>Functions that would normally be built in but do not have semantics
defined by ISO C (such as <code>alloca</code> and <code>ffs</code>) are not built-in
functions when <samp><span class="option">-ansi</span></samp> is used.  See <a href="#Other-Builtins">Other built-in functions provided by GCC</a>, for details of the functions
affected.

     <br><dt><code>-std=</code><dd><a name="index-std-101"></a>Determine the language standard. See <a href="#Standards">Language Standards Supported by GCC</a>, for details of these standard versions.  This option
is currently only supported when compiling C or C++.

     <p>The compiler can accept several base standards, such as &lsquo;<samp><span class="samp">c90</span></samp>&rsquo; or
&lsquo;<samp><span class="samp">c++98</span></samp>&rsquo;, and GNU dialects of those standards, such as
&lsquo;<samp><span class="samp">gnu90</span></samp>&rsquo; or &lsquo;<samp><span class="samp">gnu++98</span></samp>&rsquo;.  By specifying a base standard, the
compiler will accept all programs following that standard and those
using GNU extensions that do not contradict it.  For example,
&lsquo;<samp><span class="samp">-std=c90</span></samp>&rsquo; turns off certain features of GCC that are
incompatible with ISO C90, such as the <code>asm</code> and <code>typeof</code>
keywords, but not other GNU extensions that do not have a meaning in
ISO C90, such as omitting the middle term of a <code>?:</code>
expression. On the other hand, by specifying a GNU dialect of a
standard, all features the compiler support are enabled, even when
those features change the meaning of the base standard and some
strict-conforming programs may be rejected.  The particular standard
is used by <samp><span class="option">-pedantic</span></samp> to identify which features are GNU
extensions given that version of the standard. For example
&lsquo;<samp><span class="samp">-std=gnu90 -pedantic</span></samp>&rsquo; would warn about C++ style &lsquo;<samp><span class="samp">//</span></samp>&rsquo;
comments, while &lsquo;<samp><span class="samp">-std=gnu99 -pedantic</span></samp>&rsquo; would not.

     <p>A value for this option must be provided; possible values are

          <dl>
<dt>&lsquo;<samp><span class="samp">c90</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">c89</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">iso9899:1990</span></samp>&rsquo;<dd>Support all ISO C90 programs (certain GNU extensions that conflict
with ISO C90 are disabled). Same as <samp><span class="option">-ansi</span></samp> for C code.

          <br><dt>&lsquo;<samp><span class="samp">iso9899:199409</span></samp>&rsquo;<dd>ISO C90 as modified in amendment 1.

          <br><dt>&lsquo;<samp><span class="samp">c99</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">c9x</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">iso9899:1999</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">iso9899:199x</span></samp>&rsquo;<dd>ISO C99.  Note that this standard is not yet fully supported; see
<a href="http://gcc.gnu.org/gcc-4.6/c99status.html">http://gcc.gnu.org/gcc-4.6/c99status.html</a><!-- /@w --> for more information.  The
names &lsquo;<samp><span class="samp">c9x</span></samp>&rsquo; and &lsquo;<samp><span class="samp">iso9899:199x</span></samp>&rsquo; are deprecated.

          <br><dt>&lsquo;<samp><span class="samp">c1x</span></samp>&rsquo;<dd>ISO C1X, the draft of the next revision of the ISO C standard. 
Support is limited and experimental and features enabled by this
option may be changed or removed if changed in or removed from the
standard draft.

          <br><dt>&lsquo;<samp><span class="samp">gnu90</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">gnu89</span></samp>&rsquo;<dd>GNU dialect of ISO C90 (including some C99 features). This
is the default for C code.

          <br><dt>&lsquo;<samp><span class="samp">gnu99</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">gnu9x</span></samp>&rsquo;<dd>GNU dialect of ISO C99.  When ISO C99 is fully implemented in GCC,
this will become the default.  The name &lsquo;<samp><span class="samp">gnu9x</span></samp>&rsquo; is deprecated.

          <br><dt>&lsquo;<samp><span class="samp">gnu1x</span></samp>&rsquo;<dd>GNU dialect of ISO C1X.  Support is limited and experimental and
features enabled by this option may be changed or removed if changed
in or removed from the standard draft.

          <br><dt>&lsquo;<samp><span class="samp">c++98</span></samp>&rsquo;<dd>The 1998 ISO C++ standard plus amendments. Same as <samp><span class="option">-ansi</span></samp> for
C++ code.

          <br><dt>&lsquo;<samp><span class="samp">gnu++98</span></samp>&rsquo;<dd>GNU dialect of <samp><span class="option">-std=c++98</span></samp>.  This is the default for
C++ code.

          <br><dt>&lsquo;<samp><span class="samp">c++0x</span></samp>&rsquo;<dd>The working draft of the upcoming ISO C++0x standard. This option
enables experimental features that are likely to be included in
C++0x. The working draft is constantly changing, and any feature that is
enabled by this flag may be removed from future versions of GCC if it is
not part of the C++0x standard.

          <br><dt>&lsquo;<samp><span class="samp">gnu++0x</span></samp>&rsquo;<dd>GNU dialect of <samp><span class="option">-std=c++0x</span></samp>. This option enables
experimental features that may be removed in future versions of GCC. 
</dl>

     <br><dt><code>-fgnu89-inline</code><dd><a name="index-fgnu89_002dinline-102"></a>The option <samp><span class="option">-fgnu89-inline</span></samp> tells GCC to use the traditional
GNU semantics for <code>inline</code> functions when in C99 mode. 
See <a href="#Inline">An Inline Function is As Fast As a Macro</a>.  This option
is accepted and ignored by GCC versions 4.1.3 up to but not including
4.3.  In GCC versions 4.3 and later it changes the behavior of GCC in
C99 mode.  Using this option is roughly equivalent to adding the
<code>gnu_inline</code> function attribute to all inline functions
(see <a href="#Function-Attributes">Function Attributes</a>).

     <p>The option <samp><span class="option">-fno-gnu89-inline</span></samp> explicitly tells GCC to use the
C99 semantics for <code>inline</code> when in C99 or gnu99 mode (i.e., it
specifies the default behavior).  This option was first supported in
GCC 4.3.  This option is not supported in <samp><span class="option">-std=c90</span></samp> or
<samp><span class="option">-std=gnu90</span></samp> mode.

     <p>The preprocessor macros <code>__GNUC_GNU_INLINE__</code> and
<code>__GNUC_STDC_INLINE__</code> may be used to check which semantics are
in effect for <code>inline</code> functions.  See <a href="cpp.html#Common-Predefined-Macros">Common Predefined Macros</a>.

     <br><dt><code>-aux-info </code><var>filename</var><dd><a name="index-aux_002dinfo-103"></a>Output to the given filename prototyped declarations for all functions
declared and/or defined in a translation unit, including those in header
files.  This option is silently ignored in any language other than C.

     <p>Besides declarations, the file indicates, in comments, the origin of
each declaration (source file and line), whether the declaration was
implicit, prototyped or unprototyped (&lsquo;<samp><span class="samp">I</span></samp>&rsquo;, &lsquo;<samp><span class="samp">N</span></samp>&rsquo; for new or
&lsquo;<samp><span class="samp">O</span></samp>&rsquo; for old, respectively, in the first character after the line
number and the colon), and whether it came from a declaration or a
definition (&lsquo;<samp><span class="samp">C</span></samp>&rsquo; or &lsquo;<samp><span class="samp">F</span></samp>&rsquo;, respectively, in the following
character).  In the case of function definitions, a K&amp;R-style list of
arguments followed by their declarations is also provided, inside
comments, after the declaration.

     <br><dt><code>-fno-asm</code><dd><a name="index-fno_002dasm-104"></a>Do not recognize <code>asm</code>, <code>inline</code> or <code>typeof</code> as a
keyword, so that code can use these words as identifiers.  You can use
the keywords <code>__asm__</code>, <code>__inline__</code> and <code>__typeof__</code>
instead.  <samp><span class="option">-ansi</span></samp> implies <samp><span class="option">-fno-asm</span></samp>.

     <p>In C++, this switch only affects the <code>typeof</code> keyword, since
<code>asm</code> and <code>inline</code> are standard keywords.  You may want to
use the <samp><span class="option">-fno-gnu-keywords</span></samp> flag instead, which has the same
effect.  In C99 mode (<samp><span class="option">-std=c99</span></samp> or <samp><span class="option">-std=gnu99</span></samp>), this
switch only affects the <code>asm</code> and <code>typeof</code> keywords, since
<code>inline</code> is a standard keyword in ISO C99.

     <br><dt><code>-fno-builtin</code><dt><code>-fno-builtin-</code><var>function</var><dd><a name="index-fno_002dbuiltin-105"></a><a name="index-built_002din-functions-106"></a>Don't recognize built-in functions that do not begin with
&lsquo;<samp><span class="samp">__builtin_</span></samp>&rsquo; as prefix.  See <a href="#Other-Builtins">Other built-in functions provided by GCC</a>, for details of the functions affected,
including those which are not built-in functions when <samp><span class="option">-ansi</span></samp> or
<samp><span class="option">-std</span></samp> options for strict ISO C conformance are used because they
do not have an ISO standard meaning.

     <p>GCC normally generates special code to handle certain built-in functions
more efficiently; for instance, calls to <code>alloca</code> may become single
instructions that adjust the stack directly, and calls to <code>memcpy</code>
may become inline copy loops.  The resulting code is often both smaller
and faster, but since the function calls no longer appear as such, you
cannot set a breakpoint on those calls, nor can you change the behavior
of the functions by linking with a different library.  In addition,
when a function is recognized as a built-in function, GCC may use
information about that function to warn about problems with calls to
that function, or to generate more efficient code, even if the
resulting code still contains calls to that function.  For example,
warnings are given with <samp><span class="option">-Wformat</span></samp> for bad calls to
<code>printf</code>, when <code>printf</code> is built in, and <code>strlen</code> is
known not to modify global memory.

     <p>With the <samp><span class="option">-fno-builtin-</span><var>function</var></samp> option
only the built-in function <var>function</var> is
disabled.  <var>function</var> must not begin with &lsquo;<samp><span class="samp">__builtin_</span></samp>&rsquo;.  If a
function is named that is not built-in in this version of GCC, this
option is ignored.  There is no corresponding
<samp><span class="option">-fbuiltin-</span><var>function</var></samp> option; if you wish to enable
built-in functions selectively when using <samp><span class="option">-fno-builtin</span></samp> or
<samp><span class="option">-ffreestanding</span></samp>, you may define macros such as:

     <pre class="smallexample">          #define abs(n)          __builtin_abs ((n))
          #define strcpy(d, s)    __builtin_strcpy ((d), (s))
</pre>
     <br><dt><code>-fhosted</code><dd><a name="index-fhosted-107"></a><a name="index-hosted-environment-108"></a>
Assert that compilation takes place in a hosted environment.  This implies
<samp><span class="option">-fbuiltin</span></samp>.  A hosted environment is one in which the
entire standard library is available, and in which <code>main</code> has a return
type of <code>int</code>.  Examples are nearly everything except a kernel. 
This is equivalent to <samp><span class="option">-fno-freestanding</span></samp>.

     <br><dt><code>-ffreestanding</code><dd><a name="index-ffreestanding-109"></a><a name="index-hosted-environment-110"></a>
Assert that compilation takes place in a freestanding environment.  This
implies <samp><span class="option">-fno-builtin</span></samp>.  A freestanding environment
is one in which the standard library may not exist, and program startup may
not necessarily be at <code>main</code>.  The most obvious example is an OS kernel. 
This is equivalent to <samp><span class="option">-fno-hosted</span></samp>.

     <p>See <a href="#Standards">Language Standards Supported by GCC</a>, for details of
freestanding and hosted environments.

     <br><dt><code>-fopenmp</code><dd><a name="index-fopenmp-111"></a><a name="index-OpenMP-parallel-112"></a>Enable handling of OpenMP directives <code>#pragma omp</code> in C/C++ and
<code>!$omp</code> in Fortran.  When <samp><span class="option">-fopenmp</span></samp> is specified, the
compiler generates parallel code according to the OpenMP Application
Program Interface v3.0 <a href="http://www.openmp.org/">http://www.openmp.org/</a><!-- /@w -->.  This option
implies <samp><span class="option">-pthread</span></samp>, and thus is only supported on targets that
have support for <samp><span class="option">-pthread</span></samp>.

     <br><dt><code>-fms-extensions</code><dd><a name="index-fms_002dextensions-113"></a>Accept some non-standard constructs used in Microsoft header files.

     <p>In C++ code, this allows member names in structures to be similar
to previous types declarations.

     <pre class="smallexample">          typedef int UOW;
          struct ABC {
            UOW UOW;
          };
</pre>
     <p>Some cases of unnamed fields in structures and unions are only
accepted with this option.  See <a href="#Unnamed-Fields">Unnamed struct/union fields within structs/unions</a>, for details.

     <br><dt><code>-fplan9-extensions</code><dd>Accept some non-standard constructs used in Plan 9 code.

     <p>This enables <samp><span class="option">-fms-extensions</span></samp>, permits passing pointers to
structures with anonymous fields to functions which expect pointers to
elements of the type of the field, and permits referring to anonymous
fields declared using a typedef.  See <a href="#Unnamed-Fields">Unnamed struct/union fields within structs/unions</a>, for details.  This is only
supported for C, not C++.

     <br><dt><code>-trigraphs</code><dd><a name="index-trigraphs-114"></a>Support ISO C trigraphs.  The <samp><span class="option">-ansi</span></samp> option (and <samp><span class="option">-std</span></samp>
options for strict ISO C conformance) implies <samp><span class="option">-trigraphs</span></samp>.

     <br><dt><code>-no-integrated-cpp</code><dd><a name="index-no_002dintegrated_002dcpp-115"></a>Performs a compilation in two passes: preprocessing and compiling.  This
option allows a user supplied "cc1", "cc1plus", or "cc1obj" via the
<samp><span class="option">-B</span></samp> option.  The user supplied compilation step can then add in
an additional preprocessing step after normal preprocessing but before
compiling.  The default is to use the integrated cpp (internal cpp)

     <p>The semantics of this option will change if "cc1", "cc1plus", and
"cc1obj" are merged.

     <p><a name="index-traditional-C-language-116"></a><a name="index-C-language_002c-traditional-117"></a><br><dt><code>-traditional</code><dt><code>-traditional-cpp</code><dd><a name="index-traditional_002dcpp-118"></a><a name="index-traditional-119"></a>Formerly, these options caused GCC to attempt to emulate a pre-standard
C compiler.  They are now only supported with the <samp><span class="option">-E</span></samp> switch. 
The preprocessor continues to support a pre-standard mode.  See the GNU
CPP manual for details.

     <br><dt><code>-fcond-mismatch</code><dd><a name="index-fcond_002dmismatch-120"></a>Allow conditional expressions with mismatched types in the second and
third arguments.  The value of such an expression is void.  This option
is not supported for C++.

     <br><dt><code>-flax-vector-conversions</code><dd><a name="index-flax_002dvector_002dconversions-121"></a>Allow implicit conversions between vectors with differing numbers of
elements and/or incompatible element types.  This option should not be
used for new code.

     <br><dt><code>-funsigned-char</code><dd><a name="index-funsigned_002dchar-122"></a>Let the type <code>char</code> be unsigned, like <code>unsigned char</code>.

     <p>Each kind of machine has a default for what <code>char</code> should
be.  It is either like <code>unsigned char</code> by default or like
<code>signed char</code> by default.

     <p>Ideally, a portable program should always use <code>signed char</code> or
<code>unsigned char</code> when it depends on the signedness of an object. 
But many programs have been written to use plain <code>char</code> and
expect it to be signed, or expect it to be unsigned, depending on the
machines they were written for.  This option, and its inverse, let you
make such a program work with the opposite default.

     <p>The type <code>char</code> is always a distinct type from each of
<code>signed char</code> or <code>unsigned char</code>, even though its behavior
is always just like one of those two.

     <br><dt><code>-fsigned-char</code><dd><a name="index-fsigned_002dchar-123"></a>Let the type <code>char</code> be signed, like <code>signed char</code>.

     <p>Note that this is equivalent to <samp><span class="option">-fno-unsigned-char</span></samp>, which is
the negative form of <samp><span class="option">-funsigned-char</span></samp>.  Likewise, the option
<samp><span class="option">-fno-signed-char</span></samp> is equivalent to <samp><span class="option">-funsigned-char</span></samp>.

     <br><dt><code>-fsigned-bitfields</code><dt><code>-funsigned-bitfields</code><dt><code>-fno-signed-bitfields</code><dt><code>-fno-unsigned-bitfields</code><dd><a name="index-fsigned_002dbitfields-124"></a><a name="index-funsigned_002dbitfields-125"></a><a name="index-fno_002dsigned_002dbitfields-126"></a><a name="index-fno_002dunsigned_002dbitfields-127"></a>These options control whether a bit-field is signed or unsigned, when the
declaration does not use either <code>signed</code> or <code>unsigned</code>.  By
default, such a bit-field is signed, because this is consistent: the
basic integer types such as <code>int</code> are signed types. 
</dl>

<div class="node">
<a name="C++-Dialect-Options"></a>
<a name="C_002b_002b-Dialect-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#C-Dialect-Options">C Dialect Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>

</div>

<h3 class="section">3.5 Options Controlling C++ Dialect</h3>

<p><a name="index-compiler-options_002c-C_002b_002b-128"></a><a name="index-C_002b_002b-options_002c-command-line-129"></a><a name="index-options_002c-C_002b_002b-130"></a>This section describes the command-line options that are only meaningful
for C++ programs; but you can also use most of the GNU compiler options
regardless of what language your program is in.  For example, you
might compile a file <code>firstClass.C</code> like this:

<pre class="smallexample">     g++ -g -frepo -O -c firstClass.C
</pre>
 <p class="noindent">In this example, only <samp><span class="option">-frepo</span></samp> is an option meant
only for C++ programs; you can use the other options with any
language supported by GCC.

 <p>Here is a list of options that are <em>only</em> for compiling C++ programs:

     <dl>
<dt><code>-fabi-version=</code><var>n</var><dd><a name="index-fabi_002dversion-131"></a>Use version <var>n</var> of the C++ ABI.  Version 2 is the version of the
C++ ABI that first appeared in G++ 3.4.  Version 1 is the version of
the C++ ABI that first appeared in G++ 3.2.  Version 0 will always be
the version that conforms most closely to the C++ ABI specification. 
Therefore, the ABI obtained using version 0 will change as ABI bugs
are fixed.

     <p>The default is version 2.

     <p>Version 3 corrects an error in mangling a constant address as a
template argument.

     <p>Version 4 implements a standard mangling for vector types.

     <p>Version 5 corrects the mangling of attribute const/volatile on
function pointer types, decltype of a plain decl, and use of a
function parameter in the declaration of another parameter.

     <p>See also <samp><span class="option">-Wabi</span></samp>.

     <br><dt><code>-fno-access-control</code><dd><a name="index-fno_002daccess_002dcontrol-132"></a>Turn off all access checking.  This switch is mainly useful for working
around bugs in the access control code.

     <br><dt><code>-fcheck-new</code><dd><a name="index-fcheck_002dnew-133"></a>Check that the pointer returned by <code>operator new</code> is non-null
before attempting to modify the storage allocated.  This check is
normally unnecessary because the C++ standard specifies that
<code>operator new</code> will only return <code>0</code> if it is declared
&lsquo;<samp><span class="samp">throw()</span></samp>&rsquo;, in which case the compiler will always check the
return value even without this option.  In all other cases, when
<code>operator new</code> has a non-empty exception specification, memory
exhaustion is signalled by throwing <code>std::bad_alloc</code>.  See also
&lsquo;<samp><span class="samp">new (nothrow)</span></samp>&rsquo;.

     <br><dt><code>-fconserve-space</code><dd><a name="index-fconserve_002dspace-134"></a>Put uninitialized or runtime-initialized global variables into the
common segment, as C does.  This saves space in the executable at the
cost of not diagnosing duplicate definitions.  If you compile with this
flag and your program mysteriously crashes after <code>main()</code> has
completed, you may have an object that is being destroyed twice because
two definitions were merged.

     <p>This option is no longer useful on most targets, now that support has
been added for putting variables into BSS without making them common.

     <br><dt><code>-fconstexpr-depth=</code><var>n</var><dd><a name="index-fconstexpr_002ddepth-135"></a>Set the maximum nested evaluation depth for C++0x constexpr functions
to <var>n</var>.  A limit is needed to detect endless recursion during
constant expression evaluation.  The minimum specified by the standard
is 512.

     <br><dt><code>-fno-deduce-init-list</code><dd><a name="index-fno_002ddeduce_002dinit_002dlist-136"></a>Disable deduction of a template type parameter as
std::initializer_list from a brace-enclosed initializer list, i.e.

     <pre class="smallexample">          template &lt;class T&gt; auto forward(T t) -&gt; decltype (realfn (t))
          {
            return realfn (t);
          }
          
          void f()
          {
            forward({1,2}); // call forward&lt;std::initializer_list&lt;int&gt;&gt;
          }
</pre>
     <p>This option is present because this deduction is an extension to the
current specification in the C++0x working draft, and there was
some concern about potential overload resolution problems.

     <br><dt><code>-ffriend-injection</code><dd><a name="index-ffriend_002dinjection-137"></a>Inject friend functions into the enclosing namespace, so that they are
visible outside the scope of the class in which they are declared. 
Friend functions were documented to work this way in the old Annotated
C++ Reference Manual, and versions of G++ before 4.1 always worked
that way.  However, in ISO C++ a friend function which is not declared
in an enclosing scope can only be found using argument dependent
lookup.  This option causes friends to be injected as they were in
earlier releases.

     <p>This option is for compatibility, and may be removed in a future
release of G++.

     <br><dt><code>-fno-elide-constructors</code><dd><a name="index-fno_002delide_002dconstructors-138"></a>The C++ standard allows an implementation to omit creating a temporary
which is only used to initialize another object of the same type. 
Specifying this option disables that optimization, and forces G++ to
call the copy constructor in all cases.

     <br><dt><code>-fno-enforce-eh-specs</code><dd><a name="index-fno_002denforce_002deh_002dspecs-139"></a>Don't generate code to check for violation of exception specifications
at runtime.  This option violates the C++ standard, but may be useful
for reducing code size in production builds, much like defining
&lsquo;<samp><span class="samp">NDEBUG</span></samp>&rsquo;.  This does not give user code permission to throw
exceptions in violation of the exception specifications; the compiler
will still optimize based on the specifications, so throwing an
unexpected exception will result in undefined behavior.

     <br><dt><code>-ffor-scope</code><dt><code>-fno-for-scope</code><dd><a name="index-ffor_002dscope-140"></a><a name="index-fno_002dfor_002dscope-141"></a>If <samp><span class="option">-ffor-scope</span></samp> is specified, the scope of variables declared in
a <i>for-init-statement</i> is limited to the &lsquo;<samp><span class="samp">for</span></samp>&rsquo; loop itself,
as specified by the C++ standard. 
If <samp><span class="option">-fno-for-scope</span></samp> is specified, the scope of variables declared in
a <i>for-init-statement</i> extends to the end of the enclosing scope,
as was the case in old versions of G++, and other (traditional)
implementations of C++.

     <p>The default if neither flag is given to follow the standard,
but to allow and give a warning for old-style code that would
otherwise be invalid, or have different behavior.

     <br><dt><code>-fno-gnu-keywords</code><dd><a name="index-fno_002dgnu_002dkeywords-142"></a>Do not recognize <code>typeof</code> as a keyword, so that code can use this
word as an identifier.  You can use the keyword <code>__typeof__</code> instead. 
<samp><span class="option">-ansi</span></samp> implies <samp><span class="option">-fno-gnu-keywords</span></samp>.

     <br><dt><code>-fno-implicit-templates</code><dd><a name="index-fno_002dimplicit_002dtemplates-143"></a>Never emit code for non-inline templates which are instantiated
implicitly (i.e. by use); only emit code for explicit instantiations. 
See <a href="#Template-Instantiation">Template Instantiation</a>, for more information.

     <br><dt><code>-fno-implicit-inline-templates</code><dd><a name="index-fno_002dimplicit_002dinline_002dtemplates-144"></a>Don't emit code for implicit instantiations of inline templates, either. 
The default is to handle inlines differently so that compiles with and
without optimization will need the same set of explicit instantiations.

     <br><dt><code>-fno-implement-inlines</code><dd><a name="index-fno_002dimplement_002dinlines-145"></a>To save space, do not emit out-of-line copies of inline functions
controlled by &lsquo;<samp><span class="samp">#pragma implementation</span></samp>&rsquo;.  This will cause linker
errors if these functions are not inlined everywhere they are called.

     <br><dt><code>-fms-extensions</code><dd><a name="index-fms_002dextensions-146"></a>Disable pedantic warnings about constructs used in MFC, such as implicit
int and getting a pointer to member function via non-standard syntax.

     <br><dt><code>-fno-nonansi-builtins</code><dd><a name="index-fno_002dnonansi_002dbuiltins-147"></a>Disable built-in declarations of functions that are not mandated by
ANSI/ISO C.  These include <code>ffs</code>, <code>alloca</code>, <code>_exit</code>,
<code>index</code>, <code>bzero</code>, <code>conjf</code>, and other related functions.

     <br><dt><code>-fnothrow-opt</code><dd><a name="index-fnothrow_002dopt-148"></a>Treat a <code>throw()</code> exception specification as though it were a
<code>noexcept</code> specification to reduce or eliminate the text size
overhead relative to a function with no exception specification.  If
the function has local variables of types with non-trivial
destructors, the exception specification will actually make the
function smaller because the EH cleanups for those variables can be
optimized away.  The semantic effect is that an exception thrown out of
a function with such an exception specification will result in a call
to <code>terminate</code> rather than <code>unexpected</code>.

     <br><dt><code>-fno-operator-names</code><dd><a name="index-fno_002doperator_002dnames-149"></a>Do not treat the operator name keywords <code>and</code>, <code>bitand</code>,
<code>bitor</code>, <code>compl</code>, <code>not</code>, <code>or</code> and <code>xor</code> as
synonyms as keywords.

     <br><dt><code>-fno-optional-diags</code><dd><a name="index-fno_002doptional_002ddiags-150"></a>Disable diagnostics that the standard says a compiler does not need to
issue.  Currently, the only such diagnostic issued by G++ is the one for
a name having multiple meanings within a class.

     <br><dt><code>-fpermissive</code><dd><a name="index-fpermissive-151"></a>Downgrade some diagnostics about nonconformant code from errors to
warnings.  Thus, using <samp><span class="option">-fpermissive</span></samp> will allow some
nonconforming code to compile.

     <br><dt><code>-fno-pretty-templates</code><dd><a name="index-fno_002dpretty_002dtemplates-152"></a>When an error message refers to a specialization of a function
template, the compiler will normally print the signature of the
template followed by the template arguments and any typedefs or
typenames in the signature (e.g. <code>void f(T) [with T = int]</code>
rather than <code>void f(int)</code>) so that it's clear which template is
involved.  When an error message refers to a specialization of a class
template, the compiler will omit any template arguments which match
the default template arguments for that template.  If either of these
behaviors make it harder to understand the error message rather than
easier, using <samp><span class="option">-fno-pretty-templates</span></samp> will disable them.

     <br><dt><code>-frepo</code><dd><a name="index-frepo-153"></a>Enable automatic template instantiation at link time.  This option also
implies <samp><span class="option">-fno-implicit-templates</span></samp>.  See <a href="#Template-Instantiation">Template Instantiation</a>, for more information.

     <br><dt><code>-fno-rtti</code><dd><a name="index-fno_002drtti-154"></a>Disable generation of information about every class with virtual
functions for use by the C++ runtime type identification features
(&lsquo;<samp><span class="samp">dynamic_cast</span></samp>&rsquo; and &lsquo;<samp><span class="samp">typeid</span></samp>&rsquo;).  If you don't use those parts
of the language, you can save some space by using this flag.  Note that
exception handling uses the same information, but it will generate it as
needed. The &lsquo;<samp><span class="samp">dynamic_cast</span></samp>&rsquo; operator can still be used for casts that
do not require runtime type information, i.e. casts to <code>void *</code> or to
unambiguous base classes.

     <br><dt><code>-fstats</code><dd><a name="index-fstats-155"></a>Emit statistics about front-end processing at the end of the compilation. 
This information is generally only useful to the G++ development team.

     <br><dt><code>-fstrict-enums</code><dd><a name="index-fstrict_002denums-156"></a>Allow the compiler to optimize using the assumption that a value of
enumeration type can only be one of the values of the enumeration (as
defined in the C++ standard; basically, a value which can be
represented in the minimum number of bits needed to represent all the
enumerators).  This assumption may not be valid if the program uses a
cast to convert an arbitrary integer value to the enumeration type.

     <br><dt><code>-ftemplate-depth=</code><var>n</var><dd><a name="index-ftemplate_002ddepth-157"></a>Set the maximum instantiation depth for template classes to <var>n</var>. 
A limit on the template instantiation depth is needed to detect
endless recursions during template class instantiation.  ANSI/ISO C++
conforming programs must not rely on a maximum depth greater than 17
(changed to 1024 in C++0x).

     <br><dt><code>-fno-threadsafe-statics</code><dd><a name="index-fno_002dthreadsafe_002dstatics-158"></a>Do not emit the extra code to use the routines specified in the C++
ABI for thread-safe initialization of local statics.  You can use this
option to reduce code size slightly in code that doesn't need to be
thread-safe.

     <br><dt><code>-fuse-cxa-atexit</code><dd><a name="index-fuse_002dcxa_002datexit-159"></a>Register destructors for objects with static storage duration with the
<code>__cxa_atexit</code> function rather than the <code>atexit</code> function. 
This option is required for fully standards-compliant handling of static
destructors, but will only work if your C library supports
<code>__cxa_atexit</code>.

     <br><dt><code>-fno-use-cxa-get-exception-ptr</code><dd><a name="index-fno_002duse_002dcxa_002dget_002dexception_002dptr-160"></a>Don't use the <code>__cxa_get_exception_ptr</code> runtime routine.  This
will cause <code>std::uncaught_exception</code> to be incorrect, but is necessary
if the runtime routine is not available.

     <br><dt><code>-fvisibility-inlines-hidden</code><dd><a name="index-fvisibility_002dinlines_002dhidden-161"></a>This switch declares that the user does not attempt to compare
pointers to inline methods where the addresses of the two functions
were taken in different shared objects.

     <p>The effect of this is that GCC may, effectively, mark inline methods with
<code>__attribute__ ((visibility ("hidden")))</code> so that they do not
appear in the export table of a DSO and do not require a PLT indirection
when used within the DSO.  Enabling this option can have a dramatic effect
on load and link times of a DSO as it massively reduces the size of the
dynamic export table when the library makes heavy use of templates.

     <p>The behavior of this switch is not quite the same as marking the
methods as hidden directly, because it does not affect static variables
local to the function or cause the compiler to deduce that
the function is defined in only one shared object.

     <p>You may mark a method as having a visibility explicitly to negate the
effect of the switch for that method.  For example, if you do want to
compare pointers to a particular inline method, you might mark it as
having default visibility.  Marking the enclosing class with explicit
visibility will have no effect.

     <p>Explicitly instantiated inline methods are unaffected by this option
as their linkage might otherwise cross a shared library boundary. 
See <a href="#Template-Instantiation">Template Instantiation</a>.

     <br><dt><code>-fvisibility-ms-compat</code><dd><a name="index-fvisibility_002dms_002dcompat-162"></a>This flag attempts to use visibility settings to make GCC's C++
linkage model compatible with that of Microsoft Visual Studio.

     <p>The flag makes these changes to GCC's linkage model:

          <ol type=1 start=1>
<li>It sets the default visibility to <code>hidden</code>, like
<samp><span class="option">-fvisibility=hidden</span></samp>.

          <li>Types, but not their members, are not hidden by default.

          <li>The One Definition Rule is relaxed for types without explicit
visibility specifications which are defined in more than one different
shared object: those declarations are permitted if they would have
been permitted when this option was not used.
          </ol>

     <p>In new code it is better to use <samp><span class="option">-fvisibility=hidden</span></samp> and
export those classes which are intended to be externally visible. 
Unfortunately it is possible for code to rely, perhaps accidentally,
on the Visual Studio behavior.

     <p>Among the consequences of these changes are that static data members
of the same type with the same name but defined in different shared
objects will be different, so changing one will not change the other;
and that pointers to function members defined in different shared
objects may not compare equal.  When this flag is given, it is a
violation of the ODR to define types with the same name differently.

     <br><dt><code>-fno-weak</code><dd><a name="index-fno_002dweak-163"></a>Do not use weak symbol support, even if it is provided by the linker. 
By default, G++ will use weak symbols if they are available.  This
option exists only for testing, and should not be used by end-users;
it will result in inferior code and has no benefits.  This option may
be removed in a future release of G++.

     <br><dt><code>-nostdinc++</code><dd><a name="index-nostdinc_002b_002b-164"></a>Do not search for header files in the standard directories specific to
C++, but do still search the other standard directories.  (This option
is used when building the C++ library.) 
</dl>

 <p>In addition, these optimization, warning, and code generation options
have meanings only for C++ programs:

     <dl>
<dt><code>-fno-default-inline</code><dd><a name="index-fno_002ddefault_002dinline-165"></a>Do not assume &lsquo;<samp><span class="samp">inline</span></samp>&rsquo; for functions defined inside a class scope. 
See <a href="#Optimize-Options">Options That Control Optimization</a>.  Note that these
functions will have linkage like inline functions; they just won't be
inlined by default.

     <br><dt><code>-Wabi </code><span class="roman">(C, Objective-C, C++ and Objective-C++ only)</span><dd><a name="index-Wabi-166"></a><a name="index-Wno_002dabi-167"></a>Warn when G++ generates code that is probably not compatible with the
vendor-neutral C++ ABI.  Although an effort has been made to warn about
all such cases, there are probably some cases that are not warned about,
even though G++ is generating incompatible code.  There may also be
cases where warnings are emitted even though the code that is generated
will be compatible.

     <p>You should rewrite your code to avoid these warnings if you are
concerned about the fact that code generated by G++ may not be binary
compatible with code generated by other compilers.

     <p>The known incompatibilities in <samp><span class="option">-fabi-version=2</span></samp> (the default) include:

          <ul>
<li>A template with a non-type template parameter of reference type is
mangled incorrectly:
          <pre class="smallexample">               extern int N;
               template &lt;int &amp;&gt; struct S {};
               void n (S&lt;N&gt;) {2}
</pre>
          <p>This is fixed in <samp><span class="option">-fabi-version=3</span></samp>.

          <li>SIMD vector types declared using <code>__attribute ((vector_size))</code> are
mangled in a non-standard way that does not allow for overloading of
functions taking vectors of different sizes.

          <p>The mangling is changed in <samp><span class="option">-fabi-version=4</span></samp>. 
</ul>

     <p>The known incompatibilities in <samp><span class="option">-fabi-version=1</span></samp> include:

          <ul>
<li>Incorrect handling of tail-padding for bit-fields.  G++ may attempt to
pack data into the same byte as a base class.  For example:

          <pre class="smallexample">               struct A { virtual void f(); int f1 : 1; };
               struct B : public A { int f2 : 1; };
</pre>
          <p class="noindent">In this case, G++ will place <code>B::f2</code> into the same byte
as<code>A::f1</code>; other compilers will not.  You can avoid this problem
by explicitly padding <code>A</code> so that its size is a multiple of the
byte size on your platform; that will cause G++ and other compilers to
layout <code>B</code> identically.

          <li>Incorrect handling of tail-padding for virtual bases.  G++ does not use
tail padding when laying out virtual bases.  For example:

          <pre class="smallexample">               struct A { virtual void f(); char c1; };
               struct B { B(); char c2; };
               struct C : public A, public virtual B {};
</pre>
          <p class="noindent">In this case, G++ will not place <code>B</code> into the tail-padding for
<code>A</code>; other compilers will.  You can avoid this problem by
explicitly padding <code>A</code> so that its size is a multiple of its
alignment (ignoring virtual base classes); that will cause G++ and other
compilers to layout <code>C</code> identically.

          <li>Incorrect handling of bit-fields with declared widths greater than that
of their underlying types, when the bit-fields appear in a union.  For
example:

          <pre class="smallexample">               union U { int i : 4096; };
</pre>
          <p class="noindent">Assuming that an <code>int</code> does not have 4096 bits, G++ will make the
union too small by the number of bits in an <code>int</code>.

          <li>Empty classes can be placed at incorrect offsets.  For example:

          <pre class="smallexample">               struct A {};
               
               struct B {
                 A a;
                 virtual void f ();
               };
               
               struct C : public B, public A {};
</pre>
          <p class="noindent">G++ will place the <code>A</code> base class of <code>C</code> at a nonzero offset;
it should be placed at offset zero.  G++ mistakenly believes that the
<code>A</code> data member of <code>B</code> is already at offset zero.

          <li>Names of template functions whose types involve <code>typename</code> or
template template parameters can be mangled incorrectly.

          <pre class="smallexample">               template &lt;typename Q&gt;
               void f(typename Q::X) {}
               
               template &lt;template &lt;typename&gt; class Q&gt;
               void f(typename Q&lt;int&gt;::X) {}
</pre>
          <p class="noindent">Instantiations of these templates may be mangled incorrectly.

     </ul>

     <p>It also warns psABI related changes.  The known psABI changes at this
point include:

          <ul>
<li>For SYSV/x86-64, when passing union with long double, it is changed to
pass in memory as specified in psABI.  For example:

          <pre class="smallexample">               union U {
                 long double ld;
                 int i;
               };
</pre>
          <p class="noindent"><code>union U</code> will always be passed in memory.

     </ul>

     <br><dt><code>-Wctor-dtor-privacy </code><span class="roman">(C++ and Objective-C++ only)</span><dd><a name="index-Wctor_002ddtor_002dprivacy-168"></a><a name="index-Wno_002dctor_002ddtor_002dprivacy-169"></a>Warn when a class seems unusable because all the constructors or
destructors in that class are private, and it has neither friends nor
public static member functions.

     <br><dt><code>-Wnoexcept </code><span class="roman">(C++ and Objective-C++ only)</span><dd><a name="index-Wnoexcept-170"></a><a name="index-Wno_002dnoexcept-171"></a>Warn when a noexcept-expression evaluates to false because of a call
to a function that does not have a non-throwing exception
specification (i.e. &lsquo;<samp><span class="samp">throw()</span></samp>&rsquo; or &lsquo;<samp><span class="samp">noexcept</span></samp>&rsquo;) but is known by
the compiler to never throw an exception.

     <br><dt><code>-Wnon-virtual-dtor </code><span class="roman">(C++ and Objective-C++ only)</span><dd><a name="index-Wnon_002dvirtual_002ddtor-172"></a><a name="index-Wno_002dnon_002dvirtual_002ddtor-173"></a>Warn when a class has virtual functions and accessible non-virtual
destructor, in which case it would be possible but unsafe to delete
an instance of a derived class through a pointer to the base class. 
This warning is also enabled if -Weffc++ is specified.

     <br><dt><code>-Wreorder </code><span class="roman">(C++ and Objective-C++ only)</span><dd><a name="index-Wreorder-174"></a><a name="index-Wno_002dreorder-175"></a><a name="index-reordering_002c-warning-176"></a><a name="index-warning-for-reordering-of-member-initializers-177"></a>Warn when the order of member initializers given in the code does not
match the order in which they must be executed.  For instance:

     <pre class="smallexample">          struct A {
            int i;
            int j;
            A(): j (0), i (1) { }
          };
</pre>
     <p>The compiler will rearrange the member initializers for &lsquo;<samp><span class="samp">i</span></samp>&rsquo;
and &lsquo;<samp><span class="samp">j</span></samp>&rsquo; to match the declaration order of the members, emitting
a warning to that effect.  This warning is enabled by <samp><span class="option">-Wall</span></samp>. 
</dl>

 <p>The following <samp><span class="option">-W...</span></samp> options are not affected by <samp><span class="option">-Wall</span></samp>.

     <dl>
<dt><code>-Weffc++ </code><span class="roman">(C++ and Objective-C++ only)</span><dd><a name="index-Weffc_002b_002b-178"></a><a name="index-Wno_002deffc_002b_002b-179"></a>Warn about violations of the following style guidelines from Scott Meyers'
<cite>Effective C++</cite> book:

          <ul>
<li>Item 11:  Define a copy constructor and an assignment operator for classes
with dynamically allocated memory.

          <li>Item 12:  Prefer initialization to assignment in constructors.

          <li>Item 14:  Make destructors virtual in base classes.

          <li>Item 15:  Have <code>operator=</code> return a reference to <code>*this</code>.

          <li>Item 23:  Don't try to return a reference when you must return an object.

     </ul>

     <p>Also warn about violations of the following style guidelines from
Scott Meyers' <cite>More Effective C++</cite> book:

          <ul>
<li>Item 6:  Distinguish between prefix and postfix forms of increment and
decrement operators.

          <li>Item 7:  Never overload <code>&amp;&amp;</code>, <code>||</code>, or <code>,</code>.

     </ul>

     <p>When selecting this option, be aware that the standard library
headers do not obey all of these guidelines; use &lsquo;<samp><span class="samp">grep -v</span></samp>&rsquo;
to filter out those warnings.

     <br><dt><code>-Wstrict-null-sentinel </code><span class="roman">(C++ and Objective-C++ only)</span><dd><a name="index-Wstrict_002dnull_002dsentinel-180"></a><a name="index-Wno_002dstrict_002dnull_002dsentinel-181"></a>Warn also about the use of an uncasted <code>NULL</code> as sentinel.  When
compiling only with GCC this is a valid sentinel, as <code>NULL</code> is defined
to <code>__null</code>.  Although it is a null pointer constant not a null pointer,
it is guaranteed to be of the same size as a pointer.  But this use is
not portable across different compilers.

     <br><dt><code>-Wno-non-template-friend </code><span class="roman">(C++ and Objective-C++ only)</span><dd><a name="index-Wno_002dnon_002dtemplate_002dfriend-182"></a><a name="index-Wnon_002dtemplate_002dfriend-183"></a>Disable warnings when non-templatized friend functions are declared
within a template.  Since the advent of explicit template specification
support in G++, if the name of the friend is an unqualified-id (i.e.,
&lsquo;<samp><span class="samp">friend foo(int)</span></samp>&rsquo;), the C++ language specification demands that the
friend declare or define an ordinary, nontemplate function.  (Section
14.5.3).  Before G++ implemented explicit specification, unqualified-ids
could be interpreted as a particular specialization of a templatized
function.  Because this non-conforming behavior is no longer the default
behavior for G++, <samp><span class="option">-Wnon-template-friend</span></samp> allows the compiler to
check existing code for potential trouble spots and is on by default. 
This new compiler behavior can be turned off with
<samp><span class="option">-Wno-non-template-friend</span></samp> which keeps the conformant compiler code
but disables the helpful warning.

     <br><dt><code>-Wold-style-cast </code><span class="roman">(C++ and Objective-C++ only)</span><dd><a name="index-Wold_002dstyle_002dcast-184"></a><a name="index-Wno_002dold_002dstyle_002dcast-185"></a>Warn if an old-style (C-style) cast to a non-void type is used within
a C++ program.  The new-style casts (&lsquo;<samp><span class="samp">dynamic_cast</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">static_cast</span></samp>&rsquo;, &lsquo;<samp><span class="samp">reinterpret_cast</span></samp>&rsquo;, and &lsquo;<samp><span class="samp">const_cast</span></samp>&rsquo;) are
less vulnerable to unintended effects and much easier to search for.

     <br><dt><code>-Woverloaded-virtual </code><span class="roman">(C++ and Objective-C++ only)</span><dd><a name="index-Woverloaded_002dvirtual-186"></a><a name="index-Wno_002doverloaded_002dvirtual-187"></a><a name="index-overloaded-virtual-function_002c-warning-188"></a><a name="index-warning-for-overloaded-virtual-function-189"></a>Warn when a function declaration hides virtual functions from a
base class.  For example, in:

     <pre class="smallexample">          struct A {
            virtual void f();
          };
          
          struct B: public A {
            void f(int);
          };
</pre>
     <p>the <code>A</code> class version of <code>f</code> is hidden in <code>B</code>, and code
like:

     <pre class="smallexample">          B* b;
          b-&gt;f();
</pre>
     <p>will fail to compile.

     <br><dt><code>-Wno-pmf-conversions </code><span class="roman">(C++ and Objective-C++ only)</span><dd><a name="index-Wno_002dpmf_002dconversions-190"></a><a name="index-Wpmf_002dconversions-191"></a>Disable the diagnostic for converting a bound pointer to member function
to a plain pointer.

     <br><dt><code>-Wsign-promo </code><span class="roman">(C++ and Objective-C++ only)</span><dd><a name="index-Wsign_002dpromo-192"></a><a name="index-Wno_002dsign_002dpromo-193"></a>Warn when overload resolution chooses a promotion from unsigned or
enumerated type to a signed type, over a conversion to an unsigned type of
the same size.  Previous versions of G++ would try to preserve
unsignedness, but the standard mandates the current behavior.

     <pre class="smallexample">          struct A {
            operator int ();
            A&amp; operator = (int);
          };
          
          main ()
          {
            A a,b;
            a = b;
          }
</pre>
     <p>In this example, G++ will synthesize a default &lsquo;<samp><span class="samp">A&amp; operator =
(const A&amp;);</span></samp>&rsquo;, while cfront will use the user-defined &lsquo;<samp><span class="samp">operator =</span></samp>&rsquo;. 
</dl>

<div class="node">
<a name="Objective-C-and-Objective-C++-Dialect-Options"></a>
<a name="Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Language-Independent-Options">Language Independent Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>

</div>

<h3 class="section">3.6 Options Controlling Objective-C and Objective-C++ Dialects</h3>

<p><a name="index-compiler-options_002c-Objective_002dC-and-Objective_002dC_002b_002b-194"></a><a name="index-Objective_002dC-and-Objective_002dC_002b_002b-options_002c-command-line-195"></a><a name="index-options_002c-Objective_002dC-and-Objective_002dC_002b_002b-196"></a>(NOTE: This manual does not describe the Objective-C and Objective-C++
languages themselves.  See <a href="#Standards">Language Standards Supported by GCC</a>, for references.)

 <p>This section describes the command-line options that are only meaningful
for Objective-C and Objective-C++ programs, but you can also use most of
the language-independent GNU compiler options. 
For example, you might compile a file <code>some_class.m</code> like this:

<pre class="smallexample">     gcc -g -fgnu-runtime -O -c some_class.m
</pre>
 <p class="noindent">In this example, <samp><span class="option">-fgnu-runtime</span></samp> is an option meant only for
Objective-C and Objective-C++ programs; you can use the other options with
any language supported by GCC.

 <p>Note that since Objective-C is an extension of the C language, Objective-C
compilations may also use options specific to the C front-end (e.g.,
<samp><span class="option">-Wtraditional</span></samp>).  Similarly, Objective-C++ compilations may use
C++-specific options (e.g., <samp><span class="option">-Wabi</span></samp>).

 <p>Here is a list of options that are <em>only</em> for compiling Objective-C
and Objective-C++ programs:

     <dl>
<dt><code>-fconstant-string-class=</code><var>class-name</var><dd><a name="index-fconstant_002dstring_002dclass-197"></a>Use <var>class-name</var> as the name of the class to instantiate for each
literal string specified with the syntax <code>@"..."</code>.  The default
class name is <code>NXConstantString</code> if the GNU runtime is being used, and
<code>NSConstantString</code> if the NeXT runtime is being used (see below).  The
<samp><span class="option">-fconstant-cfstrings</span></samp> option, if also present, will override the
<samp><span class="option">-fconstant-string-class</span></samp> setting and cause <code>@"..."</code> literals
to be laid out as constant CoreFoundation strings.

     <br><dt><code>-fgnu-runtime</code><dd><a name="index-fgnu_002druntime-198"></a>Generate object code compatible with the standard GNU Objective-C
runtime.  This is the default for most types of systems.

     <br><dt><code>-fnext-runtime</code><dd><a name="index-fnext_002druntime-199"></a>Generate output compatible with the NeXT runtime.  This is the default
for NeXT-based systems, including Darwin and Mac OS X.  The macro
<code>__NEXT_RUNTIME__</code> is predefined if (and only if) this option is
used.

     <br><dt><code>-fno-nil-receivers</code><dd><a name="index-fno_002dnil_002dreceivers-200"></a>Assume that all Objective-C message dispatches (<code>[receiver
message:arg]</code>) in this translation unit ensure that the receiver is
not <code>nil</code>.  This allows for more efficient entry points in the
runtime to be used.  This option is only available in conjunction with
the NeXT runtime and ABI version 0 or 1.

     <br><dt><code>-fobjc-abi-version=</code><var>n</var><dd><a name="index-fobjc_002dabi_002dversion-201"></a>Use version <var>n</var> of the Objective-C ABI for the selected runtime. 
This option is currently supported only for the NeXT runtime.  In that
case, Version 0 is the traditional (32-bit) ABI without support for
properties and other Objective-C 2.0 additions.  Version 1 is the
traditional (32-bit) ABI with support for properties and other
Objective-C 2.0 additions.  Version 2 is the modern (64-bit) ABI.  If
nothing is specified, the default is Version 0 on 32-bit target
machines, and Version 2 on 64-bit target machines.

     <br><dt><code>-fobjc-call-cxx-cdtors</code><dd><a name="index-fobjc_002dcall_002dcxx_002dcdtors-202"></a>For each Objective-C class, check if any of its instance variables is a
C++ object with a non-trivial default constructor.  If so, synthesize a
special <code>- (id) .cxx_construct</code> instance method that will run
non-trivial default constructors on any such instance variables, in order,
and then return <code>self</code>.  Similarly, check if any instance variable
is a C++ object with a non-trivial destructor, and if so, synthesize a
special <code>- (void) .cxx_destruct</code> method that will run
all such default destructors, in reverse order.

     <p>The <code>- (id) .cxx_construct</code> and <code>- (void) .cxx_destruct</code>
methods thusly generated will only operate on instance variables
declared in the current Objective-C class, and not those inherited
from superclasses.  It is the responsibility of the Objective-C
runtime to invoke all such methods in an object's inheritance
hierarchy.  The <code>- (id) .cxx_construct</code> methods will be invoked
by the runtime immediately after a new object instance is allocated;
the <code>- (void) .cxx_destruct</code> methods will be invoked immediately
before the runtime deallocates an object instance.

     <p>As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
support for invoking the <code>- (id) .cxx_construct</code> and
<code>- (void) .cxx_destruct</code> methods.

     <br><dt><code>-fobjc-direct-dispatch</code><dd><a name="index-fobjc_002ddirect_002ddispatch-203"></a>Allow fast jumps to the message dispatcher.  On Darwin this is
accomplished via the comm page.

     <br><dt><code>-fobjc-exceptions</code><dd><a name="index-fobjc_002dexceptions-204"></a>Enable syntactic support for structured exception handling in
Objective-C, similar to what is offered by C++ and Java.  This option
is required to use the Objective-C keywords <code>@try</code>,
<code>@throw</code>, <code>@catch</code>, <code>@finally</code> and
<code>@synchronized</code>.  This option is available with both the GNU
runtime and the NeXT runtime (but not available in conjunction with
the NeXT runtime on Mac OS X 10.2 and earlier).

     <br><dt><code>-fobjc-gc</code><dd><a name="index-fobjc_002dgc-205"></a>Enable garbage collection (GC) in Objective-C and Objective-C++
programs.  This option is only available with the NeXT runtime; the
GNU runtime has a different garbage collection implementation that
does not require special compiler flags.

     <br><dt><code>-fobjc-nilcheck</code><dd><a name="index-fobjc_002dnilcheck-206"></a>For the NeXT runtime with version 2 of the ABI, check for a nil
receiver in method invocations before doing the actual method call. 
This is the default and can be disabled using
<samp><span class="option">-fno-objc-nilcheck</span></samp>.  Class methods and super calls are never
checked for nil in this way no matter what this flag is set to. 
Currently this flag does nothing when the GNU runtime, or an older
version of the NeXT runtime ABI, is used.

     <br><dt><code>-fobjc-std=objc1</code><dd><a name="index-fobjc_002dstd-207"></a>Conform to the language syntax of Objective-C 1.0, the language
recognized by GCC 4.0.  This only affects the Objective-C additions to
the C/C++ language; it does not affect conformance to C/C++ standards,
which is controlled by the separate C/C++ dialect option flags.  When
this option is used with the Objective-C or Objective-C++ compiler,
any Objective-C syntax that is not recognized by GCC 4.0 is rejected. 
This is useful if you need to make sure that your Objective-C code can
be compiled with older versions of GCC.

     <br><dt><code>-freplace-objc-classes</code><dd><a name="index-freplace_002dobjc_002dclasses-208"></a>Emit a special marker instructing <samp><span class="command">ld(1)</span></samp> not to statically link in
the resulting object file, and allow <samp><span class="command">dyld(1)</span></samp> to load it in at
run time instead.  This is used in conjunction with the Fix-and-Continue
debugging mode, where the object file in question may be recompiled and
dynamically reloaded in the course of program execution, without the need
to restart the program itself.  Currently, Fix-and-Continue functionality
is only available in conjunction with the NeXT runtime on Mac OS X 10.3
and later.

     <br><dt><code>-fzero-link</code><dd><a name="index-fzero_002dlink-209"></a>When compiling for the NeXT runtime, the compiler ordinarily replaces calls
to <code>objc_getClass("...")</code> (when the name of the class is known at
compile time) with static class references that get initialized at load time,
which improves run-time performance.  Specifying the <samp><span class="option">-fzero-link</span></samp> flag
suppresses this behavior and causes calls to <code>objc_getClass("...")</code>
to be retained.  This is useful in Zero-Link debugging mode, since it allows
for individual class implementations to be modified during program execution. 
The GNU runtime currently always retains calls to <code>objc_get_class("...")</code>
regardless of command line options.

     <br><dt><code>-gen-decls</code><dd><a name="index-gen_002ddecls-210"></a>Dump interface declarations for all classes seen in the source file to a
file named <samp><var>sourcename</var><span class="file">.decl</span></samp>.

     <br><dt><code>-Wassign-intercept </code><span class="roman">(Objective-C and Objective-C++ only)</span><dd><a name="index-Wassign_002dintercept-211"></a><a name="index-Wno_002dassign_002dintercept-212"></a>Warn whenever an Objective-C assignment is being intercepted by the
garbage collector.

     <br><dt><code>-Wno-protocol </code><span class="roman">(Objective-C and Objective-C++ only)</span><dd><a name="index-Wno_002dprotocol-213"></a><a name="index-Wprotocol-214"></a>If a class is declared to implement a protocol, a warning is issued for
every method in the protocol that is not implemented by the class.  The
default behavior is to issue a warning for every method not explicitly
implemented in the class, even if a method implementation is inherited
from the superclass.  If you use the <samp><span class="option">-Wno-protocol</span></samp> option, then
methods inherited from the superclass are considered to be implemented,
and no warning is issued for them.

     <br><dt><code>-Wselector </code><span class="roman">(Objective-C and Objective-C++ only)</span><dd><a name="index-Wselector-215"></a><a name="index-Wno_002dselector-216"></a>Warn if multiple methods of different types for the same selector are
found during compilation.  The check is performed on the list of methods
in the final stage of compilation.  Additionally, a check is performed
for each selector appearing in a <code>@selector(...)</code>
expression, and a corresponding method for that selector has been found
during compilation.  Because these checks scan the method table only at
the end of compilation, these warnings are not produced if the final
stage of compilation is not reached, for example because an error is
found during compilation, or because the <samp><span class="option">-fsyntax-only</span></samp> option is
being used.

     <br><dt><code>-Wstrict-selector-match </code><span class="roman">(Objective-C and Objective-C++ only)</span><dd><a name="index-Wstrict_002dselector_002dmatch-217"></a><a name="index-Wno_002dstrict_002dselector_002dmatch-218"></a>Warn if multiple methods with differing argument and/or return types are
found for a given selector when attempting to send a message using this
selector to a receiver of type <code>id</code> or <code>Class</code>.  When this flag
is off (which is the default behavior), the compiler will omit such warnings
if any differences found are confined to types which share the same size
and alignment.

     <br><dt><code>-Wundeclared-selector </code><span class="roman">(Objective-C and Objective-C++ only)</span><dd><a name="index-Wundeclared_002dselector-219"></a><a name="index-Wno_002dundeclared_002dselector-220"></a>Warn if a <code>@selector(...)</code> expression referring to an
undeclared selector is found.  A selector is considered undeclared if no
method with that name has been declared before the
<code>@selector(...)</code> expression, either explicitly in an
<code>@interface</code> or <code>@protocol</code> declaration, or implicitly in
an <code>@implementation</code> section.  This option always performs its
checks as soon as a <code>@selector(...)</code> expression is found,
while <samp><span class="option">-Wselector</span></samp> only performs its checks in the final stage of
compilation.  This also enforces the coding style convention
that methods and selectors must be declared before being used.

     <br><dt><code>-print-objc-runtime-info</code><dd><a name="index-print_002dobjc_002druntime_002dinfo-221"></a>Generate C header describing the largest structure that is passed by
value, if any.

 </dl>

<div class="node">
<a name="Language-Independent-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Warning-Options">Warning Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>

</div>

<h3 class="section">3.7 Options to Control Diagnostic Messages Formatting</h3>

<p><a name="index-options-to-control-diagnostics-formatting-222"></a><a name="index-diagnostic-messages-223"></a><a name="index-message-formatting-224"></a>
Traditionally, diagnostic messages have been formatted irrespective of
the output device's aspect (e.g. its width, <small class="dots">...</small>).  The options described
below can be used to control the diagnostic messages formatting
algorithm, e.g. how many characters per line, how often source location
information should be reported.  Right now, only the C++ front end can
honor these options.  However it is expected, in the near future, that
the remaining front ends would be able to digest them correctly.

     <dl>
<dt><code>-fmessage-length=</code><var>n</var><dd><a name="index-fmessage_002dlength-225"></a>Try to format error messages so that they fit on lines of about <var>n</var>
characters.  The default is 72 characters for <samp><span class="command">g++</span></samp> and 0 for the rest of
the front ends supported by GCC.  If <var>n</var> is zero, then no
line-wrapping will be done; each error message will appear on a single
line.

     <p><a name="index-fdiagnostics_002dshow_002dlocation-226"></a><br><dt><code>-fdiagnostics-show-location=once</code><dd>Only meaningful in line-wrapping mode.  Instructs the diagnostic messages
reporter to emit <em>once</em> source location information; that is, in
case the message is too long to fit on a single physical line and has to
be wrapped, the source location won't be emitted (as prefix) again,
over and over, in subsequent continuation lines.  This is the default
behavior.

     <br><dt><code>-fdiagnostics-show-location=every-line</code><dd>Only meaningful in line-wrapping mode.  Instructs the diagnostic
messages reporter to emit the same source location information (as
prefix) for physical lines that result from the process of breaking
a message which is too long to fit on a single line.

     <br><dt><code>-fno-diagnostics-show-option</code><dd><a name="index-fno_002ddiagnostics_002dshow_002doption-227"></a><a name="index-fdiagnostics_002dshow_002doption-228"></a>By default, each diagnostic emitted includes text which indicates the
command line option that directly controls the diagnostic (if such an
option is known to the diagnostic machinery).  Specifying the
<samp><span class="option">-fno-diagnostics-show-option</span></samp> flag suppresses that behavior.

     <br><dt><code>-Wcoverage-mismatch</code><dd><a name="index-Wcoverage_002dmismatch-229"></a>Warn if feedback profiles do not match when using the
<samp><span class="option">-fprofile-use</span></samp> option. 
If a source file was changed between <samp><span class="option">-fprofile-gen</span></samp> and
<samp><span class="option">-fprofile-use</span></samp>, the files with the profile feedback can fail
to match the source file and GCC can not use the profile feedback
information.  By default, this warning is enabled and is treated as an
error.  <samp><span class="option">-Wno-coverage-mismatch</span></samp> can be used to disable the
warning or <samp><span class="option">-Wno-error=coverage-mismatch</span></samp> can be used to
disable the error.  Disable the error for this warning can result in
poorly optimized code, so disabling the error is useful only in the
case of very minor changes such as bug fixes to an existing code-base. 
Completely disabling the warning is not recommended.

 </dl>

<div class="node">
<a name="Warning-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Debugging-Options">Debugging Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Language-Independent-Options">Language Independent Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>

</div>

<h3 class="section">3.8 Options to Request or Suppress Warnings</h3>

<p><a name="index-options-to-control-warnings-230"></a><a name="index-warning-messages-231"></a><a name="index-messages_002c-warning-232"></a><a name="index-suppressing-warnings-233"></a>
Warnings are diagnostic messages that report constructions which
are not inherently erroneous but which are risky or suggest there
may have been an error.

 <p>The following language-independent options do not enable specific
warnings but control the kinds of diagnostics produced by GCC.

     
<a name="index-syntax-checking-234"></a>
<dl><dt><code>-fsyntax-only</code><dd><a name="index-fsyntax_002donly-235"></a>Check the code for syntax errors, but don't do anything beyond that.

     <br><dt><code>-fmax-errors=</code><var>n</var><dd><a name="index-fmax_002derrors-236"></a>Limits the maximum number of error messages to <var>n</var>, at which point
GCC bails out rather than attempting to continue processing the source
code.  If <var>n</var> is 0 (the default), there is no limit on the number
of error messages produced.  If <samp><span class="option">-Wfatal-errors</span></samp> is also
specified, then <samp><span class="option">-Wfatal-errors</span></samp> takes precedence over this
option.

     <br><dt><code>-w</code><dd><a name="index-w-237"></a>Inhibit all warning messages.

     <br><dt><code>-Werror</code><dd><a name="index-Werror-238"></a><a name="index-Wno_002derror-239"></a>Make all warnings into errors.

     <br><dt><code>-Werror=</code><dd><a name="index-Werror_003d-240"></a><a name="index-Wno_002derror_003d-241"></a>Make the specified warning into an error.  The specifier for a warning
is appended, for example <samp><span class="option">-Werror=switch</span></samp> turns the warnings
controlled by <samp><span class="option">-Wswitch</span></samp> into errors.  This switch takes a
negative form, to be used to negate <samp><span class="option">-Werror</span></samp> for specific
warnings, for example <samp><span class="option">-Wno-error=switch</span></samp> makes
<samp><span class="option">-Wswitch</span></samp> warnings not be errors, even when <samp><span class="option">-Werror</span></samp>
is in effect.

     <p>The warning message for each controllable warning includes the
option which controls the warning.  That option can then be used with
<samp><span class="option">-Werror=</span></samp> and <samp><span class="option">-Wno-error=</span></samp> as described above. 
(Printing of the option in the warning message can be disabled using the
<samp><span class="option">-fno-diagnostics-show-option</span></samp> flag.)

     <p>Note that specifying <samp><span class="option">-Werror=</span></samp><var>foo</var> automatically implies
<samp><span class="option">-W</span></samp><var>foo</var>.  However, <samp><span class="option">-Wno-error=</span></samp><var>foo</var> does not
imply anything.

     <br><dt><code>-Wfatal-errors</code><dd><a name="index-Wfatal_002derrors-242"></a><a name="index-Wno_002dfatal_002derrors-243"></a>This option causes the compiler to abort compilation on the first error
occurred rather than trying to keep going and printing further error
messages.

 </dl>

 <p>You can request many specific warnings with options beginning
&lsquo;<samp><span class="samp">-W</span></samp>&rsquo;, for example <samp><span class="option">-Wimplicit</span></samp> to request warnings on
implicit declarations.  Each of these specific warning options also
has a negative form beginning &lsquo;<samp><span class="samp">-Wno-</span></samp>&rsquo; to turn off warnings; for
example, <samp><span class="option">-Wno-implicit</span></samp>.  This manual lists only one of the
two forms, whichever is not the default.  For further,
language-specific options also refer to <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a> and
<a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a>.

 <p>When an unrecognized warning option is requested (e.g.,
<samp><span class="option">-Wunknown-warning</span></samp>), GCC will emit a diagnostic stating
that the option is not recognized.  However, if the <samp><span class="option">-Wno-</span></samp> form
is used, the behavior is slightly different: No diagnostic will be
produced for <samp><span class="option">-Wno-unknown-warning</span></samp> unless other diagnostics
are being produced.  This allows the use of new <samp><span class="option">-Wno-</span></samp> options
with old compilers, but if something goes wrong, the compiler will
warn that an unrecognized option was used.

     <dl>
<dt><code>-pedantic</code><dd><a name="index-pedantic-244"></a>Issue all the warnings demanded by strict ISO C and ISO C++;
reject all programs that use forbidden extensions, and some other
programs that do not follow ISO C and ISO C++.  For ISO C, follows the
version of the ISO C standard specified by any <samp><span class="option">-std</span></samp> option used.

     <p>Valid ISO C and ISO C++ programs should compile properly with or without
this option (though a rare few will require <samp><span class="option">-ansi</span></samp> or a
<samp><span class="option">-std</span></samp> option specifying the required version of ISO C).  However,
without this option, certain GNU extensions and traditional C and C++
features are supported as well.  With this option, they are rejected.

     <p><samp><span class="option">-pedantic</span></samp> does not cause warning messages for use of the
alternate keywords whose names begin and end with &lsquo;<samp><span class="samp">__</span></samp>&rsquo;.  Pedantic
warnings are also disabled in the expression that follows
<code>__extension__</code>.  However, only system header files should use
these escape routes; application programs should avoid them. 
See <a href="#Alternate-Keywords">Alternate Keywords</a>.

     <p>Some users try to use <samp><span class="option">-pedantic</span></samp> to check programs for strict ISO
C conformance.  They soon find that it does not do quite what they want:
it finds some non-ISO practices, but not all&mdash;only those for which
ISO C <em>requires</em> a diagnostic, and some others for which
diagnostics have been added.

     <p>A feature to report any failure to conform to ISO C might be useful in
some instances, but would require considerable additional work and would
be quite different from <samp><span class="option">-pedantic</span></samp>.  We don't have plans to
support such a feature in the near future.

     <p>Where the standard specified with <samp><span class="option">-std</span></samp> represents a GNU
extended dialect of C, such as &lsquo;<samp><span class="samp">gnu90</span></samp>&rsquo; or &lsquo;<samp><span class="samp">gnu99</span></samp>&rsquo;, there is a
corresponding <dfn>base standard</dfn>, the version of ISO C on which the GNU
extended dialect is based.  Warnings from <samp><span class="option">-pedantic</span></samp> are given
where they are required by the base standard.  (It would not make sense
for such warnings to be given only for features not in the specified GNU
C dialect, since by definition the GNU dialects of C include all
features the compiler supports with the given option, and there would be
nothing to warn about.)

     <br><dt><code>-pedantic-errors</code><dd><a name="index-pedantic_002derrors-245"></a>Like <samp><span class="option">-pedantic</span></samp>, except that errors are produced rather than
warnings.

     <br><dt><code>-Wall</code><dd><a name="index-Wall-246"></a><a name="index-Wno_002dall-247"></a>This enables all the warnings about constructions that some users
consider questionable, and that are easy to avoid (or modify to
prevent the warning), even in conjunction with macros.  This also
enables some language-specific warnings described in <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a> and <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a>.

     <p><samp><span class="option">-Wall</span></samp> turns on the following warning flags:

     <pre class="smallexample">          -Waddress   
          -Warray-bounds <span class="roman">(only with</span> <samp><span class="option">-O2</span></samp><span class="roman">)</span>  
          -Wc++0x-compat  
          -Wchar-subscripts  
          -Wenum-compare <span class="roman">(in C/Objc; this is on by default in C++)</span> 
          -Wimplicit-int <span class="roman">(C and Objective-C only)</span> 
          -Wimplicit-function-declaration <span class="roman">(C and Objective-C only)</span> 
          -Wcomment  
          -Wformat   
          -Wmain <span class="roman">(only for C/ObjC and unless</span> <samp><span class="option">-ffreestanding</span></samp><span class="roman">)</span>  
          -Wmissing-braces  
          -Wnonnull  
          -Wparentheses  
          -Wpointer-sign  
          -Wreorder   
          -Wreturn-type  
          -Wsequence-point  
          -Wsign-compare <span class="roman">(only in C++)</span>  
          -Wstrict-aliasing  
          -Wstrict-overflow=1  
          -Wswitch  
          -Wtrigraphs  
          -Wuninitialized  
          -Wunknown-pragmas  
          -Wunused-function  
          -Wunused-label     
          -Wunused-value     
          -Wunused-variable  
          -Wvolatile-register-var 
          
</pre>
     <p>Note that some warning flags are not implied by <samp><span class="option">-Wall</span></samp>.  Some of
them warn about constructions that users generally do not consider
questionable, but which occasionally you might wish to check for;
others warn about constructions that are necessary or hard to avoid in
some cases, and there is no simple way to modify the code to suppress
the warning. Some of them are enabled by <samp><span class="option">-Wextra</span></samp> but many of
them must be enabled individually.

     <br><dt><code>-Wextra</code><dd><a name="index-W-248"></a><a name="index-Wextra-249"></a><a name="index-Wno_002dextra-250"></a>This enables some extra warning flags that are not enabled by
<samp><span class="option">-Wall</span></samp>. (This option used to be called <samp><span class="option">-W</span></samp>.  The older
name is still supported, but the newer name is more descriptive.)

     <pre class="smallexample">          -Wclobbered  
          -Wempty-body  
          -Wignored-qualifiers 
          -Wmissing-field-initializers  
          -Wmissing-parameter-type <span class="roman">(C only)</span>  
          -Wold-style-declaration <span class="roman">(C only)</span>  
          -Woverride-init  
          -Wsign-compare  
          -Wtype-limits  
          -Wuninitialized  
          -Wunused-parameter <span class="roman">(only with</span> <samp><span class="option">-Wunused</span></samp> <span class="roman">or</span> <samp><span class="option">-Wall</span></samp><span class="roman">)</span> 
          -Wunused-but-set-parameter <span class="roman">(only with</span> <samp><span class="option">-Wunused</span></samp> <span class="roman">or</span> <samp><span class="option">-Wall</span></samp><span class="roman">)</span>  
          
</pre>
     <p>The option <samp><span class="option">-Wextra</span></samp> also prints warning messages for the
following cases:

          <ul>
<li>A pointer is compared against integer zero with &lsquo;<samp><span class="samp">&lt;</span></samp>&rsquo;, &lsquo;<samp><span class="samp">&lt;=</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">&gt;</span></samp>&rsquo;, or &lsquo;<samp><span class="samp">&gt;=</span></samp>&rsquo;.

          <li>(C++ only) An enumerator and a non-enumerator both appear in a
conditional expression.

          <li>(C++ only) Ambiguous virtual bases.

          <li>(C++ only) Subscripting an array which has been declared &lsquo;<samp><span class="samp">register</span></samp>&rsquo;.

          <li>(C++ only) Taking the address of a variable which has been declared
&lsquo;<samp><span class="samp">register</span></samp>&rsquo;.

          <li>(C++ only) A base class is not initialized in a derived class' copy
constructor.

     </ul>

     <br><dt><code>-Wchar-subscripts</code><dd><a name="index-Wchar_002dsubscripts-251"></a><a name="index-Wno_002dchar_002dsubscripts-252"></a>Warn if an array subscript has type <code>char</code>.  This is a common cause
of error, as programmers often forget that this type is signed on some
machines. 
This warning is enabled by <samp><span class="option">-Wall</span></samp>.

     <br><dt><code>-Wcomment</code><dd><a name="index-Wcomment-253"></a><a name="index-Wno_002dcomment-254"></a>Warn whenever a comment-start sequence &lsquo;<samp><span class="samp">/*</span></samp>&rsquo; appears in a &lsquo;<samp><span class="samp">/*</span></samp>&rsquo;
comment, or whenever a Backslash-Newline appears in a &lsquo;<samp><span class="samp">//</span></samp>&rsquo; comment. 
This warning is enabled by <samp><span class="option">-Wall</span></samp>.

     <br><dt><code>-Wno-cpp</code><dd><span class="roman">(C, Objective-C, C++, Objective-C++ and Fortran only)</span>

     <p>Suppress warning messages emitted by <code>#warning</code> directives.

     <br><dt><code>-Wdouble-promotion </code><span class="roman">(C, C++, Objective-C and Objective-C++ only)</span><dd><a name="index-Wdouble_002dpromotion-255"></a><a name="index-Wno_002ddouble_002dpromotion-256"></a>Give a warning when a value of type <code>float</code> is implicitly
promoted to <code>double</code>.  CPUs with a 32-bit &ldquo;single-precision&rdquo;
floating-point unit implement <code>float</code> in hardware, but emulate
<code>double</code> in software.  On such a machine, doing computations
using <code>double</code> values is much more expensive because of the
overhead required for software emulation.

     <p>It is easy to accidentally do computations with <code>double</code> because
floating-point literals are implicitly of type <code>double</code>.  For
example, in:
     <pre class="smallexample">          float area(float radius)
          {
             return 3.14159 * radius * radius;
          }
</pre>
     <p>the compiler will perform the entire computation with <code>double</code>
because the floating-point literal is a <code>double</code>.

     <br><dt><code>-Wformat</code><dd><a name="index-Wformat-257"></a><a name="index-Wno_002dformat-258"></a><a name="index-ffreestanding-259"></a><a name="index-fno_002dbuiltin-260"></a>Check calls to <code>printf</code> and <code>scanf</code>, etc., to make sure that
the arguments supplied have types appropriate to the format string
specified, and that the conversions specified in the format string make
sense.  This includes standard functions, and others specified by format
attributes (see <a href="#Function-Attributes">Function Attributes</a>), in the <code>printf</code>,
<code>scanf</code>, <code>strftime</code> and <code>strfmon</code> (an X/Open extension,
not in the C standard) families (or other target-specific families). 
Which functions are checked without format attributes having been
specified depends on the standard version selected, and such checks of
functions without the attribute specified are disabled by
<samp><span class="option">-ffreestanding</span></samp> or <samp><span class="option">-fno-builtin</span></samp>.

     <p>The formats are checked against the format features supported by GNU
libc version 2.2.  These include all ISO C90 and C99 features, as well
as features from the Single Unix Specification and some BSD and GNU
extensions.  Other library implementations may not support all these
features; GCC does not support warning about features that go beyond a
particular library's limitations.  However, if <samp><span class="option">-pedantic</span></samp> is used
with <samp><span class="option">-Wformat</span></samp>, warnings will be given about format features not
in the selected standard version (but not for <code>strfmon</code> formats,
since those are not in any version of the C standard).  See <a href="#C-Dialect-Options">Options Controlling C Dialect</a>.

     <p>Since <samp><span class="option">-Wformat</span></samp> also checks for null format arguments for
several functions, <samp><span class="option">-Wformat</span></samp> also implies <samp><span class="option">-Wnonnull</span></samp>.

     <p><samp><span class="option">-Wformat</span></samp> is included in <samp><span class="option">-Wall</span></samp>.  For more control over some
aspects of format checking, the options <samp><span class="option">-Wformat-y2k</span></samp>,
<samp><span class="option">-Wno-format-extra-args</span></samp>, <samp><span class="option">-Wno-format-zero-length</span></samp>,
<samp><span class="option">-Wformat-nonliteral</span></samp>, <samp><span class="option">-Wformat-security</span></samp>, and
<samp><span class="option">-Wformat=2</span></samp> are available, but are not included in <samp><span class="option">-Wall</span></samp>.

     <p>NOTE: In Ubuntu 8.10 and later versions this option is enabled by default
for C, C++, ObjC, ObjC++.  To disable, use <samp><span class="option">-Wformat=0</span></samp>.

     <br><dt><code>-Wformat-y2k</code><dd><a name="index-Wformat_002dy2k-261"></a><a name="index-Wno_002dformat_002dy2k-262"></a>If <samp><span class="option">-Wformat</span></samp> is specified, also warn about <code>strftime</code>
formats which may yield only a two-digit year.

     <br><dt><code>-Wno-format-contains-nul</code><dd><a name="index-Wno_002dformat_002dcontains_002dnul-263"></a><a name="index-Wformat_002dcontains_002dnul-264"></a>If <samp><span class="option">-Wformat</span></samp> is specified, do not warn about format strings that
contain NUL bytes.

     <br><dt><code>-Wno-format-extra-args</code><dd><a name="index-Wno_002dformat_002dextra_002dargs-265"></a><a name="index-Wformat_002dextra_002dargs-266"></a>If <samp><span class="option">-Wformat</span></samp> is specified, do not warn about excess arguments to a
<code>printf</code> or <code>scanf</code> format function.  The C standard specifies
that such arguments are ignored.

     <p>Where the unused arguments lie between used arguments that are
specified with &lsquo;<samp><span class="samp">$</span></samp>&rsquo; operand number specifications, normally
warnings are still given, since the implementation could not know what
type to pass to <code>va_arg</code> to skip the unused arguments.  However,
in the case of <code>scanf</code> formats, this option will suppress the
warning if the unused arguments are all pointers, since the Single
Unix Specification says that such unused arguments are allowed.

     <br><dt><code>-Wno-format-zero-length </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wno_002dformat_002dzero_002dlength-267"></a><a name="index-Wformat_002dzero_002dlength-268"></a>If <samp><span class="option">-Wformat</span></samp> is specified, do not warn about zero-length formats. 
The C standard specifies that zero-length formats are allowed.

     <br><dt><code>-Wformat-nonliteral</code><dd><a name="index-Wformat_002dnonliteral-269"></a><a name="index-Wno_002dformat_002dnonliteral-270"></a>If <samp><span class="option">-Wformat</span></samp> is specified, also warn if the format string is not a
string literal and so cannot be checked, unless the format function
takes its format arguments as a <code>va_list</code>.

     <br><dt><code>-Wformat-security</code><dd><a name="index-Wformat_002dsecurity-271"></a><a name="index-Wno_002dformat_002dsecurity-272"></a>If <samp><span class="option">-Wformat</span></samp> is specified, also warn about uses of format
functions that represent possible security problems.  At present, this
warns about calls to <code>printf</code> and <code>scanf</code> functions where the
format string is not a string literal and there are no format arguments,
as in <code>printf (foo);</code>.  This may be a security hole if the format
string came from untrusted input and contains &lsquo;<samp><span class="samp">%n</span></samp>&rsquo;.  (This is
currently a subset of what <samp><span class="option">-Wformat-nonliteral</span></samp> warns about, but
in future warnings may be added to <samp><span class="option">-Wformat-security</span></samp> that are not
included in <samp><span class="option">-Wformat-nonliteral</span></samp>.)

     <p>NOTE: In Ubuntu 8.10 and later versions this option is enabled by default
for C, C++, ObjC, ObjC++.  To disable, use <samp><span class="option">-Wno-format-security</span></samp>,
or disable all format warnings with <samp><span class="option">-Wformat=0</span></samp>.  To make format
security warnings fatal, specify <samp><span class="option">-Werror=format-security</span></samp>.

     <br><dt><code>-Wformat=2</code><dd><a name="index-Wformat_003d2-273"></a><a name="index-Wno_002dformat_003d2-274"></a>Enable <samp><span class="option">-Wformat</span></samp> plus format checks not included in
<samp><span class="option">-Wformat</span></samp>.  Currently equivalent to &lsquo;<samp><span class="samp">-Wformat
-Wformat-nonliteral -Wformat-security -Wformat-y2k</span></samp>&rsquo;.

     <br><dt><code>-Wnonnull </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wnonnull-275"></a><a name="index-Wno_002dnonnull-276"></a>Warn about passing a null pointer for arguments marked as
requiring a non-null value by the <code>nonnull</code> function attribute.

     <p><samp><span class="option">-Wnonnull</span></samp> is included in <samp><span class="option">-Wall</span></samp> and <samp><span class="option">-Wformat</span></samp>.  It
can be disabled with the <samp><span class="option">-Wno-nonnull</span></samp> option.

     <br><dt><code>-Winit-self </code><span class="roman">(C, C++, Objective-C and Objective-C++ only)</span><dd><a name="index-Winit_002dself-277"></a><a name="index-Wno_002dinit_002dself-278"></a>Warn about uninitialized variables which are initialized with themselves. 
Note this option can only be used with the <samp><span class="option">-Wuninitialized</span></samp> option.

     <p>For example, GCC will warn about <code>i</code> being uninitialized in the
following snippet only when <samp><span class="option">-Winit-self</span></samp> has been specified:
     <pre class="smallexample">          int f()
          {
            int i = i;
            return i;
          }
</pre>
     <br><dt><code>-Wimplicit-int </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wimplicit_002dint-279"></a><a name="index-Wno_002dimplicit_002dint-280"></a>Warn when a declaration does not specify a type. 
This warning is enabled by <samp><span class="option">-Wall</span></samp>.

     <br><dt><code>-Wimplicit-function-declaration </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wimplicit_002dfunction_002ddeclaration-281"></a><a name="index-Wno_002dimplicit_002dfunction_002ddeclaration-282"></a>Give a warning whenever a function is used before being declared. In
C99 mode (<samp><span class="option">-std=c99</span></samp> or <samp><span class="option">-std=gnu99</span></samp>), this warning is
enabled by default and it is made into an error by
<samp><span class="option">-pedantic-errors</span></samp>. This warning is also enabled by
<samp><span class="option">-Wall</span></samp>.

     <br><dt><code>-Wimplicit </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wimplicit-283"></a><a name="index-Wno_002dimplicit-284"></a>Same as <samp><span class="option">-Wimplicit-int</span></samp> and <samp><span class="option">-Wimplicit-function-declaration</span></samp>. 
This warning is enabled by <samp><span class="option">-Wall</span></samp>.

     <br><dt><code>-Wignored-qualifiers </code><span class="roman">(C and C++ only)</span><dd><a name="index-Wignored_002dqualifiers-285"></a><a name="index-Wno_002dignored_002dqualifiers-286"></a>Warn if the return type of a function has a type qualifier
such as <code>const</code>.  For ISO C such a type qualifier has no effect,
since the value returned by a function is not an lvalue. 
For C++, the warning is only emitted for scalar types or <code>void</code>. 
ISO C prohibits qualified <code>void</code> return types on function
definitions, so such return types always receive a warning
even without this option.

     <p>This warning is also enabled by <samp><span class="option">-Wextra</span></samp>.

     <br><dt><code>-Wmain</code><dd><a name="index-Wmain-287"></a><a name="index-Wno_002dmain-288"></a>Warn if the type of &lsquo;<samp><span class="samp">main</span></samp>&rsquo; is suspicious.  &lsquo;<samp><span class="samp">main</span></samp>&rsquo; should be
a function with external linkage, returning int, taking either zero
arguments, two, or three arguments of appropriate types.  This warning
is enabled by default in C++ and is enabled by either <samp><span class="option">-Wall</span></samp>
or <samp><span class="option">-pedantic</span></samp>.

     <br><dt><code>-Wmissing-braces</code><dd><a name="index-Wmissing_002dbraces-289"></a><a name="index-Wno_002dmissing_002dbraces-290"></a>Warn if an aggregate or union initializer is not fully bracketed.  In
the following example, the initializer for &lsquo;<samp><span class="samp">a</span></samp>&rsquo; is not fully
bracketed, but that for &lsquo;<samp><span class="samp">b</span></samp>&rsquo; is fully bracketed.

     <pre class="smallexample">          int a[2][2] = { 0, 1, 2, 3 };
          int b[2][2] = { { 0, 1 }, { 2, 3 } };
</pre>
     <p>This warning is enabled by <samp><span class="option">-Wall</span></samp>.

     <br><dt><code>-Wmissing-include-dirs </code><span class="roman">(C, C++, Objective-C and Objective-C++ only)</span><dd><a name="index-Wmissing_002dinclude_002ddirs-291"></a><a name="index-Wno_002dmissing_002dinclude_002ddirs-292"></a>Warn if a user-supplied include directory does not exist.

     <br><dt><code>-Wparentheses</code><dd><a name="index-Wparentheses-293"></a><a name="index-Wno_002dparentheses-294"></a>Warn if parentheses are omitted in certain contexts, such
as when there is an assignment in a context where a truth value
is expected, or when operators are nested whose precedence people
often get confused about.

     <p>Also warn if a comparison like &lsquo;<samp><span class="samp">x&lt;=y&lt;=z</span></samp>&rsquo; appears; this is
equivalent to &lsquo;<samp><span class="samp">(x&lt;=y ? 1 : 0) &lt;= z</span></samp>&rsquo;, which is a different
interpretation from that of ordinary mathematical notation.

     <p>Also warn about constructions where there may be confusion to which
<code>if</code> statement an <code>else</code> branch belongs.  Here is an example of
such a case:

     <pre class="smallexample">          {
            if (a)
              if (b)
                foo ();
            else
              bar ();
          }
</pre>
     <p>In C/C++, every <code>else</code> branch belongs to the innermost possible
<code>if</code> statement, which in this example is <code>if (b)</code>.  This is
often not what the programmer expected, as illustrated in the above
example by indentation the programmer chose.  When there is the
potential for this confusion, GCC will issue a warning when this flag
is specified.  To eliminate the warning, add explicit braces around
the innermost <code>if</code> statement so there is no way the <code>else</code>
could belong to the enclosing <code>if</code>.  The resulting code would
look like this:

     <pre class="smallexample">          {
            if (a)
              {
                if (b)
                  foo ();
                else
                  bar ();
              }
          }
</pre>
     <p>Also warn for dangerous uses of the
?: with omitted middle operand GNU extension. When the condition
in the ?: operator is a boolean expression the omitted value will
be always 1. Often the user expects it to be a value computed
inside the conditional expression instead.

     <p>This warning is enabled by <samp><span class="option">-Wall</span></samp>.

     <br><dt><code>-Wsequence-point</code><dd><a name="index-Wsequence_002dpoint-295"></a><a name="index-Wno_002dsequence_002dpoint-296"></a>Warn about code that may have undefined semantics because of violations
of sequence point rules in the C and C++ standards.

     <p>The C and C++ standards defines the order in which expressions in a C/C++
program are evaluated in terms of <dfn>sequence points</dfn>, which represent
a partial ordering between the execution of parts of the program: those
executed before the sequence point, and those executed after it.  These
occur after the evaluation of a full expression (one which is not part
of a larger expression), after the evaluation of the first operand of a
<code>&amp;&amp;</code>, <code>||</code>, <code>? :</code> or <code>,</code> (comma) operator, before a
function is called (but after the evaluation of its arguments and the
expression denoting the called function), and in certain other places. 
Other than as expressed by the sequence point rules, the order of
evaluation of subexpressions of an expression is not specified.  All
these rules describe only a partial order rather than a total order,
since, for example, if two functions are called within one expression
with no sequence point between them, the order in which the functions
are called is not specified.  However, the standards committee have
ruled that function calls do not overlap.

     <p>It is not specified when between sequence points modifications to the
values of objects take effect.  Programs whose behavior depends on this
have undefined behavior; the C and C++ standards specify that &ldquo;Between
the previous and next sequence point an object shall have its stored
value modified at most once by the evaluation of an expression. 
Furthermore, the prior value shall be read only to determine the value
to be stored.&rdquo;.  If a program breaks these rules, the results on any
particular implementation are entirely unpredictable.

     <p>Examples of code with undefined behavior are <code>a = a++;</code>, <code>a[n]
= b[n++]</code> and <code>a[i++] = i;</code>.  Some more complicated cases are not
diagnosed by this option, and it may give an occasional false positive
result, but in general it has been found fairly effective at detecting
this sort of problem in programs.

     <p>The standard is worded confusingly, therefore there is some debate
over the precise meaning of the sequence point rules in subtle cases. 
Links to discussions of the problem, including proposed formal
definitions, may be found on the GCC readings page, at
<a href="http://gcc.gnu.org/readings.html">http://gcc.gnu.org/readings.html</a>.

     <p>This warning is enabled by <samp><span class="option">-Wall</span></samp> for C and C++.

     <br><dt><code>-Wreturn-type</code><dd><a name="index-Wreturn_002dtype-297"></a><a name="index-Wno_002dreturn_002dtype-298"></a>Warn whenever a function is defined with a return-type that defaults
to <code>int</code>.  Also warn about any <code>return</code> statement with no
return-value in a function whose return-type is not <code>void</code>
(falling off the end of the function body is considered returning
without a value), and about a <code>return</code> statement with an
expression in a function whose return-type is <code>void</code>.

     <p>For C++, a function without return type always produces a diagnostic
message, even when <samp><span class="option">-Wno-return-type</span></samp> is specified.  The only
exceptions are &lsquo;<samp><span class="samp">main</span></samp>&rsquo; and functions defined in system headers.

     <p>This warning is enabled by <samp><span class="option">-Wall</span></samp>.

     <br><dt><code>-Wswitch</code><dd><a name="index-Wswitch-299"></a><a name="index-Wno_002dswitch-300"></a>Warn whenever a <code>switch</code> statement has an index of enumerated type
and lacks a <code>case</code> for one or more of the named codes of that
enumeration.  (The presence of a <code>default</code> label prevents this
warning.)  <code>case</code> labels outside the enumeration range also
provoke warnings when this option is used (even if there is a
<code>default</code> label). 
This warning is enabled by <samp><span class="option">-Wall</span></samp>.

     <br><dt><code>-Wswitch-default</code><dd><a name="index-Wswitch_002ddefault-301"></a><a name="index-Wno_002dswitch_002ddefault-302"></a>Warn whenever a <code>switch</code> statement does not have a <code>default</code>
case.

     <br><dt><code>-Wswitch-enum</code><dd><a name="index-Wswitch_002denum-303"></a><a name="index-Wno_002dswitch_002denum-304"></a>Warn whenever a <code>switch</code> statement has an index of enumerated type
and lacks a <code>case</code> for one or more of the named codes of that
enumeration.  <code>case</code> labels outside the enumeration range also
provoke warnings when this option is used.  The only difference
between <samp><span class="option">-Wswitch</span></samp> and this option is that this option gives a
warning about an omitted enumeration code even if there is a
<code>default</code> label.

     <br><dt><code>-Wsync-nand </code><span class="roman">(C and C++ only)</span><dd><a name="index-Wsync_002dnand-305"></a><a name="index-Wno_002dsync_002dnand-306"></a>Warn when <code>__sync_fetch_and_nand</code> and <code>__sync_nand_and_fetch</code>
built-in functions are used.  These functions changed semantics in GCC 4.4.

     <br><dt><code>-Wtrigraphs</code><dd><a name="index-Wtrigraphs-307"></a><a name="index-Wno_002dtrigraphs-308"></a>Warn if any trigraphs are encountered that might change the meaning of
the program (trigraphs within comments are not warned about). 
This warning is enabled by <samp><span class="option">-Wall</span></samp>.

     <br><dt><code>-Wunused-but-set-parameter</code><dd><a name="index-Wunused_002dbut_002dset_002dparameter-309"></a><a name="index-Wno_002dunused_002dbut_002dset_002dparameter-310"></a>Warn whenever a function parameter is assigned to, but otherwise unused
(aside from its declaration).

     <p>To suppress this warning use the &lsquo;<samp><span class="samp">unused</span></samp>&rsquo; attribute
(see <a href="#Variable-Attributes">Variable Attributes</a>).

     <p>This warning is also enabled by <samp><span class="option">-Wunused</span></samp> together with
<samp><span class="option">-Wextra</span></samp>.

     <br><dt><code>-Wunused-but-set-variable</code><dd><a name="index-Wunused_002dbut_002dset_002dvariable-311"></a><a name="index-Wno_002dunused_002dbut_002dset_002dvariable-312"></a>Warn whenever a local variable is assigned to, but otherwise unused
(aside from its declaration). 
This warning is enabled by <samp><span class="option">-Wall</span></samp>.

     <p>To suppress this warning use the &lsquo;<samp><span class="samp">unused</span></samp>&rsquo; attribute
(see <a href="#Variable-Attributes">Variable Attributes</a>).

     <p>This warning is also enabled by <samp><span class="option">-Wunused</span></samp>, which is enabled
by <samp><span class="option">-Wall</span></samp>.

     <br><dt><code>-Wunused-function</code><dd><a name="index-Wunused_002dfunction-313"></a><a name="index-Wno_002dunused_002dfunction-314"></a>Warn whenever a static function is declared but not defined or a
non-inline static function is unused. 
This warning is enabled by <samp><span class="option">-Wall</span></samp>.

     <br><dt><code>-Wunused-label</code><dd><a name="index-Wunused_002dlabel-315"></a><a name="index-Wno_002dunused_002dlabel-316"></a>Warn whenever a label is declared but not used. 
This warning is enabled by <samp><span class="option">-Wall</span></samp>.

     <p>To suppress this warning use the &lsquo;<samp><span class="samp">unused</span></samp>&rsquo; attribute
(see <a href="#Variable-Attributes">Variable Attributes</a>).

     <br><dt><code>-Wunused-parameter</code><dd><a name="index-Wunused_002dparameter-317"></a><a name="index-Wno_002dunused_002dparameter-318"></a>Warn whenever a function parameter is unused aside from its declaration.

     <p>To suppress this warning use the &lsquo;<samp><span class="samp">unused</span></samp>&rsquo; attribute
(see <a href="#Variable-Attributes">Variable Attributes</a>).

     <br><dt><code>-Wno-unused-result</code><dd><a name="index-Wunused_002dresult-319"></a><a name="index-Wno_002dunused_002dresult-320"></a>Do not warn if a caller of a function marked with attribute
<code>warn_unused_result</code> (see <a href="#Variable-Attributes">Variable Attributes</a>) does not use
its return value. The default is <samp><span class="option">-Wunused-result</span></samp>.

     <br><dt><code>-Wunused-variable</code><dd><a name="index-Wunused_002dvariable-321"></a><a name="index-Wno_002dunused_002dvariable-322"></a>Warn whenever a local variable or non-constant static variable is unused
aside from its declaration. 
This warning is enabled by <samp><span class="option">-Wall</span></samp>.

     <p>To suppress this warning use the &lsquo;<samp><span class="samp">unused</span></samp>&rsquo; attribute
(see <a href="#Variable-Attributes">Variable Attributes</a>).

     <br><dt><code>-Wunused-value</code><dd><a name="index-Wunused_002dvalue-323"></a><a name="index-Wno_002dunused_002dvalue-324"></a>Warn whenever a statement computes a result that is explicitly not
used. To suppress this warning cast the unused expression to
&lsquo;<samp><span class="samp">void</span></samp>&rsquo;. This includes an expression-statement or the left-hand
side of a comma expression that contains no side effects. For example,
an expression such as &lsquo;<samp><span class="samp">x[i,j]</span></samp>&rsquo; will cause a warning, while
&lsquo;<samp><span class="samp">x[(void)i,j]</span></samp>&rsquo; will not.

     <p>This warning is enabled by <samp><span class="option">-Wall</span></samp>.

     <br><dt><code>-Wunused</code><dd><a name="index-Wunused-325"></a><a name="index-Wno_002dunused-326"></a>All the above <samp><span class="option">-Wunused</span></samp> options combined.

     <p>In order to get a warning about an unused function parameter, you must
either specify &lsquo;<samp><span class="samp">-Wextra -Wunused</span></samp>&rsquo; (note that &lsquo;<samp><span class="samp">-Wall</span></samp>&rsquo; implies
&lsquo;<samp><span class="samp">-Wunused</span></samp>&rsquo;), or separately specify <samp><span class="option">-Wunused-parameter</span></samp>.

     <br><dt><code>-Wuninitialized</code><dd><a name="index-Wuninitialized-327"></a><a name="index-Wno_002duninitialized-328"></a>Warn if an automatic variable is used without first being initialized
or if a variable may be clobbered by a <code>setjmp</code> call. In C++,
warn if a non-static reference or non-static &lsquo;<samp><span class="samp">const</span></samp>&rsquo; member
appears in a class without constructors.

     <p>If you want to warn about code which uses the uninitialized value of the
variable in its own initializer, use the <samp><span class="option">-Winit-self</span></samp> option.

     <p>These warnings occur for individual uninitialized or clobbered
elements of structure, union or array variables as well as for
variables which are uninitialized or clobbered as a whole.  They do
not occur for variables or elements declared <code>volatile</code>.  Because
these warnings depend on optimization, the exact variables or elements
for which there are warnings will depend on the precise optimization
options and version of GCC used.

     <p>Note that there may be no warning about a variable that is used only
to compute a value that itself is never used, because such
computations may be deleted by data flow analysis before the warnings
are printed.

     <p>These warnings are made optional because GCC is not smart
enough to see all the reasons why the code might be correct
despite appearing to have an error.  Here is one example of how
this can happen:

     <pre class="smallexample">          {
            int x;
            switch (y)
              {
              case 1: x = 1;
                break;
              case 2: x = 4;
                break;
              case 3: x = 5;
              }
            foo (x);
          }
</pre>
     <p class="noindent">If the value of <code>y</code> is always 1, 2 or 3, then <code>x</code> is
always initialized, but GCC doesn't know this.  Here is
another common case:

     <pre class="smallexample">          {
            int save_y;
            if (change_y) save_y = y, y = new_y;
            ...
            if (change_y) y = save_y;
          }
</pre>
     <p class="noindent">This has no bug because <code>save_y</code> is used only if it is set.

     <p><a name="index-g_t_0040code_007blongjmp_007d-warnings-329"></a>This option also warns when a non-volatile automatic variable might be
changed by a call to <code>longjmp</code>.  These warnings as well are possible
only in optimizing compilation.

     <p>The compiler sees only the calls to <code>setjmp</code>.  It cannot know
where <code>longjmp</code> will be called; in fact, a signal handler could
call it at any point in the code.  As a result, you may get a warning
even when there is in fact no problem because <code>longjmp</code> cannot
in fact be called at the place which would cause a problem.

     <p>Some spurious warnings can be avoided if you declare all the functions
you use that never return as <code>noreturn</code>.  See <a href="#Function-Attributes">Function Attributes</a>.

     <p>This warning is enabled by <samp><span class="option">-Wall</span></samp> or <samp><span class="option">-Wextra</span></samp>.

     <br><dt><code>-Wunknown-pragmas</code><dd><a name="index-Wunknown_002dpragmas-330"></a><a name="index-Wno_002dunknown_002dpragmas-331"></a><a name="index-warning-for-unknown-pragmas-332"></a><a name="index-unknown-pragmas_002c-warning-333"></a><a name="index-pragmas_002c-warning-of-unknown-334"></a>Warn when a #pragma directive is encountered which is not understood by
GCC.  If this command line option is used, warnings will even be issued
for unknown pragmas in system header files.  This is not the case if
the warnings were only enabled by the <samp><span class="option">-Wall</span></samp> command line option.

     <br><dt><code>-Wno-pragmas</code><dd><a name="index-Wno_002dpragmas-335"></a><a name="index-Wpragmas-336"></a>Do not warn about misuses of pragmas, such as incorrect parameters,
invalid syntax, or conflicts between pragmas.  See also
&lsquo;<samp><span class="samp">-Wunknown-pragmas</span></samp>&rsquo;.

     <br><dt><code>-Wstrict-aliasing</code><dd><a name="index-Wstrict_002daliasing-337"></a><a name="index-Wno_002dstrict_002daliasing-338"></a>This option is only active when <samp><span class="option">-fstrict-aliasing</span></samp> is active. 
It warns about code which might break the strict aliasing rules that the
compiler is using for optimization.  The warning does not catch all
cases, but does attempt to catch the more common pitfalls.  It is
included in <samp><span class="option">-Wall</span></samp>. 
It is equivalent to <samp><span class="option">-Wstrict-aliasing=3</span></samp>

     <br><dt><code>-Wstrict-aliasing=n</code><dd><a name="index-Wstrict_002daliasing_003dn-339"></a><a name="index-Wno_002dstrict_002daliasing_003dn-340"></a>This option is only active when <samp><span class="option">-fstrict-aliasing</span></samp> is active. 
It warns about code which might break the strict aliasing rules that the
compiler is using for optimization. 
Higher levels correspond to higher accuracy (fewer false positives). 
Higher levels also correspond to more effort, similar to the way -O works. 
<samp><span class="option">-Wstrict-aliasing</span></samp> is equivalent to <samp><span class="option">-Wstrict-aliasing=n</span></samp>,
with n=3.

     <p>Level 1: Most aggressive, quick, least accurate. 
Possibly useful when higher levels
do not warn but -fstrict-aliasing still breaks the code, as it has very few
false negatives.  However, it has many false positives. 
Warns for all pointer conversions between possibly incompatible types,
even if never dereferenced.  Runs in the frontend only.

     <p>Level 2: Aggressive, quick, not too precise. 
May still have many false positives (not as many as level 1 though),
and few false negatives (but possibly more than level 1). 
Unlike level 1, it only warns when an address is taken.  Warns about
incomplete types.  Runs in the frontend only.

     <p>Level 3 (default for <samp><span class="option">-Wstrict-aliasing</span></samp>):
Should have very few false positives and few false
negatives.  Slightly slower than levels 1 or 2 when optimization is enabled. 
Takes care of the common pun+dereference pattern in the frontend:
<code>*(int*)&amp;some_float</code>. 
If optimization is enabled, it also runs in the backend, where it deals
with multiple statement cases using flow-sensitive points-to information. 
Only warns when the converted pointer is dereferenced. 
Does not warn about incomplete types.

     <br><dt><code>-Wstrict-overflow</code><dt><code>-Wstrict-overflow=</code><var>n</var><dd><a name="index-Wstrict_002doverflow-341"></a><a name="index-Wno_002dstrict_002doverflow-342"></a>This option is only active when <samp><span class="option">-fstrict-overflow</span></samp> is active. 
It warns about cases where the compiler optimizes based on the
assumption that signed overflow does not occur.  Note that it does not
warn about all cases where the code might overflow: it only warns
about cases where the compiler implements some optimization.  Thus
this warning depends on the optimization level.

     <p>An optimization which assumes that signed overflow does not occur is
perfectly safe if the values of the variables involved are such that
overflow never does, in fact, occur.  Therefore this warning can
easily give a false positive: a warning about code which is not
actually a problem.  To help focus on important issues, several
warning levels are defined.  No warnings are issued for the use of
undefined signed overflow when estimating how many iterations a loop
will require, in particular when determining whether a loop will be
executed at all.

          <dl>
<dt><code>-Wstrict-overflow=1</code><dd>Warn about cases which are both questionable and easy to avoid.  For
example: <code>x + 1 &gt; x</code>; with <samp><span class="option">-fstrict-overflow</span></samp>, the
compiler will simplify this to <code>1</code>.  This level of
<samp><span class="option">-Wstrict-overflow</span></samp> is enabled by <samp><span class="option">-Wall</span></samp>; higher levels
are not, and must be explicitly requested.

          <br><dt><code>-Wstrict-overflow=2</code><dd>Also warn about other cases where a comparison is simplified to a
constant.  For example: <code>abs (x) &gt;= 0</code>.  This can only be
simplified when <samp><span class="option">-fstrict-overflow</span></samp> is in effect, because
<code>abs (INT_MIN)</code> overflows to <code>INT_MIN</code>, which is less than
zero.  <samp><span class="option">-Wstrict-overflow</span></samp> (with no level) is the same as
<samp><span class="option">-Wstrict-overflow=2</span></samp>.

          <br><dt><code>-Wstrict-overflow=3</code><dd>Also warn about other cases where a comparison is simplified.  For
example: <code>x + 1 &gt; 1</code> will be simplified to <code>x &gt; 0</code>.

          <br><dt><code>-Wstrict-overflow=4</code><dd>Also warn about other simplifications not covered by the above cases. 
For example: <code>(x * 10) / 5</code> will be simplified to <code>x * 2</code>.

          <br><dt><code>-Wstrict-overflow=5</code><dd>Also warn about cases where the compiler reduces the magnitude of a
constant involved in a comparison.  For example: <code>x + 2 &gt; y</code> will
be simplified to <code>x + 1 &gt;= y</code>.  This is reported only at the
highest warning level because this simplification applies to many
comparisons, so this warning level will give a very large number of
false positives. 
</dl>

     <br><dt><code>-Wsuggest-attribute=</code><span class="roman">[</span><code>pure</code><span class="roman">|</span><code>const</code><span class="roman">|</span><code>noreturn</code><span class="roman">]</span><dd><a name="index-Wsuggest_002dattribute_003d-343"></a><a name="index-Wno_002dsuggest_002dattribute_003d-344"></a>Warn for cases where adding an attribute may be beneficial. The
attributes currently supported are listed below.

          <dl>
<dt><code>-Wsuggest-attribute=pure</code><dt><code>-Wsuggest-attribute=const</code><dt><code>-Wsuggest-attribute=noreturn</code><dd><a name="index-Wsuggest_002dattribute_003dpure-345"></a><a name="index-Wno_002dsuggest_002dattribute_003dpure-346"></a><a name="index-Wsuggest_002dattribute_003dconst-347"></a><a name="index-Wno_002dsuggest_002dattribute_003dconst-348"></a><a name="index-Wsuggest_002dattribute_003dnoreturn-349"></a><a name="index-Wno_002dsuggest_002dattribute_003dnoreturn-350"></a>
Warn about functions which might be candidates for attributes
<code>pure</code>, <code>const</code> or <code>noreturn</code>.  The compiler only warns for
functions visible in other compilation units or (in the case of <code>pure</code> and
<code>const</code>) if it cannot prove that the function returns normally. A function
returns normally if it doesn't contain an infinite loop nor returns abnormally
by throwing, calling <code>abort()</code> or trapping.  This analysis requires option
<samp><span class="option">-fipa-pure-const</span></samp>, which is enabled by default at <samp><span class="option">-O</span></samp> and
higher.  Higher optimization levels improve the accuracy of the analysis. 
</dl>

     <br><dt><code>-Warray-bounds</code><dd><a name="index-Wno_002darray_002dbounds-351"></a><a name="index-Warray_002dbounds-352"></a>This option is only active when <samp><span class="option">-ftree-vrp</span></samp> is active
(default for <samp><span class="option">-O2</span></samp> and above). It warns about subscripts to arrays
that are always out of bounds. This warning is enabled by <samp><span class="option">-Wall</span></samp>.

     <br><dt><code>-Wno-div-by-zero</code><dd><a name="index-Wno_002ddiv_002dby_002dzero-353"></a><a name="index-Wdiv_002dby_002dzero-354"></a>Do not warn about compile-time integer division by zero.  Floating point
division by zero is not warned about, as it can be a legitimate way of
obtaining infinities and NaNs.

     <br><dt><code>-Wsystem-headers</code><dd><a name="index-Wsystem_002dheaders-355"></a><a name="index-Wno_002dsystem_002dheaders-356"></a><a name="index-warnings-from-system-headers-357"></a><a name="index-system-headers_002c-warnings-from-358"></a>Print warning messages for constructs found in system header files. 
Warnings from system headers are normally suppressed, on the assumption
that they usually do not indicate real problems and would only make the
compiler output harder to read.  Using this command line option tells
GCC to emit warnings from system headers as if they occurred in user
code.  However, note that using <samp><span class="option">-Wall</span></samp> in conjunction with this
option will <em>not</em> warn about unknown pragmas in system
headers&mdash;for that, <samp><span class="option">-Wunknown-pragmas</span></samp> must also be used.

     <br><dt><code>-Wtrampolines</code><dd><a name="index-Wtrampolines-359"></a><a name="index-Wno_002dtrampolines-360"></a> Warn about trampolines generated for pointers to nested functions.

     <p>A trampoline is a small piece of data or code that is created at run
 time on the stack when the address of a nested function is taken, and
 is used to call the nested function indirectly.  For some targets, it
 is made up of data only and thus requires no special treatment.  But,
 for most targets, it is made up of code and thus requires the stack
 to be made executable in order for the program to work properly.

     <br><dt><code>-Wfloat-equal</code><dd><a name="index-Wfloat_002dequal-361"></a><a name="index-Wno_002dfloat_002dequal-362"></a>Warn if floating point values are used in equality comparisons.

     <p>The idea behind this is that sometimes it is convenient (for the
programmer) to consider floating-point values as approximations to
infinitely precise real numbers.  If you are doing this, then you need
to compute (by analyzing the code, or in some other way) the maximum or
likely maximum error that the computation introduces, and allow for it
when performing comparisons (and when producing output, but that's a
different problem).  In particular, instead of testing for equality, you
would check to see whether the two values have ranges that overlap; and
this is done with the relational operators, so equality comparisons are
probably mistaken.

     <br><dt><code>-Wtraditional </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wtraditional-363"></a><a name="index-Wno_002dtraditional-364"></a>Warn about certain constructs that behave differently in traditional and
ISO C.  Also warn about ISO C constructs that have no traditional C
equivalent, and/or problematic constructs which should be avoided.

          <ul>
<li>Macro parameters that appear within string literals in the macro body. 
In traditional C macro replacement takes place within string literals,
but does not in ISO C.

          <li>In traditional C, some preprocessor directives did not exist. 
Traditional preprocessors would only consider a line to be a directive
if the &lsquo;<samp><span class="samp">#</span></samp>&rsquo; appeared in column 1 on the line.  Therefore
<samp><span class="option">-Wtraditional</span></samp> warns about directives that traditional C
understands but would ignore because the &lsquo;<samp><span class="samp">#</span></samp>&rsquo; does not appear as the
first character on the line.  It also suggests you hide directives like
&lsquo;<samp><span class="samp">#pragma</span></samp>&rsquo; not understood by traditional C by indenting them.  Some
traditional implementations would not recognize &lsquo;<samp><span class="samp">#elif</span></samp>&rsquo;, so it
suggests avoiding it altogether.

          <li>A function-like macro that appears without arguments.

          <li>The unary plus operator.

          <li>The &lsquo;<samp><span class="samp">U</span></samp>&rsquo; integer constant suffix, or the &lsquo;<samp><span class="samp">F</span></samp>&rsquo; or &lsquo;<samp><span class="samp">L</span></samp>&rsquo; floating point
constant suffixes.  (Traditional C does support the &lsquo;<samp><span class="samp">L</span></samp>&rsquo; suffix on integer
constants.)  Note, these suffixes appear in macros defined in the system
headers of most modern systems, e.g. the &lsquo;<samp><span class="samp">_MIN</span></samp>&rsquo;/&lsquo;<samp><span class="samp">_MAX</span></samp>&rsquo; macros in <code>&lt;limits.h&gt;</code>. 
Use of these macros in user code might normally lead to spurious
warnings, however GCC's integrated preprocessor has enough context to
avoid warning in these cases.

          <li>A function declared external in one block and then used after the end of
the block.

          <li>A <code>switch</code> statement has an operand of type <code>long</code>.

          <li>A non-<code>static</code> function declaration follows a <code>static</code> one. 
This construct is not accepted by some traditional C compilers.

          <li>The ISO type of an integer constant has a different width or
signedness from its traditional type.  This warning is only issued if
the base of the constant is ten.  I.e. hexadecimal or octal values, which
typically represent bit patterns, are not warned about.

          <li>Usage of ISO string concatenation is detected.

          <li>Initialization of automatic aggregates.

          <li>Identifier conflicts with labels.  Traditional C lacks a separate
namespace for labels.

          <li>Initialization of unions.  If the initializer is zero, the warning is
omitted.  This is done under the assumption that the zero initializer in
user code appears conditioned on e.g. <code>__STDC__</code> to avoid missing
initializer warnings and relies on default initialization to zero in the
traditional C case.

          <li>Conversions by prototypes between fixed/floating point values and vice
versa.  The absence of these prototypes when compiling with traditional
C would cause serious problems.  This is a subset of the possible
conversion warnings, for the full set use <samp><span class="option">-Wtraditional-conversion</span></samp>.

          <li>Use of ISO C style function definitions.  This warning intentionally is
<em>not</em> issued for prototype declarations or variadic functions
because these ISO C features will appear in your code when using
libiberty's traditional C compatibility macros, <code>PARAMS</code> and
<code>VPARAMS</code>.  This warning is also bypassed for nested functions
because that feature is already a GCC extension and thus not relevant to
traditional C compatibility. 
</ul>

     <br><dt><code>-Wtraditional-conversion </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wtraditional_002dconversion-365"></a><a name="index-Wno_002dtraditional_002dconversion-366"></a>Warn if a prototype causes a type conversion that is different from what
would happen to the same argument in the absence of a prototype.  This
includes conversions of fixed point to floating and vice versa, and
conversions changing the width or signedness of a fixed point argument
except when the same as the default promotion.

     <br><dt><code>-Wdeclaration-after-statement </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wdeclaration_002dafter_002dstatement-367"></a><a name="index-Wno_002ddeclaration_002dafter_002dstatement-368"></a>Warn when a declaration is found after a statement in a block.  This
construct, known from C++, was introduced with ISO C99 and is by default
allowed in GCC.  It is not supported by ISO C90 and was not supported by
GCC versions before GCC 3.0.  See <a href="#Mixed-Declarations">Mixed Declarations</a>.

     <br><dt><code>-Wundef</code><dd><a name="index-Wundef-369"></a><a name="index-Wno_002dundef-370"></a>Warn if an undefined identifier is evaluated in an &lsquo;<samp><span class="samp">#if</span></samp>&rsquo; directive.

     <br><dt><code>-Wno-endif-labels</code><dd><a name="index-Wno_002dendif_002dlabels-371"></a><a name="index-Wendif_002dlabels-372"></a>Do not warn whenever an &lsquo;<samp><span class="samp">#else</span></samp>&rsquo; or an &lsquo;<samp><span class="samp">#endif</span></samp>&rsquo; are followed by text.

     <br><dt><code>-Wshadow</code><dd><a name="index-Wshadow-373"></a><a name="index-Wno_002dshadow-374"></a>Warn whenever a local variable or type declaration shadows another variable,
parameter, type, or class member (in C++), or whenever a built-in function
is shadowed. Note that in C++, the compiler will not warn if a local variable
shadows a struct/class/enum, but will warn if it shadows an explicit typedef.

     <br><dt><code>-Wlarger-than=</code><var>len</var><dd><a name="index-Wlarger_002dthan_003d_0040var_007blen_007d-375"></a><a name="index-Wlarger_002dthan_002d_0040var_007blen_007d-376"></a>Warn whenever an object of larger than <var>len</var> bytes is defined.

     <br><dt><code>-Wframe-larger-than=</code><var>len</var><dd><a name="index-Wframe_002dlarger_002dthan-377"></a>Warn if the size of a function frame is larger than <var>len</var> bytes. 
The computation done to determine the stack frame size is approximate
and not conservative. 
The actual requirements may be somewhat greater than <var>len</var>
even if you do not get a warning.  In addition, any space allocated
via <code>alloca</code>, variable-length arrays, or related constructs
is not included by the compiler when determining
whether or not to issue a warning.

     <br><dt><code>-Wunsafe-loop-optimizations</code><dd><a name="index-Wunsafe_002dloop_002doptimizations-378"></a><a name="index-Wno_002dunsafe_002dloop_002doptimizations-379"></a>Warn if the loop cannot be optimized because the compiler could not
assume anything on the bounds of the loop indices.  With
<samp><span class="option">-funsafe-loop-optimizations</span></samp> warn if the compiler made
such assumptions.

     <br><dt><code>-Wno-pedantic-ms-format </code><span class="roman">(MinGW targets only)</span><dd><a name="index-Wno_002dpedantic_002dms_002dformat-380"></a><a name="index-Wpedantic_002dms_002dformat-381"></a>Disables the warnings about non-ISO <code>printf</code> / <code>scanf</code> format
width specifiers <code>I32</code>, <code>I64</code>, and <code>I</code> used on Windows targets
depending on the MS runtime, when you are using the options <samp><span class="option">-Wformat</span></samp>
and <samp><span class="option">-pedantic</span></samp> without gnu-extensions.

     <br><dt><code>-Wpointer-arith</code><dd><a name="index-Wpointer_002darith-382"></a><a name="index-Wno_002dpointer_002darith-383"></a>Warn about anything that depends on the &ldquo;size of&rdquo; a function type or
of <code>void</code>.  GNU C assigns these types a size of 1, for
convenience in calculations with <code>void *</code> pointers and pointers
to functions.  In C++, warn also when an arithmetic operation involves
<code>NULL</code>.  This warning is also enabled by <samp><span class="option">-pedantic</span></samp>.

     <br><dt><code>-Wtype-limits</code><dd><a name="index-Wtype_002dlimits-384"></a><a name="index-Wno_002dtype_002dlimits-385"></a>Warn if a comparison is always true or always false due to the limited
range of the data type, but do not warn for constant expressions.  For
example, warn if an unsigned variable is compared against zero with
&lsquo;<samp><span class="samp">&lt;</span></samp>&rsquo; or &lsquo;<samp><span class="samp">&gt;=</span></samp>&rsquo;.  This warning is also enabled by
<samp><span class="option">-Wextra</span></samp>.

     <br><dt><code>-Wbad-function-cast </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wbad_002dfunction_002dcast-386"></a><a name="index-Wno_002dbad_002dfunction_002dcast-387"></a>Warn whenever a function call is cast to a non-matching type. 
For example, warn if <code>int malloc()</code> is cast to <code>anything *</code>.

     <br><dt><code>-Wc++-compat </code><span class="roman">(C and Objective-C only)</span><dd>Warn about ISO C constructs that are outside of the common subset of
ISO C and ISO C++, e.g. request for implicit conversion from
<code>void *</code> to a pointer to non-<code>void</code> type.

     <br><dt><code>-Wc++0x-compat </code><span class="roman">(C++ and Objective-C++ only)</span><dd>Warn about C++ constructs whose meaning differs between ISO C++ 1998 and
ISO C++ 200x, e.g., identifiers in ISO C++ 1998 that will become keywords
in ISO C++ 200x.  This warning is enabled by <samp><span class="option">-Wall</span></samp>.

     <br><dt><code>-Wcast-qual</code><dd><a name="index-Wcast_002dqual-388"></a><a name="index-Wno_002dcast_002dqual-389"></a>Warn whenever a pointer is cast so as to remove a type qualifier from
the target type.  For example, warn if a <code>const char *</code> is cast
to an ordinary <code>char *</code>.

     <p>Also warn when making a cast which introduces a type qualifier in an
unsafe way.  For example, casting <code>char **</code> to <code>const char **</code>
is unsafe, as in this example:

     <pre class="smallexample">            /* p is char ** value.  */
            const char **q = (const char **) p;
            /* Assignment of readonly string to const char * is OK.  */
            *q = "string";
            /* Now char** pointer points to read-only memory.  */
            **p = 'b';
</pre>
     <br><dt><code>-Wcast-align</code><dd><a name="index-Wcast_002dalign-390"></a><a name="index-Wno_002dcast_002dalign-391"></a>Warn whenever a pointer is cast such that the required alignment of the
target is increased.  For example, warn if a <code>char *</code> is cast to
an <code>int *</code> on machines where integers can only be accessed at
two- or four-byte boundaries.

     <br><dt><code>-Wwrite-strings</code><dd><a name="index-Wwrite_002dstrings-392"></a><a name="index-Wno_002dwrite_002dstrings-393"></a>When compiling C, give string constants the type <code>const
char[</code><var>length</var><code>]</code> so that copying the address of one into a
non-<code>const</code> <code>char *</code> pointer will get a warning.  These
warnings will help you find at compile time code that can try to write
into a string constant, but only if you have been very careful about
using <code>const</code> in declarations and prototypes.  Otherwise, it will
just be a nuisance. This is why we did not make <samp><span class="option">-Wall</span></samp> request
these warnings.

     <p>When compiling C++, warn about the deprecated conversion from string
literals to <code>char *</code>.  This warning is enabled by default for C++
programs.

     <br><dt><code>-Wclobbered</code><dd><a name="index-Wclobbered-394"></a><a name="index-Wno_002dclobbered-395"></a>Warn for variables that might be changed by &lsquo;<samp><span class="samp">longjmp</span></samp>&rsquo; or
&lsquo;<samp><span class="samp">vfork</span></samp>&rsquo;.  This warning is also enabled by <samp><span class="option">-Wextra</span></samp>.

     <br><dt><code>-Wconversion</code><dd><a name="index-Wconversion-396"></a><a name="index-Wno_002dconversion-397"></a>Warn for implicit conversions that may alter a value. This includes
conversions between real and integer, like <code>abs (x)</code> when
<code>x</code> is <code>double</code>; conversions between signed and unsigned,
like <code>unsigned ui = -1</code>; and conversions to smaller types, like
<code>sqrtf (M_PI)</code>. Do not warn for explicit casts like <code>abs
((int) x)</code> and <code>ui = (unsigned) -1</code>, or if the value is not
changed by the conversion like in <code>abs (2.0)</code>.  Warnings about
conversions between signed and unsigned integers can be disabled by
using <samp><span class="option">-Wno-sign-conversion</span></samp>.

     <p>For C++, also warn for confusing overload resolution for user-defined
conversions; and conversions that will never use a type conversion
operator: conversions to <code>void</code>, the same type, a base class or a
reference to them. Warnings about conversions between signed and
unsigned integers are disabled by default in C++ unless
<samp><span class="option">-Wsign-conversion</span></samp> is explicitly enabled.

     <br><dt><code>-Wno-conversion-null </code><span class="roman">(C++ and Objective-C++ only)</span><dd><a name="index-Wconversion_002dnull-398"></a><a name="index-Wno_002dconversion_002dnull-399"></a>Do not warn for conversions between <code>NULL</code> and non-pointer
types. <samp><span class="option">-Wconversion-null</span></samp> is enabled by default.

     <br><dt><code>-Wempty-body</code><dd><a name="index-Wempty_002dbody-400"></a><a name="index-Wno_002dempty_002dbody-401"></a>Warn if an empty body occurs in an &lsquo;<samp><span class="samp">if</span></samp>&rsquo;, &lsquo;<samp><span class="samp">else</span></samp>&rsquo; or &lsquo;<samp><span class="samp">do
while</span></samp>&rsquo; statement.  This warning is also enabled by <samp><span class="option">-Wextra</span></samp>.

     <br><dt><code>-Wenum-compare</code><dd><a name="index-Wenum_002dcompare-402"></a><a name="index-Wno_002denum_002dcompare-403"></a>Warn about a comparison between values of different enum types. In C++
this warning is enabled by default.  In C this warning is enabled by
<samp><span class="option">-Wall</span></samp>.

     <br><dt><code>-Wjump-misses-init </code><span class="roman">(C, Objective-C only)</span><dd><a name="index-Wjump_002dmisses_002dinit-404"></a><a name="index-Wno_002djump_002dmisses_002dinit-405"></a>Warn if a <code>goto</code> statement or a <code>switch</code> statement jumps
forward across the initialization of a variable, or jumps backward to a
label after the variable has been initialized.  This only warns about
variables which are initialized when they are declared.  This warning is
only supported for C and Objective C; in C++ this sort of branch is an
error in any case.

     <p><samp><span class="option">-Wjump-misses-init</span></samp> is included in <samp><span class="option">-Wc++-compat</span></samp>.  It
can be disabled with the <samp><span class="option">-Wno-jump-misses-init</span></samp> option.

     <br><dt><code>-Wsign-compare</code><dd><a name="index-Wsign_002dcompare-406"></a><a name="index-Wno_002dsign_002dcompare-407"></a><a name="index-warning-for-comparison-of-signed-and-unsigned-values-408"></a><a name="index-comparison-of-signed-and-unsigned-values_002c-warning-409"></a><a name="index-signed-and-unsigned-values_002c-comparison-warning-410"></a>Warn when a comparison between signed and unsigned values could produce
an incorrect result when the signed value is converted to unsigned. 
This warning is also enabled by <samp><span class="option">-Wextra</span></samp>; to get the other warnings
of <samp><span class="option">-Wextra</span></samp> without this warning, use &lsquo;<samp><span class="samp">-Wextra -Wno-sign-compare</span></samp>&rsquo;.

     <br><dt><code>-Wsign-conversion</code><dd><a name="index-Wsign_002dconversion-411"></a><a name="index-Wno_002dsign_002dconversion-412"></a>Warn for implicit conversions that may change the sign of an integer
value, like assigning a signed integer expression to an unsigned
integer variable. An explicit cast silences the warning. In C, this
option is enabled also by <samp><span class="option">-Wconversion</span></samp>.

     <br><dt><code>-Waddress</code><dd><a name="index-Waddress-413"></a><a name="index-Wno_002daddress-414"></a>Warn about suspicious uses of memory addresses. These include using
the address of a function in a conditional expression, such as
<code>void func(void); if (func)</code>, and comparisons against the memory
address of a string literal, such as <code>if (x == "abc")</code>.  Such
uses typically indicate a programmer error: the address of a function
always evaluates to true, so their use in a conditional usually
indicate that the programmer forgot the parentheses in a function
call; and comparisons against string literals result in unspecified
behavior and are not portable in C, so they usually indicate that the
programmer intended to use <code>strcmp</code>.  This warning is enabled by
<samp><span class="option">-Wall</span></samp>.

     <br><dt><code>-Wlogical-op</code><dd><a name="index-Wlogical_002dop-415"></a><a name="index-Wno_002dlogical_002dop-416"></a>Warn about suspicious uses of logical operators in expressions. 
This includes using logical operators in contexts where a
bit-wise operator is likely to be expected.

     <br><dt><code>-Waggregate-return</code><dd><a name="index-Waggregate_002dreturn-417"></a><a name="index-Wno_002daggregate_002dreturn-418"></a>Warn if any functions that return structures or unions are defined or
called.  (In languages where you can return an array, this also elicits
a warning.)

     <br><dt><code>-Wno-attributes</code><dd><a name="index-Wno_002dattributes-419"></a><a name="index-Wattributes-420"></a>Do not warn if an unexpected <code>__attribute__</code> is used, such as
unrecognized attributes, function attributes applied to variables,
etc.  This will not stop errors for incorrect use of supported
attributes.

     <br><dt><code>-Wno-builtin-macro-redefined</code><dd><a name="index-Wno_002dbuiltin_002dmacro_002dredefined-421"></a><a name="index-Wbuiltin_002dmacro_002dredefined-422"></a>Do not warn if certain built-in macros are redefined.  This suppresses
warnings for redefinition of <code>__TIMESTAMP__</code>, <code>__TIME__</code>,
<code>__DATE__</code>, <code>__FILE__</code>, and <code>__BASE_FILE__</code>.

     <br><dt><code>-Wstrict-prototypes </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wstrict_002dprototypes-423"></a><a name="index-Wno_002dstrict_002dprototypes-424"></a>Warn if a function is declared or defined without specifying the
argument types.  (An old-style function definition is permitted without
a warning if preceded by a declaration which specifies the argument
types.)

     <br><dt><code>-Wold-style-declaration </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wold_002dstyle_002ddeclaration-425"></a><a name="index-Wno_002dold_002dstyle_002ddeclaration-426"></a>Warn for obsolescent usages, according to the C Standard, in a
declaration. For example, warn if storage-class specifiers like
<code>static</code> are not the first things in a declaration.  This warning
is also enabled by <samp><span class="option">-Wextra</span></samp>.

     <br><dt><code>-Wold-style-definition </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wold_002dstyle_002ddefinition-427"></a><a name="index-Wno_002dold_002dstyle_002ddefinition-428"></a>Warn if an old-style function definition is used.  A warning is given
even if there is a previous prototype.

     <br><dt><code>-Wmissing-parameter-type </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wmissing_002dparameter_002dtype-429"></a><a name="index-Wno_002dmissing_002dparameter_002dtype-430"></a>A function parameter is declared without a type specifier in K&amp;R-style
functions:

     <pre class="smallexample">          void foo(bar) { }
</pre>
     <p>This warning is also enabled by <samp><span class="option">-Wextra</span></samp>.

     <br><dt><code>-Wmissing-prototypes </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wmissing_002dprototypes-431"></a><a name="index-Wno_002dmissing_002dprototypes-432"></a>Warn if a global function is defined without a previous prototype
declaration.  This warning is issued even if the definition itself
provides a prototype.  The aim is to detect global functions that fail
to be declared in header files.

     <br><dt><code>-Wmissing-declarations</code><dd><a name="index-Wmissing_002ddeclarations-433"></a><a name="index-Wno_002dmissing_002ddeclarations-434"></a>Warn if a global function is defined without a previous declaration. 
Do so even if the definition itself provides a prototype. 
Use this option to detect global functions that are not declared in
header files.  In C++, no warnings are issued for function templates,
or for inline functions, or for functions in anonymous namespaces.

     <br><dt><code>-Wmissing-field-initializers</code><dd><a name="index-Wmissing_002dfield_002dinitializers-435"></a><a name="index-Wno_002dmissing_002dfield_002dinitializers-436"></a><a name="index-W-437"></a><a name="index-Wextra-438"></a><a name="index-Wno_002dextra-439"></a>Warn if a structure's initializer has some fields missing.  For
example, the following code would cause such a warning, because
<code>x.h</code> is implicitly zero:

     <pre class="smallexample">          struct s { int f, g, h; };
          struct s x = { 3, 4 };
</pre>
     <p>This option does not warn about designated initializers, so the following
modification would not trigger a warning:

     <pre class="smallexample">          struct s { int f, g, h; };
          struct s x = { .f = 3, .g = 4 };
</pre>
     <p>This warning is included in <samp><span class="option">-Wextra</span></samp>.  To get other <samp><span class="option">-Wextra</span></samp>
warnings without this one, use &lsquo;<samp><span class="samp">-Wextra -Wno-missing-field-initializers</span></samp>&rsquo;.

     <br><dt><code>-Wmissing-format-attribute</code><dd><a name="index-Wmissing_002dformat_002dattribute-440"></a><a name="index-Wno_002dmissing_002dformat_002dattribute-441"></a><a name="index-Wformat-442"></a><a name="index-Wno_002dformat-443"></a>Warn about function pointers which might be candidates for <code>format</code>
attributes.  Note these are only possible candidates, not absolute ones. 
GCC will guess that function pointers with <code>format</code> attributes that
are used in assignment, initialization, parameter passing or return
statements should have a corresponding <code>format</code> attribute in the
resulting type.  I.e. the left-hand side of the assignment or
initialization, the type of the parameter variable, or the return type
of the containing function respectively should also have a <code>format</code>
attribute to avoid the warning.

     <p>GCC will also warn about function definitions which might be
candidates for <code>format</code> attributes.  Again, these are only
possible candidates.  GCC will guess that <code>format</code> attributes
might be appropriate for any function that calls a function like
<code>vprintf</code> or <code>vscanf</code>, but this might not always be the
case, and some functions for which <code>format</code> attributes are
appropriate may not be detected.

     <br><dt><code>-Wno-multichar</code><dd><a name="index-Wno_002dmultichar-444"></a><a name="index-Wmultichar-445"></a>Do not warn if a multicharacter constant (&lsquo;<samp><span class="samp">'FOOF'</span></samp>&rsquo;) is used. 
Usually they indicate a typo in the user's code, as they have
implementation-defined values, and should not be used in portable code.

     <br><dt><code>-Wnormalized=&lt;none|id|nfc|nfkc&gt;</code><dd><a name="index-Wnormalized_003d-446"></a><a name="index-NFC-447"></a><a name="index-NFKC-448"></a><a name="index-character-set_002c-input-normalization-449"></a>In ISO C and ISO C++, two identifiers are different if they are
different sequences of characters.  However, sometimes when characters
outside the basic ASCII character set are used, you can have two
different character sequences that look the same.  To avoid confusion,
the ISO 10646 standard sets out some <dfn>normalization rules</dfn> which
when applied ensure that two sequences that look the same are turned into
the same sequence.  GCC can warn you if you are using identifiers which
have not been normalized; this option controls that warning.

     <p>There are four levels of warning that GCC supports.  The default is
<samp><span class="option">-Wnormalized=nfc</span></samp>, which warns about any identifier which is
not in the ISO 10646 &ldquo;C&rdquo; normalized form, <dfn>NFC</dfn>.  NFC is the
recommended form for most uses.

     <p>Unfortunately, there are some characters which ISO C and ISO C++ allow
in identifiers that when turned into NFC aren't allowable as
identifiers.  That is, there's no way to use these symbols in portable
ISO C or C++ and have all your identifiers in NFC. 
<samp><span class="option">-Wnormalized=id</span></samp> suppresses the warning for these characters. 
It is hoped that future versions of the standards involved will correct
this, which is why this option is not the default.

     <p>You can switch the warning off for all characters by writing
<samp><span class="option">-Wnormalized=none</span></samp>.  You would only want to do this if you
were using some other normalization scheme (like &ldquo;D&rdquo;), because
otherwise you can easily create bugs that are literally impossible to see.

     <p>Some characters in ISO 10646 have distinct meanings but look identical
in some fonts or display methodologies, especially once formatting has
been applied.  For instance <code>\u207F</code>, &ldquo;SUPERSCRIPT LATIN SMALL
LETTER N&rdquo;, will display just like a regular <code>n</code> which has been
placed in a superscript.  ISO 10646 defines the <dfn>NFKC</dfn>
normalization scheme to convert all these into a standard form as
well, and GCC will warn if your code is not in NFKC if you use
<samp><span class="option">-Wnormalized=nfkc</span></samp>.  This warning is comparable to warning
about every identifier that contains the letter O because it might be
confused with the digit 0, and so is not the default, but may be
useful as a local coding convention if the programming environment is
unable to be fixed to display these characters distinctly.

     <br><dt><code>-Wno-deprecated</code><dd><a name="index-Wno_002ddeprecated-450"></a><a name="index-Wdeprecated-451"></a>Do not warn about usage of deprecated features.  See <a href="#Deprecated-Features">Deprecated Features</a>.

     <br><dt><code>-Wno-deprecated-declarations</code><dd><a name="index-Wno_002ddeprecated_002ddeclarations-452"></a><a name="index-Wdeprecated_002ddeclarations-453"></a>Do not warn about uses of functions (see <a href="#Function-Attributes">Function Attributes</a>),
variables (see <a href="#Variable-Attributes">Variable Attributes</a>), and types (see <a href="#Type-Attributes">Type Attributes</a>) marked as deprecated by using the <code>deprecated</code>
attribute.

     <br><dt><code>-Wno-overflow</code><dd><a name="index-Wno_002doverflow-454"></a><a name="index-Woverflow-455"></a>Do not warn about compile-time overflow in constant expressions.

     <br><dt><code>-Woverride-init </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Woverride_002dinit-456"></a><a name="index-Wno_002doverride_002dinit-457"></a><a name="index-W-458"></a><a name="index-Wextra-459"></a><a name="index-Wno_002dextra-460"></a>Warn if an initialized field without side effects is overridden when
using designated initializers (see <a href="#Designated-Inits">Designated Initializers</a>).

     <p>This warning is included in <samp><span class="option">-Wextra</span></samp>.  To get other
<samp><span class="option">-Wextra</span></samp> warnings without this one, use &lsquo;<samp><span class="samp">-Wextra
-Wno-override-init</span></samp>&rsquo;.

     <br><dt><code>-Wpacked</code><dd><a name="index-Wpacked-461"></a><a name="index-Wno_002dpacked-462"></a>Warn if a structure is given the packed attribute, but the packed
attribute has no effect on the layout or size of the structure. 
Such structures may be mis-aligned for little benefit.  For
instance, in this code, the variable <code>f.x</code> in <code>struct bar</code>
will be misaligned even though <code>struct bar</code> does not itself
have the packed attribute:

     <pre class="smallexample">          struct foo {
            int x;
            char a, b, c, d;
          } __attribute__((packed));
          struct bar {
            char z;
            struct foo f;
          };
</pre>
     <br><dt><code>-Wpacked-bitfield-compat</code><dd><a name="index-Wpacked_002dbitfield_002dcompat-463"></a><a name="index-Wno_002dpacked_002dbitfield_002dcompat-464"></a>The 4.1, 4.2 and 4.3 series of GCC ignore the <code>packed</code> attribute
on bit-fields of type <code>char</code>.  This has been fixed in GCC 4.4 but
the change can lead to differences in the structure layout.  GCC
informs you when the offset of such a field has changed in GCC 4.4. 
For example there is no longer a 4-bit padding between field <code>a</code>
and <code>b</code> in this structure:

     <pre class="smallexample">          struct foo
          {
            char a:4;
            char b:8;
          } __attribute__ ((packed));
</pre>
     <p>This warning is enabled by default.  Use
<samp><span class="option">-Wno-packed-bitfield-compat</span></samp> to disable this warning.

     <br><dt><code>-Wpadded</code><dd><a name="index-Wpadded-465"></a><a name="index-Wno_002dpadded-466"></a>Warn if padding is included in a structure, either to align an element
of the structure or to align the whole structure.  Sometimes when this
happens it is possible to rearrange the fields of the structure to
reduce the padding and so make the structure smaller.

     <br><dt><code>-Wredundant-decls</code><dd><a name="index-Wredundant_002ddecls-467"></a><a name="index-Wno_002dredundant_002ddecls-468"></a>Warn if anything is declared more than once in the same scope, even in
cases where multiple declaration is valid and changes nothing.

     <br><dt><code>-Wnested-externs </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wnested_002dexterns-469"></a><a name="index-Wno_002dnested_002dexterns-470"></a>Warn if an <code>extern</code> declaration is encountered within a function.

     <br><dt><code>-Winline</code><dd><a name="index-Winline-471"></a><a name="index-Wno_002dinline-472"></a>Warn if a function can not be inlined and it was declared as inline. 
Even with this option, the compiler will not warn about failures to
inline functions declared in system headers.

     <p>The compiler uses a variety of heuristics to determine whether or not
to inline a function.  For example, the compiler takes into account
the size of the function being inlined and the amount of inlining
that has already been done in the current function.  Therefore,
seemingly insignificant changes in the source program can cause the
warnings produced by <samp><span class="option">-Winline</span></samp> to appear or disappear.

     <br><dt><code>-Wno-invalid-offsetof </code><span class="roman">(C++ and Objective-C++ only)</span><dd><a name="index-Wno_002dinvalid_002doffsetof-473"></a><a name="index-Winvalid_002doffsetof-474"></a>Suppress warnings from applying the &lsquo;<samp><span class="samp">offsetof</span></samp>&rsquo; macro to a non-POD
type.  According to the 1998 ISO C++ standard, applying &lsquo;<samp><span class="samp">offsetof</span></samp>&rsquo;
to a non-POD type is undefined.  In existing C++ implementations,
however, &lsquo;<samp><span class="samp">offsetof</span></samp>&rsquo; typically gives meaningful results even when
applied to certain kinds of non-POD types. (Such as a simple
&lsquo;<samp><span class="samp">struct</span></samp>&rsquo; that fails to be a POD type only by virtue of having a
constructor.)  This flag is for users who are aware that they are
writing nonportable code and who have deliberately chosen to ignore the
warning about it.

     <p>The restrictions on &lsquo;<samp><span class="samp">offsetof</span></samp>&rsquo; may be relaxed in a future version
of the C++ standard.

     <br><dt><code>-Wno-int-to-pointer-cast</code><dd><a name="index-Wno_002dint_002dto_002dpointer_002dcast-475"></a><a name="index-Wint_002dto_002dpointer_002dcast-476"></a>Suppress warnings from casts to pointer type of an integer of a
different size. In C++, casting to a pointer type of smaller size is
an error. <samp><span class="option">Wint-to-pointer-cast</span></samp> is enabled by default.

     <br><dt><code>-Wno-pointer-to-int-cast </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wno_002dpointer_002dto_002dint_002dcast-477"></a><a name="index-Wpointer_002dto_002dint_002dcast-478"></a>Suppress warnings from casts from a pointer to an integer type of a
different size.

     <br><dt><code>-Winvalid-pch</code><dd><a name="index-Winvalid_002dpch-479"></a><a name="index-Wno_002dinvalid_002dpch-480"></a>Warn if a precompiled header (see <a href="#Precompiled-Headers">Precompiled Headers</a>) is found in
the search path but can't be used.

     <br><dt><code>-Wlong-long</code><dd><a name="index-Wlong_002dlong-481"></a><a name="index-Wno_002dlong_002dlong-482"></a>Warn if &lsquo;<samp><span class="samp">long long</span></samp>&rsquo; type is used.  This is enabled by either
<samp><span class="option">-pedantic</span></samp> or <samp><span class="option">-Wtraditional</span></samp> in ISO C90 and C++98
modes.  To inhibit the warning messages, use <samp><span class="option">-Wno-long-long</span></samp>.

     <br><dt><code>-Wvariadic-macros</code><dd><a name="index-Wvariadic_002dmacros-483"></a><a name="index-Wno_002dvariadic_002dmacros-484"></a>Warn if variadic macros are used in pedantic ISO C90 mode, or the GNU
alternate syntax when in pedantic ISO C99 mode.  This is default. 
To inhibit the warning messages, use <samp><span class="option">-Wno-variadic-macros</span></samp>.

     <br><dt><code>-Wvla</code><dd><a name="index-Wvla-485"></a><a name="index-Wno_002dvla-486"></a>Warn if variable length array is used in the code. 
<samp><span class="option">-Wno-vla</span></samp> will prevent the <samp><span class="option">-pedantic</span></samp> warning of
the variable length array.

     <br><dt><code>-Wvolatile-register-var</code><dd><a name="index-Wvolatile_002dregister_002dvar-487"></a><a name="index-Wno_002dvolatile_002dregister_002dvar-488"></a>Warn if a register variable is declared volatile.  The volatile
modifier does not inhibit all optimizations that may eliminate reads
and/or writes to register variables.  This warning is enabled by
<samp><span class="option">-Wall</span></samp>.

     <br><dt><code>-Wdisabled-optimization</code><dd><a name="index-Wdisabled_002doptimization-489"></a><a name="index-Wno_002ddisabled_002doptimization-490"></a>Warn if a requested optimization pass is disabled.  This warning does
not generally indicate that there is anything wrong with your code; it
merely indicates that GCC's optimizers were unable to handle the code
effectively.  Often, the problem is that your code is too big or too
complex; GCC will refuse to optimize programs when the optimization
itself is likely to take inordinate amounts of time.

     <br><dt><code>-Wpointer-sign </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wpointer_002dsign-491"></a><a name="index-Wno_002dpointer_002dsign-492"></a>Warn for pointer argument passing or assignment with different signedness. 
This option is only supported for C and Objective-C.  It is implied by
<samp><span class="option">-Wall</span></samp> and by <samp><span class="option">-pedantic</span></samp>, which can be disabled with
<samp><span class="option">-Wno-pointer-sign</span></samp>.

     <br><dt><code>-Wstack-protector</code><dd><a name="index-Wstack_002dprotector-493"></a><a name="index-Wno_002dstack_002dprotector-494"></a>This option is only active when <samp><span class="option">-fstack-protector</span></samp> is active.  It
warns about functions that will not be protected against stack smashing.

     <br><dt><code>-Wno-mudflap</code><dd><a name="index-Wno_002dmudflap-495"></a>Suppress warnings about constructs that cannot be instrumented by
<samp><span class="option">-fmudflap</span></samp>.

     <br><dt><code>-Woverlength-strings</code><dd><a name="index-Woverlength_002dstrings-496"></a><a name="index-Wno_002doverlength_002dstrings-497"></a>Warn about string constants which are longer than the &ldquo;minimum
maximum&rdquo; length specified in the C standard.  Modern compilers
generally allow string constants which are much longer than the
standard's minimum limit, but very portable programs should avoid
using longer strings.

     <p>The limit applies <em>after</em> string constant concatenation, and does
not count the trailing NUL.  In C90, the limit was 509 characters; in
C99, it was raised to 4095.  C++98 does not specify a normative
minimum maximum, so we do not diagnose overlength strings in C++.

     <p>This option is implied by <samp><span class="option">-pedantic</span></samp>, and can be disabled with
<samp><span class="option">-Wno-overlength-strings</span></samp>.

     <br><dt><code>-Wunsuffixed-float-constants </code><span class="roman">(C and Objective-C only)</span><dd><a name="index-Wunsuffixed_002dfloat_002dconstants-498"></a>
GCC will issue a warning for any floating constant that does not have
a suffix.  When used together with <samp><span class="option">-Wsystem-headers</span></samp> it will
warn about such constants in system header files.  This can be useful
when preparing code to use with the <code>FLOAT_CONST_DECIMAL64</code> pragma
from the decimal floating-point extension to C99. 
</dl>

<div class="node">
<a name="Debugging-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Optimize-Options">Optimize Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Warning-Options">Warning Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>

</div>

<h3 class="section">3.9 Options for Debugging Your Program or GCC</h3>

<p><a name="index-options_002c-debugging-499"></a><a name="index-debugging-information-options-500"></a>
GCC has various special options that are used for debugging
either your program or GCC:

     <dl>
<dt><code>-g</code><dd><a name="index-g-501"></a>Produce debugging information in the operating system's native format
(stabs, COFF, XCOFF, or DWARF 2).  GDB can work with this debugging
information.

     <p>On most systems that use stabs format, <samp><span class="option">-g</span></samp> enables use of extra
debugging information that only GDB can use; this extra information
makes debugging work better in GDB but will probably make other debuggers
crash or
refuse to read the program.  If you want to control for certain whether
to generate the extra information, use <samp><span class="option">-gstabs+</span></samp>, <samp><span class="option">-gstabs</span></samp>,
<samp><span class="option">-gxcoff+</span></samp>, <samp><span class="option">-gxcoff</span></samp>, or <samp><span class="option">-gvms</span></samp> (see below).

     <p>GCC allows you to use <samp><span class="option">-g</span></samp> with
<samp><span class="option">-O</span></samp>.  The shortcuts taken by optimized code may occasionally
produce surprising results: some variables you declared may not exist
at all; flow of control may briefly move where you did not expect it;
some statements may not be executed because they compute constant
results or their values were already at hand; some statements may
execute in different places because they were moved out of loops.

     <p>Nevertheless it proves possible to debug optimized output.  This makes
it reasonable to use the optimizer for programs that might have bugs.

     <p>The following options are useful when GCC is generated with the
capability for more than one debugging format.

     <br><dt><code>-ggdb</code><dd><a name="index-ggdb-502"></a>Produce debugging information for use by GDB.  This means to use the
most expressive format available (DWARF 2, stabs, or the native format
if neither of those are supported), including GDB extensions if at all
possible.

     <br><dt><code>-gstabs</code><dd><a name="index-gstabs-503"></a>Produce debugging information in stabs format (if that is supported),
without GDB extensions.  This is the format used by DBX on most BSD
systems.  On MIPS, Alpha and System V Release 4 systems this option
produces stabs debugging output which is not understood by DBX or SDB. 
On System V Release 4 systems this option requires the GNU assembler.

     <br><dt><code>-feliminate-unused-debug-symbols</code><dd><a name="index-feliminate_002dunused_002ddebug_002dsymbols-504"></a>Produce debugging information in stabs format (if that is supported),
for only symbols that are actually used.

     <br><dt><code>-femit-class-debug-always</code><dd>Instead of emitting debugging information for a C++ class in only one
object file, emit it in all object files using the class.  This option
should be used only with debuggers that are unable to handle the way GCC
normally emits debugging information for classes because using this
option will increase the size of debugging information by as much as a
factor of two.

     <br><dt><code>-gstabs+</code><dd><a name="index-gstabs_002b-505"></a>Produce debugging information in stabs format (if that is supported),
using GNU extensions understood only by the GNU debugger (GDB).  The
use of these extensions is likely to make other debuggers crash or
refuse to read the program.

     <br><dt><code>-gcoff</code><dd><a name="index-gcoff-506"></a>Produce debugging information in COFF format (if that is supported). 
This is the format used by SDB on most System V systems prior to
System V Release 4.

     <br><dt><code>-gxcoff</code><dd><a name="index-gxcoff-507"></a>Produce debugging information in XCOFF format (if that is supported). 
This is the format used by the DBX debugger on IBM RS/6000 systems.

     <br><dt><code>-gxcoff+</code><dd><a name="index-gxcoff_002b-508"></a>Produce debugging information in XCOFF format (if that is supported),
using GNU extensions understood only by the GNU debugger (GDB).  The
use of these extensions is likely to make other debuggers crash or
refuse to read the program, and may cause assemblers other than the GNU
assembler (GAS) to fail with an error.

     <br><dt><code>-gdwarf-</code><var>version</var><dd><a name="index-gdwarf_002d_0040var_007bversion_007d-509"></a>Produce debugging information in DWARF format (if that is
supported).  This is the format used by DBX on IRIX 6.  The value
of <var>version</var> may be either 2, 3 or 4; the default version is 2.

     <p>Note that with DWARF version 2 some ports require, and will always
use, some non-conflicting DWARF 3 extensions in the unwind tables.

     <p>Version 4 may require GDB 7.0 and <samp><span class="option">-fvar-tracking-assignments</span></samp>
for maximum benefit.

     <br><dt><code>-gstrict-dwarf</code><dd><a name="index-gstrict_002ddwarf-510"></a>Disallow using extensions of later DWARF standard version than selected
with <samp><span class="option">-gdwarf-</span><var>version</var></samp>.  On most targets using non-conflicting
DWARF extensions from later standard versions is allowed.

     <br><dt><code>-gno-strict-dwarf</code><dd><a name="index-gno_002dstrict_002ddwarf-511"></a>Allow using extensions of later DWARF standard version than selected with
<samp><span class="option">-gdwarf-</span><var>version</var></samp>.

     <br><dt><code>-gvms</code><dd><a name="index-gvms-512"></a>Produce debugging information in VMS debug format (if that is
supported).  This is the format used by DEBUG on VMS systems.

     <br><dt><code>-g</code><var>level</var><dt><code>-ggdb</code><var>level</var><dt><code>-gstabs</code><var>level</var><dt><code>-gcoff</code><var>level</var><dt><code>-gxcoff</code><var>level</var><dt><code>-gvms</code><var>level</var><dd>Request debugging information and also use <var>level</var> to specify how
much information.  The default level is 2.

     <p>Level 0 produces no debug information at all.  Thus, <samp><span class="option">-g0</span></samp> negates
<samp><span class="option">-g</span></samp>.

     <p>Level 1 produces minimal information, enough for making backtraces in
parts of the program that you don't plan to debug.  This includes
descriptions of functions and external variables, but no information
about local variables and no line numbers.

     <p>Level 3 includes extra information, such as all the macro definitions
present in the program.  Some debuggers support macro expansion when
you use <samp><span class="option">-g3</span></samp>.

     <p><samp><span class="option">-gdwarf-2</span></samp> does not accept a concatenated debug level, because
GCC used to support an option <samp><span class="option">-gdwarf</span></samp> that meant to generate
debug information in version 1 of the DWARF format (which is very
different from version 2), and it would have been too confusing.  That
debug format is long obsolete, but the option cannot be changed now. 
Instead use an additional <samp><span class="option">-g</span><var>level</var></samp> option to change the
debug level for DWARF.

     <br><dt><code>-gtoggle</code><dd><a name="index-gtoggle-513"></a>Turn off generation of debug info, if leaving out this option would have
generated it, or turn it on at level 2 otherwise.  The position of this
argument in the command line does not matter, it takes effect after all
other options are processed, and it does so only once, no matter how
many times it is given.  This is mainly intended to be used with
<samp><span class="option">-fcompare-debug</span></samp>.

     <br><dt><code>-fdump-final-insns</code><span class="roman">[</span><code>=</code><var>file</var><span class="roman">]</span><dd><a name="index-fdump_002dfinal_002dinsns-514"></a>Dump the final internal representation (RTL) to <var>file</var>.  If the
optional argument is omitted (or if <var>file</var> is <code>.</code>), the name
of the dump file will be determined by appending <code>.gkd</code> to the
compilation output file name.

     <br><dt><code>-fcompare-debug</code><span class="roman">[</span><code>=</code><var>opts</var><span class="roman">]</span><dd><a name="index-fcompare_002ddebug-515"></a><a name="index-fno_002dcompare_002ddebug-516"></a>If no error occurs during compilation, run the compiler a second time,
adding <var>opts</var> and <samp><span class="option">-fcompare-debug-second</span></samp> to the arguments
passed to the second compilation.  Dump the final internal
representation in both compilations, and print an error if they differ.

     <p>If the equal sign is omitted, the default <samp><span class="option">-gtoggle</span></samp> is used.

     <p>The environment variable <samp><span class="env">GCC_COMPARE_DEBUG</span></samp>, if defined, non-empty
and nonzero, implicitly enables <samp><span class="option">-fcompare-debug</span></samp>.  If
<samp><span class="env">GCC_COMPARE_DEBUG</span></samp> is defined to a string starting with a dash,
then it is used for <var>opts</var>, otherwise the default <samp><span class="option">-gtoggle</span></samp>
is used.

     <p><samp><span class="option">-fcompare-debug=</span></samp>, with the equal sign but without <var>opts</var>,
is equivalent to <samp><span class="option">-fno-compare-debug</span></samp>, which disables the dumping
of the final representation and the second compilation, preventing even
<samp><span class="env">GCC_COMPARE_DEBUG</span></samp> from taking effect.

     <p>To verify full coverage during <samp><span class="option">-fcompare-debug</span></samp> testing, set
<samp><span class="env">GCC_COMPARE_DEBUG</span></samp> to say &lsquo;<samp><span class="samp">-fcompare-debug-not-overridden</span></samp>&rsquo;,
which GCC will reject as an invalid option in any actual compilation
(rather than preprocessing, assembly or linking).  To get just a
warning, setting <samp><span class="env">GCC_COMPARE_DEBUG</span></samp> to &lsquo;<samp><span class="samp">-w%n-fcompare-debug
not overridden</span></samp>&rsquo; will do.

     <br><dt><code>-fcompare-debug-second</code><dd><a name="index-fcompare_002ddebug_002dsecond-517"></a>This option is implicitly passed to the compiler for the second
compilation requested by <samp><span class="option">-fcompare-debug</span></samp>, along with options to
silence warnings, and omitting other options that would cause
side-effect compiler outputs to files or to the standard output.  Dump
files and preserved temporary files are renamed so as to contain the
<code>.gk</code> additional extension during the second compilation, to avoid
overwriting those generated by the first.

     <p>When this option is passed to the compiler driver, it causes the
<em>first</em> compilation to be skipped, which makes it useful for little
other than debugging the compiler proper.

     <br><dt><code>-feliminate-dwarf2-dups</code><dd><a name="index-feliminate_002ddwarf2_002ddups-518"></a>Compress DWARF2 debugging information by eliminating duplicated
information about each symbol.  This option only makes sense when
generating DWARF2 debugging information with <samp><span class="option">-gdwarf-2</span></samp>.

     <br><dt><code>-femit-struct-debug-baseonly</code><dd>Emit debug information for struct-like types
only when the base name of the compilation source file
matches the base name of file in which the struct was defined.

     <p>This option substantially reduces the size of debugging information,
but at significant potential loss in type information to the debugger. 
See <samp><span class="option">-femit-struct-debug-reduced</span></samp> for a less aggressive option. 
See <samp><span class="option">-femit-struct-debug-detailed</span></samp> for more detailed control.

     <p>This option works only with DWARF 2.

     <br><dt><code>-femit-struct-debug-reduced</code><dd>Emit debug information for struct-like types
only when the base name of the compilation source file
matches the base name of file in which the type was defined,
unless the struct is a template or defined in a system header.

     <p>This option significantly reduces the size of debugging information,
with some potential loss in type information to the debugger. 
See <samp><span class="option">-femit-struct-debug-baseonly</span></samp> for a more aggressive option. 
See <samp><span class="option">-femit-struct-debug-detailed</span></samp> for more detailed control.

     <p>This option works only with DWARF 2.

     <br><dt><code>-femit-struct-debug-detailed</code><span class="roman">[</span><code>=</code><var>spec-list</var><span class="roman">]</span><dd>Specify the struct-like types
for which the compiler will generate debug information. 
The intent is to reduce duplicate struct debug information
between different object files within the same program.

     <p>This option is a detailed version of
<samp><span class="option">-femit-struct-debug-reduced</span></samp> and <samp><span class="option">-femit-struct-debug-baseonly</span></samp>,
which will serve for most needs.

     <p>A specification has the syntax<br>
[&lsquo;<samp><span class="samp">dir:</span></samp>&rsquo;|&lsquo;<samp><span class="samp">ind:</span></samp>&rsquo;][&lsquo;<samp><span class="samp">ord:</span></samp>&rsquo;|&lsquo;<samp><span class="samp">gen:</span></samp>&rsquo;](&lsquo;<samp><span class="samp">any</span></samp>&rsquo;|&lsquo;<samp><span class="samp">sys</span></samp>&rsquo;|&lsquo;<samp><span class="samp">base</span></samp>&rsquo;|&lsquo;<samp><span class="samp">none</span></samp>&rsquo;)

     <p>The optional first word limits the specification to
structs that are used directly (&lsquo;<samp><span class="samp">dir:</span></samp>&rsquo;) or used indirectly (&lsquo;<samp><span class="samp">ind:</span></samp>&rsquo;). 
A struct type is used directly when it is the type of a variable, member. 
Indirect uses arise through pointers to structs. 
That is, when use of an incomplete struct would be legal, the use is indirect. 
An example is
&lsquo;<samp><span class="samp">struct one direct; struct two * indirect;</span></samp>&rsquo;.

     <p>The optional second word limits the specification to
ordinary structs (&lsquo;<samp><span class="samp">ord:</span></samp>&rsquo;) or generic structs (&lsquo;<samp><span class="samp">gen:</span></samp>&rsquo;). 
Generic structs are a bit complicated to explain. 
For C++, these are non-explicit specializations of template classes,
or non-template classes within the above. 
Other programming languages have generics,
but &lsquo;<samp><span class="samp">-femit-struct-debug-detailed</span></samp>&rsquo; does not yet implement them.

     <p>The third word specifies the source files for those
structs for which the compiler will emit debug information. 
The values &lsquo;<samp><span class="samp">none</span></samp>&rsquo; and &lsquo;<samp><span class="samp">any</span></samp>&rsquo; have the normal meaning. 
The value &lsquo;<samp><span class="samp">base</span></samp>&rsquo; means that
the base of name of the file in which the type declaration appears
must match the base of the name of the main compilation file. 
In practice, this means that
types declared in <samp><span class="file">foo.c</span></samp> and <samp><span class="file">foo.h</span></samp> will have debug information,
but types declared in other header will not. 
The value &lsquo;<samp><span class="samp">sys</span></samp>&rsquo; means those types satisfying &lsquo;<samp><span class="samp">base</span></samp>&rsquo;
or declared in system or compiler headers.

     <p>You may need to experiment to determine the best settings for your application.

     <p>The default is &lsquo;<samp><span class="samp">-femit-struct-debug-detailed=all</span></samp>&rsquo;.

     <p>This option works only with DWARF 2.

     <br><dt><code>-fenable-icf-debug</code><dd><a name="index-fenable_002dicf_002ddebug-519"></a>Generate additional debug information to support identical code folding (ICF). 
This option only works with DWARF version 2 or higher.

     <br><dt><code>-fno-merge-debug-strings</code><dd><a name="index-fmerge_002ddebug_002dstrings-520"></a><a name="index-fno_002dmerge_002ddebug_002dstrings-521"></a>Direct the linker to not merge together strings in the debugging
information which are identical in different object files.  Merging is
not supported by all assemblers or linkers.  Merging decreases the size
of the debug information in the output file at the cost of increasing
link processing time.  Merging is enabled by default.

     <br><dt><code>-fdebug-prefix-map=</code><var>old</var><code>=</code><var>new</var><dd><a name="index-fdebug_002dprefix_002dmap-522"></a>When compiling files in directory <samp><var>old</var></samp>, record debugging
information describing them as in <samp><var>new</var></samp> instead.

     <br><dt><code>-fno-dwarf2-cfi-asm</code><dd><a name="index-fdwarf2_002dcfi_002dasm-523"></a><a name="index-fno_002ddwarf2_002dcfi_002dasm-524"></a>Emit DWARF 2 unwind info as compiler generated <code>.eh_frame</code> section
instead of using GAS <code>.cfi_*</code> directives.

     <p><a name="index-g_t_0040command_007bprof_007d-525"></a><br><dt><code>-p</code><dd><a name="index-p-526"></a>Generate extra code to write profile information suitable for the
analysis program <samp><span class="command">prof</span></samp>.  You must use this option when compiling
the source files you want data about, and you must also use it when
linking.

     <p><a name="index-g_t_0040command_007bgprof_007d-527"></a><br><dt><code>-pg</code><dd><a name="index-pg-528"></a>Generate extra code to write profile information suitable for the
analysis program <samp><span class="command">gprof</span></samp>.  You must use this option when compiling
the source files you want data about, and you must also use it when
linking.

     <br><dt><code>-Q</code><dd><a name="index-Q-529"></a>Makes the compiler print out each function name as it is compiled, and
print some statistics about each pass when it finishes.

     <br><dt><code>-ftime-report</code><dd><a name="index-ftime_002dreport-530"></a>Makes the compiler print some statistics about the time consumed by each
pass when it finishes.

     <br><dt><code>-fmem-report</code><dd><a name="index-fmem_002dreport-531"></a>Makes the compiler print some statistics about permanent memory
allocation when it finishes.

     <br><dt><code>-fpre-ipa-mem-report</code><dd><a name="index-fpre_002dipa_002dmem_002dreport-532"></a><br><dt><code>-fpost-ipa-mem-report</code><dd><a name="index-fpost_002dipa_002dmem_002dreport-533"></a>Makes the compiler print some statistics about permanent memory
allocation before or after interprocedural optimization.

     <br><dt><code>-fstack-usage</code><dd><a name="index-fstack_002dusage-534"></a>Makes the compiler output stack usage information for the program, on a
per-function basis.  The filename for the dump is made by appending
<samp><span class="file">.su</span></samp> to the <var>auxname</var>.  <var>auxname</var> is generated from the name of
the output file, if explicitly specified and it is not an executable,
otherwise it is the basename of the source file.  An entry is made up
of three fields:

          <ul>
<li>The name of the function. 
<li>A number of bytes. 
<li>One or more qualifiers: <code>static</code>, <code>dynamic</code>, <code>bounded</code>. 
</ul>

     <p>The qualifier <code>static</code> means that the function manipulates the stack
statically: a fixed number of bytes are allocated for the frame on function
entry and released on function exit; no stack adjustments are otherwise made
in the function.  The second field is this fixed number of bytes.

     <p>The qualifier <code>dynamic</code> means that the function manipulates the stack
dynamically: in addition to the static allocation described above, stack
adjustments are made in the body of the function, for example to push/pop
arguments around function calls.  If the qualifier <code>bounded</code> is also
present, the amount of these adjustments is bounded at compile-time and
the second field is an upper bound of the total amount of stack used by
the function.  If it is not present, the amount of these adjustments is
not bounded at compile-time and the second field only represents the
bounded part.

     <br><dt><code>-fprofile-arcs</code><dd><a name="index-fprofile_002darcs-535"></a>Add code so that program flow <dfn>arcs</dfn> are instrumented.  During
execution the program records how many times each branch and call is
executed and how many times it is taken or returns.  When the compiled
program exits it saves this data to a file called
<samp><var>auxname</var><span class="file">.gcda</span></samp> for each source file.  The data may be used for
profile-directed optimizations (<samp><span class="option">-fbranch-probabilities</span></samp>), or for
test coverage analysis (<samp><span class="option">-ftest-coverage</span></samp>).  Each object file's
<var>auxname</var> is generated from the name of the output file, if
explicitly specified and it is not the final executable, otherwise it is
the basename of the source file.  In both cases any suffix is removed
(e.g. <samp><span class="file">foo.gcda</span></samp> for input file <samp><span class="file">dir/foo.c</span></samp>, or
<samp><span class="file">dir/foo.gcda</span></samp> for output file specified as <samp><span class="option">-o dir/foo.o</span></samp>). 
See <a href="#Cross_002dprofiling">Cross-profiling</a>.

     <p><a name="index-g_t_0040command_007bgcov_007d-536"></a><br><dt><code>--coverage</code><dd><a name="index-coverage-537"></a>
This option is used to compile and link code instrumented for coverage
analysis.  The option is a synonym for <samp><span class="option">-fprofile-arcs</span></samp>
<samp><span class="option">-ftest-coverage</span></samp> (when compiling) and <samp><span class="option">-lgcov</span></samp> (when
linking).  See the documentation for those options for more details.

          <ul>
<li>Compile the source files with <samp><span class="option">-fprofile-arcs</span></samp> plus optimization
and code generation options.  For test coverage analysis, use the
additional <samp><span class="option">-ftest-coverage</span></samp> option.  You do not need to profile
every source file in a program.

          <li>Link your object files with <samp><span class="option">-lgcov</span></samp> or <samp><span class="option">-fprofile-arcs</span></samp>
(the latter implies the former).

          <li>Run the program on a representative workload to generate the arc profile
information.  This may be repeated any number of times.  You can run
concurrent instances of your program, and provided that the file system
supports locking, the data files will be correctly updated.  Also
<code>fork</code> calls are detected and correctly handled (double counting
will not happen).

          <li>For profile-directed optimizations, compile the source files again with
the same optimization and code generation options plus
<samp><span class="option">-fbranch-probabilities</span></samp> (see <a href="#Optimize-Options">Options that Control Optimization</a>).

          <li>For test coverage analysis, use <samp><span class="command">gcov</span></samp> to produce human readable
information from the <samp><span class="file">.gcno</span></samp> and <samp><span class="file">.gcda</span></samp> files.  Refer to the
<samp><span class="command">gcov</span></samp> documentation for further information.

     </ul>

     <p>With <samp><span class="option">-fprofile-arcs</span></samp>, for each function of your program GCC
creates a program flow graph, then finds a spanning tree for the graph. 
Only arcs that are not on the spanning tree have to be instrumented: the
compiler adds code to count the number of times that these arcs are
executed.  When an arc is the only exit or only entrance to a block, the
instrumentation code can be added to the block; otherwise, a new basic
block must be created to hold the instrumentation code.

     <br><dt><code>-ftest-coverage</code><dd><a name="index-ftest_002dcoverage-538"></a>Produce a notes file that the <samp><span class="command">gcov</span></samp> code-coverage utility
(see <a href="#Gcov"><samp><span class="command">gcov</span></samp>&mdash;a Test Coverage Program</a>) can use to
show program coverage.  Each source file's note file is called
<samp><var>auxname</var><span class="file">.gcno</span></samp>.  Refer to the <samp><span class="option">-fprofile-arcs</span></samp> option
above for a description of <var>auxname</var> and instructions on how to
generate test coverage data.  Coverage data will match the source files
more closely, if you do not optimize.

     <br><dt><code>-fdbg-cnt-list</code><dd><a name="index-fdbg_002dcnt_002dlist-539"></a>Print the name and the counter upper bound for all debug counters.

     <br><dt><code>-fdbg-cnt=</code><var>counter-value-list</var><dd><a name="index-fdbg_002dcnt-540"></a>Set the internal debug counter upper bound.  <var>counter-value-list</var>
is a comma-separated list of <var>name</var>:<var>value</var> pairs
which sets the upper bound of each debug counter <var>name</var> to <var>value</var>. 
All debug counters have the initial upper bound of <var>UINT_MAX</var>,
thus dbg_cnt() returns true always unless the upper bound is set by this option. 
e.g. With -fdbg-cnt=dce:10,tail_call:0
dbg_cnt(dce) will return true only for first 10 invocations
and dbg_cnt(tail_call) will return false always.

     <br><dt><code>-d</code><var>letters</var><dt><code>-fdump-rtl-</code><var>pass</var><dd><a name="index-d-541"></a>Says to make debugging dumps during compilation at times specified by
<var>letters</var>.  This is used for debugging the RTL-based passes of the
compiler.  The file names for most of the dumps are made by appending
a pass number and a word to the <var>dumpname</var>, and the files are
created in the directory of the output file.  Note that the pass
number is computed statically as passes get registered into the pass
manager.  Thus the numbering is not related to the dynamic order of
execution of passes.  In particular, a pass installed by a plugin
could have a number over 200 even if it executed quite early. 
<var>dumpname</var> is generated from the name of the output file, if
explicitly specified and it is not an executable, otherwise it is the
basename of the source file. These switches may have different effects
when <samp><span class="option">-E</span></samp> is used for preprocessing.

     <p>Debug dumps can be enabled with a <samp><span class="option">-fdump-rtl</span></samp> switch or some
<samp><span class="option">-d</span></samp> option <var>letters</var>.  Here are the possible
letters for use in <var>pass</var> and <var>letters</var>, and their meanings:

          <dl>
<dt><code>-fdump-rtl-alignments</code><dd><a name="index-fdump_002drtl_002dalignments-542"></a>Dump after branch alignments have been computed.

          <br><dt><code>-fdump-rtl-asmcons</code><dd><a name="index-fdump_002drtl_002dasmcons-543"></a>Dump after fixing rtl statements that have unsatisfied in/out constraints.

          <br><dt><code>-fdump-rtl-auto_inc_dec</code><dd><a name="index-fdump_002drtl_002dauto_005finc_005fdec-544"></a>Dump after auto-inc-dec discovery.  This pass is only run on
architectures that have auto inc or auto dec instructions.

          <br><dt><code>-fdump-rtl-barriers</code><dd><a name="index-fdump_002drtl_002dbarriers-545"></a>Dump after cleaning up the barrier instructions.

          <br><dt><code>-fdump-rtl-bbpart</code><dd><a name="index-fdump_002drtl_002dbbpart-546"></a>Dump after partitioning hot and cold basic blocks.

          <br><dt><code>-fdump-rtl-bbro</code><dd><a name="index-fdump_002drtl_002dbbro-547"></a>Dump after block reordering.

          <br><dt><code>-fdump-rtl-btl1</code><dt><code>-fdump-rtl-btl2</code><dd><a name="index-fdump_002drtl_002dbtl2-548"></a><a name="index-fdump_002drtl_002dbtl2-549"></a><samp><span class="option">-fdump-rtl-btl1</span></samp> and <samp><span class="option">-fdump-rtl-btl2</span></samp> enable dumping
after the two branch
target load optimization passes.

          <br><dt><code>-fdump-rtl-bypass</code><dd><a name="index-fdump_002drtl_002dbypass-550"></a>Dump after jump bypassing and control flow optimizations.

          <br><dt><code>-fdump-rtl-combine</code><dd><a name="index-fdump_002drtl_002dcombine-551"></a>Dump after the RTL instruction combination pass.

          <br><dt><code>-fdump-rtl-compgotos</code><dd><a name="index-fdump_002drtl_002dcompgotos-552"></a>Dump after duplicating the computed gotos.

          <br><dt><code>-fdump-rtl-ce1</code><dt><code>-fdump-rtl-ce2</code><dt><code>-fdump-rtl-ce3</code><dd><a name="index-fdump_002drtl_002dce1-553"></a><a name="index-fdump_002drtl_002dce2-554"></a><a name="index-fdump_002drtl_002dce3-555"></a><samp><span class="option">-fdump-rtl-ce1</span></samp>, <samp><span class="option">-fdump-rtl-ce2</span></samp>, and
<samp><span class="option">-fdump-rtl-ce3</span></samp> enable dumping after the three
if conversion passes.

          <dt><code>-fdump-rtl-cprop_hardreg</code><dd><a name="index-fdump_002drtl_002dcprop_005fhardreg-556"></a>Dump after hard register copy propagation.

          <dt><code>-fdump-rtl-csa</code><dd><a name="index-fdump_002drtl_002dcsa-557"></a>Dump after combining stack adjustments.

          <br><dt><code>-fdump-rtl-cse1</code><dt><code>-fdump-rtl-cse2</code><dd><a name="index-fdump_002drtl_002dcse1-558"></a><a name="index-fdump_002drtl_002dcse2-559"></a><samp><span class="option">-fdump-rtl-cse1</span></samp> and <samp><span class="option">-fdump-rtl-cse2</span></samp> enable dumping after
the two common sub-expression elimination passes.

          <dt><code>-fdump-rtl-dce</code><dd><a name="index-fdump_002drtl_002ddce-560"></a>Dump after the standalone dead code elimination passes.

          <dt><code>-fdump-rtl-dbr</code><dd><a name="index-fdump_002drtl_002ddbr-561"></a>Dump after delayed branch scheduling.

          <br><dt><code>-fdump-rtl-dce1</code><dt><code>-fdump-rtl-dce2</code><dd><a name="index-fdump_002drtl_002ddce1-562"></a><a name="index-fdump_002drtl_002ddce2-563"></a><samp><span class="option">-fdump-rtl-dce1</span></samp> and <samp><span class="option">-fdump-rtl-dce2</span></samp> enable dumping after
the two dead store elimination passes.

          <br><dt><code>-fdump-rtl-eh</code><dd><a name="index-fdump_002drtl_002deh-564"></a>Dump after finalization of EH handling code.

          <br><dt><code>-fdump-rtl-eh_ranges</code><dd><a name="index-fdump_002drtl_002deh_005franges-565"></a>Dump after conversion of EH handling range regions.

          <br><dt><code>-fdump-rtl-expand</code><dd><a name="index-fdump_002drtl_002dexpand-566"></a>Dump after RTL generation.

          <br><dt><code>-fdump-rtl-fwprop1</code><dt><code>-fdump-rtl-fwprop2</code><dd><a name="index-fdump_002drtl_002dfwprop1-567"></a><a name="index-fdump_002drtl_002dfwprop2-568"></a><samp><span class="option">-fdump-rtl-fwprop1</span></samp> and <samp><span class="option">-fdump-rtl-fwprop2</span></samp> enable
dumping after the two forward propagation passes.

          <br><dt><code>-fdump-rtl-gcse1</code><dt><code>-fdump-rtl-gcse2</code><dd><a name="index-fdump_002drtl_002dgcse1-569"></a><a name="index-fdump_002drtl_002dgcse2-570"></a><samp><span class="option">-fdump-rtl-gcse1</span></samp> and <samp><span class="option">-fdump-rtl-gcse2</span></samp> enable dumping
after global common subexpression elimination.

          <br><dt><code>-fdump-rtl-init-regs</code><dd><a name="index-fdump_002drtl_002dinit_002dregs-571"></a>Dump after the initialization of the registers.

          <br><dt><code>-fdump-rtl-initvals</code><dd><a name="index-fdump_002drtl_002dinitvals-572"></a>Dump after the computation of the initial value sets.

          <dt><code>-fdump-rtl-into_cfglayout</code><dd><a name="index-fdump_002drtl_002dinto_005fcfglayout-573"></a>Dump after converting to cfglayout mode.

          <br><dt><code>-fdump-rtl-ira</code><dd><a name="index-fdump_002drtl_002dira-574"></a>Dump after iterated register allocation.

          <br><dt><code>-fdump-rtl-jump</code><dd><a name="index-fdump_002drtl_002djump-575"></a>Dump after the second jump optimization.

          <br><dt><code>-fdump-rtl-loop2</code><dd><a name="index-fdump_002drtl_002dloop2-576"></a><samp><span class="option">-fdump-rtl-loop2</span></samp> enables dumping after the rtl
loop optimization passes.

          <br><dt><code>-fdump-rtl-mach</code><dd><a name="index-fdump_002drtl_002dmach-577"></a>Dump after performing the machine dependent reorganization pass, if that
pass exists.

          <br><dt><code>-fdump-rtl-mode_sw</code><dd><a name="index-fdump_002drtl_002dmode_005fsw-578"></a>Dump after removing redundant mode switches.

          <br><dt><code>-fdump-rtl-rnreg</code><dd><a name="index-fdump_002drtl_002drnreg-579"></a>Dump after register renumbering.

          <dt><code>-fdump-rtl-outof_cfglayout</code><dd><a name="index-fdump_002drtl_002doutof_005fcfglayout-580"></a>Dump after converting from cfglayout mode.

          <br><dt><code>-fdump-rtl-peephole2</code><dd><a name="index-fdump_002drtl_002dpeephole2-581"></a>Dump after the peephole pass.

          <br><dt><code>-fdump-rtl-postreload</code><dd><a name="index-fdump_002drtl_002dpostreload-582"></a>Dump after post-reload optimizations.

          <dt><code>-fdump-rtl-pro_and_epilogue</code><dd><a name="index-fdump_002drtl_002dpro_005fand_005fepilogue-583"></a>Dump after generating the function pro and epilogues.

          <br><dt><code>-fdump-rtl-regmove</code><dd><a name="index-fdump_002drtl_002dregmove-584"></a>Dump after the register move pass.

          <br><dt><code>-fdump-rtl-sched1</code><dt><code>-fdump-rtl-sched2</code><dd><a name="index-fdump_002drtl_002dsched1-585"></a><a name="index-fdump_002drtl_002dsched2-586"></a><samp><span class="option">-fdump-rtl-sched1</span></samp> and <samp><span class="option">-fdump-rtl-sched2</span></samp> enable dumping
after the basic block scheduling passes.

          <br><dt><code>-fdump-rtl-see</code><dd><a name="index-fdump_002drtl_002dsee-587"></a>Dump after sign extension elimination.

          <br><dt><code>-fdump-rtl-seqabstr</code><dd><a name="index-fdump_002drtl_002dseqabstr-588"></a>Dump after common sequence discovery.

          <br><dt><code>-fdump-rtl-shorten</code><dd><a name="index-fdump_002drtl_002dshorten-589"></a>Dump after shortening branches.

          <br><dt><code>-fdump-rtl-sibling</code><dd><a name="index-fdump_002drtl_002dsibling-590"></a>Dump after sibling call optimizations.

          <br><dt><code>-fdump-rtl-split1</code><dt><code>-fdump-rtl-split2</code><dt><code>-fdump-rtl-split3</code><dt><code>-fdump-rtl-split4</code><dt><code>-fdump-rtl-split5</code><dd><a name="index-fdump_002drtl_002dsplit1-591"></a><a name="index-fdump_002drtl_002dsplit2-592"></a><a name="index-fdump_002drtl_002dsplit3-593"></a><a name="index-fdump_002drtl_002dsplit4-594"></a><a name="index-fdump_002drtl_002dsplit5-595"></a><samp><span class="option">-fdump-rtl-split1</span></samp>, <samp><span class="option">-fdump-rtl-split2</span></samp>,
<samp><span class="option">-fdump-rtl-split3</span></samp>, <samp><span class="option">-fdump-rtl-split4</span></samp> and
<samp><span class="option">-fdump-rtl-split5</span></samp> enable dumping after five rounds of
instruction splitting.

          <br><dt><code>-fdump-rtl-sms</code><dd><a name="index-fdump_002drtl_002dsms-596"></a>Dump after modulo scheduling.  This pass is only run on some
architectures.

          <br><dt><code>-fdump-rtl-stack</code><dd><a name="index-fdump_002drtl_002dstack-597"></a>Dump after conversion from GCC's "flat register file" registers to the
x87's stack-like registers.  This pass is only run on x86 variants.

          <br><dt><code>-fdump-rtl-subreg1</code><dt><code>-fdump-rtl-subreg2</code><dd><a name="index-fdump_002drtl_002dsubreg1-598"></a><a name="index-fdump_002drtl_002dsubreg2-599"></a><samp><span class="option">-fdump-rtl-subreg1</span></samp> and <samp><span class="option">-fdump-rtl-subreg2</span></samp> enable dumping after
the two subreg expansion passes.

          <br><dt><code>-fdump-rtl-unshare</code><dd><a name="index-fdump_002drtl_002dunshare-600"></a>Dump after all rtl has been unshared.

          <br><dt><code>-fdump-rtl-vartrack</code><dd><a name="index-fdump_002drtl_002dvartrack-601"></a>Dump after variable tracking.

          <br><dt><code>-fdump-rtl-vregs</code><dd><a name="index-fdump_002drtl_002dvregs-602"></a>Dump after converting virtual registers to hard registers.

          <br><dt><code>-fdump-rtl-web</code><dd><a name="index-fdump_002drtl_002dweb-603"></a>Dump after live range splitting.

          <br><dt><code>-fdump-rtl-regclass</code><dt><code>-fdump-rtl-subregs_of_mode_init</code><dt><code>-fdump-rtl-subregs_of_mode_finish</code><dt><code>-fdump-rtl-dfinit</code><dt><code>-fdump-rtl-dfinish</code><dd><a name="index-fdump_002drtl_002dregclass-604"></a><a name="index-fdump_002drtl_002dsubregs_005fof_005fmode_005finit-605"></a><a name="index-fdump_002drtl_002dsubregs_005fof_005fmode_005ffinish-606"></a><a name="index-fdump_002drtl_002ddfinit-607"></a><a name="index-fdump_002drtl_002ddfinish-608"></a>These dumps are defined but always produce empty files.

          <br><dt><code>-fdump-rtl-all</code><dd><a name="index-fdump_002drtl_002dall-609"></a>Produce all the dumps listed above.

          <br><dt><code>-dA</code><dd><a name="index-dA-610"></a>Annotate the assembler output with miscellaneous debugging information.

          <br><dt><code>-dD</code><dd><a name="index-dD-611"></a>Dump all macro definitions, at the end of preprocessing, in addition to
normal output.

          <br><dt><code>-dH</code><dd><a name="index-dH-612"></a>Produce a core dump whenever an error occurs.

          <br><dt><code>-dm</code><dd><a name="index-dm-613"></a>Print statistics on memory usage, at the end of the run, to
standard error.

          <br><dt><code>-dp</code><dd><a name="index-dp-614"></a>Annotate the assembler output with a comment indicating which
pattern and alternative was used.  The length of each instruction is
also printed.

          <br><dt><code>-dP</code><dd><a name="index-dP-615"></a>Dump the RTL in the assembler output as a comment before each instruction. 
Also turns on <samp><span class="option">-dp</span></samp> annotation.

          <br><dt><code>-dv</code><dd><a name="index-dv-616"></a>For each of the other indicated dump files (<samp><span class="option">-fdump-rtl-</span><var>pass</var></samp>),
dump a representation of the control flow graph suitable for viewing with VCG
to <samp><var>file</var><span class="file">.</span><var>pass</var><span class="file">.vcg</span></samp>.

          <br><dt><code>-dx</code><dd><a name="index-dx-617"></a>Just generate RTL for a function instead of compiling it.  Usually used
with <samp><span class="option">-fdump-rtl-expand</span></samp>. 
</dl>

     <br><dt><code>-fdump-noaddr</code><dd><a name="index-fdump_002dnoaddr-618"></a>When doing debugging dumps, suppress address output.  This makes it more
feasible to use diff on debugging dumps for compiler invocations with
different compiler binaries and/or different
text / bss / data / heap / stack / dso start locations.

     <br><dt><code>-fdump-unnumbered</code><dd><a name="index-fdump_002dunnumbered-619"></a>When doing debugging dumps, suppress instruction numbers and address output. 
This makes it more feasible to use diff on debugging dumps for compiler
invocations with different options, in particular with and without
<samp><span class="option">-g</span></samp>.

     <br><dt><code>-fdump-unnumbered-links</code><dd><a name="index-fdump_002dunnumbered_002dlinks-620"></a>When doing debugging dumps (see <samp><span class="option">-d</span></samp> option above), suppress
instruction numbers for the links to the previous and next instructions
in a sequence.

     <br><dt><code>-fdump-translation-unit </code><span class="roman">(C++ only)</span><dt><code>-fdump-translation-unit-</code><var>options</var> <span class="roman">(C++ only)</span><dd><a name="index-fdump_002dtranslation_002dunit-621"></a>Dump a representation of the tree structure for the entire translation
unit to a file.  The file name is made by appending <samp><span class="file">.tu</span></samp> to the
source file name, and the file is created in the same directory as the
output file.  If the &lsquo;<samp><span class="samp">-</span><var>options</var></samp>&rsquo; form is used, <var>options</var>
controls the details of the dump as described for the
<samp><span class="option">-fdump-tree</span></samp> options.

     <br><dt><code>-fdump-class-hierarchy </code><span class="roman">(C++ only)</span><dt><code>-fdump-class-hierarchy-</code><var>options</var> <span class="roman">(C++ only)</span><dd><a name="index-fdump_002dclass_002dhierarchy-622"></a>Dump a representation of each class's hierarchy and virtual function
table layout to a file.  The file name is made by appending
<samp><span class="file">.class</span></samp> to the source file name, and the file is created in the
same directory as the output file.  If the &lsquo;<samp><span class="samp">-</span><var>options</var></samp>&rsquo; form
is used, <var>options</var> controls the details of the dump as described
for the <samp><span class="option">-fdump-tree</span></samp> options.

     <br><dt><code>-fdump-ipa-</code><var>switch</var><dd><a name="index-fdump_002dipa-623"></a>Control the dumping at various stages of inter-procedural analysis
language tree to a file.  The file name is generated by appending a
switch specific suffix to the source file name, and the file is created
in the same directory as the output file.  The following dumps are
possible:

          <dl>
<dt>&lsquo;<samp><span class="samp">all</span></samp>&rsquo;<dd>Enables all inter-procedural analysis dumps.

          <br><dt>&lsquo;<samp><span class="samp">cgraph</span></samp>&rsquo;<dd>Dumps information about call-graph optimization, unused function removal,
and inlining decisions.

          <br><dt>&lsquo;<samp><span class="samp">inline</span></samp>&rsquo;<dd>Dump after function inlining.

     </dl>

     <br><dt><code>-fdump-statistics-</code><var>option</var><dd><a name="index-fdump_002dstatistics-624"></a>Enable and control dumping of pass statistics in a separate file.  The
file name is generated by appending a suffix ending in
&lsquo;<samp><span class="samp">.statistics</span></samp>&rsquo; to the source file name, and the file is created in
the same directory as the output file.  If the &lsquo;<samp><span class="samp">-</span><var>option</var></samp>&rsquo;
form is used, &lsquo;<samp><span class="samp">-stats</span></samp>&rsquo; will cause counters to be summed over the
whole compilation unit while &lsquo;<samp><span class="samp">-details</span></samp>&rsquo; will dump every event as
the passes generate them.  The default with no option is to sum
counters for each function compiled.

     <br><dt><code>-fdump-tree-</code><var>switch</var><dt><code>-fdump-tree-</code><var>switch</var><code>-</code><var>options</var><dd><a name="index-fdump_002dtree-625"></a>Control the dumping at various stages of processing the intermediate
language tree to a file.  The file name is generated by appending a
switch specific suffix to the source file name, and the file is
created in the same directory as the output file.  If the
&lsquo;<samp><span class="samp">-</span><var>options</var></samp>&rsquo; form is used, <var>options</var> is a list of
&lsquo;<samp><span class="samp">-</span></samp>&rsquo; separated options that control the details of the dump.  Not
all options are applicable to all dumps, those which are not
meaningful will be ignored.  The following options are available

          <dl>
<dt>&lsquo;<samp><span class="samp">address</span></samp>&rsquo;<dd>Print the address of each node.  Usually this is not meaningful as it
changes according to the environment and source file.  Its primary use
is for tying up a dump file with a debug environment. 
<br><dt>&lsquo;<samp><span class="samp">asmname</span></samp>&rsquo;<dd>If <code>DECL_ASSEMBLER_NAME</code> has been set for a given decl, use that
in the dump instead of <code>DECL_NAME</code>.  Its primary use is ease of
use working backward from mangled names in the assembly file. 
<br><dt>&lsquo;<samp><span class="samp">slim</span></samp>&rsquo;<dd>Inhibit dumping of members of a scope or body of a function merely
because that scope has been reached.  Only dump such items when they
are directly reachable by some other path.  When dumping pretty-printed
trees, this option inhibits dumping the bodies of control structures. 
<br><dt>&lsquo;<samp><span class="samp">raw</span></samp>&rsquo;<dd>Print a raw representation of the tree.  By default, trees are
pretty-printed into a C-like representation. 
<br><dt>&lsquo;<samp><span class="samp">details</span></samp>&rsquo;<dd>Enable more detailed dumps (not honored by every dump option). 
<br><dt>&lsquo;<samp><span class="samp">stats</span></samp>&rsquo;<dd>Enable dumping various statistics about the pass (not honored by every dump
option). 
<br><dt>&lsquo;<samp><span class="samp">blocks</span></samp>&rsquo;<dd>Enable showing basic block boundaries (disabled in raw dumps). 
<br><dt>&lsquo;<samp><span class="samp">vops</span></samp>&rsquo;<dd>Enable showing virtual operands for every statement. 
<br><dt>&lsquo;<samp><span class="samp">lineno</span></samp>&rsquo;<dd>Enable showing line numbers for statements. 
<br><dt>&lsquo;<samp><span class="samp">uid</span></samp>&rsquo;<dd>Enable showing the unique ID (<code>DECL_UID</code>) for each variable. 
<br><dt>&lsquo;<samp><span class="samp">verbose</span></samp>&rsquo;<dd>Enable showing the tree dump for each statement. 
<br><dt>&lsquo;<samp><span class="samp">eh</span></samp>&rsquo;<dd>Enable showing the EH region number holding each statement. 
<br><dt>&lsquo;<samp><span class="samp">all</span></samp>&rsquo;<dd>Turn on all options, except <samp><span class="option">raw</span></samp>, <samp><span class="option">slim</span></samp>, <samp><span class="option">verbose</span></samp>
and <samp><span class="option">lineno</span></samp>. 
</dl>

     <p>The following tree dumps are possible:
          <dl>
<dt>&lsquo;<samp><span class="samp">original</span></samp>&rsquo;<dd><a name="index-fdump_002dtree_002doriginal-626"></a>Dump before any tree based optimization, to <samp><var>file</var><span class="file">.original</span></samp>.

          <br><dt>&lsquo;<samp><span class="samp">optimized</span></samp>&rsquo;<dd><a name="index-fdump_002dtree_002doptimized-627"></a>Dump after all tree based optimization, to <samp><var>file</var><span class="file">.optimized</span></samp>.

          <br><dt>&lsquo;<samp><span class="samp">gimple</span></samp>&rsquo;<dd><a name="index-fdump_002dtree_002dgimple-628"></a>Dump each function before and after the gimplification pass to a file.  The
file name is made by appending <samp><span class="file">.gimple</span></samp> to the source file name.

          <br><dt>&lsquo;<samp><span class="samp">cfg</span></samp>&rsquo;<dd><a name="index-fdump_002dtree_002dcfg-629"></a>Dump the control flow graph of each function to a file.  The file name is
made by appending <samp><span class="file">.cfg</span></samp> to the source file name.

          <br><dt>&lsquo;<samp><span class="samp">vcg</span></samp>&rsquo;<dd><a name="index-fdump_002dtree_002dvcg-630"></a>Dump the control flow graph of each function to a file in VCG format.  The
file name is made by appending <samp><span class="file">.vcg</span></samp> to the source file name.  Note
that if the file contains more than one function, the generated file cannot
be used directly by VCG.  You will need to cut and paste each function's
graph into its own separate file first.

          <br><dt>&lsquo;<samp><span class="samp">ch</span></samp>&rsquo;<dd><a name="index-fdump_002dtree_002dch-631"></a>Dump each function after copying loop headers.  The file name is made by
appending <samp><span class="file">.ch</span></samp> to the source file name.

          <br><dt>&lsquo;<samp><span class="samp">ssa</span></samp>&rsquo;<dd><a name="index-fdump_002dtree_002dssa-632"></a>Dump SSA related information to a file.  The file name is made by appending
<samp><span class="file">.ssa</span></samp> to the source file name.

          <br><dt>&lsquo;<samp><span class="samp">alias</span></samp>&rsquo;<dd><a name="index-fdump_002dtree_002dalias-633"></a>Dump aliasing information for each function.  The file name is made by
appending <samp><span class="file">.alias</span></samp> to the source file name.

          <br><dt>&lsquo;<samp><span class="samp">ccp</span></samp>&rsquo;<dd><a name="index-fdump_002dtree_002dccp-634"></a>Dump each function after CCP.  The file name is made by appending
<samp><span class="file">.ccp</span></samp> to the source file name.

          <br><dt>&lsquo;<samp><span class="samp">storeccp</span></samp>&rsquo;<dd><a name="index-fdump_002dtree_002dstoreccp-635"></a>Dump each function after STORE-CCP.  The file name is made by appending
<samp><span class="file">.storeccp</span></samp> to the source file name.

          <br><dt>&lsquo;<samp><span class="samp">pre</span></samp>&rsquo;<dd><a name="index-fdump_002dtree_002dpre-636"></a>Dump trees after partial redundancy elimination.  The file name is made
by appending <samp><span class="file">.pre</span></samp> to the source file name.

          <br><dt>&lsquo;<samp><span class="samp">fre</span></samp>&rsquo;<dd><a name="index-fdump_002dtree_002dfre-637"></a>Dump trees after full redundancy elimination.  The file name is made
by appending <samp><span class="file">.fre</span></samp> to the source file name.

          <br><dt>&lsquo;<samp><span class="samp">copyprop</span></samp>&rsquo;<dd><a name="index-fdump_002dtree_002dcopyprop-638"></a>Dump trees after copy propagation.  The file name is made
by appending <samp><span class="file">.copyprop</span></samp> to the source file name.

          <br><dt>&lsquo;<samp><span class="samp">store_copyprop</span></samp>&rsquo;<dd><a name="index-fdump_002dtree_002dstore_005fcopyprop-639"></a>Dump trees after store copy-propagation.  The file name is made
by appending <samp><span class="file">.store_copyprop</span></samp> to the source file name.

          <br><dt>&lsquo;<samp><span class="samp">dce</span></samp>&rsquo;<dd><a name="index-fdump_002dtree_002ddce-640"></a>Dump each function after dead code elimination.  The file name is made by
appending <samp><span class="file">.dce</span></samp> to the source file name.

          <br><dt>&lsquo;<samp><span class="samp">mudflap</span></samp>&rsquo;<dd><a name="index-fdump_002dtree_002dmudflap-641"></a>Dump each function after adding mudflap instrumentation.  The file name is
made by appending <samp><span class="file">.mudflap</span></samp> to the source file name.

          <br><dt>&lsquo;<samp><span class="samp">sra</span></samp>&rsquo;<dd><a name="index-fdump_002dtree_002dsra-642"></a>Dump each function after performing scalar replacement of aggregates.  The
file name is made by appending <samp><span class="file">.sra</span></samp> to the source file name.

          <br><dt>&lsquo;<samp><span class="samp">sink</span></samp>&rsquo;<dd><a name="index-fdump_002dtree_002dsink-643"></a>Dump each function after performing code sinking.  The file name is made
by appending <samp><span class="file">.sink</span></samp> to the source file name.

          <br><dt>&lsquo;<samp><span class="samp">dom</span></samp>&rsquo;<dd><a name="index-fdump_002dtree_002ddom-644"></a>Dump each function after applying dominator tree optimizations.  The file
name is made by appending <samp><span class="file">.dom</span></samp> to the source file name.

          <br><dt>&lsquo;<samp><span class="samp">dse</span></samp>&rsquo;<dd><a name="index-fdump_002dtree_002ddse-645"></a>Dump each function after applying dead store elimination.  The file
name is made by appending <samp><span class="file">.dse</span></samp> to the source file name.

          <br><dt>&lsquo;<samp><span class="samp">phiopt</span></samp>&rsquo;<dd><a name="index-fdump_002dtree_002dphiopt-646"></a>Dump each function after optimizing PHI nodes into straightline code.  The file
name is made by appending <samp><span class="file">.phiopt</span></samp> to the source file name.

          <br><dt>&lsquo;<samp><span class="samp">forwprop</span></samp>&rsquo;<dd><a name="index-fdump_002dtree_002dforwprop-647"></a>Dump each function after forward propagating single use variables.  The file
name is made by appending <samp><span class="file">.forwprop</span></samp> to the source file name.

          <br><dt>&lsquo;<samp><span class="samp">copyrename</span></samp>&rsquo;<dd><a name="index-fdump_002dtree_002dcopyrename-648"></a>Dump each function after applying the copy rename optimization.  The file
name is made by appending <samp><span class="file">.copyrename</span></samp> to the source file name.

          <br><dt>&lsquo;<samp><span class="samp">nrv</span></samp>&rsquo;<dd><a name="index-fdump_002dtree_002dnrv-649"></a>Dump each function after applying the named return value optimization on
generic trees.  The file name is made by appending <samp><span class="file">.nrv</span></samp> to the source
file name.

          <br><dt>&lsquo;<samp><span class="samp">vect</span></samp>&rsquo;<dd><a name="index-fdump_002dtree_002dvect-650"></a>Dump each function after applying vectorization of loops.  The file name is
made by appending <samp><span class="file">.vect</span></samp> to the source file name.

          <br><dt>&lsquo;<samp><span class="samp">slp</span></samp>&rsquo;<dd><a name="index-fdump_002dtree_002dslp-651"></a>Dump each function after applying vectorization of basic blocks.  The file name
is made by appending <samp><span class="file">.slp</span></samp> to the source file name.

          <br><dt>&lsquo;<samp><span class="samp">vrp</span></samp>&rsquo;<dd><a name="index-fdump_002dtree_002dvrp-652"></a>Dump each function after Value Range Propagation (VRP).  The file name
is made by appending <samp><span class="file">.vrp</span></samp> to the source file name.

          <br><dt>&lsquo;<samp><span class="samp">all</span></samp>&rsquo;<dd><a name="index-fdump_002dtree_002dall-653"></a>Enable all the available tree dumps with the flags provided in this option. 
</dl>

     <br><dt><code>-ftree-vectorizer-verbose=</code><var>n</var><dd><a name="index-ftree_002dvectorizer_002dverbose-654"></a>This option controls the amount of debugging output the vectorizer prints. 
This information is written to standard error, unless
<samp><span class="option">-fdump-tree-all</span></samp> or <samp><span class="option">-fdump-tree-vect</span></samp> is specified,
in which case it is output to the usual dump listing file, <samp><span class="file">.vect</span></samp>. 
For <var>n</var>=0 no diagnostic information is reported. 
If <var>n</var>=1 the vectorizer reports each loop that got vectorized,
and the total number of loops that got vectorized. 
If <var>n</var>=2 the vectorizer also reports non-vectorized loops that passed
the first analysis phase (vect_analyze_loop_form) - i.e. countable,
inner-most, single-bb, single-entry/exit loops.  This is the same verbosity
level that <samp><span class="option">-fdump-tree-vect-stats</span></samp> uses. 
Higher verbosity levels mean either more information dumped for each
reported loop, or same amount of information reported for more loops:
if <var>n</var>=3, vectorizer cost model information is reported. 
If <var>n</var>=4, alignment related information is added to the reports. 
If <var>n</var>=5, data-references related information (e.g. memory dependences,
memory access-patterns) is added to the reports. 
If <var>n</var>=6, the vectorizer reports also non-vectorized inner-most loops
that did not pass the first analysis phase (i.e., may not be countable, or
may have complicated control-flow). 
If <var>n</var>=7, the vectorizer reports also non-vectorized nested loops. 
If <var>n</var>=8, SLP related information is added to the reports. 
For <var>n</var>=9, all the information the vectorizer generates during its
analysis and transformation is reported.  This is the same verbosity level
that <samp><span class="option">-fdump-tree-vect-details</span></samp> uses.

     <br><dt><code>-frandom-seed=</code><var>string</var><dd><a name="index-frandom_002dseed-655"></a>This option provides a seed that GCC uses when it would otherwise use
random numbers.  It is used to generate certain symbol names
that have to be different in every compiled file.  It is also used to
place unique stamps in coverage data files and the object files that
produce them.  You can use the <samp><span class="option">-frandom-seed</span></samp> option to produce
reproducibly identical object files.

     <p>The <var>string</var> should be different for every file you compile.

     <br><dt><code>-fsched-verbose=</code><var>n</var><dd><a name="index-fsched_002dverbose-656"></a>On targets that use instruction scheduling, this option controls the
amount of debugging output the scheduler prints.  This information is
written to standard error, unless <samp><span class="option">-fdump-rtl-sched1</span></samp> or
<samp><span class="option">-fdump-rtl-sched2</span></samp> is specified, in which case it is output
to the usual dump listing file, <samp><span class="file">.sched1</span></samp> or <samp><span class="file">.sched2</span></samp>
respectively.  However for <var>n</var> greater than nine, the output is
always printed to standard error.

     <p>For <var>n</var> greater than zero, <samp><span class="option">-fsched-verbose</span></samp> outputs the
same information as <samp><span class="option">-fdump-rtl-sched1</span></samp> and <samp><span class="option">-fdump-rtl-sched2</span></samp>. 
For <var>n</var> greater than one, it also output basic block probabilities,
detailed ready list information and unit/insn info.  For <var>n</var> greater
than two, it includes RTL at abort point, control-flow and regions info. 
And for <var>n</var> over four, <samp><span class="option">-fsched-verbose</span></samp> also includes
dependence info.

     <br><dt><code>-save-temps</code><dt><code>-save-temps=cwd</code><dd><a name="index-save_002dtemps-657"></a>Store the usual &ldquo;temporary&rdquo; intermediate files permanently; place them
in the current directory and name them based on the source file.  Thus,
compiling <samp><span class="file">foo.c</span></samp> with &lsquo;<samp><span class="samp">-c -save-temps</span></samp>&rsquo; would produce files
<samp><span class="file">foo.i</span></samp> and <samp><span class="file">foo.s</span></samp>, as well as <samp><span class="file">foo.o</span></samp>.  This creates a
preprocessed <samp><span class="file">foo.i</span></samp> output file even though the compiler now
normally uses an integrated preprocessor.

     <p>When used in combination with the <samp><span class="option">-x</span></samp> command line option,
<samp><span class="option">-save-temps</span></samp> is sensible enough to avoid over writing an
input source file with the same extension as an intermediate file. 
The corresponding intermediate file may be obtained by renaming the
source file before using <samp><span class="option">-save-temps</span></samp>.

     <p>If you invoke GCC in parallel, compiling several different source
files that share a common base name in different subdirectories or the
same source file compiled for multiple output destinations, it is
likely that the different parallel compilers will interfere with each
other, and overwrite the temporary files.  For instance:

     <pre class="smallexample">          gcc -save-temps -o outdir1/foo.o indir1/foo.c&amp;
          gcc -save-temps -o outdir2/foo.o indir2/foo.c&amp;
</pre>
     <p>may result in <samp><span class="file">foo.i</span></samp> and <samp><span class="file">foo.o</span></samp> being written to
simultaneously by both compilers.

     <br><dt><code>-save-temps=obj</code><dd><a name="index-save_002dtemps_003dobj-658"></a>Store the usual &ldquo;temporary&rdquo; intermediate files permanently.  If the
<samp><span class="option">-o</span></samp> option is used, the temporary files are based on the
object file.  If the <samp><span class="option">-o</span></samp> option is not used, the
<samp><span class="option">-save-temps=obj</span></samp> switch behaves like <samp><span class="option">-save-temps</span></samp>.

     <p>For example:

     <pre class="smallexample">          gcc -save-temps=obj -c foo.c
          gcc -save-temps=obj -c bar.c -o dir/xbar.o
          gcc -save-temps=obj foobar.c -o dir2/yfoobar
</pre>
     <p>would create <samp><span class="file">foo.i</span></samp>, <samp><span class="file">foo.s</span></samp>, <samp><span class="file">dir/xbar.i</span></samp>,
<samp><span class="file">dir/xbar.s</span></samp>, <samp><span class="file">dir2/yfoobar.i</span></samp>, <samp><span class="file">dir2/yfoobar.s</span></samp>, and
<samp><span class="file">dir2/yfoobar.o</span></samp>.

     <br><dt><code>-time</code><span class="roman">[</span><code>=</code><var>file</var><span class="roman">]</span><dd><a name="index-time-659"></a>Report the CPU time taken by each subprocess in the compilation
sequence.  For C source files, this is the compiler proper and assembler
(plus the linker if linking is done).

     <p>Without the specification of an output file, the output looks like this:

     <pre class="smallexample">          # cc1 0.12 0.01
          # as 0.00 0.01
</pre>
     <p>The first number on each line is the &ldquo;user time&rdquo;, that is time spent
executing the program itself.  The second number is &ldquo;system time&rdquo;,
time spent executing operating system routines on behalf of the program. 
Both numbers are in seconds.

     <p>With the specification of an output file, the output is appended to the
named file, and it looks like this:

     <pre class="smallexample">          0.12 0.01 cc1 <var>options</var>
          0.00 0.01 as <var>options</var>
</pre>
     <p>The &ldquo;user time&rdquo; and the &ldquo;system time&rdquo; are moved before the program
name, and the options passed to the program are displayed, so that one
can later tell what file was being compiled, and with which options.

     <br><dt><code>-fvar-tracking</code><dd><a name="index-fvar_002dtracking-660"></a>Run variable tracking pass.  It computes where variables are stored at each
position in code.  Better debugging information is then generated
(if the debugging information format supports this information).

     <p>It is enabled by default when compiling with optimization (<samp><span class="option">-Os</span></samp>,
<samp><span class="option">-O</span></samp>, <samp><span class="option">-O2</span></samp>, <small class="dots">...</small>), debugging information (<samp><span class="option">-g</span></samp>) and
the debug info format supports it.

     <br><dt><code>-fvar-tracking-assignments</code><dd><a name="index-fvar_002dtracking_002dassignments-661"></a><a name="index-fno_002dvar_002dtracking_002dassignments-662"></a>Annotate assignments to user variables early in the compilation and
attempt to carry the annotations over throughout the compilation all the
way to the end, in an attempt to improve debug information while
optimizing.  Use of <samp><span class="option">-gdwarf-4</span></samp> is recommended along with it.

     <p>It can be enabled even if var-tracking is disabled, in which case
annotations will be created and maintained, but discarded at the end.

     <br><dt><code>-fvar-tracking-assignments-toggle</code><dd><a name="index-fvar_002dtracking_002dassignments_002dtoggle-663"></a><a name="index-fno_002dvar_002dtracking_002dassignments_002dtoggle-664"></a>Toggle <samp><span class="option">-fvar-tracking-assignments</span></samp>, in the same way that
<samp><span class="option">-gtoggle</span></samp> toggles <samp><span class="option">-g</span></samp>.

     <br><dt><code>-print-file-name=</code><var>library</var><dd><a name="index-print_002dfile_002dname-665"></a>Print the full absolute name of the library file <var>library</var> that
would be used when linking&mdash;and don't do anything else.  With this
option, GCC does not compile or link anything; it just prints the
file name.

     <br><dt><code>-print-multi-directory</code><dd><a name="index-print_002dmulti_002ddirectory-666"></a>Print the directory name corresponding to the multilib selected by any
other switches present in the command line.  This directory is supposed
to exist in <samp><span class="env">GCC_EXEC_PREFIX</span></samp>.

     <br><dt><code>-print-multi-lib</code><dd><a name="index-print_002dmulti_002dlib-667"></a>Print the mapping from multilib directory names to compiler switches
that enable them.  The directory name is separated from the switches by
&lsquo;<samp><span class="samp">;</span></samp>&rsquo;, and each switch starts with an &lsquo;<samp><span class="samp">@</span></samp>&rsquo; instead of the
&lsquo;<samp><span class="samp">-</span></samp>&rsquo;, without spaces between multiple switches.  This is supposed to
ease shell-processing.

     <br><dt><code>-print-multi-os-directory</code><dd><a name="index-print_002dmulti_002dos_002ddirectory-668"></a>Print the path to OS libraries for the selected
multilib, relative to some <samp><span class="file">lib</span></samp> subdirectory.  If OS libraries are
present in the <samp><span class="file">lib</span></samp> subdirectory and no multilibs are used, this is
usually just <samp><span class="file">.</span></samp>, if OS libraries are present in <samp><span class="file">lib</span><var>suffix</var></samp>
sibling directories this prints e.g. <samp><span class="file">../lib64</span></samp>, <samp><span class="file">../lib</span></samp> or
<samp><span class="file">../lib32</span></samp>, or if OS libraries are present in <samp><span class="file">lib/</span><var>subdir</var></samp>
subdirectories it prints e.g. <samp><span class="file">amd64</span></samp>, <samp><span class="file">sparcv9</span></samp> or <samp><span class="file">ev6</span></samp>.

     <br><dt><code>-print-multiarch</code><dd><a name="index-print_002dmultiarch-669"></a>Print the path to OS libraries for the selected multiarch,
relative to some <samp><span class="file">lib</span></samp> subdirectory.

     <br><dt><code>-print-prog-name=</code><var>program</var><dd><a name="index-print_002dprog_002dname-670"></a>Like <samp><span class="option">-print-file-name</span></samp>, but searches for a program such as &lsquo;<samp><span class="samp">cpp</span></samp>&rsquo;.

     <br><dt><code>-print-libgcc-file-name</code><dd><a name="index-print_002dlibgcc_002dfile_002dname-671"></a>Same as <samp><span class="option">-print-file-name=libgcc.a</span></samp>.

     <p>This is useful when you use <samp><span class="option">-nostdlib</span></samp> or <samp><span class="option">-nodefaultlibs</span></samp>
but you do want to link with <samp><span class="file">libgcc.a</span></samp>.  You can do

     <pre class="smallexample">          gcc -nostdlib <var>files</var>... `gcc -print-libgcc-file-name`
</pre>
     <br><dt><code>-print-search-dirs</code><dd><a name="index-print_002dsearch_002ddirs-672"></a>Print the name of the configured installation directory and a list of
program and library directories <samp><span class="command">gcc</span></samp> will search&mdash;and don't do anything else.

     <p>This is useful when <samp><span class="command">gcc</span></samp> prints the error message
&lsquo;<samp><span class="samp">installation problem, cannot exec cpp0: No such file or directory</span></samp>&rsquo;. 
To resolve this you either need to put <samp><span class="file">cpp0</span></samp> and the other compiler
components where <samp><span class="command">gcc</span></samp> expects to find them, or you can set the environment
variable <samp><span class="env">GCC_EXEC_PREFIX</span></samp> to the directory where you installed them. 
Don't forget the trailing &lsquo;<samp><span class="samp">/</span></samp>&rsquo;. 
See <a href="#Environment-Variables">Environment Variables</a>.

     <br><dt><code>-print-sysroot</code><dd><a name="index-print_002dsysroot-673"></a>Print the target sysroot directory that will be used during
compilation.  This is the target sysroot specified either at configure
time or using the <samp><span class="option">--sysroot</span></samp> option, possibly with an extra
suffix that depends on compilation options.  If no target sysroot is
specified, the option prints nothing.

     <br><dt><code>-print-sysroot-headers-suffix</code><dd><a name="index-print_002dsysroot_002dheaders_002dsuffix-674"></a>Print the suffix added to the target sysroot when searching for
headers, or give an error if the compiler is not configured with such
a suffix&mdash;and don't do anything else.

     <br><dt><code>-dumpmachine</code><dd><a name="index-dumpmachine-675"></a>Print the compiler's target machine (for example,
&lsquo;<samp><span class="samp">i686-pc-linux-gnu</span></samp>&rsquo;)&mdash;and don't do anything else.

     <br><dt><code>-dumpversion</code><dd><a name="index-dumpversion-676"></a>Print the compiler version (for example, &lsquo;<samp><span class="samp">3.0</span></samp>&rsquo;)&mdash;and don't do
anything else.

     <br><dt><code>-dumpspecs</code><dd><a name="index-dumpspecs-677"></a>Print the compiler's built-in specs&mdash;and don't do anything else.  (This
is used when GCC itself is being built.)  See <a href="#Spec-Files">Spec Files</a>.

     <br><dt><code>-feliminate-unused-debug-types</code><dd><a name="index-feliminate_002dunused_002ddebug_002dtypes-678"></a>Normally, when producing DWARF2 output, GCC will emit debugging
information for all types declared in a compilation
unit, regardless of whether or not they are actually used
in that compilation unit.  Sometimes this is useful, such as
if, in the debugger, you want to cast a value to a type that is
not actually used in your program (but is declared).  More often,
however, this results in a significant amount of wasted space. 
With this option, GCC will avoid producing debug symbol output
for types that are nowhere used in the source file being compiled. 
</dl>

<div class="node">
<a name="Optimize-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Preprocessor-Options">Preprocessor Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Debugging-Options">Debugging Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>

</div>

<h3 class="section">3.10 Options That Control Optimization</h3>

<p><a name="index-optimize-options-679"></a><a name="index-options_002c-optimization-680"></a>
These options control various sorts of optimizations.

 <p>Without any optimization option, the compiler's goal is to reduce the
cost of compilation and to make debugging produce the expected
results.  Statements are independent: if you stop the program with a
breakpoint between statements, you can then assign a new value to any
variable or change the program counter to any other statement in the
function and get exactly the results you would expect from the source
code.

 <p>Turning on optimization flags makes the compiler attempt to improve
the performance and/or code size at the expense of compilation time
and possibly the ability to debug the program.

 <p>The compiler performs optimization based on the knowledge it has of the
program.  Compiling multiple files at once to a single output file mode allows
the compiler to use information gained from all of the files when compiling
each of them.

 <p>Not all optimizations are controlled directly by a flag.  Only
optimizations that have a flag are listed in this section.

 <p>Most optimizations are only enabled if an <samp><span class="option">-O</span></samp> level is set on
the command line.  Otherwise they are disabled, even if individual
optimization flags are specified.

 <p>Depending on the target and how GCC was configured, a slightly different
set of optimizations may be enabled at each <samp><span class="option">-O</span></samp> level than
those listed here.  You can invoke GCC with &lsquo;<samp><span class="samp">-Q --help=optimizers</span></samp>&rsquo;
to find out the exact set of optimizations that are enabled at each level. 
See <a href="#Overall-Options">Overall Options</a>, for examples.

     <dl>
<dt><code>-O</code><dt><code>-O1</code><dd><a name="index-O-681"></a><a name="index-O1-682"></a>Optimize.  Optimizing compilation takes somewhat more time, and a lot
more memory for a large function.

     <p>With <samp><span class="option">-O</span></samp>, the compiler tries to reduce code size and execution
time, without performing any optimizations that take a great deal of
compilation time.

     <p><samp><span class="option">-O</span></samp> turns on the following optimization flags:
     <pre class="smallexample">          -fauto-inc-dec 
          -fcompare-elim 
          -fcprop-registers 
          -fdce 
          -fdefer-pop 
          -fdelayed-branch 
          -fdse 
          -fguess-branch-probability 
          -fif-conversion2 
          -fif-conversion 
          -fipa-pure-const 
          -fipa-profile 
          -fipa-reference 
          -fmerge-constants
          -fsplit-wide-types 
          -ftree-bit-ccp 
          -ftree-builtin-call-dce 
          -ftree-ccp 
          -ftree-ch 
          -ftree-copyrename 
          -ftree-dce 
          -ftree-dominator-opts 
          -ftree-dse 
          -ftree-forwprop 
          -ftree-fre 
          -ftree-phiprop 
          -ftree-sra 
          -ftree-pta 
          -ftree-ter 
          -funit-at-a-time
</pre>
     <p><samp><span class="option">-O</span></samp> also turns on <samp><span class="option">-fomit-frame-pointer</span></samp> on machines
where doing so does not interfere with debugging.

     <br><dt><code>-O2</code><dd><a name="index-O2-683"></a>Optimize even more.  GCC performs nearly all supported optimizations
that do not involve a space-speed tradeoff. 
As compared to <samp><span class="option">-O</span></samp>, this option increases both compilation time
and the performance of the generated code.

     <p><samp><span class="option">-O2</span></samp> turns on all optimization flags specified by <samp><span class="option">-O</span></samp>.  It
also turns on the following optimization flags:
     <pre class="smallexample">          -fthread-jumps 
          -falign-functions  -falign-jumps 
          -falign-loops  -falign-labels 
          -fcaller-saves 
          -fcrossjumping 
          -fcse-follow-jumps  -fcse-skip-blocks 
          -fdelete-null-pointer-checks 
          -fdevirtualize 
          -fexpensive-optimizations 
          -fgcse  -fgcse-lm  
          -finline-small-functions 
          -findirect-inlining 
          -fipa-sra 
          -foptimize-sibling-calls 
          -fpartial-inlining 
          -fpeephole2 
          -fregmove 
          -freorder-blocks  -freorder-functions 
          -frerun-cse-after-loop  
          -fsched-interblock  -fsched-spec 
          -fschedule-insns  -fschedule-insns2 
          -fstrict-aliasing -fstrict-overflow 
          -ftree-switch-conversion 
          -ftree-pre 
          -ftree-vrp
</pre>
     <p>Please note the warning under <samp><span class="option">-fgcse</span></samp> about
invoking <samp><span class="option">-O2</span></samp> on programs that use computed gotos.

     <p>NOTE: In Ubuntu 8.10 and later versions, <samp><span class="option">-D_FORTIFY_SOURCE=2</span></samp> is
set by default, and is activated when <samp><span class="option">-O</span></samp> is set to 2 or higher. 
This enables additional compile-time and run-time checks for several libc
functions.  To disable, specify either <samp><span class="option">-U_FORTIFY_SOURCE</span></samp> or
<samp><span class="option">-D_FORTIFY_SOURCE=0</span></samp>.

     <br><dt><code>-O3</code><dd><a name="index-O3-684"></a>Optimize yet more.  <samp><span class="option">-O3</span></samp> turns on all optimizations specified
by <samp><span class="option">-O2</span></samp> and also turns on the <samp><span class="option">-finline-functions</span></samp>,
<samp><span class="option">-funswitch-loops</span></samp>, <samp><span class="option">-fpredictive-commoning</span></samp>,
<samp><span class="option">-fgcse-after-reload</span></samp>, <samp><span class="option">-ftree-vectorize</span></samp> and
<samp><span class="option">-fipa-cp-clone</span></samp> options.

     <br><dt><code>-O0</code><dd><a name="index-O0-685"></a>Reduce compilation time and make debugging produce the expected
results.  This is the default.

     <br><dt><code>-Os</code><dd><a name="index-Os-686"></a>Optimize for size.  <samp><span class="option">-Os</span></samp> enables all <samp><span class="option">-O2</span></samp> optimizations that
do not typically increase code size.  It also performs further
optimizations designed to reduce code size.

     <p><samp><span class="option">-Os</span></samp> disables the following optimization flags:
     <pre class="smallexample">          -falign-functions  -falign-jumps  -falign-loops 
          -falign-labels  -freorder-blocks  -freorder-blocks-and-partition 
          -fprefetch-loop-arrays  -ftree-vect-loop-version
</pre>
     <br><dt><code>-Ofast</code><dd><a name="index-Ofast-687"></a>Disregard strict standards compliance.  <samp><span class="option">-Ofast</span></samp> enables all
<samp><span class="option">-O3</span></samp> optimizations.  It also enables optimizations that are not
valid for all standard compliant programs. 
It turns on <samp><span class="option">-ffast-math</span></samp>.

     <p>If you use multiple <samp><span class="option">-O</span></samp> options, with or without level numbers,
the last such option is the one that is effective. 
</dl>

 <p>Options of the form <samp><span class="option">-f</span><var>flag</var></samp> specify machine-independent
flags.  Most flags have both positive and negative forms; the negative
form of <samp><span class="option">-ffoo</span></samp> would be <samp><span class="option">-fno-foo</span></samp>.  In the table
below, only one of the forms is listed&mdash;the one you typically will
use.  You can figure out the other form by either removing &lsquo;<samp><span class="samp">no-</span></samp>&rsquo;
or adding it.

 <p>The following options control specific optimizations.  They are either
activated by <samp><span class="option">-O</span></samp> options or are related to ones that are.  You
can use the following flags in the rare cases when &ldquo;fine-tuning&rdquo; of
optimizations to be performed is desired.

     <dl>
<dt><code>-fno-default-inline</code><dd><a name="index-fno_002ddefault_002dinline-688"></a>Do not make member functions inline by default merely because they are
defined inside the class scope (C++ only).  Otherwise, when you specify
<samp><span class="option">-O</span></samp><!-- /@w -->, member functions defined inside class scope are compiled
inline by default; i.e., you don't need to add &lsquo;<samp><span class="samp">inline</span></samp>&rsquo; in front of
the member function name.

     <br><dt><code>-fno-defer-pop</code><dd><a name="index-fno_002ddefer_002dpop-689"></a>Always pop the arguments to each function call as soon as that function
returns.  For machines which must pop arguments after a function call,
the compiler normally lets arguments accumulate on the stack for several
function calls and pops them all at once.

     <p>Disabled at levels <samp><span class="option">-O</span></samp>, <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.

     <br><dt><code>-fforward-propagate</code><dd><a name="index-fforward_002dpropagate-690"></a>Perform a forward propagation pass on RTL.  The pass tries to combine two
instructions and checks if the result can be simplified.  If loop unrolling
is active, two passes are performed and the second is scheduled after
loop unrolling.

     <p>This option is enabled by default at optimization levels <samp><span class="option">-O</span></samp>,
<samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.

     <br><dt><code>-ffp-contract=</code><var>style</var><dd><a name="index-ffp_002dcontract-691"></a><samp><span class="option">-ffp-contract=off</span></samp> disables floating-point expression contraction. 
<samp><span class="option">-ffp-contract=fast</span></samp> enables floating-point expression contraction
such as forming of fused multiply-add operations if the target has
native support for them. 
<samp><span class="option">-ffp-contract=on</span></samp> enables floating-point expression contraction
if allowed by the language standard.  This is currently not implemented
and treated equal to <samp><span class="option">-ffp-contract=off</span></samp>.

     <p>The default is <samp><span class="option">-ffp-contract=fast</span></samp>.

     <br><dt><code>-fomit-frame-pointer</code><dd><a name="index-fomit_002dframe_002dpointer-692"></a>Don't keep the frame pointer in a register for functions that
don't need one.  This avoids the instructions to save, set up and
restore frame pointers; it also makes an extra register available
in many functions.  <strong>It also makes debugging impossible on
some machines.</strong>

     <p>On some machines, such as the VAX, this flag has no effect, because
the standard calling sequence automatically handles the frame pointer
and nothing is saved by pretending it doesn't exist.  The
machine-description macro <code>FRAME_POINTER_REQUIRED</code> controls
whether a target machine supports this flag.  See <a href="gccint.html#Registers">Register Usage</a>.

     <p>Starting with GCC version 4.6, the default setting (when not optimizing for
size) for 32-bit Linux x86 and 32-bit Darwin x86 targets has been changed to
<samp><span class="option">-fomit-frame-pointer</span></samp>.  The default can be reverted to
<samp><span class="option">-fno-omit-frame-pointer</span></samp> by configuring GCC with the
<samp><span class="option">--enable-frame-pointer</span></samp> configure option.

     <p>Enabled at levels <samp><span class="option">-O</span></samp>, <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.

     <br><dt><code>-foptimize-sibling-calls</code><dd><a name="index-foptimize_002dsibling_002dcalls-693"></a>Optimize sibling and tail recursive calls.

     <p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.

     <br><dt><code>-fno-inline</code><dd><a name="index-fno_002dinline-694"></a>Don't pay attention to the <code>inline</code> keyword.  Normally this option
is used to keep the compiler from expanding any functions inline. 
Note that if you are not optimizing, no functions can be expanded inline.

     <br><dt><code>-finline-small-functions</code><dd><a name="index-finline_002dsmall_002dfunctions-695"></a>Integrate functions into their callers when their body is smaller than expected
function call code (so overall size of program gets smaller).  The compiler
heuristically decides which functions are simple enough to be worth integrating
in this way.

     <p>Enabled at level <samp><span class="option">-O2</span></samp>.

     <br><dt><code>-findirect-inlining</code><dd><a name="index-findirect_002dinlining-696"></a>Inline also indirect calls that are discovered to be known at compile
time thanks to previous inlining.  This option has any effect only
when inlining itself is turned on by the <samp><span class="option">-finline-functions</span></samp>
or <samp><span class="option">-finline-small-functions</span></samp> options.

     <p>Enabled at level <samp><span class="option">-O2</span></samp>.

     <br><dt><code>-finline-functions</code><dd><a name="index-finline_002dfunctions-697"></a>Integrate all simple functions into their callers.  The compiler
heuristically decides which functions are simple enough to be worth
integrating in this way.

     <p>If all calls to a given function are integrated, and the function is
declared <code>static</code>, then the function is normally not output as
assembler code in its own right.

     <p>Enabled at level <samp><span class="option">-O3</span></samp>.

     <br><dt><code>-finline-functions-called-once</code><dd><a name="index-finline_002dfunctions_002dcalled_002donce-698"></a>Consider all <code>static</code> functions called once for inlining into their
caller even if they are not marked <code>inline</code>.  If a call to a given
function is integrated, then the function is not output as assembler code
in its own right.

     <p>Enabled at levels <samp><span class="option">-O1</span></samp>, <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp> and <samp><span class="option">-Os</span></samp>.

     <br><dt><code>-fearly-inlining</code><dd><a name="index-fearly_002dinlining-699"></a>Inline functions marked by <code>always_inline</code> and functions whose body seems
smaller than the function call overhead early before doing
<samp><span class="option">-fprofile-generate</span></samp> instrumentation and real inlining pass.  Doing so
makes profiling significantly cheaper and usually inlining faster on programs
having large chains of nested wrapper functions.

     <p>Enabled by default.

     <br><dt><code>-fipa-sra</code><dd><a name="index-fipa_002dsra-700"></a>Perform interprocedural scalar replacement of aggregates, removal of
unused parameters and replacement of parameters passed by reference
by parameters passed by value.

     <p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp> and <samp><span class="option">-Os</span></samp>.

     <br><dt><code>-finline-limit=</code><var>n</var><dd><a name="index-finline_002dlimit-701"></a>By default, GCC limits the size of functions that can be inlined.  This flag
allows coarse control of this limit.  <var>n</var> is the size of functions that
can be inlined in number of pseudo instructions.

     <p>Inlining is actually controlled by a number of parameters, which may be
specified individually by using <samp><span class="option">--param </span><var>name</var><span class="option">=</span><var>value</var></samp>. 
The <samp><span class="option">-finline-limit=</span><var>n</var></samp> option sets some of these parameters
as follows:

          <dl>
<dt><code>max-inline-insns-single</code><dd>is set to <var>n</var>/2. 
<br><dt><code>max-inline-insns-auto</code><dd>is set to <var>n</var>/2. 
</dl>

     <p>See below for a documentation of the individual
parameters controlling inlining and for the defaults of these parameters.

     <p><em>Note:</em> there may be no value to <samp><span class="option">-finline-limit</span></samp> that results
in default behavior.

     <p><em>Note:</em> pseudo instruction represents, in this particular context, an
abstract measurement of function's size.  In no way does it represent a count
of assembly instructions and as such its exact meaning might change from one
release to an another.

     <br><dt><code>-fno-keep-inline-dllexport</code><dd><a name="index-g_t_002dfno_002dkeep_002dinline_002ddllexport-702"></a>This is a more fine-grained version of <samp><span class="option">-fkeep-inline-functions</span></samp>,
which applies only to functions that are declared using the <code>dllexport</code>
attribute or declspec (See <a href="#Function-Attributes">Declaring Attributes of Functions</a>.)

     <br><dt><code>-fkeep-inline-functions</code><dd><a name="index-fkeep_002dinline_002dfunctions-703"></a>In C, emit <code>static</code> functions that are declared <code>inline</code>
into the object file, even if the function has been inlined into all
of its callers.  This switch does not affect functions using the
<code>extern inline</code> extension in GNU C90.  In C++, emit any and all
inline functions into the object file.

     <br><dt><code>-fkeep-static-consts</code><dd><a name="index-fkeep_002dstatic_002dconsts-704"></a>Emit variables declared <code>static const</code> when optimization isn't turned
on, even if the variables aren't referenced.

     <p>GCC enables this option by default.  If you want to force the compiler to
check if the variable was referenced, regardless of whether or not
optimization is turned on, use the <samp><span class="option">-fno-keep-static-consts</span></samp> option.

     <br><dt><code>-fmerge-constants</code><dd><a name="index-fmerge_002dconstants-705"></a>Attempt to merge identical constants (string constants and floating point
constants) across compilation units.

     <p>This option is the default for optimized compilation if the assembler and
linker support it.  Use <samp><span class="option">-fno-merge-constants</span></samp> to inhibit this
behavior.

     <p>Enabled at levels <samp><span class="option">-O</span></samp>, <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.

     <br><dt><code>-fmerge-all-constants</code><dd><a name="index-fmerge_002dall_002dconstants-706"></a>Attempt to merge identical constants and identical variables.

     <p>This option implies <samp><span class="option">-fmerge-constants</span></samp>.  In addition to
<samp><span class="option">-fmerge-constants</span></samp> this considers e.g. even constant initialized
arrays or initialized constant variables with integral or floating point
types.  Languages like C or C++ require each variable, including multiple
instances of the same variable in recursive calls, to have distinct locations,
so using this option will result in non-conforming
behavior.

     <br><dt><code>-fmodulo-sched</code><dd><a name="index-fmodulo_002dsched-707"></a>Perform swing modulo scheduling immediately before the first scheduling
pass.  This pass looks at innermost loops and reorders their
instructions by overlapping different iterations.

     <br><dt><code>-fmodulo-sched-allow-regmoves</code><dd><a name="index-fmodulo_002dsched_002dallow_002dregmoves-708"></a>Perform more aggressive SMS based modulo scheduling with register moves
allowed.  By setting this flag certain anti-dependences edges will be
deleted which will trigger the generation of reg-moves based on the
life-range analysis.  This option is effective only with
<samp><span class="option">-fmodulo-sched</span></samp> enabled.

     <br><dt><code>-fno-branch-count-reg</code><dd><a name="index-fno_002dbranch_002dcount_002dreg-709"></a>Do not use &ldquo;decrement and branch&rdquo; instructions on a count register,
but instead generate a sequence of instructions that decrement a
register, compare it against zero, then branch based upon the result. 
This option is only meaningful on architectures that support such
instructions, which include x86, PowerPC, IA-64 and S/390.

     <p>The default is <samp><span class="option">-fbranch-count-reg</span></samp>.

     <br><dt><code>-fno-function-cse</code><dd><a name="index-fno_002dfunction_002dcse-710"></a>Do not put function addresses in registers; make each instruction that
calls a constant function contain the function's address explicitly.

     <p>This option results in less efficient code, but some strange hacks
that alter the assembler output may be confused by the optimizations
performed when this option is not used.

     <p>The default is <samp><span class="option">-ffunction-cse</span></samp>

     <br><dt><code>-fno-zero-initialized-in-bss</code><dd><a name="index-fno_002dzero_002dinitialized_002din_002dbss-711"></a>If the target supports a BSS section, GCC by default puts variables that
are initialized to zero into BSS.  This can save space in the resulting
code.

     <p>This option turns off this behavior because some programs explicitly
rely on variables going to the data section.  E.g., so that the
resulting executable can find the beginning of that section and/or make
assumptions based on that.

     <p>The default is <samp><span class="option">-fzero-initialized-in-bss</span></samp>.

     <br><dt><code>-fmudflap -fmudflapth -fmudflapir</code><dd><a name="index-fmudflap-712"></a><a name="index-fmudflapth-713"></a><a name="index-fmudflapir-714"></a><a name="index-bounds-checking-715"></a><a name="index-mudflap-716"></a>For front-ends that support it (C and C++), instrument all risky
pointer/array dereferencing operations, some standard library
string/heap functions, and some other associated constructs with
range/validity tests.  Modules so instrumented should be immune to
buffer overflows, invalid heap use, and some other classes of C/C++
programming errors.  The instrumentation relies on a separate runtime
library (<samp><span class="file">libmudflap</span></samp>), which will be linked into a program if
<samp><span class="option">-fmudflap</span></samp> is given at link time.  Run-time behavior of the
instrumented program is controlled by the <samp><span class="env">MUDFLAP_OPTIONS</span></samp>
environment variable.  See <code>env MUDFLAP_OPTIONS=-help a.out</code>
for its options.

     <p>Use <samp><span class="option">-fmudflapth</span></samp> instead of <samp><span class="option">-fmudflap</span></samp> to compile and to
link if your program is multi-threaded.  Use <samp><span class="option">-fmudflapir</span></samp>, in
addition to <samp><span class="option">-fmudflap</span></samp> or <samp><span class="option">-fmudflapth</span></samp>, if
instrumentation should ignore pointer reads.  This produces less
instrumentation (and therefore faster execution) and still provides
some protection against outright memory corrupting writes, but allows
erroneously read data to propagate within a program.

     <br><dt><code>-fthread-jumps</code><dd><a name="index-fthread_002djumps-717"></a>Perform optimizations where we check to see if a jump branches to a
location where another comparison subsumed by the first is found.  If
so, the first branch is redirected to either the destination of the
second branch or a point immediately following it, depending on whether
the condition is known to be true or false.

     <p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.

     <br><dt><code>-fsplit-wide-types</code><dd><a name="index-fsplit_002dwide_002dtypes-718"></a>When using a type that occupies multiple registers, such as <code>long
long</code> on a 32-bit system, split the registers apart and allocate them
independently.  This normally generates better code for those types,
but may make debugging more difficult.

     <p>Enabled at levels <samp><span class="option">-O</span></samp>, <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>,
<samp><span class="option">-Os</span></samp>.

     <br><dt><code>-fcse-follow-jumps</code><dd><a name="index-fcse_002dfollow_002djumps-719"></a>In common subexpression elimination (CSE), scan through jump instructions
when the target of the jump is not reached by any other path.  For
example, when CSE encounters an <code>if</code> statement with an
<code>else</code> clause, CSE will follow the jump when the condition
tested is false.

     <p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.

     <br><dt><code>-fcse-skip-blocks</code><dd><a name="index-fcse_002dskip_002dblocks-720"></a>This is similar to <samp><span class="option">-fcse-follow-jumps</span></samp>, but causes CSE to
follow jumps which conditionally skip over blocks.  When CSE
encounters a simple <code>if</code> statement with no else clause,
<samp><span class="option">-fcse-skip-blocks</span></samp> causes CSE to follow the jump around the
body of the <code>if</code>.

     <p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.

     <br><dt><code>-frerun-cse-after-loop</code><dd><a name="index-frerun_002dcse_002dafter_002dloop-721"></a>Re-run common subexpression elimination after loop optimizations has been
performed.

     <p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.

     <br><dt><code>-fgcse</code><dd><a name="index-fgcse-722"></a>Perform a global common subexpression elimination pass. 
This pass also performs global constant and copy propagation.

     <p><em>Note:</em> When compiling a program using computed gotos, a GCC
extension, you may get better runtime performance if you disable
the global common subexpression elimination pass by adding
<samp><span class="option">-fno-gcse</span></samp> to the command line.

     <p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.

     <br><dt><code>-fgcse-lm</code><dd><a name="index-fgcse_002dlm-723"></a>When <samp><span class="option">-fgcse-lm</span></samp> is enabled, global common subexpression elimination will
attempt to move loads which are only killed by stores into themselves.  This
allows a loop containing a load/store sequence to be changed to a load outside
the loop, and a copy/store within the loop.

     <p>Enabled by default when gcse is enabled.

     <br><dt><code>-fgcse-sm</code><dd><a name="index-fgcse_002dsm-724"></a>When <samp><span class="option">-fgcse-sm</span></samp> is enabled, a store motion pass is run after
global common subexpression elimination.  This pass will attempt to move
stores out of loops.  When used in conjunction with <samp><span class="option">-fgcse-lm</span></samp>,
loops containing a load/store sequence can be changed to a load before
the loop and a store after the loop.

     <p>Not enabled at any optimization level.

     <br><dt><code>-fgcse-las</code><dd><a name="index-fgcse_002dlas-725"></a>When <samp><span class="option">-fgcse-las</span></samp> is enabled, the global common subexpression
elimination pass eliminates redundant loads that come after stores to the
same memory location (both partial and full redundancies).

     <p>Not enabled at any optimization level.

     <br><dt><code>-fgcse-after-reload</code><dd><a name="index-fgcse_002dafter_002dreload-726"></a>When <samp><span class="option">-fgcse-after-reload</span></samp> is enabled, a redundant load elimination
pass is performed after reload.  The purpose of this pass is to cleanup
redundant spilling.

     <br><dt><code>-funsafe-loop-optimizations</code><dd><a name="index-funsafe_002dloop_002doptimizations-727"></a>If given, the loop optimizer will assume that loop indices do not
overflow, and that the loops with nontrivial exit condition are not
infinite.  This enables a wider range of loop optimizations even if
the loop optimizer itself cannot prove that these assumptions are valid. 
Using <samp><span class="option">-Wunsafe-loop-optimizations</span></samp>, the compiler will warn you
if it finds this kind of loop.

     <br><dt><code>-fcrossjumping</code><dd><a name="index-fcrossjumping-728"></a>Perform cross-jumping transformation.  This transformation unifies equivalent code and save code size.  The
resulting code may or may not perform better than without cross-jumping.

     <p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.

     <br><dt><code>-fauto-inc-dec</code><dd><a name="index-fauto_002dinc_002ddec-729"></a>Combine increments or decrements of addresses with memory accesses. 
This pass is always skipped on architectures that do not have
instructions to support this.  Enabled by default at <samp><span class="option">-O</span></samp> and
higher on architectures that support this.

     <br><dt><code>-fdce</code><dd><a name="index-fdce-730"></a>Perform dead code elimination (DCE) on RTL. 
Enabled by default at <samp><span class="option">-O</span></samp> and higher.

     <br><dt><code>-fdse</code><dd><a name="index-fdse-731"></a>Perform dead store elimination (DSE) on RTL. 
Enabled by default at <samp><span class="option">-O</span></samp> and higher.

     <br><dt><code>-fif-conversion</code><dd><a name="index-fif_002dconversion-732"></a>Attempt to transform conditional jumps into branch-less equivalents.  This
include use of conditional moves, min, max, set flags and abs instructions, and
some tricks doable by standard arithmetics.  The use of conditional execution
on chips where it is available is controlled by <code>if-conversion2</code>.

     <p>Enabled at levels <samp><span class="option">-O</span></samp>, <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.

     <br><dt><code>-fif-conversion2</code><dd><a name="index-fif_002dconversion2-733"></a>Use conditional execution (where available) to transform conditional jumps into
branch-less equivalents.

     <p>Enabled at levels <samp><span class="option">-O</span></samp>, <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.

     <br><dt><code>-fdelete-null-pointer-checks</code><dd><a name="index-fdelete_002dnull_002dpointer_002dchecks-734"></a>Assume that programs cannot safely dereference null pointers, and that
no code or data element resides there.  This enables simple constant
folding optimizations at all optimization levels.  In addition, other
optimization passes in GCC use this flag to control global dataflow
analyses that eliminate useless checks for null pointers; these assume
that if a pointer is checked after it has already been dereferenced,
it cannot be null.

     <p>Note however that in some environments this assumption is not true. 
Use <samp><span class="option">-fno-delete-null-pointer-checks</span></samp> to disable this optimization
for programs which depend on that behavior.

     <p>Some targets, especially embedded ones, disable this option at all levels. 
Otherwise it is enabled at all levels: <samp><span class="option">-O0</span></samp>, <samp><span class="option">-O1</span></samp>,
<samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.  Passes that use the information
are enabled independently at different optimization levels.

     <br><dt><code>-fdevirtualize</code><dd><a name="index-fdevirtualize-735"></a>Attempt to convert calls to virtual functions to direct calls.  This
is done both within a procedure and interprocedurally as part of
indirect inlining (<code>-findirect-inlining</code>) and interprocedural constant
propagation (<samp><span class="option">-fipa-cp</span></samp>). 
Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.

     <br><dt><code>-fexpensive-optimizations</code><dd><a name="index-fexpensive_002doptimizations-736"></a>Perform a number of minor optimizations that are relatively expensive.

     <p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.

     <br><dt><code>-foptimize-register-move</code><dt><code>-fregmove</code><dd><a name="index-foptimize_002dregister_002dmove-737"></a><a name="index-fregmove-738"></a>Attempt to reassign register numbers in move instructions and as
operands of other simple instructions in order to maximize the amount of
register tying.  This is especially helpful on machines with two-operand
instructions.

     <p>Note <samp><span class="option">-fregmove</span></samp> and <samp><span class="option">-foptimize-register-move</span></samp> are the same
optimization.

     <p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.

     <br><dt><code>-fira-algorithm=</code><var>algorithm</var><dd>Use specified coloring algorithm for the integrated register
allocator.  The <var>algorithm</var> argument should be <code>priority</code> or
<code>CB</code>.  The first algorithm specifies Chow's priority coloring,
the second one specifies Chaitin-Briggs coloring.  The second
algorithm can be unimplemented for some architectures.  If it is
implemented, it is the default because Chaitin-Briggs coloring as a
rule generates a better code.

     <br><dt><code>-fira-region=</code><var>region</var><dd>Use specified regions for the integrated register allocator.  The
<var>region</var> argument should be one of <code>all</code>, <code>mixed</code>, or
<code>one</code>.  The first value means using all loops as register
allocation regions, the second value which is the default means using
all loops except for loops with small register pressure as the
regions, and third one means using all function as a single region. 
The first value can give best result for machines with small size and
irregular register set, the third one results in faster and generates
decent code and the smallest size code, and the default value usually
give the best results in most cases and for most architectures.

     <br><dt><code>-fira-loop-pressure</code><dd><a name="index-fira_002dloop_002dpressure-739"></a>Use IRA to evaluate register pressure in loops for decision to move
loop invariants.  Usage of this option usually results in generation
of faster and smaller code on machines with big register files (&gt;= 32
registers) but it can slow compiler down.

     <p>This option is enabled at level <samp><span class="option">-O3</span></samp> for some targets.

     <br><dt><code>-fno-ira-share-save-slots</code><dd><a name="index-fno_002dira_002dshare_002dsave_002dslots-740"></a>Switch off sharing stack slots used for saving call used hard
registers living through a call.  Each hard register will get a
separate stack slot and as a result function stack frame will be
bigger.

     <br><dt><code>-fno-ira-share-spill-slots</code><dd><a name="index-fno_002dira_002dshare_002dspill_002dslots-741"></a>Switch off sharing stack slots allocated for pseudo-registers.  Each
pseudo-register which did not get a hard register will get a separate
stack slot and as a result function stack frame will be bigger.

     <br><dt><code>-fira-verbose=</code><var>n</var><dd><a name="index-fira_002dverbose-742"></a>Set up how verbose dump file for the integrated register allocator
will be.  Default value is 5.  If the value is greater or equal to 10,
the dump file will be stderr as if the value were <var>n</var> minus 10.

     <br><dt><code>-fdelayed-branch</code><dd><a name="index-fdelayed_002dbranch-743"></a>If supported for the target machine, attempt to reorder instructions
to exploit instruction slots available after delayed branch
instructions.

     <p>Enabled at levels <samp><span class="option">-O</span></samp>, <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.

     <br><dt><code>-fschedule-insns</code><dd><a name="index-fschedule_002dinsns-744"></a>If supported for the target machine, attempt to reorder instructions to
eliminate execution stalls due to required data being unavailable.  This
helps machines that have slow floating point or memory load instructions
by allowing other instructions to be issued until the result of the load
or floating point instruction is required.

     <p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>.

     <br><dt><code>-fschedule-insns2</code><dd><a name="index-fschedule_002dinsns2-745"></a>Similar to <samp><span class="option">-fschedule-insns</span></samp>, but requests an additional pass of
instruction scheduling after register allocation has been done.  This is
especially useful on machines with a relatively small number of
registers and where memory load instructions take more than one cycle.

     <p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.

     <br><dt><code>-fno-sched-interblock</code><dd><a name="index-fno_002dsched_002dinterblock-746"></a>Don't schedule instructions across basic blocks.  This is normally
enabled by default when scheduling before register allocation, i.e. 
with <samp><span class="option">-fschedule-insns</span></samp> or at <samp><span class="option">-O2</span></samp> or higher.

     <br><dt><code>-fno-sched-spec</code><dd><a name="index-fno_002dsched_002dspec-747"></a>Don't allow speculative motion of non-load instructions.  This is normally
enabled by default when scheduling before register allocation, i.e. 
with <samp><span class="option">-fschedule-insns</span></samp> or at <samp><span class="option">-O2</span></samp> or higher.

     <br><dt><code>-fsched-pressure</code><dd><a name="index-fsched_002dpressure-748"></a>Enable register pressure sensitive insn scheduling before the register
allocation.  This only makes sense when scheduling before register
allocation is enabled, i.e. with <samp><span class="option">-fschedule-insns</span></samp> or at
<samp><span class="option">-O2</span></samp> or higher.  Usage of this option can improve the
generated code and decrease its size by preventing register pressure
increase above the number of available hard registers and as a
consequence register spills in the register allocation.

     <br><dt><code>-fsched-spec-load</code><dd><a name="index-fsched_002dspec_002dload-749"></a>Allow speculative motion of some load instructions.  This only makes
sense when scheduling before register allocation, i.e. with
<samp><span class="option">-fschedule-insns</span></samp> or at <samp><span class="option">-O2</span></samp> or higher.

     <br><dt><code>-fsched-spec-load-dangerous</code><dd><a name="index-fsched_002dspec_002dload_002ddangerous-750"></a>Allow speculative motion of more load instructions.  This only makes
sense when scheduling before register allocation, i.e. with
<samp><span class="option">-fschedule-insns</span></samp> or at <samp><span class="option">-O2</span></samp> or higher.

     <br><dt><code>-fsched-stalled-insns</code><dt><code>-fsched-stalled-insns=</code><var>n</var><dd><a name="index-fsched_002dstalled_002dinsns-751"></a>Define how many insns (if any) can be moved prematurely from the queue
of stalled insns into the ready list, during the second scheduling pass. 
<samp><span class="option">-fno-sched-stalled-insns</span></samp> means that no insns will be moved
prematurely, <samp><span class="option">-fsched-stalled-insns=0</span></samp> means there is no limit
on how many queued insns can be moved prematurely. 
<samp><span class="option">-fsched-stalled-insns</span></samp> without a value is equivalent to
<samp><span class="option">-fsched-stalled-insns=1</span></samp>.

     <br><dt><code>-fsched-stalled-insns-dep</code><dt><code>-fsched-stalled-insns-dep=</code><var>n</var><dd><a name="index-fsched_002dstalled_002dinsns_002ddep-752"></a>Define how many insn groups (cycles) will be examined for a dependency
on a stalled insn that is candidate for premature removal from the queue
of stalled insns.  This has an effect only during the second scheduling pass,
and only if <samp><span class="option">-fsched-stalled-insns</span></samp> is used. 
<samp><span class="option">-fno-sched-stalled-insns-dep</span></samp> is equivalent to
<samp><span class="option">-fsched-stalled-insns-dep=0</span></samp>. 
<samp><span class="option">-fsched-stalled-insns-dep</span></samp> without a value is equivalent to
<samp><span class="option">-fsched-stalled-insns-dep=1</span></samp>.

     <br><dt><code>-fsched2-use-superblocks</code><dd><a name="index-fsched2_002duse_002dsuperblocks-753"></a>When scheduling after register allocation, do use superblock scheduling
algorithm.  Superblock scheduling allows motion across basic block boundaries
resulting on faster schedules.  This option is experimental, as not all machine
descriptions used by GCC model the CPU closely enough to avoid unreliable
results from the algorithm.

     <p>This only makes sense when scheduling after register allocation, i.e. with
<samp><span class="option">-fschedule-insns2</span></samp> or at <samp><span class="option">-O2</span></samp> or higher.

     <br><dt><code>-fsched-group-heuristic</code><dd><a name="index-fsched_002dgroup_002dheuristic-754"></a>Enable the group heuristic in the scheduler.  This heuristic favors
the instruction that belongs to a schedule group.  This is enabled
by default when scheduling is enabled, i.e. with <samp><span class="option">-fschedule-insns</span></samp>
or <samp><span class="option">-fschedule-insns2</span></samp> or at <samp><span class="option">-O2</span></samp> or higher.

     <br><dt><code>-fsched-critical-path-heuristic</code><dd><a name="index-fsched_002dcritical_002dpath_002dheuristic-755"></a>Enable the critical-path heuristic in the scheduler.  This heuristic favors
instructions on the critical path.  This is enabled by default when
scheduling is enabled, i.e. with <samp><span class="option">-fschedule-insns</span></samp>
or <samp><span class="option">-fschedule-insns2</span></samp> or at <samp><span class="option">-O2</span></samp> or higher.

     <br><dt><code>-fsched-spec-insn-heuristic</code><dd><a name="index-fsched_002dspec_002dinsn_002dheuristic-756"></a>Enable the speculative instruction heuristic in the scheduler.  This
heuristic favors speculative instructions with greater dependency weakness. 
This is enabled by default when scheduling is enabled, i.e. 
with <samp><span class="option">-fschedule-insns</span></samp> or <samp><span class="option">-fschedule-insns2</span></samp>
or at <samp><span class="option">-O2</span></samp> or higher.

     <br><dt><code>-fsched-rank-heuristic</code><dd><a name="index-fsched_002drank_002dheuristic-757"></a>Enable the rank heuristic in the scheduler.  This heuristic favors
the instruction belonging to a basic block with greater size or frequency. 
This is enabled by default when scheduling is enabled, i.e. 
with <samp><span class="option">-fschedule-insns</span></samp> or <samp><span class="option">-fschedule-insns2</span></samp> or
at <samp><span class="option">-O2</span></samp> or higher.

     <br><dt><code>-fsched-last-insn-heuristic</code><dd><a name="index-fsched_002dlast_002dinsn_002dheuristic-758"></a>Enable the last-instruction heuristic in the scheduler.  This heuristic
favors the instruction that is less dependent on the last instruction
scheduled.  This is enabled by default when scheduling is enabled,
i.e. with <samp><span class="option">-fschedule-insns</span></samp> or <samp><span class="option">-fschedule-insns2</span></samp> or
at <samp><span class="option">-O2</span></samp> or higher.

     <br><dt><code>-fsched-dep-count-heuristic</code><dd><a name="index-fsched_002ddep_002dcount_002dheuristic-759"></a>Enable the dependent-count heuristic in the scheduler.  This heuristic
favors the instruction that has more instructions depending on it. 
This is enabled by default when scheduling is enabled, i.e. 
with <samp><span class="option">-fschedule-insns</span></samp> or <samp><span class="option">-fschedule-insns2</span></samp> or
at <samp><span class="option">-O2</span></samp> or higher.

     <br><dt><code>-freschedule-modulo-scheduled-loops</code><dd><a name="index-freschedule_002dmodulo_002dscheduled_002dloops-760"></a>The modulo scheduling comes before the traditional scheduling, if a loop
was modulo scheduled we may want to prevent the later scheduling passes
from changing its schedule, we use this option to control that.

     <br><dt><code>-fselective-scheduling</code><dd><a name="index-fselective_002dscheduling-761"></a>Schedule instructions using selective scheduling algorithm.  Selective
scheduling runs instead of the first scheduler pass.

     <br><dt><code>-fselective-scheduling2</code><dd><a name="index-fselective_002dscheduling2-762"></a>Schedule instructions using selective scheduling algorithm.  Selective
scheduling runs instead of the second scheduler pass.

     <br><dt><code>-fsel-sched-pipelining</code><dd><a name="index-fsel_002dsched_002dpipelining-763"></a>Enable software pipelining of innermost loops during selective scheduling. 
This option has no effect until one of <samp><span class="option">-fselective-scheduling</span></samp> or
<samp><span class="option">-fselective-scheduling2</span></samp> is turned on.

     <br><dt><code>-fsel-sched-pipelining-outer-loops</code><dd><a name="index-fsel_002dsched_002dpipelining_002douter_002dloops-764"></a>When pipelining loops during selective scheduling, also pipeline outer loops. 
This option has no effect until <samp><span class="option">-fsel-sched-pipelining</span></samp> is turned on.

     <br><dt><code>-fcaller-saves</code><dd><a name="index-fcaller_002dsaves-765"></a>Enable values to be allocated in registers that will be clobbered by
function calls, by emitting extra instructions to save and restore the
registers around such calls.  Such allocation is done only when it
seems to result in better code than would otherwise be produced.

     <p>This option is always enabled by default on certain machines, usually
those which have no call-preserved registers to use instead.

     <p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.

     <br><dt><code>-fcombine-stack-adjustments</code><dd><a name="index-fcombine_002dstack_002dadjustments-766"></a>Tracks stack adjustments (pushes and pops) and stack memory references
and then tries to find ways to combine them.

     <p>Enabled by default at <samp><span class="option">-O1</span></samp> and higher.

     <br><dt><code>-fconserve-stack</code><dd><a name="index-fconserve_002dstack-767"></a>Attempt to minimize stack usage.  The compiler will attempt to use less
stack space, even if that makes the program slower.  This option
implies setting the <samp><span class="option">large-stack-frame</span></samp> parameter to 100
and the <samp><span class="option">large-stack-frame-growth</span></samp> parameter to 400.

     <br><dt><code>-ftree-reassoc</code><dd><a name="index-ftree_002dreassoc-768"></a>Perform reassociation on trees.  This flag is enabled by default
at <samp><span class="option">-O</span></samp> and higher.

     <br><dt><code>-ftree-pre</code><dd><a name="index-ftree_002dpre-769"></a>Perform partial redundancy elimination (PRE) on trees.  This flag is
enabled by default at <samp><span class="option">-O2</span></samp> and <samp><span class="option">-O3</span></samp>.

     <br><dt><code>-ftree-forwprop</code><dd><a name="index-ftree_002dforwprop-770"></a>Perform forward propagation on trees.  This flag is enabled by default
at <samp><span class="option">-O</span></samp> and higher.

     <br><dt><code>-ftree-fre</code><dd><a name="index-ftree_002dfre-771"></a>Perform full redundancy elimination (FRE) on trees.  The difference
between FRE and PRE is that FRE only considers expressions
that are computed on all paths leading to the redundant computation. 
This analysis is faster than PRE, though it exposes fewer redundancies. 
This flag is enabled by default at <samp><span class="option">-O</span></samp> and higher.

     <br><dt><code>-ftree-phiprop</code><dd><a name="index-ftree_002dphiprop-772"></a>Perform hoisting of loads from conditional pointers on trees.  This
pass is enabled by default at <samp><span class="option">-O</span></samp> and higher.

     <br><dt><code>-ftree-copy-prop</code><dd><a name="index-ftree_002dcopy_002dprop-773"></a>Perform copy propagation on trees.  This pass eliminates unnecessary
copy operations.  This flag is enabled by default at <samp><span class="option">-O</span></samp> and
higher.

     <br><dt><code>-fipa-pure-const</code><dd><a name="index-fipa_002dpure_002dconst-774"></a>Discover which functions are pure or constant. 
Enabled by default at <samp><span class="option">-O</span></samp> and higher.

     <br><dt><code>-fipa-reference</code><dd><a name="index-fipa_002dreference-775"></a>Discover which static variables do not escape cannot escape the
compilation unit. 
Enabled by default at <samp><span class="option">-O</span></samp> and higher.

     <br><dt><code>-fipa-struct-reorg</code><dd><a name="index-fipa_002dstruct_002dreorg-776"></a>Perform structure reorganization optimization, that change C-like structures
layout in order to better utilize spatial locality.  This transformation is
affective for programs containing arrays of structures.  Available in two
compilation modes: profile-based (enabled with <samp><span class="option">-fprofile-generate</span></samp>)
or static (which uses built-in heuristics).  It works only in whole program
mode, so it requires <samp><span class="option">-fwhole-program</span></samp> to be
enabled.  Structures considered &lsquo;<samp><span class="samp">cold</span></samp>&rsquo; by this transformation are not
affected (see <samp><span class="option">--param struct-reorg-cold-struct-ratio=</span><var>value</var></samp>).

     <p>With this flag, the program debug info reflects a new structure layout.

     <br><dt><code>-fipa-pta</code><dd><a name="index-fipa_002dpta-777"></a>Perform interprocedural pointer analysis and interprocedural modification
and reference analysis.  This option can cause excessive memory and
compile-time usage on large compilation units.  It is not enabled by
default at any optimization level.

     <br><dt><code>-fipa-profile</code><dd><a name="index-fipa_002dprofile-778"></a>Perform interprocedural profile propagation.  The functions called only from
cold functions are marked as cold. Also functions executed once (such as
<code>cold</code>, <code>noreturn</code>, static constructors or destructors) are identified. Cold
functions and loop less parts of functions executed once are then optimized for
size. 
Enabled by default at <samp><span class="option">-O</span></samp> and higher.

     <br><dt><code>-fipa-cp</code><dd><a name="index-fipa_002dcp-779"></a>Perform interprocedural constant propagation. 
This optimization analyzes the program to determine when values passed
to functions are constants and then optimizes accordingly. 
This optimization can substantially increase performance
if the application has constants passed to functions. 
This flag is enabled by default at <samp><span class="option">-O2</span></samp>, <samp><span class="option">-Os</span></samp> and <samp><span class="option">-O3</span></samp>.

     <br><dt><code>-fipa-cp-clone</code><dd><a name="index-fipa_002dcp_002dclone-780"></a>Perform function cloning to make interprocedural constant propagation stronger. 
When enabled, interprocedural constant propagation will perform function cloning
when externally visible function can be called with constant arguments. 
Because this optimization can create multiple copies of functions,
it may significantly increase code size
(see <samp><span class="option">--param ipcp-unit-growth=</span><var>value</var></samp>). 
This flag is enabled by default at <samp><span class="option">-O3</span></samp>.

     <br><dt><code>-fipa-matrix-reorg</code><dd><a name="index-fipa_002dmatrix_002dreorg-781"></a>Perform matrix flattening and transposing. 
Matrix flattening tries to replace an m-dimensional matrix
with its equivalent n-dimensional matrix, where n &lt; m. 
This reduces the level of indirection needed for accessing the elements
of the matrix. The second optimization is matrix transposing that
attempts to change the order of the matrix's dimensions in order to
improve cache locality. 
Both optimizations need the <samp><span class="option">-fwhole-program</span></samp> flag. 
Transposing is enabled only if profiling information is available.

     <br><dt><code>-ftree-sink</code><dd><a name="index-ftree_002dsink-782"></a>Perform forward store motion  on trees.  This flag is
enabled by default at <samp><span class="option">-O</span></samp> and higher.

     <br><dt><code>-ftree-bit-ccp</code><dd><a name="index-ftree_002dbit_002dccp-783"></a>Perform sparse conditional bit constant propagation on trees and propagate
pointer alignment information. 
This pass only operates on local scalar variables and is enabled by default
at <samp><span class="option">-O</span></samp> and higher.  It requires that <samp><span class="option">-ftree-ccp</span></samp> is enabled.

     <br><dt><code>-ftree-ccp</code><dd><a name="index-ftree_002dccp-784"></a>Perform sparse conditional constant propagation (CCP) on trees.  This
pass only operates on local scalar variables and is enabled by default
at <samp><span class="option">-O</span></samp> and higher.

     <br><dt><code>-ftree-switch-conversion</code><dd>Perform conversion of simple initializations in a switch to
initializations from a scalar array.  This flag is enabled by default
at <samp><span class="option">-O2</span></samp> and higher.

     <br><dt><code>-ftree-dce</code><dd><a name="index-ftree_002ddce-785"></a>Perform dead code elimination (DCE) on trees.  This flag is enabled by
default at <samp><span class="option">-O</span></samp> and higher.

     <br><dt><code>-ftree-builtin-call-dce</code><dd><a name="index-ftree_002dbuiltin_002dcall_002ddce-786"></a>Perform conditional dead code elimination (DCE) for calls to builtin functions
that may set <code>errno</code> but are otherwise side-effect free.  This flag is
enabled by default at <samp><span class="option">-O2</span></samp> and higher if <samp><span class="option">-Os</span></samp> is not also
specified.

     <br><dt><code>-ftree-dominator-opts</code><dd><a name="index-ftree_002ddominator_002dopts-787"></a>Perform a variety of simple scalar cleanups (constant/copy
propagation, redundancy elimination, range propagation and expression
simplification) based on a dominator tree traversal.  This also
performs jump threading (to reduce jumps to jumps). This flag is
enabled by default at <samp><span class="option">-O</span></samp> and higher.

     <br><dt><code>-ftree-dse</code><dd><a name="index-ftree_002ddse-788"></a>Perform dead store elimination (DSE) on trees.  A dead store is a store into
a memory location which will later be overwritten by another store without
any intervening loads.  In this case the earlier store can be deleted.  This
flag is enabled by default at <samp><span class="option">-O</span></samp> and higher.

     <br><dt><code>-ftree-ch</code><dd><a name="index-ftree_002dch-789"></a>Perform loop header copying on trees.  This is beneficial since it increases
effectiveness of code motion optimizations.  It also saves one jump.  This flag
is enabled by default at <samp><span class="option">-O</span></samp> and higher.  It is not enabled
for <samp><span class="option">-Os</span></samp>, since it usually increases code size.

     <br><dt><code>-ftree-loop-optimize</code><dd><a name="index-ftree_002dloop_002doptimize-790"></a>Perform loop optimizations on trees.  This flag is enabled by default
at <samp><span class="option">-O</span></samp> and higher.

     <br><dt><code>-ftree-loop-linear</code><dd><a name="index-ftree_002dloop_002dlinear-791"></a>Perform loop interchange transformations on tree.  Same as
<samp><span class="option">-floop-interchange</span></samp>.  To use this code transformation, GCC has
to be configured with <samp><span class="option">--with-ppl</span></samp> and <samp><span class="option">--with-cloog</span></samp> to
enable the Graphite loop transformation infrastructure.

     <br><dt><code>-floop-interchange</code><dd><a name="index-floop_002dinterchange-792"></a>Perform loop interchange transformations on loops.  Interchanging two
nested loops switches the inner and outer loops.  For example, given a
loop like:
     <pre class="smallexample">          DO J = 1, M
            DO I = 1, N
              A(J, I) = A(J, I) * C
            ENDDO
          ENDDO
</pre>
     <p>loop interchange will transform the loop as if the user had written:
     <pre class="smallexample">          DO I = 1, N
            DO J = 1, M
              A(J, I) = A(J, I) * C
            ENDDO
          ENDDO
</pre>
     <p>which can be beneficial when <code>N</code> is larger than the caches,
because in Fortran, the elements of an array are stored in memory
contiguously by column, and the original loop iterates over rows,
potentially creating at each access a cache miss.  This optimization
applies to all the languages supported by GCC and is not limited to
Fortran.  To use this code transformation, GCC has to be configured
with <samp><span class="option">--with-ppl</span></samp> and <samp><span class="option">--with-cloog</span></samp> to enable the
Graphite loop transformation infrastructure.

     <br><dt><code>-floop-strip-mine</code><dd><a name="index-floop_002dstrip_002dmine-793"></a>Perform loop strip mining transformations on loops.  Strip mining
splits a loop into two nested loops.  The outer loop has strides
equal to the strip size and the inner loop has strides of the
original loop within a strip.  The strip length can be changed
using the <samp><span class="option">loop-block-tile-size</span></samp> parameter.  For example,
given a loop like:
     <pre class="smallexample">          DO I = 1, N
            A(I) = A(I) + C
          ENDDO
</pre>
     <p>loop strip mining will transform the loop as if the user had written:
     <pre class="smallexample">          DO II = 1, N, 51
            DO I = II, min (II + 50, N)
              A(I) = A(I) + C
            ENDDO
          ENDDO
</pre>
     <p>This optimization applies to all the languages supported by GCC and is
not limited to Fortran.  To use this code transformation, GCC has to
be configured with <samp><span class="option">--with-ppl</span></samp> and <samp><span class="option">--with-cloog</span></samp> to
enable the Graphite loop transformation infrastructure.

     <br><dt><code>-floop-block</code><dd><a name="index-floop_002dblock-794"></a>Perform loop blocking transformations on loops.  Blocking strip mines
each loop in the loop nest such that the memory accesses of the
element loops fit inside caches.  The strip length can be changed
using the <samp><span class="option">loop-block-tile-size</span></samp> parameter.  For example, given
a loop like:
     <pre class="smallexample">          DO I = 1, N
            DO J = 1, M
              A(J, I) = B(I) + C(J)
            ENDDO
          ENDDO
</pre>
     <p>loop blocking will transform the loop as if the user had written:
     <pre class="smallexample">          DO II = 1, N, 51
            DO JJ = 1, M, 51
              DO I = II, min (II + 50, N)
                DO J = JJ, min (JJ + 50, M)
                  A(J, I) = B(I) + C(J)
                ENDDO
              ENDDO
            ENDDO
          ENDDO
</pre>
     <p>which can be beneficial when <code>M</code> is larger than the caches,
because the innermost loop will iterate over a smaller amount of data
that can be kept in the caches.  This optimization applies to all the
languages supported by GCC and is not limited to Fortran.  To use this
code transformation, GCC has to be configured with <samp><span class="option">--with-ppl</span></samp>
and <samp><span class="option">--with-cloog</span></samp> to enable the Graphite loop transformation
infrastructure.

     <br><dt><code>-fgraphite-identity</code><dd><a name="index-fgraphite_002didentity-795"></a>Enable the identity transformation for graphite.  For every SCoP we generate
the polyhedral representation and transform it back to gimple.  Using
<samp><span class="option">-fgraphite-identity</span></samp> we can check the costs or benefits of the
GIMPLE -&gt; GRAPHITE -&gt; GIMPLE transformation.  Some minimal optimizations
are also performed by the code generator CLooG, like index splitting and
dead code elimination in loops.

     <br><dt><code>-floop-flatten</code><dd><a name="index-floop_002dflatten-796"></a>Removes the loop nesting structure: transforms the loop nest into a
single loop.  This transformation can be useful to vectorize all the
levels of the loop nest.

     <br><dt><code>-floop-parallelize-all</code><dd><a name="index-floop_002dparallelize_002dall-797"></a>Use the Graphite data dependence analysis to identify loops that can
be parallelized.  Parallelize all the loops that can be analyzed to
not contain loop carried dependences without checking that it is
profitable to parallelize the loops.

     <br><dt><code>-fcheck-data-deps</code><dd><a name="index-fcheck_002ddata_002ddeps-798"></a>Compare the results of several data dependence analyzers.  This option
is used for debugging the data dependence analyzers.

     <br><dt><code>-ftree-loop-if-convert</code><dd>Attempt to transform conditional jumps in the innermost loops to
branch-less equivalents.  The intent is to remove control-flow from
the innermost loops in order to improve the ability of the
vectorization pass to handle these loops.  This is enabled by default
if vectorization is enabled.

     <br><dt><code>-ftree-loop-if-convert-stores</code><dd>Attempt to also if-convert conditional jumps containing memory writes. 
This transformation can be unsafe for multi-threaded programs as it
transforms conditional memory writes into unconditional memory writes. 
For example,
     <pre class="smallexample">          for (i = 0; i &lt; N; i++)
            if (cond)
              A[i] = expr;
</pre>
     <p>would be transformed to
     <pre class="smallexample">          for (i = 0; i &lt; N; i++)
            A[i] = cond ? expr : A[i];
</pre>
     <p>potentially producing data races.

     <br><dt><code>-ftree-loop-distribution</code><dd>Perform loop distribution.  This flag can improve cache performance on
big loop bodies and allow further loop optimizations, like
parallelization or vectorization, to take place.  For example, the loop
     <pre class="smallexample">          DO I = 1, N
            A(I) = B(I) + C
            D(I) = E(I) * F
          ENDDO
</pre>
     <p>is transformed to
     <pre class="smallexample">          DO I = 1, N
             A(I) = B(I) + C
          ENDDO
          DO I = 1, N
             D(I) = E(I) * F
          ENDDO
</pre>
     <br><dt><code>-ftree-loop-distribute-patterns</code><dd>Perform loop distribution of patterns that can be code generated with
calls to a library.  This flag is enabled by default at <samp><span class="option">-O3</span></samp>.

     <p>This pass distributes the initialization loops and generates a call to
memset zero.  For example, the loop
     <pre class="smallexample">          DO I = 1, N
            A(I) = 0
            B(I) = A(I) + I
          ENDDO
</pre>
     <p>is transformed to
     <pre class="smallexample">          DO I = 1, N
             A(I) = 0
          ENDDO
          DO I = 1, N
             B(I) = A(I) + I
          ENDDO
</pre>
     <p>and the initialization loop is transformed into a call to memset zero.

     <br><dt><code>-ftree-loop-im</code><dd><a name="index-ftree_002dloop_002dim-799"></a>Perform loop invariant motion on trees.  This pass moves only invariants that
would be hard to handle at RTL level (function calls, operations that expand to
nontrivial sequences of insns).  With <samp><span class="option">-funswitch-loops</span></samp> it also moves
operands of conditions that are invariant out of the loop, so that we can use
just trivial invariantness analysis in loop unswitching.  The pass also includes
store motion.

     <br><dt><code>-ftree-loop-ivcanon</code><dd><a name="index-ftree_002dloop_002divcanon-800"></a>Create a canonical counter for number of iterations in the loop for that
determining number of iterations requires complicated analysis.  Later
optimizations then may determine the number easily.  Useful especially
in connection with unrolling.

     <br><dt><code>-fivopts</code><dd><a name="index-fivopts-801"></a>Perform induction variable optimizations (strength reduction, induction
variable merging and induction variable elimination) on trees.

     <br><dt><code>-ftree-parallelize-loops=n</code><dd><a name="index-ftree_002dparallelize_002dloops-802"></a>Parallelize loops, i.e., split their iteration space to run in n threads. 
This is only possible for loops whose iterations are independent
and can be arbitrarily reordered.  The optimization is only
profitable on multiprocessor machines, for loops that are CPU-intensive,
rather than constrained e.g. by memory bandwidth.  This option
implies <samp><span class="option">-pthread</span></samp>, and thus is only supported on targets
that have support for <samp><span class="option">-pthread</span></samp>.

     <br><dt><code>-ftree-pta</code><dd><a name="index-ftree_002dpta-803"></a>Perform function-local points-to analysis on trees.  This flag is
enabled by default at <samp><span class="option">-O</span></samp> and higher.

     <br><dt><code>-ftree-sra</code><dd><a name="index-ftree_002dsra-804"></a>Perform scalar replacement of aggregates.  This pass replaces structure
references with scalars to prevent committing structures to memory too
early.  This flag is enabled by default at <samp><span class="option">-O</span></samp> and higher.

     <br><dt><code>-ftree-copyrename</code><dd><a name="index-ftree_002dcopyrename-805"></a>Perform copy renaming on trees.  This pass attempts to rename compiler
temporaries to other variables at copy locations, usually resulting in
variable names which more closely resemble the original variables.  This flag
is enabled by default at <samp><span class="option">-O</span></samp> and higher.

     <br><dt><code>-ftree-ter</code><dd><a name="index-ftree_002dter-806"></a>Perform temporary expression replacement during the SSA-&gt;normal phase.  Single
use/single def temporaries are replaced at their use location with their
defining expression.  This results in non-GIMPLE code, but gives the expanders
much more complex trees to work on resulting in better RTL generation.  This is
enabled by default at <samp><span class="option">-O</span></samp> and higher.

     <br><dt><code>-ftree-vectorize</code><dd><a name="index-ftree_002dvectorize-807"></a>Perform loop vectorization on trees. This flag is enabled by default at
<samp><span class="option">-O3</span></samp>.

     <br><dt><code>-ftree-slp-vectorize</code><dd><a name="index-ftree_002dslp_002dvectorize-808"></a>Perform basic block vectorization on trees. This flag is enabled by default at
<samp><span class="option">-O3</span></samp> and when <samp><span class="option">-ftree-vectorize</span></samp> is enabled.

     <br><dt><code>-ftree-vect-loop-version</code><dd><a name="index-ftree_002dvect_002dloop_002dversion-809"></a>Perform loop versioning when doing loop vectorization on trees.  When a loop
appears to be vectorizable except that data alignment or data dependence cannot
be determined at compile time then vectorized and non-vectorized versions of
the loop are generated along with runtime checks for alignment or dependence
to control which version is executed.  This option is enabled by default
except at level <samp><span class="option">-Os</span></samp> where it is disabled.

     <br><dt><code>-fvect-cost-model</code><dd><a name="index-fvect_002dcost_002dmodel-810"></a>Enable cost model for vectorization.

     <br><dt><code>-ftree-vrp</code><dd><a name="index-ftree_002dvrp-811"></a>Perform Value Range Propagation on trees.  This is similar to the
constant propagation pass, but instead of values, ranges of values are
propagated.  This allows the optimizers to remove unnecessary range
checks like array bound checks and null pointer checks.  This is
enabled by default at <samp><span class="option">-O2</span></samp> and higher.  Null pointer check
elimination is only done if <samp><span class="option">-fdelete-null-pointer-checks</span></samp> is
enabled.

     <br><dt><code>-ftracer</code><dd><a name="index-ftracer-812"></a>Perform tail duplication to enlarge superblock size.  This transformation
simplifies the control flow of the function allowing other optimizations to do
better job.

     <br><dt><code>-funroll-loops</code><dd><a name="index-funroll_002dloops-813"></a>Unroll loops whose number of iterations can be determined at compile
time or upon entry to the loop.  <samp><span class="option">-funroll-loops</span></samp> implies
<samp><span class="option">-frerun-cse-after-loop</span></samp>.  This option makes code larger,
and may or may not make it run faster.

     <br><dt><code>-funroll-all-loops</code><dd><a name="index-funroll_002dall_002dloops-814"></a>Unroll all loops, even if their number of iterations is uncertain when
the loop is entered.  This usually makes programs run more slowly. 
<samp><span class="option">-funroll-all-loops</span></samp> implies the same options as
<samp><span class="option">-funroll-loops</span></samp>,

     <br><dt><code>-fsplit-ivs-in-unroller</code><dd><a name="index-fsplit_002divs_002din_002dunroller-815"></a>Enables expressing of values of induction variables in later iterations
of the unrolled loop using the value in the first iteration.  This breaks
long dependency chains, thus improving efficiency of the scheduling passes.

     <p>Combination of <samp><span class="option">-fweb</span></samp> and CSE is often sufficient to obtain the
same effect.  However in cases the loop body is more complicated than
a single basic block, this is not reliable.  It also does not work at all
on some of the architectures due to restrictions in the CSE pass.

     <p>This optimization is enabled by default.

     <br><dt><code>-fvariable-expansion-in-unroller</code><dd><a name="index-fvariable_002dexpansion_002din_002dunroller-816"></a>With this option, the compiler will create multiple copies of some
local variables when unrolling a loop which can result in superior code.

     <br><dt><code>-fpartial-inlining</code><dd><a name="index-fpartial_002dinlining-817"></a>Inline parts of functions.  This option has any effect only
when inlining itself is turned on by the <samp><span class="option">-finline-functions</span></samp>
or <samp><span class="option">-finline-small-functions</span></samp> options.

     <p>Enabled at level <samp><span class="option">-O2</span></samp>.

     <br><dt><code>-fpredictive-commoning</code><dd><a name="index-fpredictive_002dcommoning-818"></a>Perform predictive commoning optimization, i.e., reusing computations
(especially memory loads and stores) performed in previous
iterations of loops.

     <p>This option is enabled at level <samp><span class="option">-O3</span></samp>.

     <br><dt><code>-fprefetch-loop-arrays</code><dd><a name="index-fprefetch_002dloop_002darrays-819"></a>If supported by the target machine, generate instructions to prefetch
memory to improve the performance of loops that access large arrays.

     <p>This option may generate better or worse code; results are highly
dependent on the structure of loops within the source code.

     <p>Disabled at level <samp><span class="option">-Os</span></samp>.

     <br><dt><code>-fno-peephole</code><dt><code>-fno-peephole2</code><dd><a name="index-fno_002dpeephole-820"></a><a name="index-fno_002dpeephole2-821"></a>Disable any machine-specific peephole optimizations.  The difference
between <samp><span class="option">-fno-peephole</span></samp> and <samp><span class="option">-fno-peephole2</span></samp> is in how they
are implemented in the compiler; some targets use one, some use the
other, a few use both.

     <p><samp><span class="option">-fpeephole</span></samp> is enabled by default. 
<samp><span class="option">-fpeephole2</span></samp> enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.

     <br><dt><code>-fno-guess-branch-probability</code><dd><a name="index-fno_002dguess_002dbranch_002dprobability-822"></a>Do not guess branch probabilities using heuristics.

     <p>GCC will use heuristics to guess branch probabilities if they are
not provided by profiling feedback (<samp><span class="option">-fprofile-arcs</span></samp>).  These
heuristics are based on the control flow graph.  If some branch probabilities
are specified by &lsquo;<samp><span class="samp">__builtin_expect</span></samp>&rsquo;, then the heuristics will be
used to guess branch probabilities for the rest of the control flow graph,
taking the &lsquo;<samp><span class="samp">__builtin_expect</span></samp>&rsquo; info into account.  The interactions
between the heuristics and &lsquo;<samp><span class="samp">__builtin_expect</span></samp>&rsquo; can be complex, and in
some cases, it may be useful to disable the heuristics so that the effects
of &lsquo;<samp><span class="samp">__builtin_expect</span></samp>&rsquo; are easier to understand.

     <p>The default is <samp><span class="option">-fguess-branch-probability</span></samp> at levels
<samp><span class="option">-O</span></samp>, <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.

     <br><dt><code>-freorder-blocks</code><dd><a name="index-freorder_002dblocks-823"></a>Reorder basic blocks in the compiled function in order to reduce number of
taken branches and improve code locality.

     <p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>.

     <br><dt><code>-freorder-blocks-and-partition</code><dd><a name="index-freorder_002dblocks_002dand_002dpartition-824"></a>In addition to reordering basic blocks in the compiled function, in order
to reduce number of taken branches, partitions hot and cold basic blocks
into separate sections of the assembly and .o files, to improve
paging and cache locality performance.

     <p>This optimization is automatically turned off in the presence of
exception handling, for linkonce sections, for functions with a user-defined
section attribute and on any architecture that does not support named
sections.

     <br><dt><code>-freorder-functions</code><dd><a name="index-freorder_002dfunctions-825"></a>Reorder functions in the object file in order to
improve code locality.  This is implemented by using special
subsections <code>.text.hot</code> for most frequently executed functions and
<code>.text.unlikely</code> for unlikely executed functions.  Reordering is done by
the linker so object file format must support named sections and linker must
place them in a reasonable way.

     <p>Also profile feedback must be available in to make this option effective.  See
<samp><span class="option">-fprofile-arcs</span></samp> for details.

     <p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.

     <br><dt><code>-fstrict-aliasing</code><dd><a name="index-fstrict_002daliasing-826"></a>Allow the compiler to assume the strictest aliasing rules applicable to
the language being compiled.  For C (and C++), this activates
optimizations based on the type of expressions.  In particular, an
object of one type is assumed never to reside at the same address as an
object of a different type, unless the types are almost the same.  For
example, an <code>unsigned int</code> can alias an <code>int</code>, but not a
<code>void*</code> or a <code>double</code>.  A character type may alias any other
type.

     <p><a name="Type_002dpunning"></a>Pay special attention to code like this:
     <pre class="smallexample">          union a_union {
            int i;
            double d;
          };
          
          int f() {
            union a_union t;
            t.d = 3.0;
            return t.i;
          }
</pre>
     <p>The practice of reading from a different union member than the one most
recently written to (called &ldquo;type-punning&rdquo;) is common.  Even with
<samp><span class="option">-fstrict-aliasing</span></samp>, type-punning is allowed, provided the memory
is accessed through the union type.  So, the code above will work as
expected.  See <a href="#Structures-unions-enumerations-and-bit_002dfields-implementation">Structures unions enumerations and bit-fields implementation</a>.  However, this code might not:
     <pre class="smallexample">          int f() {
            union a_union t;
            int* ip;
            t.d = 3.0;
            ip = &amp;t.i;
            return *ip;
          }
</pre>
     <p>Similarly, access by taking the address, casting the resulting pointer
and dereferencing the result has undefined behavior, even if the cast
uses a union type, e.g.:
     <pre class="smallexample">          int f() {
            double d = 3.0;
            return ((union a_union *) &amp;d)-&gt;i;
          }
</pre>
     <p>The <samp><span class="option">-fstrict-aliasing</span></samp> option is enabled at levels
<samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.

     <br><dt><code>-fstrict-overflow</code><dd><a name="index-fstrict_002doverflow-827"></a>Allow the compiler to assume strict signed overflow rules, depending
on the language being compiled.  For C (and C++) this means that
overflow when doing arithmetic with signed numbers is undefined, which
means that the compiler may assume that it will not happen.  This
permits various optimizations.  For example, the compiler will assume
that an expression like <code>i + 10 &gt; i</code> will always be true for
signed <code>i</code>.  This assumption is only valid if signed overflow is
undefined, as the expression is false if <code>i + 10</code> overflows when
using twos complement arithmetic.  When this option is in effect any
attempt to determine whether an operation on signed numbers will
overflow must be written carefully to not actually involve overflow.

     <p>This option also allows the compiler to assume strict pointer
semantics: given a pointer to an object, if adding an offset to that
pointer does not produce a pointer to the same object, the addition is
undefined.  This permits the compiler to conclude that <code>p + u &gt;
p</code> is always true for a pointer <code>p</code> and unsigned integer
<code>u</code>.  This assumption is only valid because pointer wraparound is
undefined, as the expression is false if <code>p + u</code> overflows using
twos complement arithmetic.

     <p>See also the <samp><span class="option">-fwrapv</span></samp> option.  Using <samp><span class="option">-fwrapv</span></samp> means
that integer signed overflow is fully defined: it wraps.  When
<samp><span class="option">-fwrapv</span></samp> is used, there is no difference between
<samp><span class="option">-fstrict-overflow</span></samp> and <samp><span class="option">-fno-strict-overflow</span></samp> for
integers.  With <samp><span class="option">-fwrapv</span></samp> certain types of overflow are
permitted.  For example, if the compiler gets an overflow when doing
arithmetic on constants, the overflowed value can still be used with
<samp><span class="option">-fwrapv</span></samp>, but not otherwise.

     <p>The <samp><span class="option">-fstrict-overflow</span></samp> option is enabled at levels
<samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.

     <br><dt><code>-falign-functions</code><dt><code>-falign-functions=</code><var>n</var><dd><a name="index-falign_002dfunctions-828"></a>Align the start of functions to the next power-of-two greater than
<var>n</var>, skipping up to <var>n</var> bytes.  For instance,
<samp><span class="option">-falign-functions=32</span></samp> aligns functions to the next 32-byte
boundary, but <samp><span class="option">-falign-functions=24</span></samp> would align to the next
32-byte boundary only if this can be done by skipping 23 bytes or less.

     <p><samp><span class="option">-fno-align-functions</span></samp> and <samp><span class="option">-falign-functions=1</span></samp> are
equivalent and mean that functions will not be aligned.

     <p>Some assemblers only support this flag when <var>n</var> is a power of two;
in that case, it is rounded up.

     <p>If <var>n</var> is not specified or is zero, use a machine-dependent default.

     <p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>.

     <br><dt><code>-falign-labels</code><dt><code>-falign-labels=</code><var>n</var><dd><a name="index-falign_002dlabels-829"></a>Align all branch targets to a power-of-two boundary, skipping up to
<var>n</var> bytes like <samp><span class="option">-falign-functions</span></samp>.  This option can easily
make code slower, because it must insert dummy operations for when the
branch target is reached in the usual flow of the code.

     <p><samp><span class="option">-fno-align-labels</span></samp> and <samp><span class="option">-falign-labels=1</span></samp> are
equivalent and mean that labels will not be aligned.

     <p>If <samp><span class="option">-falign-loops</span></samp> or <samp><span class="option">-falign-jumps</span></samp> are applicable and
are greater than this value, then their values are used instead.

     <p>If <var>n</var> is not specified or is zero, use a machine-dependent default
which is very likely to be &lsquo;<samp><span class="samp">1</span></samp>&rsquo;, meaning no alignment.

     <p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>.

     <br><dt><code>-falign-loops</code><dt><code>-falign-loops=</code><var>n</var><dd><a name="index-falign_002dloops-830"></a>Align loops to a power-of-two boundary, skipping up to <var>n</var> bytes
like <samp><span class="option">-falign-functions</span></samp>.  The hope is that the loop will be
executed many times, which will make up for any execution of the dummy
operations.

     <p><samp><span class="option">-fno-align-loops</span></samp> and <samp><span class="option">-falign-loops=1</span></samp> are
equivalent and mean that loops will not be aligned.

     <p>If <var>n</var> is not specified or is zero, use a machine-dependent default.

     <p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>.

     <br><dt><code>-falign-jumps</code><dt><code>-falign-jumps=</code><var>n</var><dd><a name="index-falign_002djumps-831"></a>Align branch targets to a power-of-two boundary, for branch targets
where the targets can only be reached by jumping, skipping up to <var>n</var>
bytes like <samp><span class="option">-falign-functions</span></samp>.  In this case, no dummy operations
need be executed.

     <p><samp><span class="option">-fno-align-jumps</span></samp> and <samp><span class="option">-falign-jumps=1</span></samp> are
equivalent and mean that loops will not be aligned.

     <p>If <var>n</var> is not specified or is zero, use a machine-dependent default.

     <p>Enabled at levels <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>.

     <br><dt><code>-funit-at-a-time</code><dd><a name="index-funit_002dat_002da_002dtime-832"></a>This option is left for compatibility reasons. <samp><span class="option">-funit-at-a-time</span></samp>
has no effect, while <samp><span class="option">-fno-unit-at-a-time</span></samp> implies
<samp><span class="option">-fno-toplevel-reorder</span></samp> and <samp><span class="option">-fno-section-anchors</span></samp>.

     <p>Enabled by default.

     <br><dt><code>-fno-toplevel-reorder</code><dd><a name="index-fno_002dtoplevel_002dreorder-833"></a>Do not reorder top-level functions, variables, and <code>asm</code>
statements.  Output them in the same order that they appear in the
input file.  When this option is used, unreferenced static variables
will not be removed.  This option is intended to support existing code
which relies on a particular ordering.  For new code, it is better to
use attributes.

     <p>Enabled at level <samp><span class="option">-O0</span></samp>.  When disabled explicitly, it also imply
<samp><span class="option">-fno-section-anchors</span></samp> that is otherwise enabled at <samp><span class="option">-O0</span></samp> on some
targets.

     <br><dt><code>-fweb</code><dd><a name="index-fweb-834"></a>Constructs webs as commonly used for register allocation purposes and assign
each web individual pseudo register.  This allows the register allocation pass
to operate on pseudos directly, but also strengthens several other optimization
passes, such as CSE, loop optimizer and trivial dead code remover.  It can,
however, make debugging impossible, since variables will no longer stay in a
&ldquo;home register&rdquo;.

     <p>Enabled by default with <samp><span class="option">-funroll-loops</span></samp>.

     <br><dt><code>-fwhole-program</code><dd><a name="index-fwhole_002dprogram-835"></a>Assume that the current compilation unit represents the whole program being
compiled.  All public functions and variables with the exception of <code>main</code>
and those merged by attribute <code>externally_visible</code> become static functions
and in effect are optimized more aggressively by interprocedural optimizers. If <samp><span class="command">gold</span></samp> is used as the linker plugin, <code>externally_visible</code> attributes are automatically added to functions (not variable yet due to a current <samp><span class="command">gold</span></samp> issue) that are accessed outside of LTO objects according to resolution file produced by <samp><span class="command">gold</span></samp>.  For other linkers that cannot generate resolution file, explicit <code>externally_visible</code> attributes are still necessary. 
While this option is equivalent to proper use of the <code>static</code> keyword for
programs consisting of a single file, in combination with option
<samp><span class="option">-flto</span></samp> this flag can be used to
compile many smaller scale programs since the functions and variables become
local for the whole combined compilation unit, not for the single source file
itself.

     <p>This option implies <samp><span class="option">-fwhole-file</span></samp> for Fortran programs.

     <br><dt><code>-flto[=</code><var>n</var><code>]</code><dd><a name="index-flto-836"></a>This option runs the standard link-time optimizer.  When invoked
with source code, it generates GIMPLE (one of GCC's internal
representations) and writes it to special ELF sections in the object
file.  When the object files are linked together, all the function
bodies are read from these ELF sections and instantiated as if they
had been part of the same translation unit.

     <p>To use the link-time optimizer, <samp><span class="option">-flto</span></samp> needs to be specified at
compile time and during the final link.  For example:

     <pre class="smallexample">          gcc -c -O2 -flto foo.c
          gcc -c -O2 -flto bar.c
          gcc -o myprog -flto -O2 foo.o bar.o
</pre>
     <p>The first two invocations to GCC save a bytecode representation
of GIMPLE into special ELF sections inside <samp><span class="file">foo.o</span></samp> and
<samp><span class="file">bar.o</span></samp>.  The final invocation reads the GIMPLE bytecode from
<samp><span class="file">foo.o</span></samp> and <samp><span class="file">bar.o</span></samp>, merges the two files into a single
internal image, and compiles the result as usual.  Since both
<samp><span class="file">foo.o</span></samp> and <samp><span class="file">bar.o</span></samp> are merged into a single image, this
causes all the interprocedural analyses and optimizations in GCC to
work across the two files as if they were a single one.  This means,
for example, that the inliner is able to inline functions in
<samp><span class="file">bar.o</span></samp> into functions in <samp><span class="file">foo.o</span></samp> and vice-versa.

     <p>Another (simpler) way to enable link-time optimization is:

     <pre class="smallexample">          gcc -o myprog -flto -O2 foo.c bar.c
</pre>
     <p>The above generates bytecode for <samp><span class="file">foo.c</span></samp> and <samp><span class="file">bar.c</span></samp>,
merges them together into a single GIMPLE representation and optimizes
them as usual to produce <samp><span class="file">myprog</span></samp>.

     <p>The only important thing to keep in mind is that to enable link-time
optimizations the <samp><span class="option">-flto</span></samp> flag needs to be passed to both the
compile and the link commands.

     <p>To make whole program optimization effective, it is necessary to make
certain whole program assumptions.  The compiler needs to know
what functions and variables can be accessed by libraries and runtime
outside of the link-time optimized unit.  When supported by the linker,
the linker plugin (see <samp><span class="option">-fuse-linker-plugin</span></samp>) passes information
to the compiler about used and externally visible symbols.  When
the linker plugin is not available, <samp><span class="option">-fwhole-program</span></samp> should be
used to allow the compiler to make these assumptions, which leads
to more aggressive optimization decisions.

     <p>Note that when a file is compiled with <samp><span class="option">-flto</span></samp>, the generated
object file is larger than a regular object file because it
contains GIMPLE bytecodes and the usual final code.  This means that
object files with LTO information can be linked as normal object
files; if <samp><span class="option">-flto</span></samp> is not passed to the linker, no
interprocedural optimizations are applied.

     <p>Additionally, the optimization flags used to compile individual files
are not necessarily related to those used at link time.  For instance,

     <pre class="smallexample">          gcc -c -O0 -flto foo.c
          gcc -c -O0 -flto bar.c
          gcc -o myprog -flto -O3 foo.o bar.o
</pre>
     <p>This produces individual object files with unoptimized assembler
code, but the resulting binary <samp><span class="file">myprog</span></samp> is optimized at
<samp><span class="option">-O3</span></samp>.  If, instead, the final binary is generated without
<samp><span class="option">-flto</span></samp>, then <samp><span class="file">myprog</span></samp> is not optimized.

     <p>When producing the final binary with <samp><span class="option">-flto</span></samp>, GCC only
applies link-time optimizations to those files that contain bytecode. 
Therefore, you can mix and match object files and libraries with
GIMPLE bytecodes and final object code.  GCC automatically selects
which files to optimize in LTO mode and which files to link without
further processing.

     <p>There are some code generation flags that GCC preserves when
generating bytecodes, as they need to be used during the final link
stage.  Currently, the following options are saved into the GIMPLE
bytecode files: <samp><span class="option">-fPIC</span></samp>, <samp><span class="option">-fcommon</span></samp> and all the
<samp><span class="option">-m</span></samp> target flags.

     <p>At link time, these options are read in and reapplied.  Note that the
current implementation makes no attempt to recognize conflicting
values for these options.  If different files have conflicting option
values (e.g., one file is compiled with <samp><span class="option">-fPIC</span></samp> and another
isn't), the compiler simply uses the last value read from the
bytecode files.  It is recommended, then, that you compile all the files
participating in the same link with the same options.

     <p>If LTO encounters objects with C linkage declared with incompatible
types in separate translation units to be linked together (undefined
behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
issued.  The behavior is still undefined at runtime.

     <p>Another feature of LTO is that it is possible to apply interprocedural
optimizations on files written in different languages.  This requires
support in the language front end.  Currently, the C, C++ and
Fortran front ends are capable of emitting GIMPLE bytecodes, so
something like this should work:

     <pre class="smallexample">          gcc -c -flto foo.c
          g++ -c -flto bar.cc
          gfortran -c -flto baz.f90
          g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
</pre>
     <p>Notice that the final link is done with <samp><span class="command">g++</span></samp> to get the C++
runtime libraries and <samp><span class="option">-lgfortran</span></samp> is added to get the Fortran
runtime libraries.  In general, when mixing languages in LTO mode, you
should use the same link command options as when mixing languages in a
regular (non-LTO) compilation; all you need to add is <samp><span class="option">-flto</span></samp> to
all the compile and link commands.

     <p>If object files containing GIMPLE bytecode are stored in a library archive, say
<samp><span class="file">libfoo.a</span></samp>, it is possible to extract and use them in an LTO link if you
are using a linker with plugin support.  To enable this feature, use
the flag <samp><span class="option">-fuse-linker-plugin</span></samp> at link time:

     <pre class="smallexample">          gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
</pre>
     <p>With the linker plugin enabled, the linker extracts the needed
GIMPLE files from <samp><span class="file">libfoo.a</span></samp> and passes them on to the running GCC
to make them part of the aggregated GIMPLE image to be optimized.

     <p>If you are not using a linker with plugin support and/or do not
enable the linker plugin, then the objects inside <samp><span class="file">libfoo.a</span></samp>
are extracted and linked as usual, but they do not participate
in the LTO optimization process.

     <p>Link-time optimizations do not require the presence of the whole program to
operate.  If the program does not require any symbols to be exported, it is
possible to combine <samp><span class="option">-flto</span></samp> and <samp><span class="option">-fwhole-program</span></samp> to allow
the interprocedural optimizers to use more aggressive assumptions which may
lead to improved optimization opportunities. 
Use of <samp><span class="option">-fwhole-program</span></samp> is not needed when linker plugin is
active (see <samp><span class="option">-fuse-linker-plugin</span></samp>).

     <p>The current implementation of LTO makes no
attempt to generate bytecode that is portable between different
types of hosts.  The bytecode files are versioned and there is a
strict version check, so bytecode files generated in one version of
GCC will not work with an older/newer version of GCC.

     <p>Link-time optimization does not work well with generation of debugging
information.  Combining <samp><span class="option">-flto</span></samp> with
<samp><span class="option">-g</span></samp> is currently experimental and expected to produce wrong
results.

     <p>If you specify the optional <var>n</var>, the optimization and code
generation done at link time is executed in parallel using <var>n</var>
parallel jobs by utilizing an installed <samp><span class="command">make</span></samp> program.  The
environment variable <samp><span class="env">MAKE</span></samp> may be used to override the program
used.  The default value for <var>n</var> is 1.

     <p>You can also specify <samp><span class="option">-flto=jobserver</span></samp> to use GNU make's
job server mode to determine the number of parallel jobs. This
is useful when the Makefile calling GCC is already executing in parallel. 
You must prepend a &lsquo;<samp><span class="samp">+</span></samp>&rsquo; to the command recipe in the parent Makefile
for this to work.  This option likely only works if <samp><span class="env">MAKE</span></samp> is
GNU make.

     <p>This option is disabled by default.

     <br><dt><code>-flto-partition=</code><var>alg</var><dd><a name="index-flto_002dpartition-837"></a>Specify the partitioning algorithm used by the link-time optimizer. 
The value is either <code>1to1</code> to specify a partitioning mirroring
the original source files or <code>balanced</code> to specify partitioning
into equally sized chunks (whenever possible).  Specifying <code>none</code>
as an algorithm disables partitioning and streaming completely. The
default value is <code>balanced</code>.

     <br><dt><code>-flto-compression-level=</code><var>n</var><dd>This option specifies the level of compression used for intermediate
language written to LTO object files, and is only meaningful in
conjunction with LTO mode (<samp><span class="option">-flto</span></samp>).  Valid
values are 0 (no compression) to 9 (maximum compression).  Values
outside this range are clamped to either 0 or 9.  If the option is not
given, a default balanced compression setting is used.

     <br><dt><code>-flto-report</code><dd>Prints a report with internal details on the workings of the link-time
optimizer.  The contents of this report vary from version to version. 
It is meant to be useful to GCC developers when processing object
files in LTO mode (via <samp><span class="option">-flto</span></samp>).

     <p>Disabled by default.

     <br><dt><code>-fuse-linker-plugin</code><dd>Enables the use of a linker plugin during link-time optimization.  This
option relies on the linker plugin support in linker that is available in gold
or in GNU ld 2.21 or newer.

     <p>This option enables the extraction of object files with GIMPLE bytecode out
of library archives. This improves the quality of optimization by exposing
more code to the link-time optimizer.  This information specifies what
symbols can be accessed externally (by non-LTO object or during dynamic
linking).  Resulting code quality improvements on binaries (and shared
libraries that use hidden visibility) are similar to <code>-fwhole-program</code>. 
See <samp><span class="option">-flto</span></samp> for a description of the effect of this flag and how to
use it.

     <p>This option is enabled by default when LTO support in GCC is enabled
and GCC was configured for use with
a linker supporting plugins (GNU ld 2.21 or newer or gold).

     <br><dt><code>-fcompare-elim</code><dd><a name="index-fcompare_002delim-838"></a>After register allocation and post-register allocation instruction splitting,
identify arithmetic instructions that compute processor flags similar to a
comparison operation based on that arithmetic.  If possible, eliminate the
explicit comparison operation.

     <p>This pass only applies to certain targets that cannot explicitly represent
the comparison operation before register allocation is complete.

     <p>Enabled at levels <samp><span class="option">-O</span></samp>, <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.

     <br><dt><code>-fcprop-registers</code><dd><a name="index-fcprop_002dregisters-839"></a>After register allocation and post-register allocation instruction splitting,
we perform a copy-propagation pass to try to reduce scheduling dependencies
and occasionally eliminate the copy.

     <p>Enabled at levels <samp><span class="option">-O</span></samp>, <samp><span class="option">-O2</span></samp>, <samp><span class="option">-O3</span></samp>, <samp><span class="option">-Os</span></samp>.

     <br><dt><code>-fprofile-correction</code><dd><a name="index-fprofile_002dcorrection-840"></a>Profiles collected using an instrumented binary for multi-threaded programs may
be inconsistent due to missed counter updates. When this option is specified,
GCC will use heuristics to correct or smooth out such inconsistencies. By
default, GCC will emit an error message when an inconsistent profile is detected.

     <br><dt><code>-fprofile-dir=</code><var>path</var><dd><a name="index-fprofile_002ddir-841"></a>
Set the directory to search for the profile data files in to <var>path</var>. 
This option affects only the profile data generated by
<samp><span class="option">-fprofile-generate</span></samp>, <samp><span class="option">-ftest-coverage</span></samp>, <samp><span class="option">-fprofile-arcs</span></samp>
and used by <samp><span class="option">-fprofile-use</span></samp> and <samp><span class="option">-fbranch-probabilities</span></samp>
and its related options. 
By default, GCC will use the current directory as <var>path</var>, thus the
profile data file will appear in the same directory as the object file.

     <br><dt><code>-fprofile-generate</code><dt><code>-fprofile-generate=</code><var>path</var><dd><a name="index-fprofile_002dgenerate-842"></a>
Enable options usually used for instrumenting application to produce
profile useful for later recompilation with profile feedback based
optimization.  You must use <samp><span class="option">-fprofile-generate</span></samp> both when
compiling and when linking your program.

     <p>The following options are enabled: <code>-fprofile-arcs</code>, <code>-fprofile-values</code>, <code>-fvpt</code>.

     <p>If <var>path</var> is specified, GCC will look at the <var>path</var> to find
the profile feedback data files. See <samp><span class="option">-fprofile-dir</span></samp>.

     <br><dt><code>-fprofile-use</code><dt><code>-fprofile-use=</code><var>path</var><dd><a name="index-fprofile_002duse-843"></a>Enable profile feedback directed optimizations, and optimizations
generally profitable only with profile feedback available.

     <p>The following options are enabled: <code>-fbranch-probabilities</code>, <code>-fvpt</code>,
<code>-funroll-loops</code>, <code>-fpeel-loops</code>, <code>-ftracer</code>

     <p>By default, GCC emits an error message if the feedback profiles do not
match the source code.  This error can be turned into a warning by using
<samp><span class="option">-Wcoverage-mismatch</span></samp>.  Note this may result in poorly optimized
code.

     <p>If <var>path</var> is specified, GCC will look at the <var>path</var> to find
the profile feedback data files. See <samp><span class="option">-fprofile-dir</span></samp>. 
</dl>

 <p>The following options control compiler behavior regarding floating
point arithmetic.  These options trade off between speed and
correctness.  All must be specifically enabled.

     <dl>
<dt><code>-ffloat-store</code><dd><a name="index-ffloat_002dstore-844"></a>Do not store floating point variables in registers, and inhibit other
options that might change whether a floating point value is taken from a
register or memory.

     <p><a name="index-floating-point-precision-845"></a>This option prevents undesirable excess precision on machines such as
the 68000 where the floating registers (of the 68881) keep more
precision than a <code>double</code> is supposed to have.  Similarly for the
x86 architecture.  For most programs, the excess precision does only
good, but a few programs rely on the precise definition of IEEE floating
point.  Use <samp><span class="option">-ffloat-store</span></samp> for such programs, after modifying
them to store all pertinent intermediate computations into variables.

     <br><dt><code>-fexcess-precision=</code><var>style</var><dd><a name="index-fexcess_002dprecision-846"></a>This option allows further control over excess precision on machines
where floating-point registers have more precision than the IEEE
<code>float</code> and <code>double</code> types and the processor does not
support operations rounding to those types.  By default,
<samp><span class="option">-fexcess-precision=fast</span></samp> is in effect; this means that
operations are carried out in the precision of the registers and that
it is unpredictable when rounding to the types specified in the source
code takes place.  When compiling C, if
<samp><span class="option">-fexcess-precision=standard</span></samp> is specified then excess
precision will follow the rules specified in ISO C99; in particular,
both casts and assignments cause values to be rounded to their
semantic types (whereas <samp><span class="option">-ffloat-store</span></samp> only affects
assignments).  This option is enabled by default for C if a strict
conformance option such as <samp><span class="option">-std=c99</span></samp> is used.

     <p><a name="index-mfpmath-847"></a><samp><span class="option">-fexcess-precision=standard</span></samp> is not implemented for languages
other than C, and has no effect if
<samp><span class="option">-funsafe-math-optimizations</span></samp> or <samp><span class="option">-ffast-math</span></samp> is
specified.  On the x86, it also has no effect if <samp><span class="option">-mfpmath=sse</span></samp>
or <samp><span class="option">-mfpmath=sse+387</span></samp> is specified; in the former case, IEEE
semantics apply without excess precision, and in the latter, rounding
is unpredictable.

     <br><dt><code>-ffast-math</code><dd><a name="index-ffast_002dmath-848"></a>Sets <samp><span class="option">-fno-math-errno</span></samp>, <samp><span class="option">-funsafe-math-optimizations</span></samp>,
<samp><span class="option">-ffinite-math-only</span></samp>, <samp><span class="option">-fno-rounding-math</span></samp>,
<samp><span class="option">-fno-signaling-nans</span></samp> and <samp><span class="option">-fcx-limited-range</span></samp>.

     <p>This option causes the preprocessor macro <code>__FAST_MATH__</code> to be defined.

     <p>This option is not turned on by any <samp><span class="option">-O</span></samp> option besides
<samp><span class="option">-Ofast</span></samp> since it can result in incorrect output for programs
which depend on an exact implementation of IEEE or ISO rules/specifications
for math functions. It may, however, yield faster code for programs
that do not require the guarantees of these specifications.

     <br><dt><code>-fno-math-errno</code><dd><a name="index-fno_002dmath_002derrno-849"></a>Do not set ERRNO after calling math functions that are executed
with a single instruction, e.g., sqrt.  A program that relies on
IEEE exceptions for math error handling may want to use this flag
for speed while maintaining IEEE arithmetic compatibility.

     <p>This option is not turned on by any <samp><span class="option">-O</span></samp> option since
it can result in incorrect output for programs which depend on
an exact implementation of IEEE or ISO rules/specifications for
math functions. It may, however, yield faster code for programs
that do not require the guarantees of these specifications.

     <p>The default is <samp><span class="option">-fmath-errno</span></samp>.

     <p>On Darwin systems, the math library never sets <code>errno</code>.  There is
therefore no reason for the compiler to consider the possibility that
it might, and <samp><span class="option">-fno-math-errno</span></samp> is the default.

     <br><dt><code>-funsafe-math-optimizations</code><dd><a name="index-funsafe_002dmath_002doptimizations-850"></a>
Allow optimizations for floating-point arithmetic that (a) assume
that arguments and results are valid and (b) may violate IEEE or
ANSI standards.  When used at link-time, it may include libraries
or startup files that change the default FPU control word or other
similar optimizations.

     <p>This option is not turned on by any <samp><span class="option">-O</span></samp> option since
it can result in incorrect output for programs which depend on
an exact implementation of IEEE or ISO rules/specifications for
math functions. It may, however, yield faster code for programs
that do not require the guarantees of these specifications. 
Enables <samp><span class="option">-fno-signed-zeros</span></samp>, <samp><span class="option">-fno-trapping-math</span></samp>,
<samp><span class="option">-fassociative-math</span></samp> and <samp><span class="option">-freciprocal-math</span></samp>.

     <p>The default is <samp><span class="option">-fno-unsafe-math-optimizations</span></samp>.

     <br><dt><code>-fassociative-math</code><dd><a name="index-fassociative_002dmath-851"></a>
Allow re-association of operands in series of floating-point operations. 
This violates the ISO C and C++ language standard by possibly changing
computation result.  NOTE: re-ordering may change the sign of zero as
well as ignore NaNs and inhibit or create underflow or overflow (and
thus cannot be used on a code which relies on rounding behavior like
<code>(x + 2**52) - 2**52)</code>.  May also reorder floating-point comparisons
and thus may not be used when ordered comparisons are required. 
This option requires that both <samp><span class="option">-fno-signed-zeros</span></samp> and
<samp><span class="option">-fno-trapping-math</span></samp> be in effect.  Moreover, it doesn't make
much sense with <samp><span class="option">-frounding-math</span></samp>. For Fortran the option
is automatically enabled when both <samp><span class="option">-fno-signed-zeros</span></samp> and
<samp><span class="option">-fno-trapping-math</span></samp> are in effect.

     <p>The default is <samp><span class="option">-fno-associative-math</span></samp>.

     <br><dt><code>-freciprocal-math</code><dd><a name="index-freciprocal_002dmath-852"></a>
Allow the reciprocal of a value to be used instead of dividing by
the value if this enables optimizations.  For example <code>x / y</code>
can be replaced with <code>x * (1/y)</code> which is useful if <code>(1/y)</code>
is subject to common subexpression elimination.  Note that this loses
precision and increases the number of flops operating on the value.

     <p>The default is <samp><span class="option">-fno-reciprocal-math</span></samp>.

     <br><dt><code>-ffinite-math-only</code><dd><a name="index-ffinite_002dmath_002donly-853"></a>Allow optimizations for floating-point arithmetic that assume
that arguments and results are not NaNs or +-Infs.

     <p>This option is not turned on by any <samp><span class="option">-O</span></samp> option since
it can result in incorrect output for programs which depend on
an exact implementation of IEEE or ISO rules/specifications for
math functions. It may, however, yield faster code for programs
that do not require the guarantees of these specifications.

     <p>The default is <samp><span class="option">-fno-finite-math-only</span></samp>.

     <br><dt><code>-fno-signed-zeros</code><dd><a name="index-fno_002dsigned_002dzeros-854"></a>Allow optimizations for floating point arithmetic that ignore the
signedness of zero.  IEEE arithmetic specifies the behavior of
distinct +0.0 and &minus;0.0 values, which then prohibits simplification
of expressions such as x+0.0 or 0.0*x (even with <samp><span class="option">-ffinite-math-only</span></samp>). 
This option implies that the sign of a zero result isn't significant.

     <p>The default is <samp><span class="option">-fsigned-zeros</span></samp>.

     <br><dt><code>-fno-trapping-math</code><dd><a name="index-fno_002dtrapping_002dmath-855"></a>Compile code assuming that floating-point operations cannot generate
user-visible traps.  These traps include division by zero, overflow,
underflow, inexact result and invalid operation.  This option requires
that <samp><span class="option">-fno-signaling-nans</span></samp> be in effect.  Setting this option may
allow faster code if one relies on &ldquo;non-stop&rdquo; IEEE arithmetic, for example.

     <p>This option should never be turned on by any <samp><span class="option">-O</span></samp> option since
it can result in incorrect output for programs which depend on
an exact implementation of IEEE or ISO rules/specifications for
math functions.

     <p>The default is <samp><span class="option">-ftrapping-math</span></samp>.

     <br><dt><code>-frounding-math</code><dd><a name="index-frounding_002dmath-856"></a>Disable transformations and optimizations that assume default floating
point rounding behavior.  This is round-to-zero for all floating point
to integer conversions, and round-to-nearest for all other arithmetic
truncations.  This option should be specified for programs that change
the FP rounding mode dynamically, or that may be executed with a
non-default rounding mode.  This option disables constant folding of
floating point expressions at compile-time (which may be affected by
rounding mode) and arithmetic transformations that are unsafe in the
presence of sign-dependent rounding modes.

     <p>The default is <samp><span class="option">-fno-rounding-math</span></samp>.

     <p>This option is experimental and does not currently guarantee to
disable all GCC optimizations that are affected by rounding mode. 
Future versions of GCC may provide finer control of this setting
using C99's <code>FENV_ACCESS</code> pragma.  This command line option
will be used to specify the default state for <code>FENV_ACCESS</code>.

     <br><dt><code>-fsignaling-nans</code><dd><a name="index-fsignaling_002dnans-857"></a>Compile code assuming that IEEE signaling NaNs may generate user-visible
traps during floating-point operations.  Setting this option disables
optimizations that may change the number of exceptions visible with
signaling NaNs.  This option implies <samp><span class="option">-ftrapping-math</span></samp>.

     <p>This option causes the preprocessor macro <code>__SUPPORT_SNAN__</code> to
be defined.

     <p>The default is <samp><span class="option">-fno-signaling-nans</span></samp>.

     <p>This option is experimental and does not currently guarantee to
disable all GCC optimizations that affect signaling NaN behavior.

     <br><dt><code>-fsingle-precision-constant</code><dd><a name="index-fsingle_002dprecision_002dconstant-858"></a>Treat floating point constant as single precision constant instead of
implicitly converting it to double precision constant.

     <br><dt><code>-fcx-limited-range</code><dd><a name="index-fcx_002dlimited_002drange-859"></a>When enabled, this option states that a range reduction step is not
needed when performing complex division.  Also, there is no checking
whether the result of a complex multiplication or division is <code>NaN
+ I*NaN</code>, with an attempt to rescue the situation in that case.  The
default is <samp><span class="option">-fno-cx-limited-range</span></samp>, but is enabled by
<samp><span class="option">-ffast-math</span></samp>.

     <p>This option controls the default setting of the ISO C99
<code>CX_LIMITED_RANGE</code> pragma.  Nevertheless, the option applies to
all languages.

     <br><dt><code>-fcx-fortran-rules</code><dd><a name="index-fcx_002dfortran_002drules-860"></a>Complex multiplication and division follow Fortran rules.  Range
reduction is done as part of complex division, but there is no checking
whether the result of a complex multiplication or division is <code>NaN
+ I*NaN</code>, with an attempt to rescue the situation in that case.

     <p>The default is <samp><span class="option">-fno-cx-fortran-rules</span></samp>.

 </dl>

 <p>The following options control optimizations that may improve
performance, but are not enabled by any <samp><span class="option">-O</span></samp> options.  This
section includes experimental options that may produce broken code.

     <dl>
<dt><code>-fbranch-probabilities</code><dd><a name="index-fbranch_002dprobabilities-861"></a>After running a program compiled with <samp><span class="option">-fprofile-arcs</span></samp>
(see <a href="#Debugging-Options">Options for Debugging Your Program or <samp><span class="command">gcc</span></samp></a>), you can compile it a second time using
<samp><span class="option">-fbranch-probabilities</span></samp>, to improve optimizations based on
the number of times each branch was taken.  When the program
compiled with <samp><span class="option">-fprofile-arcs</span></samp> exits it saves arc execution
counts to a file called <samp><var>sourcename</var><span class="file">.gcda</span></samp> for each source
file.  The information in this data file is very dependent on the
structure of the generated code, so you must use the same source code
and the same optimization options for both compilations.

     <p>With <samp><span class="option">-fbranch-probabilities</span></samp>, GCC puts a
&lsquo;<samp><span class="samp">REG_BR_PROB</span></samp>&rsquo; note on each &lsquo;<samp><span class="samp">JUMP_INSN</span></samp>&rsquo; and &lsquo;<samp><span class="samp">CALL_INSN</span></samp>&rsquo;. 
These can be used to improve optimization.  Currently, they are only
used in one place: in <samp><span class="file">reorg.c</span></samp>, instead of guessing which path a
branch is most likely to take, the &lsquo;<samp><span class="samp">REG_BR_PROB</span></samp>&rsquo; values are used to
exactly determine which path is taken more often.

     <br><dt><code>-fprofile-values</code><dd><a name="index-fprofile_002dvalues-862"></a>If combined with <samp><span class="option">-fprofile-arcs</span></samp>, it adds code so that some
data about values of expressions in the program is gathered.

     <p>With <samp><span class="option">-fbranch-probabilities</span></samp>, it reads back the data gathered
from profiling values of expressions for usage in optimizations.

     <p>Enabled with <samp><span class="option">-fprofile-generate</span></samp> and <samp><span class="option">-fprofile-use</span></samp>.

     <br><dt><code>-fvpt</code><dd><a name="index-fvpt-863"></a>If combined with <samp><span class="option">-fprofile-arcs</span></samp>, it instructs the compiler to add
a code to gather information about values of expressions.

     <p>With <samp><span class="option">-fbranch-probabilities</span></samp>, it reads back the data gathered
and actually performs the optimizations based on them. 
Currently the optimizations include specialization of division operation
using the knowledge about the value of the denominator.

     <br><dt><code>-frename-registers</code><dd><a name="index-frename_002dregisters-864"></a>Attempt to avoid false dependencies in scheduled code by making use
of registers left over after register allocation.  This optimization
will most benefit processors with lots of registers.  Depending on the
debug information format adopted by the target, however, it can
make debugging impossible, since variables will no longer stay in
a &ldquo;home register&rdquo;.

     <p>Enabled by default with <samp><span class="option">-funroll-loops</span></samp> and <samp><span class="option">-fpeel-loops</span></samp>.

     <br><dt><code>-ftracer</code><dd><a name="index-ftracer-865"></a>Perform tail duplication to enlarge superblock size.  This transformation
simplifies the control flow of the function allowing other optimizations to do
better job.

     <p>Enabled with <samp><span class="option">-fprofile-use</span></samp>.

     <br><dt><code>-funroll-loops</code><dd><a name="index-funroll_002dloops-866"></a>Unroll loops whose number of iterations can be determined at compile time or
upon entry to the loop.  <samp><span class="option">-funroll-loops</span></samp> implies
<samp><span class="option">-frerun-cse-after-loop</span></samp>, <samp><span class="option">-fweb</span></samp> and <samp><span class="option">-frename-registers</span></samp>. 
It also turns on complete loop peeling (i.e. complete removal of loops with
small constant number of iterations).  This option makes code larger, and may
or may not make it run faster.

     <p>Enabled with <samp><span class="option">-fprofile-use</span></samp>.

     <br><dt><code>-funroll-all-loops</code><dd><a name="index-funroll_002dall_002dloops-867"></a>Unroll all loops, even if their number of iterations is uncertain when
the loop is entered.  This usually makes programs run more slowly. 
<samp><span class="option">-funroll-all-loops</span></samp> implies the same options as
<samp><span class="option">-funroll-loops</span></samp>.

     <br><dt><code>-fpeel-loops</code><dd><a name="index-fpeel_002dloops-868"></a>Peels the loops for that there is enough information that they do not
roll much (from profile feedback).  It also turns on complete loop peeling
(i.e. complete removal of loops with small constant number of iterations).

     <p>Enabled with <samp><span class="option">-fprofile-use</span></samp>.

     <br><dt><code>-fmove-loop-invariants</code><dd><a name="index-fmove_002dloop_002dinvariants-869"></a>Enables the loop invariant motion pass in the RTL loop optimizer.  Enabled
at level <samp><span class="option">-O1</span></samp>

     <br><dt><code>-funswitch-loops</code><dd><a name="index-funswitch_002dloops-870"></a>Move branches with loop invariant conditions out of the loop, with duplicates
of the loop on both branches (modified according to result of the condition).

     <br><dt><code>-ffunction-sections</code><dt><code>-fdata-sections</code><dd><a name="index-ffunction_002dsections-871"></a><a name="index-fdata_002dsections-872"></a>Place each function or data item into its own section in the output
file if the target supports arbitrary sections.  The name of the
function or the name of the data item determines the section's name
in the output file.

     <p>Use these options on systems where the linker can perform optimizations
to improve locality of reference in the instruction space.  Most systems
using the ELF object format and SPARC processors running Solaris 2 have
linkers with such optimizations.  AIX may have these optimizations in
the future.

     <p>Only use these options when there are significant benefits from doing
so.  When you specify these options, the assembler and linker will
create larger object and executable files and will also be slower. 
You will not be able to use <code>gprof</code> on all systems if you
specify this option and you may have problems with debugging if
you specify both this option and <samp><span class="option">-g</span></samp>.

     <br><dt><code>-fbranch-target-load-optimize</code><dd><a name="index-fbranch_002dtarget_002dload_002doptimize-873"></a>Perform branch target register load optimization before prologue / epilogue
threading. 
The use of target registers can typically be exposed only during reload,
thus hoisting loads out of loops and doing inter-block scheduling needs
a separate optimization pass.

     <br><dt><code>-fbranch-target-load-optimize2</code><dd><a name="index-fbranch_002dtarget_002dload_002doptimize2-874"></a>Perform branch target register load optimization after prologue / epilogue
threading.

     <br><dt><code>-fbtr-bb-exclusive</code><dd><a name="index-fbtr_002dbb_002dexclusive-875"></a>When performing branch target register load optimization, don't reuse
branch target registers in within any basic block.

     <br><dt><code>-fstack-protector</code><dd><a name="index-fstack_002dprotector-876"></a>Emit extra code to check for buffer overflows, such as stack smashing
attacks.  This is done by adding a guard variable to functions with
vulnerable objects.  This includes functions that call alloca, and
functions with buffers larger than 8 bytes.  The guards are initialized
when a function is entered and then checked when the function exits. 
If a guard check fails, an error message is printed and the program exits.

     <p>NOTE: In Ubuntu 6.10 and later versions this option is enabled by default
for C, C++, ObjC, ObjC++, if none of <samp><span class="option">-fno-stack-protector</span></samp>,
<samp><span class="option">-nostdlib</span></samp>, nor <samp><span class="option">-ffreestanding</span></samp> are found.

     <br><dt><code>-fstack-protector-all</code><dd><a name="index-fstack_002dprotector_002dall-877"></a>Like <samp><span class="option">-fstack-protector</span></samp> except that all functions are protected.

     <br><dt><code>-fsection-anchors</code><dd><a name="index-fsection_002danchors-878"></a>Try to reduce the number of symbolic address calculations by using
shared &ldquo;anchor&rdquo; symbols to address nearby objects.  This transformation
can help to reduce the number of GOT entries and GOT accesses on some
targets.

     <p>For example, the implementation of the following function <code>foo</code>:

     <pre class="smallexample">          static int a, b, c;
          int foo (void) { return a + b + c; }
</pre>
     <p>would usually calculate the addresses of all three variables, but if you
compile it with <samp><span class="option">-fsection-anchors</span></samp>, it will access the variables
from a common anchor point instead.  The effect is similar to the
following pseudocode (which isn't valid C):

     <pre class="smallexample">          int foo (void)
          {
            register int *xr = &amp;x;
            return xr[&amp;a - &amp;x] + xr[&amp;b - &amp;x] + xr[&amp;c - &amp;x];
          }
</pre>
     <p>Not all targets support this option.

     <br><dt><code>--param </code><var>name</var><code>=</code><var>value</var><dd><a name="index-param-879"></a>In some places, GCC uses various constants to control the amount of
optimization that is done.  For example, GCC will not inline functions
that contain more that a certain number of instructions.  You can
control some of these constants on the command-line using the
<samp><span class="option">--param</span></samp> option.

     <p>The names of specific parameters, and the meaning of the values, are
tied to the internals of the compiler, and are subject to change
without notice in future releases.

     <p>In each case, the <var>value</var> is an integer.  The allowable choices for
<var>name</var> are given in the following table:

          <dl>
<dt><code>struct-reorg-cold-struct-ratio</code><dd>The threshold ratio (as a percentage) between a structure frequency
and the frequency of the hottest structure in the program.  This parameter
is used by struct-reorg optimization enabled by <samp><span class="option">-fipa-struct-reorg</span></samp>. 
We say that if the ratio of a structure frequency, calculated by profiling,
to the hottest structure frequency in the program is less than this
parameter, then structure reorganization is not applied to this structure. 
The default is 10.

          <br><dt><code>predictable-branch-outcome</code><dd>When branch is predicted to be taken with probability lower than this threshold
(in percent), then it is considered well predictable. The default is 10.

          <br><dt><code>max-crossjump-edges</code><dd>The maximum number of incoming edges to consider for crossjumping. 
The algorithm used by <samp><span class="option">-fcrossjumping</span></samp> is O(N^2) in
the number of edges incoming to each block.  Increasing values mean
more aggressive optimization, making the compile time increase with
probably small improvement in executable size.

          <br><dt><code>min-crossjump-insns</code><dd>The minimum number of instructions which must be matched at the end
of two blocks before crossjumping will be performed on them.  This
value is ignored in the case where all instructions in the block being
crossjumped from are matched.  The default value is 5.

          <br><dt><code>max-grow-copy-bb-insns</code><dd>The maximum code size expansion factor when copying basic blocks
instead of jumping.  The expansion is relative to a jump instruction. 
The default value is 8.

          <br><dt><code>max-goto-duplication-insns</code><dd>The maximum number of instructions to duplicate to a block that jumps
to a computed goto.  To avoid O(N^2) behavior in a number of
passes, GCC factors computed gotos early in the compilation process,
and unfactors them as late as possible.  Only computed jumps at the
end of a basic blocks with no more than max-goto-duplication-insns are
unfactored.  The default value is 8.

          <br><dt><code>max-delay-slot-insn-search</code><dd>The maximum number of instructions to consider when looking for an
instruction to fill a delay slot.  If more than this arbitrary number of
instructions is searched, the time savings from filling the delay slot
will be minimal so stop searching.  Increasing values mean more
aggressive optimization, making the compile time increase with probably
small improvement in executable run time.

          <br><dt><code>max-delay-slot-live-search</code><dd>When trying to fill delay slots, the maximum number of instructions to
consider when searching for a block with valid live register
information.  Increasing this arbitrarily chosen value means more
aggressive optimization, increasing the compile time.  This parameter
should be removed when the delay slot code is rewritten to maintain the
control-flow graph.

          <br><dt><code>max-gcse-memory</code><dd>The approximate maximum amount of memory that will be allocated in
order to perform the global common subexpression elimination
optimization.  If more memory than specified is required, the
optimization will not be done.

          <br><dt><code>max-gcse-insertion-ratio</code><dd>If the ratio of expression insertions to deletions is larger than this value
for any expression, then RTL PRE will insert or remove the expression and thus
leave partially redundant computations in the instruction stream.  The default value is 20.

          <br><dt><code>max-pending-list-length</code><dd>The maximum number of pending dependencies scheduling will allow
before flushing the current state and starting over.  Large functions
with few branches or calls can create excessively large lists which
needlessly consume memory and resources.

          <br><dt><code>max-inline-insns-single</code><dd>Several parameters control the tree inliner used in gcc. 
This number sets the maximum number of instructions (counted in GCC's
internal representation) in a single function that the tree inliner
will consider for inlining.  This only affects functions declared
inline and methods implemented in a class declaration (C++). 
The default value is 400.

          <br><dt><code>max-inline-insns-auto</code><dd>When you use <samp><span class="option">-finline-functions</span></samp> (included in <samp><span class="option">-O3</span></samp>),
a lot of functions that would otherwise not be considered for inlining
by the compiler will be investigated.  To those functions, a different
(more restrictive) limit compared to functions declared inline can
be applied. 
The default value is 40.

          <br><dt><code>large-function-insns</code><dd>The limit specifying really large functions.  For functions larger than this
limit after inlining, inlining is constrained by
<samp><span class="option">--param large-function-growth</span></samp>.  This parameter is useful primarily
to avoid extreme compilation time caused by non-linear algorithms used by the
backend. 
The default value is 2700.

          <br><dt><code>large-function-growth</code><dd>Specifies maximal growth of large function caused by inlining in percents. 
The default value is 100 which limits large function growth to 2.0 times
the original size.

          <br><dt><code>large-unit-insns</code><dd>The limit specifying large translation unit.  Growth caused by inlining of
units larger than this limit is limited by <samp><span class="option">--param inline-unit-growth</span></samp>. 
For small units this might be too tight (consider unit consisting of function A
that is inline and B that just calls A three time.  If B is small relative to
A, the growth of unit is 300\% and yet such inlining is very sane.  For very
large units consisting of small inlineable functions however the overall unit
growth limit is needed to avoid exponential explosion of code size.  Thus for
smaller units, the size is increased to <samp><span class="option">--param large-unit-insns</span></samp>
before applying <samp><span class="option">--param inline-unit-growth</span></samp>.  The default is 10000

          <br><dt><code>inline-unit-growth</code><dd>Specifies maximal overall growth of the compilation unit caused by inlining. 
The default value is 30 which limits unit growth to 1.3 times the original
size.

          <br><dt><code>ipcp-unit-growth</code><dd>Specifies maximal overall growth of the compilation unit caused by
interprocedural constant propagation.  The default value is 10 which limits
unit growth to 1.1 times the original size.

          <br><dt><code>large-stack-frame</code><dd>The limit specifying large stack frames.  While inlining the algorithm is trying
to not grow past this limit too much.  Default value is 256 bytes.

          <br><dt><code>large-stack-frame-growth</code><dd>Specifies maximal growth of large stack frames caused by inlining in percents. 
The default value is 1000 which limits large stack frame growth to 11 times
the original size.

          <br><dt><code>max-inline-insns-recursive</code><dt><code>max-inline-insns-recursive-auto</code><dd>Specifies maximum number of instructions out-of-line copy of self recursive inline
function can grow into by performing recursive inlining.

          <p>For functions declared inline <samp><span class="option">--param max-inline-insns-recursive</span></samp> is
taken into account.  For function not declared inline, recursive inlining
happens only when <samp><span class="option">-finline-functions</span></samp> (included in <samp><span class="option">-O3</span></samp>) is
enabled and <samp><span class="option">--param max-inline-insns-recursive-auto</span></samp> is used.  The
default value is 450.

          <br><dt><code>max-inline-recursive-depth</code><dt><code>max-inline-recursive-depth-auto</code><dd>Specifies maximum recursion depth used by the recursive inlining.

          <p>For functions declared inline <samp><span class="option">--param max-inline-recursive-depth</span></samp> is
taken into account.  For function not declared inline, recursive inlining
happens only when <samp><span class="option">-finline-functions</span></samp> (included in <samp><span class="option">-O3</span></samp>) is
enabled and <samp><span class="option">--param max-inline-recursive-depth-auto</span></samp> is used.  The
default value is 8.

          <br><dt><code>min-inline-recursive-probability</code><dd>Recursive inlining is profitable only for function having deep recursion
in average and can hurt for function having little recursion depth by
increasing the prologue size or complexity of function body to other
optimizers.

          <p>When profile feedback is available (see <samp><span class="option">-fprofile-generate</span></samp>) the actual
recursion depth can be guessed from probability that function will recurse via
given call expression.  This parameter limits inlining only to call expression
whose probability exceeds given threshold (in percents).  The default value is
10.

          <br><dt><code>early-inlining-insns</code><dd>Specify growth that early inliner can make.  In effect it increases amount of
inlining for code having large abstraction penalty.  The default value is 10.

          <br><dt><code>max-early-inliner-iterations</code><dt><code>max-early-inliner-iterations</code><dd>Limit of iterations of early inliner.  This basically bounds number of nested
indirect calls early inliner can resolve.  Deeper chains are still handled by
late inlining.

          <br><dt><code>comdat-sharing-probability</code><dt><code>comdat-sharing-probability</code><dd>Probability (in percent) that C++ inline function with comdat visibility
will be shared across multiple compilation units.  The default value is 20.

          <br><dt><code>min-vect-loop-bound</code><dd>The minimum number of iterations under which a loop will not get vectorized
when <samp><span class="option">-ftree-vectorize</span></samp> is used.  The number of iterations after
vectorization needs to be greater than the value specified by this option
to allow vectorization.  The default value is 0.

          <br><dt><code>gcse-cost-distance-ratio</code><dd>Scaling factor in calculation of maximum distance an expression
can be moved by GCSE optimizations.  This is currently supported only in the
code hoisting pass.  The bigger the ratio, the more aggressive code hoisting
will be with simple expressions, i.e., the expressions which have cost
less than <samp><span class="option">gcse-unrestricted-cost</span></samp>.  Specifying 0 will disable
hoisting of simple expressions.  The default value is 10.

          <br><dt><code>gcse-unrestricted-cost</code><dd>Cost, roughly measured as the cost of a single typical machine
instruction, at which GCSE optimizations will not constrain
the distance an expression can travel.  This is currently
supported only in the code hoisting pass.  The lesser the cost,
the more aggressive code hoisting will be.  Specifying 0 will
allow all expressions to travel unrestricted distances. 
The default value is 3.

          <br><dt><code>max-hoist-depth</code><dd>The depth of search in the dominator tree for expressions to hoist. 
This is used to avoid quadratic behavior in hoisting algorithm. 
The value of 0 will avoid limiting the search, but may slow down compilation
of huge functions.  The default value is 30.

          <br><dt><code>max-unrolled-insns</code><dd>The maximum number of instructions that a loop should have if that loop
is unrolled, and if the loop is unrolled, it determines how many times
the loop code is unrolled.

          <br><dt><code>max-average-unrolled-insns</code><dd>The maximum number of instructions biased by probabilities of their execution
that a loop should have if that loop is unrolled, and if the loop is unrolled,
it determines how many times the loop code is unrolled.

          <br><dt><code>max-unroll-times</code><dd>The maximum number of unrollings of a single loop.

          <br><dt><code>max-peeled-insns</code><dd>The maximum number of instructions that a loop should have if that loop
is peeled, and if the loop is peeled, it determines how many times
the loop code is peeled.

          <br><dt><code>max-peel-times</code><dd>The maximum number of peelings of a single loop.

          <br><dt><code>max-completely-peeled-insns</code><dd>The maximum number of insns of a completely peeled loop.

          <br><dt><code>max-completely-peel-times</code><dd>The maximum number of iterations of a loop to be suitable for complete peeling.

          <br><dt><code>max-completely-peel-loop-nest-depth</code><dd>The maximum depth of a loop nest suitable for complete peeling.

          <br><dt><code>max-unswitch-insns</code><dd>The maximum number of insns of an unswitched loop.

          <br><dt><code>max-unswitch-level</code><dd>The maximum number of branches unswitched in a single loop.

          <br><dt><code>lim-expensive</code><dd>The minimum cost of an expensive expression in the loop invariant motion.

          <br><dt><code>iv-consider-all-candidates-bound</code><dd>Bound on number of candidates for induction variables below that
all candidates are considered for each use in induction variable
optimizations.  Only the most relevant candidates are considered
if there are more candidates, to avoid quadratic time complexity.

          <br><dt><code>iv-max-considered-uses</code><dd>The induction variable optimizations give up on loops that contain more
induction variable uses.

          <br><dt><code>iv-always-prune-cand-set-bound</code><dd>If number of candidates in the set is smaller than this value,
we always try to remove unnecessary ivs from the set during its
optimization when a new iv is added to the set.

          <br><dt><code>scev-max-expr-size</code><dd>Bound on size of expressions used in the scalar evolutions analyzer. 
Large expressions slow the analyzer.

          <br><dt><code>scev-max-expr-complexity</code><dd>Bound on the complexity of the expressions in the scalar evolutions analyzer. 
Complex expressions slow the analyzer.

          <br><dt><code>omega-max-vars</code><dd>The maximum number of variables in an Omega constraint system. 
The default value is 128.

          <br><dt><code>omega-max-geqs</code><dd>The maximum number of inequalities in an Omega constraint system. 
The default value is 256.

          <br><dt><code>omega-max-eqs</code><dd>The maximum number of equalities in an Omega constraint system. 
The default value is 128.

          <br><dt><code>omega-max-wild-cards</code><dd>The maximum number of wildcard variables that the Omega solver will
be able to insert.  The default value is 18.

          <br><dt><code>omega-hash-table-size</code><dd>The size of the hash table in the Omega solver.  The default value is
550.

          <br><dt><code>omega-max-keys</code><dd>The maximal number of keys used by the Omega solver.  The default
value is 500.

          <br><dt><code>omega-eliminate-redundant-constraints</code><dd>When set to 1, use expensive methods to eliminate all redundant
constraints.  The default value is 0.

          <br><dt><code>vect-max-version-for-alignment-checks</code><dd>The maximum number of runtime checks that can be performed when
doing loop versioning for alignment in the vectorizer.  See option
ftree-vect-loop-version for more information.

          <br><dt><code>vect-max-version-for-alias-checks</code><dd>The maximum number of runtime checks that can be performed when
doing loop versioning for alias in the vectorizer.  See option
ftree-vect-loop-version for more information.

          <br><dt><code>max-iterations-to-track</code><dd>
The maximum number of iterations of a loop the brute force algorithm
for analysis of # of iterations of the loop tries to evaluate.

          <br><dt><code>hot-bb-count-fraction</code><dd>Select fraction of the maximal count of repetitions of basic block in program
given basic block needs to have to be considered hot.

          <br><dt><code>hot-bb-frequency-fraction</code><dd>Select fraction of the entry block frequency of executions of basic block in
function given basic block needs to have to be considered hot

          <br><dt><code>max-predicted-iterations</code><dd>The maximum number of loop iterations we predict statically.  This is useful
in cases where function contain single loop with known bound and other loop
with unknown.  We predict the known number of iterations correctly, while
the unknown number of iterations average to roughly 10.  This means that the
loop without bounds would appear artificially cold relative to the other one.

          <br><dt><code>align-threshold</code><dd>
Select fraction of the maximal frequency of executions of basic block in
function given basic block will get aligned.

          <br><dt><code>align-loop-iterations</code><dd>
A loop expected to iterate at lest the selected number of iterations will get
aligned.

          <br><dt><code>tracer-dynamic-coverage</code><dt><code>tracer-dynamic-coverage-feedback</code><dd>
This value is used to limit superblock formation once the given percentage of
executed instructions is covered.  This limits unnecessary code size
expansion.

          <p>The <samp><span class="option">tracer-dynamic-coverage-feedback</span></samp> is used only when profile
feedback is available.  The real profiles (as opposed to statically estimated
ones) are much less balanced allowing the threshold to be larger value.

          <br><dt><code>tracer-max-code-growth</code><dd>Stop tail duplication once code growth has reached given percentage.  This is
rather hokey argument, as most of the duplicates will be eliminated later in
cross jumping, so it may be set to much higher values than is the desired code
growth.

          <br><dt><code>tracer-min-branch-ratio</code><dd>
Stop reverse growth when the reverse probability of best edge is less than this
threshold (in percent).

          <br><dt><code>tracer-min-branch-ratio</code><dt><code>tracer-min-branch-ratio-feedback</code><dd>
Stop forward growth if the best edge do have probability lower than this
threshold.

          <p>Similarly to <samp><span class="option">tracer-dynamic-coverage</span></samp> two values are present, one for
compilation for profile feedback and one for compilation without.  The value
for compilation with profile feedback needs to be more conservative (higher) in
order to make tracer effective.

          <br><dt><code>max-cse-path-length</code><dd>
Maximum number of basic blocks on path that cse considers.  The default is 10.

          <br><dt><code>max-cse-insns</code><dd>The maximum instructions CSE process before flushing. The default is 1000.

          <br><dt><code>ggc-min-expand</code><dd>
GCC uses a garbage collector to manage its own memory allocation.  This
parameter specifies the minimum percentage by which the garbage
collector's heap should be allowed to expand between collections. 
Tuning this may improve compilation speed; it has no effect on code
generation.

          <p>The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
RAM &gt;= 1GB.  If <code>getrlimit</code> is available, the notion of "RAM" is
the smallest of actual RAM and <code>RLIMIT_DATA</code> or <code>RLIMIT_AS</code>.  If
GCC is not able to calculate RAM on a particular platform, the lower
bound of 30% is used.  Setting this parameter and
<samp><span class="option">ggc-min-heapsize</span></samp> to zero causes a full collection to occur at
every opportunity.  This is extremely slow, but can be useful for
debugging.

          <br><dt><code>ggc-min-heapsize</code><dd>
Minimum size of the garbage collector's heap before it begins bothering
to collect garbage.  The first collection occurs after the heap expands
by <samp><span class="option">ggc-min-expand</span></samp>% beyond <samp><span class="option">ggc-min-heapsize</span></samp>.  Again,
tuning this may improve compilation speed, and has no effect on code
generation.

          <p>The default is the smaller of RAM/8, RLIMIT_RSS, or a limit which
tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
with a lower bound of 4096 (four megabytes) and an upper bound of
131072 (128 megabytes).  If GCC is not able to calculate RAM on a
particular platform, the lower bound is used.  Setting this parameter
very large effectively disables garbage collection.  Setting this
parameter and <samp><span class="option">ggc-min-expand</span></samp> to zero causes a full collection
to occur at every opportunity.

          <br><dt><code>max-reload-search-insns</code><dd>The maximum number of instruction reload should look backward for equivalent
register.  Increasing values mean more aggressive optimization, making the
compile time increase with probably slightly better performance.  The default
value is 100.

          <br><dt><code>max-cselib-memory-locations</code><dd>The maximum number of memory locations cselib should take into account. 
Increasing values mean more aggressive optimization, making the compile time
increase with probably slightly better performance.  The default value is 500.

          <br><dt><code>reorder-blocks-duplicate</code><dt><code>reorder-blocks-duplicate-feedback</code><dd>
Used by basic block reordering pass to decide whether to use unconditional
branch or duplicate the code on its destination.  Code is duplicated when its
estimated size is smaller than this value multiplied by the estimated size of
unconditional jump in the hot spots of the program.

          <p>The <samp><span class="option">reorder-block-duplicate-feedback</span></samp> is used only when profile
feedback is available and may be set to higher values than
<samp><span class="option">reorder-block-duplicate</span></samp> since information about the hot spots is more
accurate.

          <br><dt><code>max-sched-ready-insns</code><dd>The maximum number of instructions ready to be issued the scheduler should
consider at any given time during the first scheduling pass.  Increasing
values mean more thorough searches, making the compilation time increase
with probably little benefit.  The default value is 100.

          <br><dt><code>max-sched-region-blocks</code><dd>The maximum number of blocks in a region to be considered for
interblock scheduling.  The default value is 10.

          <br><dt><code>max-pipeline-region-blocks</code><dd>The maximum number of blocks in a region to be considered for
pipelining in the selective scheduler.  The default value is 15.

          <br><dt><code>max-sched-region-insns</code><dd>The maximum number of insns in a region to be considered for
interblock scheduling.  The default value is 100.

          <br><dt><code>max-pipeline-region-insns</code><dd>The maximum number of insns in a region to be considered for
pipelining in the selective scheduler.  The default value is 200.

          <br><dt><code>min-spec-prob</code><dd>The minimum probability (in percents) of reaching a source block
for interblock speculative scheduling.  The default value is 40.

          <br><dt><code>max-sched-extend-regions-iters</code><dd>The maximum number of iterations through CFG to extend regions. 
0 - disable region extension,
N - do at most N iterations. 
The default value is 0.

          <br><dt><code>max-sched-insn-conflict-delay</code><dd>The maximum conflict delay for an insn to be considered for speculative motion. 
The default value is 3.

          <br><dt><code>sched-spec-prob-cutoff</code><dd>The minimal probability of speculation success (in percents), so that
speculative insn will be scheduled. 
The default value is 40.

          <br><dt><code>sched-mem-true-dep-cost</code><dd>Minimal distance (in CPU cycles) between store and load targeting same
memory locations.  The default value is 1.

          <br><dt><code>selsched-max-lookahead</code><dd>The maximum size of the lookahead window of selective scheduling.  It is a
depth of search for available instructions. 
The default value is 50.

          <br><dt><code>selsched-max-sched-times</code><dd>The maximum number of times that an instruction will be scheduled during
selective scheduling.  This is the limit on the number of iterations
through which the instruction may be pipelined.  The default value is 2.

          <br><dt><code>selsched-max-insns-to-rename</code><dd>The maximum number of best instructions in the ready list that are considered
for renaming in the selective scheduler.  The default value is 2.

          <br><dt><code>sms-min-sc</code><dd>The minimum value of stage count that swing modulo scheduler will
generate.  The default value is 2.

          <br><dt><code>max-last-value-rtl</code><dd>The maximum size measured as number of RTLs that can be recorded in an expression
in combiner for a pseudo register as last known value of that register.  The default
is 10000.

          <br><dt><code>integer-share-limit</code><dd>Small integer constants can use a shared data structure, reducing the
compiler's memory usage and increasing its speed.  This sets the maximum
value of a shared integer constant.  The default value is 256.

          <br><dt><code>min-virtual-mappings</code><dd>Specifies the minimum number of virtual mappings in the incremental
SSA updater that should be registered to trigger the virtual mappings
heuristic defined by virtual-mappings-ratio.  The default value is
100.

          <br><dt><code>virtual-mappings-ratio</code><dd>If the number of virtual mappings is virtual-mappings-ratio bigger
than the number of virtual symbols to be updated, then the incremental
SSA updater switches to a full update for those symbols.  The default
ratio is 3.

          <br><dt><code>ssp-buffer-size</code><dd>The minimum size of buffers (i.e. arrays) that will receive stack smashing
protection when <samp><span class="option">-fstack-protection</span></samp> is used.

          <br><dt><code>max-jump-thread-duplication-stmts</code><dd>Maximum number of statements allowed in a block that needs to be
duplicated when threading jumps.

          <br><dt><code>max-fields-for-field-sensitive</code><dd>Maximum number of fields in a structure we will treat in
a field sensitive manner during pointer analysis.  The default is zero
for -O0, and -O1 and 100 for -Os, -O2, and -O3.

          <br><dt><code>prefetch-latency</code><dd>Estimate on average number of instructions that are executed before
prefetch finishes.  The distance we prefetch ahead is proportional
to this constant.  Increasing this number may also lead to less
streams being prefetched (see <samp><span class="option">simultaneous-prefetches</span></samp>).

          <br><dt><code>simultaneous-prefetches</code><dd>Maximum number of prefetches that can run at the same time.

          <br><dt><code>l1-cache-line-size</code><dd>The size of cache line in L1 cache, in bytes.

          <br><dt><code>l1-cache-size</code><dd>The size of L1 cache, in kilobytes.

          <br><dt><code>l2-cache-size</code><dd>The size of L2 cache, in kilobytes.

          <br><dt><code>min-insn-to-prefetch-ratio</code><dd>The minimum ratio between the number of instructions and the
number of prefetches to enable prefetching in a loop.

          <br><dt><code>prefetch-min-insn-to-mem-ratio</code><dd>The minimum ratio between the number of instructions and the
number of memory references to enable prefetching in a loop.

          <br><dt><code>use-canonical-types</code><dd>Whether the compiler should use the &ldquo;canonical&rdquo; type system.  By
default, this should always be 1, which uses a more efficient internal
mechanism for comparing types in C++ and Objective-C++.  However, if
bugs in the canonical type system are causing compilation failures,
set this value to 0 to disable canonical types.

          <br><dt><code>switch-conversion-max-branch-ratio</code><dd>Switch initialization conversion will refuse to create arrays that are
bigger than <samp><span class="option">switch-conversion-max-branch-ratio</span></samp> times the number of
branches in the switch.

          <br><dt><code>max-partial-antic-length</code><dd>Maximum length of the partial antic set computed during the tree
partial redundancy elimination optimization (<samp><span class="option">-ftree-pre</span></samp>) when
optimizing at <samp><span class="option">-O3</span></samp> and above.  For some sorts of source code
the enhanced partial redundancy elimination optimization can run away,
consuming all of the memory available on the host machine.  This
parameter sets a limit on the length of the sets that are computed,
which prevents the runaway behavior.  Setting a value of 0 for
this parameter will allow an unlimited set length.

          <br><dt><code>sccvn-max-scc-size</code><dd>Maximum size of a strongly connected component (SCC) during SCCVN
processing.  If this limit is hit, SCCVN processing for the whole
function will not be done and optimizations depending on it will
be disabled.  The default maximum SCC size is 10000.

          <br><dt><code>ira-max-loops-num</code><dd>IRA uses a regional register allocation by default.  If a function
contains loops more than number given by the parameter, only at most
given number of the most frequently executed loops will form regions
for the regional register allocation.  The default value of the
parameter is 100.

          <br><dt><code>ira-max-conflict-table-size</code><dd>Although IRA uses a sophisticated algorithm of compression conflict
table, the table can be still big for huge functions.  If the conflict
table for a function could be more than size in MB given by the
parameter, the conflict table is not built and faster, simpler, and
lower quality register allocation algorithm will be used.  The
algorithm do not use pseudo-register conflicts.  The default value of
the parameter is 2000.

          <br><dt><code>ira-loop-reserved-regs</code><dd>IRA can be used to evaluate more accurate register pressure in loops
for decision to move loop invariants (see <samp><span class="option">-O3</span></samp>).  The number
of available registers reserved for some other purposes is described
by this parameter.  The default value of the parameter is 2 which is
minimal number of registers needed for execution of typical
instruction.  This value is the best found from numerous experiments.

          <br><dt><code>loop-invariant-max-bbs-in-loop</code><dd>Loop invariant motion can be very expensive, both in compile time and
in amount of needed compile time memory, with very large loops.  Loops
with more basic blocks than this parameter won't have loop invariant
motion optimization performed on them.  The default value of the
parameter is 1000 for -O1 and 10000 for -O2 and above.

          <br><dt><code>max-vartrack-size</code><dd>Sets a maximum number of hash table slots to use during variable
tracking dataflow analysis of any function.  If this limit is exceeded
with variable tracking at assignments enabled, analysis for that
function is retried without it, after removing all debug insns from
the function.  If the limit is exceeded even without debug insns, var
tracking analysis is completely disabled for the function.  Setting
the parameter to zero makes it unlimited.

          <br><dt><code>min-nondebug-insn-uid</code><dd>Use uids starting at this parameter for nondebug insns.  The range below
the parameter is reserved exclusively for debug insns created by
<samp><span class="option">-fvar-tracking-assignments</span></samp>, but debug insns may get
(non-overlapping) uids above it if the reserved range is exhausted.

          <br><dt><code>ipa-sra-ptr-growth-factor</code><dd>IPA-SRA will replace a pointer to an aggregate with one or more new
parameters only when their cumulative size is less or equal to
<samp><span class="option">ipa-sra-ptr-growth-factor</span></samp> times the size of the original
pointer parameter.

          <br><dt><code>graphite-max-nb-scop-params</code><dd>To avoid exponential effects in the Graphite loop transforms, the
number of parameters in a Static Control Part (SCoP) is bounded.  The
default value is 10 parameters.  A variable whose value is unknown at
compile time and defined outside a SCoP is a parameter of the SCoP.

          <br><dt><code>graphite-max-bbs-per-function</code><dd>To avoid exponential effects in the detection of SCoPs, the size of
the functions analyzed by Graphite is bounded.  The default value is
100 basic blocks.

          <br><dt><code>loop-block-tile-size</code><dd>Loop blocking or strip mining transforms, enabled with
<samp><span class="option">-floop-block</span></samp> or <samp><span class="option">-floop-strip-mine</span></samp>, strip mine each
loop in the loop nest by a given number of iterations.  The strip
length can be changed using the <samp><span class="option">loop-block-tile-size</span></samp>
parameter.  The default value is 51 iterations.

          <br><dt><code>devirt-type-list-size</code><dd>IPA-CP attempts to track all possible types passed to a function's
parameter in order to perform devirtualization. 
<samp><span class="option">devirt-type-list-size</span></samp> is the maximum number of types it
stores per a single formal parameter of a function.

          <br><dt><code>lto-partitions</code><dd>Specify desired number of partitions produced during WHOPR compilation. 
The number of partitions should exceed the number of CPUs used for compilation. 
The default value is 32.

          <br><dt><code>lto-minpartition</code><dd>Size of minimal partition for WHOPR (in estimated instructions). 
This prevents expenses of splitting very small programs into too many
partitions.

          <br><dt><code>cxx-max-namespaces-for-diagnostic-help</code><dd>The maximum number of namespaces to consult for suggestions when C++
name lookup fails for an identifier.  The default is 1000.

          <br><dt><code>max-stores-to-sink</code><dd>The maximum number of conditional stores paires that can be sunk.  Set to 0
if either vectorization (<samp><span class="option">-ftree-vectorize</span></samp>) or if-conversion
(<samp><span class="option">-ftree-loop-if-convert</span></samp>) is disabled.  The default is 2.

     </dl>
     </dl>

<div class="node">
<a name="Preprocessor-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Assembler-Options">Assembler Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Optimize-Options">Optimize Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>

</div>

<h3 class="section">3.11 Options Controlling the Preprocessor</h3>

<p><a name="index-preprocessor-options-880"></a><a name="index-options_002c-preprocessor-881"></a>
These options control the C preprocessor, which is run on each C source
file before actual compilation.

 <p>If you use the <samp><span class="option">-E</span></samp> option, nothing is done except preprocessing. 
Some of these options make sense only together with <samp><span class="option">-E</span></samp> because
they cause the preprocessor output to be unsuitable for actual
compilation.

     <dl>
<dt><code>-Wp,</code><var>option</var><dd><a name="index-Wp-882"></a>You can use <samp><span class="option">-Wp,</span><var>option</var></samp> to bypass the compiler driver
and pass <var>option</var> directly through to the preprocessor.  If
<var>option</var> contains commas, it is split into multiple options at the
commas.  However, many options are modified, translated or interpreted
by the compiler driver before being passed to the preprocessor, and
<samp><span class="option">-Wp</span></samp> forcibly bypasses this phase.  The preprocessor's direct
interface is undocumented and subject to change, so whenever possible
you should avoid using <samp><span class="option">-Wp</span></samp> and let the driver handle the
options instead.

     <br><dt><code>-Xpreprocessor </code><var>option</var><dd><a name="index-Xpreprocessor-883"></a>Pass <var>option</var> as an option to the preprocessor.  You can use this to
supply system-specific preprocessor options which GCC does not know how to
recognize.

     <p>If you want to pass an option that takes an argument, you must use
<samp><span class="option">-Xpreprocessor</span></samp> twice, once for the option and once for the argument. 
</dl>

<!-- Copyright (c) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, -->
<!-- 2010, Free Software Foundation, Inc. -->
<!-- This is part of the CPP and GCC manuals. -->
<!-- For copying conditions, see the file gcc.texi. -->
<!--  -->
<!-- Options affecting the preprocessor -->
<!--  -->
<!-- If this file is included with the flag ``cppmanual'' set, it is -->
<!-- formatted for inclusion in the CPP manual; otherwise the main GCC manual. -->
     <dl>
<dt><code>-D </code><var>name</var><dd><a name="index-D-884"></a>Predefine <var>name</var> as a macro, with definition <code>1</code>.

     <br><dt><code>-D </code><var>name</var><code>=</code><var>definition</var><dd>The contents of <var>definition</var> are tokenized and processed as if
they appeared during translation phase three in a &lsquo;<samp><span class="samp">#define</span></samp>&rsquo;
directive.  In particular, the definition will be truncated by
embedded newline characters.

     <p>If you are invoking the preprocessor from a shell or shell-like
program you may need to use the shell's quoting syntax to protect
characters such as spaces that have a meaning in the shell syntax.

     <p>If you wish to define a function-like macro on the command line, write
its argument list with surrounding parentheses before the equals sign
(if any).  Parentheses are meaningful to most shells, so you will need
to quote the option.  With <samp><span class="command">sh</span></samp> and <samp><span class="command">csh</span></samp>,
<samp><span class="option">-D'</span><var>name</var><span class="option">(</span><var>args<small class="dots">...</small></var><span class="option">)=</span><var>definition</var><span class="option">'</span></samp> works.

     <p><samp><span class="option">-D</span></samp> and <samp><span class="option">-U</span></samp> options are processed in the order they
are given on the command line.  All <samp><span class="option">-imacros </span><var>file</var></samp> and
<samp><span class="option">-include </span><var>file</var></samp> options are processed after all
<samp><span class="option">-D</span></samp> and <samp><span class="option">-U</span></samp> options.

     <br><dt><code>-U </code><var>name</var><dd><a name="index-U-885"></a>Cancel any previous definition of <var>name</var>, either built in or
provided with a <samp><span class="option">-D</span></samp> option.

     <br><dt><code>-undef</code><dd><a name="index-undef-886"></a>Do not predefine any system-specific or GCC-specific macros.  The
standard predefined macros remain defined.

     <br><dt><code>-I </code><var>dir</var><dd><a name="index-I-887"></a>Add the directory <var>dir</var> to the list of directories to be searched
for header files. 
Directories named by <samp><span class="option">-I</span></samp> are searched before the standard
system include directories.  If the directory <var>dir</var> is a standard
system include directory, the option is ignored to ensure that the
default search order for system directories and the special treatment
of system headers are not defeated
. 
If <var>dir</var> begins with <code>=</code>, then the <code>=</code> will be replaced
by the sysroot prefix; see <samp><span class="option">--sysroot</span></samp> and <samp><span class="option">-isysroot</span></samp>.

     <br><dt><code>-o </code><var>file</var><dd><a name="index-o-888"></a>Write output to <var>file</var>.  This is the same as specifying <var>file</var>
as the second non-option argument to <samp><span class="command">cpp</span></samp>.  <samp><span class="command">gcc</span></samp> has a
different interpretation of a second non-option argument, so you must
use <samp><span class="option">-o</span></samp> to specify the output file.

     <br><dt><code>-Wall</code><dd><a name="index-Wall-889"></a>Turns on all optional warnings which are desirable for normal code. 
At present this is <samp><span class="option">-Wcomment</span></samp>, <samp><span class="option">-Wtrigraphs</span></samp>,
<samp><span class="option">-Wmultichar</span></samp> and a warning about integer promotion causing a
change of sign in <code>#if</code> expressions.  Note that many of the
preprocessor's warnings are on by default and have no options to
control them.

     <br><dt><code>-Wcomment</code><dt><code>-Wcomments</code><dd><a name="index-Wcomment-890"></a><a name="index-Wcomments-891"></a>Warn whenever a comment-start sequence &lsquo;<samp><span class="samp">/*</span></samp>&rsquo; appears in a &lsquo;<samp><span class="samp">/*</span></samp>&rsquo;
comment, or whenever a backslash-newline appears in a &lsquo;<samp><span class="samp">//</span></samp>&rsquo; comment. 
(Both forms have the same effect.)

     <br><dt><code>-Wtrigraphs</code><dd><a name="index-Wtrigraphs-892"></a><a name="Wtrigraphs"></a>Most trigraphs in comments cannot affect the meaning of the program. 
However, a trigraph that would form an escaped newline (&lsquo;<samp><span class="samp">??/</span></samp>&rsquo; at
the end of a line) can, by changing where the comment begins or ends. 
Therefore, only trigraphs that would form escaped newlines produce
warnings inside a comment.

     <p>This option is implied by <samp><span class="option">-Wall</span></samp>.  If <samp><span class="option">-Wall</span></samp> is not
given, this option is still enabled unless trigraphs are enabled.  To
get trigraph conversion without warnings, but get the other
<samp><span class="option">-Wall</span></samp> warnings, use &lsquo;<samp><span class="samp">-trigraphs -Wall -Wno-trigraphs</span></samp>&rsquo;.

     <br><dt><code>-Wtraditional</code><dd><a name="index-Wtraditional-893"></a>Warn about certain constructs that behave differently in traditional and
ISO C.  Also warn about ISO C constructs that have no traditional C
equivalent, and problematic constructs which should be avoided.

     <br><dt><code>-Wundef</code><dd><a name="index-Wundef-894"></a>Warn whenever an identifier which is not a macro is encountered in an
&lsquo;<samp><span class="samp">#if</span></samp>&rsquo; directive, outside of &lsquo;<samp><span class="samp">defined</span></samp>&rsquo;.  Such identifiers are
replaced with zero.

     <br><dt><code>-Wunused-macros</code><dd><a name="index-Wunused_002dmacros-895"></a>Warn about macros defined in the main file that are unused.  A macro
is <dfn>used</dfn> if it is expanded or tested for existence at least once. 
The preprocessor will also warn if the macro has not been used at the
time it is redefined or undefined.

     <p>Built-in macros, macros defined on the command line, and macros
defined in include files are not warned about.

     <p><em>Note:</em> If a macro is actually used, but only used in skipped
conditional blocks, then CPP will report it as unused.  To avoid the
warning in such a case, you might improve the scope of the macro's
definition by, for example, moving it into the first skipped block. 
Alternatively, you could provide a dummy use with something like:

     <pre class="smallexample">          #if defined the_macro_causing_the_warning
          #endif
</pre>
     <br><dt><code>-Wendif-labels</code><dd><a name="index-Wendif_002dlabels-896"></a>Warn whenever an &lsquo;<samp><span class="samp">#else</span></samp>&rsquo; or an &lsquo;<samp><span class="samp">#endif</span></samp>&rsquo; are followed by text. 
This usually happens in code of the form

     <pre class="smallexample">          #if FOO
          ...
          #else FOO
          ...
          #endif FOO
</pre>
     <p class="noindent">The second and third <code>FOO</code> should be in comments, but often are not
in older programs.  This warning is on by default.

     <br><dt><code>-Werror</code><dd><a name="index-Werror-897"></a>Make all warnings into hard errors.  Source code which triggers warnings
will be rejected.

     <br><dt><code>-Wsystem-headers</code><dd><a name="index-Wsystem_002dheaders-898"></a>Issue warnings for code in system headers.  These are normally unhelpful
in finding bugs in your own code, therefore suppressed.  If you are
responsible for the system library, you may want to see them.

     <br><dt><code>-w</code><dd><a name="index-w-899"></a>Suppress all warnings, including those which GNU CPP issues by default.

     <br><dt><code>-pedantic</code><dd><a name="index-pedantic-900"></a>Issue all the mandatory diagnostics listed in the C standard.  Some of
them are left out by default, since they trigger frequently on harmless
code.

     <br><dt><code>-pedantic-errors</code><dd><a name="index-pedantic_002derrors-901"></a>Issue all the mandatory diagnostics, and make all mandatory diagnostics
into errors.  This includes mandatory diagnostics that GCC issues
without &lsquo;<samp><span class="samp">-pedantic</span></samp>&rsquo; but treats as warnings.

     <br><dt><code>-M</code><dd><a name="index-M-902"></a><a name="index-g_t_0040command_007bmake_007d-903"></a><a name="index-dependencies_002c-_0040command_007bmake_007d-904"></a>Instead of outputting the result of preprocessing, output a rule
suitable for <samp><span class="command">make</span></samp> describing the dependencies of the main
source file.  The preprocessor outputs one <samp><span class="command">make</span></samp> rule containing
the object file name for that source file, a colon, and the names of all
the included files, including those coming from <samp><span class="option">-include</span></samp> or
<samp><span class="option">-imacros</span></samp> command line options.

     <p>Unless specified explicitly (with <samp><span class="option">-MT</span></samp> or <samp><span class="option">-MQ</span></samp>), the
object file name consists of the name of the source file with any
suffix replaced with object file suffix and with any leading directory
parts removed.  If there are many included files then the rule is
split into several lines using &lsquo;<samp><span class="samp">\</span></samp>&rsquo;-newline.  The rule has no
commands.

     <p>This option does not suppress the preprocessor's debug output, such as
<samp><span class="option">-dM</span></samp>.  To avoid mixing such debug output with the dependency
rules you should explicitly specify the dependency output file with
<samp><span class="option">-MF</span></samp>, or use an environment variable like
<samp><span class="env">DEPENDENCIES_OUTPUT</span></samp> (see <a href="#Environment-Variables">Environment Variables</a>).  Debug output
will still be sent to the regular output stream as normal.

     <p>Passing <samp><span class="option">-M</span></samp> to the driver implies <samp><span class="option">-E</span></samp>, and suppresses
warnings with an implicit <samp><span class="option">-w</span></samp>.

     <br><dt><code>-MM</code><dd><a name="index-MM-905"></a>Like <samp><span class="option">-M</span></samp> but do not mention header files that are found in
system header directories, nor header files that are included,
directly or indirectly, from such a header.

     <p>This implies that the choice of angle brackets or double quotes in an
&lsquo;<samp><span class="samp">#include</span></samp>&rsquo; directive does not in itself determine whether that
header will appear in <samp><span class="option">-MM</span></samp> dependency output.  This is a
slight change in semantics from GCC versions 3.0 and earlier.

     <p><a name="dashMF"></a><br><dt><code>-MF </code><var>file</var><dd><a name="index-MF-906"></a>When used with <samp><span class="option">-M</span></samp> or <samp><span class="option">-MM</span></samp>, specifies a
file to write the dependencies to.  If no <samp><span class="option">-MF</span></samp> switch is given
the preprocessor sends the rules to the same place it would have sent
preprocessed output.

     <p>When used with the driver options <samp><span class="option">-MD</span></samp> or <samp><span class="option">-MMD</span></samp>,
<samp><span class="option">-MF</span></samp> overrides the default dependency output file.

     <br><dt><code>-MG</code><dd><a name="index-MG-907"></a>In conjunction with an option such as <samp><span class="option">-M</span></samp> requesting
dependency generation, <samp><span class="option">-MG</span></samp> assumes missing header files are
generated files and adds them to the dependency list without raising
an error.  The dependency filename is taken directly from the
<code>#include</code> directive without prepending any path.  <samp><span class="option">-MG</span></samp>
also suppresses preprocessed output, as a missing header file renders
this useless.

     <p>This feature is used in automatic updating of makefiles.

     <br><dt><code>-MP</code><dd><a name="index-MP-908"></a>This option instructs CPP to add a phony target for each dependency
other than the main file, causing each to depend on nothing.  These
dummy rules work around errors <samp><span class="command">make</span></samp> gives if you remove header
files without updating the <samp><span class="file">Makefile</span></samp> to match.

     <p>This is typical output:

     <pre class="smallexample">          test.o: test.c test.h
          
          test.h:
</pre>
     <br><dt><code>-MT </code><var>target</var><dd><a name="index-MT-909"></a>
Change the target of the rule emitted by dependency generation.  By
default CPP takes the name of the main input file, deletes any
directory components and any file suffix such as &lsquo;<samp><span class="samp">.c</span></samp>&rsquo;, and
appends the platform's usual object suffix.  The result is the target.

     <p>An <samp><span class="option">-MT</span></samp> option will set the target to be exactly the string you
specify.  If you want multiple targets, you can specify them as a single
argument to <samp><span class="option">-MT</span></samp>, or use multiple <samp><span class="option">-MT</span></samp> options.

     <p>For example, <samp><span class="option">-MT&nbsp;'$(objpfx)foo.o'<!-- /@w --></span></samp> might give

     <pre class="smallexample">          $(objpfx)foo.o: foo.c
</pre>
     <br><dt><code>-MQ </code><var>target</var><dd><a name="index-MQ-910"></a>
Same as <samp><span class="option">-MT</span></samp>, but it quotes any characters which are special to
Make.  <samp><span class="option">-MQ&nbsp;'$(objpfx)foo.o'<!-- /@w --></span></samp> gives

     <pre class="smallexample">          $$(objpfx)foo.o: foo.c
</pre>
     <p>The default target is automatically quoted, as if it were given with
<samp><span class="option">-MQ</span></samp>.

     <br><dt><code>-MD</code><dd><a name="index-MD-911"></a><samp><span class="option">-MD</span></samp> is equivalent to <samp><span class="option">-M -MF </span><var>file</var></samp>, except that
<samp><span class="option">-E</span></samp> is not implied.  The driver determines <var>file</var> based on
whether an <samp><span class="option">-o</span></samp> option is given.  If it is, the driver uses its
argument but with a suffix of <samp><span class="file">.d</span></samp>, otherwise it takes the name
of the input file, removes any directory components and suffix, and
applies a <samp><span class="file">.d</span></samp> suffix.

     <p>If <samp><span class="option">-MD</span></samp> is used in conjunction with <samp><span class="option">-E</span></samp>, any
<samp><span class="option">-o</span></samp> switch is understood to specify the dependency output file
(see <a href="#dashMF">-MF</a>), but if used without <samp><span class="option">-E</span></samp>, each <samp><span class="option">-o</span></samp>
is understood to specify a target object file.

     <p>Since <samp><span class="option">-E</span></samp> is not implied, <samp><span class="option">-MD</span></samp> can be used to generate
a dependency output file as a side-effect of the compilation process.

     <br><dt><code>-MMD</code><dd><a name="index-MMD-912"></a>Like <samp><span class="option">-MD</span></samp> except mention only user header files, not system
header files.

     <br><dt><code>-fpch-deps</code><dd><a name="index-fpch_002ddeps-913"></a>When using precompiled headers (see <a href="#Precompiled-Headers">Precompiled Headers</a>), this flag
will cause the dependency-output flags to also list the files from the
precompiled header's dependencies.  If not specified only the
precompiled header would be listed and not the files that were used to
create it because those files are not consulted when a precompiled
header is used.

     <br><dt><code>-fpch-preprocess</code><dd><a name="index-fpch_002dpreprocess-914"></a>This option allows use of a precompiled header (see <a href="#Precompiled-Headers">Precompiled Headers</a>) together with <samp><span class="option">-E</span></samp>.  It inserts a special <code>#pragma</code>,
<code>#pragma GCC pch_preprocess "</code><var>filename</var><code>"</code> in the output to mark
the place where the precompiled header was found, and its <var>filename</var>. 
When <samp><span class="option">-fpreprocessed</span></samp> is in use, GCC recognizes this <code>#pragma</code>
and loads the PCH.

     <p>This option is off by default, because the resulting preprocessed output
is only really suitable as input to GCC.  It is switched on by
<samp><span class="option">-save-temps</span></samp>.

     <p>You should not write this <code>#pragma</code> in your own code, but it is
safe to edit the filename if the PCH file is available in a different
location.  The filename may be absolute or it may be relative to GCC's
current directory.

     <br><dt><code>-x c</code><dt><code>-x c++</code><dt><code>-x objective-c</code><dt><code>-x assembler-with-cpp</code><dd><a name="index-x-915"></a>Specify the source language: C, C++, Objective-C, or assembly.  This has
nothing to do with standards conformance or extensions; it merely
selects which base syntax to expect.  If you give none of these options,
cpp will deduce the language from the extension of the source file:
&lsquo;<samp><span class="samp">.c</span></samp>&rsquo;, &lsquo;<samp><span class="samp">.cc</span></samp>&rsquo;, &lsquo;<samp><span class="samp">.m</span></samp>&rsquo;, or &lsquo;<samp><span class="samp">.S</span></samp>&rsquo;.  Some other common
extensions for C++ and assembly are also recognized.  If cpp does not
recognize the extension, it will treat the file as C; this is the most
generic mode.

     <p><em>Note:</em> Previous versions of cpp accepted a <samp><span class="option">-lang</span></samp> option
which selected both the language and the standards conformance level. 
This option has been removed, because it conflicts with the <samp><span class="option">-l</span></samp>
option.

     <br><dt><code>-std=</code><var>standard</var><dt><code>-ansi</code><dd><a name="index-ansi-916"></a><a name="index-std_003d-917"></a>Specify the standard to which the code should conform.  Currently CPP
knows about C and C++ standards; others may be added in the future.

     <p><var>standard</var>
may be one of:
          <dl>
<dt><code>c90</code><dt><code>c89</code><dt><code>iso9899:1990</code><dd>The ISO C standard from 1990.  &lsquo;<samp><span class="samp">c90</span></samp>&rsquo; is the customary shorthand for
this version of the standard.

          <p>The <samp><span class="option">-ansi</span></samp> option is equivalent to <samp><span class="option">-std=c90</span></samp>.

          <br><dt><code>iso9899:199409</code><dd>The 1990 C standard, as amended in 1994.

          <br><dt><code>iso9899:1999</code><dt><code>c99</code><dt><code>iso9899:199x</code><dt><code>c9x</code><dd>The revised ISO C standard, published in December 1999.  Before
publication, this was known as C9X.

          <br><dt><code>c1x</code><dd>The next version of the ISO C standard, still under development.

          <br><dt><code>gnu90</code><dt><code>gnu89</code><dd>The 1990 C standard plus GNU extensions.  This is the default.

          <br><dt><code>gnu99</code><dt><code>gnu9x</code><dd>The 1999 C standard plus GNU extensions.

          <br><dt><code>gnu1x</code><dd>The next version of the ISO C standard, still under development, plus
GNU extensions.

          <br><dt><code>c++98</code><dd>The 1998 ISO C++ standard plus amendments.

          <br><dt><code>gnu++98</code><dd>The same as <samp><span class="option">-std=c++98</span></samp> plus GNU extensions.  This is the
default for C++ code. 
</dl>

     <br><dt><code>-I-</code><dd><a name="index-I_002d-918"></a>Split the include path.  Any directories specified with <samp><span class="option">-I</span></samp>
options before <samp><span class="option">-I-</span></samp> are searched only for headers requested with
<code>#include&nbsp;"</code><var>file</var><code>"<!-- /@w --></code>; they are not searched for
<code>#include&nbsp;&lt;</code><var>file</var><code>&gt;<!-- /@w --></code>.  If additional directories are
specified with <samp><span class="option">-I</span></samp> options after the <samp><span class="option">-I-</span></samp>, those
directories are searched for all &lsquo;<samp><span class="samp">#include</span></samp>&rsquo; directives.

     <p>In addition, <samp><span class="option">-I-</span></samp> inhibits the use of the directory of the current
file directory as the first search directory for <code>#include&nbsp;"</code><var>file</var><code>"<!-- /@w --></code>. 
This option has been deprecated.

     <br><dt><code>-nostdinc</code><dd><a name="index-nostdinc-919"></a>Do not search the standard system directories for header files. 
Only the directories you have specified with <samp><span class="option">-I</span></samp> options
(and the directory of the current file, if appropriate) are searched.

     <br><dt><code>-nostdinc++</code><dd><a name="index-nostdinc_002b_002b-920"></a>Do not search for header files in the C++-specific standard directories,
but do still search the other standard directories.  (This option is
used when building the C++ library.)

     <br><dt><code>-include </code><var>file</var><dd><a name="index-include-921"></a>Process <var>file</var> as if <code>#include "file"</code> appeared as the first
line of the primary source file.  However, the first directory searched
for <var>file</var> is the preprocessor's working directory <em>instead of</em>
the directory containing the main source file.  If not found there, it
is searched for in the remainder of the <code>#include "..."</code> search
chain as normal.

     <p>If multiple <samp><span class="option">-include</span></samp> options are given, the files are included
in the order they appear on the command line.

     <br><dt><code>-imacros </code><var>file</var><dd><a name="index-imacros-922"></a>Exactly like <samp><span class="option">-include</span></samp>, except that any output produced by
scanning <var>file</var> is thrown away.  Macros it defines remain defined. 
This allows you to acquire all the macros from a header without also
processing its declarations.

     <p>All files specified by <samp><span class="option">-imacros</span></samp> are processed before all files
specified by <samp><span class="option">-include</span></samp>.

     <br><dt><code>-idirafter </code><var>dir</var><dd><a name="index-idirafter-923"></a>Search <var>dir</var> for header files, but do it <em>after</em> all
directories specified with <samp><span class="option">-I</span></samp> and the standard system directories
have been exhausted.  <var>dir</var> is treated as a system include directory. 
If <var>dir</var> begins with <code>=</code>, then the <code>=</code> will be replaced
by the sysroot prefix; see <samp><span class="option">--sysroot</span></samp> and <samp><span class="option">-isysroot</span></samp>.

     <br><dt><code>-iprefix </code><var>prefix</var><dd><a name="index-iprefix-924"></a>Specify <var>prefix</var> as the prefix for subsequent <samp><span class="option">-iwithprefix</span></samp>
options.  If the prefix represents a directory, you should include the
final &lsquo;<samp><span class="samp">/</span></samp>&rsquo;.

     <br><dt><code>-iwithprefix </code><var>dir</var><dt><code>-iwithprefixbefore </code><var>dir</var><dd><a name="index-iwithprefix-925"></a><a name="index-iwithprefixbefore-926"></a>Append <var>dir</var> to the prefix specified previously with
<samp><span class="option">-iprefix</span></samp>, and add the resulting directory to the include search
path.  <samp><span class="option">-iwithprefixbefore</span></samp> puts it in the same place <samp><span class="option">-I</span></samp>
would; <samp><span class="option">-iwithprefix</span></samp> puts it where <samp><span class="option">-idirafter</span></samp> would.

     <br><dt><code>-isysroot </code><var>dir</var><dd><a name="index-isysroot-927"></a>This option is like the <samp><span class="option">--sysroot</span></samp> option, but applies only to
header files (except for Darwin targets, where it applies to both header
files and libraries).  See the <samp><span class="option">--sysroot</span></samp> option for more
information.

     <br><dt><code>-imultilib </code><var>dir</var><dd><a name="index-imultilib-928"></a>Use <var>dir</var> as a subdirectory of the directory containing
target-specific C++ headers.

     <br><dt><code>-isystem </code><var>dir</var><dd><a name="index-isystem-929"></a>Search <var>dir</var> for header files, after all directories specified by
<samp><span class="option">-I</span></samp> but before the standard system directories.  Mark it
as a system directory, so that it gets the same special treatment as
is applied to the standard system directories. 
If <var>dir</var> begins with <code>=</code>, then the <code>=</code> will be replaced
by the sysroot prefix; see <samp><span class="option">--sysroot</span></samp> and <samp><span class="option">-isysroot</span></samp>.

     <br><dt><code>-iquote </code><var>dir</var><dd><a name="index-iquote-930"></a>Search <var>dir</var> only for header files requested with
<code>#include&nbsp;"</code><var>file</var><code>"<!-- /@w --></code>; they are not searched for
<code>#include&nbsp;&lt;</code><var>file</var><code>&gt;<!-- /@w --></code>, before all directories specified by
<samp><span class="option">-I</span></samp> and before the standard system directories. 
If <var>dir</var> begins with <code>=</code>, then the <code>=</code> will be replaced
by the sysroot prefix; see <samp><span class="option">--sysroot</span></samp> and <samp><span class="option">-isysroot</span></samp>.

     <br><dt><code>-fdirectives-only</code><dd><a name="index-fdirectives_002donly-931"></a>When preprocessing, handle directives, but do not expand macros.

     <p>The option's behavior depends on the <samp><span class="option">-E</span></samp> and <samp><span class="option">-fpreprocessed</span></samp>
options.

     <p>With <samp><span class="option">-E</span></samp>, preprocessing is limited to the handling of directives
such as <code>#define</code>, <code>#ifdef</code>, and <code>#error</code>.  Other
preprocessor operations, such as macro expansion and trigraph
conversion are not performed.  In addition, the <samp><span class="option">-dD</span></samp> option is
implicitly enabled.

     <p>With <samp><span class="option">-fpreprocessed</span></samp>, predefinition of command line and most
builtin macros is disabled.  Macros such as <code>__LINE__</code>, which are
contextually dependent, are handled normally.  This enables compilation of
files previously preprocessed with <code>-E -fdirectives-only</code>.

     <p>With both <samp><span class="option">-E</span></samp> and <samp><span class="option">-fpreprocessed</span></samp>, the rules for
<samp><span class="option">-fpreprocessed</span></samp> take precedence.  This enables full preprocessing of
files previously preprocessed with <code>-E -fdirectives-only</code>.

     <br><dt><code>-fdollars-in-identifiers</code><dd><a name="index-fdollars_002din_002didentifiers-932"></a><a name="fdollars_002din_002didentifiers"></a>Accept &lsquo;<samp><span class="samp">$</span></samp>&rsquo; in identifiers.

     <br><dt><code>-fextended-identifiers</code><dd><a name="index-fextended_002didentifiers-933"></a>Accept universal character names in identifiers.  This option is
experimental; in a future version of GCC, it will be enabled by
default for C99 and C++.

     <br><dt><code>-fpreprocessed</code><dd><a name="index-fpreprocessed-934"></a>Indicate to the preprocessor that the input file has already been
preprocessed.  This suppresses things like macro expansion, trigraph
conversion, escaped newline splicing, and processing of most directives. 
The preprocessor still recognizes and removes comments, so that you can
pass a file preprocessed with <samp><span class="option">-C</span></samp> to the compiler without
problems.  In this mode the integrated preprocessor is little more than
a tokenizer for the front ends.

     <p><samp><span class="option">-fpreprocessed</span></samp> is implicit if the input file has one of the
extensions &lsquo;<samp><span class="samp">.i</span></samp>&rsquo;, &lsquo;<samp><span class="samp">.ii</span></samp>&rsquo; or &lsquo;<samp><span class="samp">.mi</span></samp>&rsquo;.  These are the
extensions that GCC uses for preprocessed files created by
<samp><span class="option">-save-temps</span></samp>.

     <br><dt><code>-ftabstop=</code><var>width</var><dd><a name="index-ftabstop-935"></a>Set the distance between tab stops.  This helps the preprocessor report
correct column numbers in warnings or errors, even if tabs appear on the
line.  If the value is less than 1 or greater than 100, the option is
ignored.  The default is 8.

     <br><dt><code>-fexec-charset=</code><var>charset</var><dd><a name="index-fexec_002dcharset-936"></a><a name="index-character-set_002c-execution-937"></a>Set the execution character set, used for string and character
constants.  The default is UTF-8.  <var>charset</var> can be any encoding
supported by the system's <code>iconv</code> library routine.

     <br><dt><code>-fwide-exec-charset=</code><var>charset</var><dd><a name="index-fwide_002dexec_002dcharset-938"></a><a name="index-character-set_002c-wide-execution-939"></a>Set the wide execution character set, used for wide string and
character constants.  The default is UTF-32 or UTF-16, whichever
corresponds to the width of <code>wchar_t</code>.  As with
<samp><span class="option">-fexec-charset</span></samp>, <var>charset</var> can be any encoding supported
by the system's <code>iconv</code> library routine; however, you will have
problems with encodings that do not fit exactly in <code>wchar_t</code>.

     <br><dt><code>-finput-charset=</code><var>charset</var><dd><a name="index-finput_002dcharset-940"></a><a name="index-character-set_002c-input-941"></a>Set the input character set, used for translation from the character
set of the input file to the source character set used by GCC.  If the
locale does not specify, or GCC cannot get this information from the
locale, the default is UTF-8.  This can be overridden by either the locale
or this command line option.  Currently the command line option takes
precedence if there's a conflict.  <var>charset</var> can be any encoding
supported by the system's <code>iconv</code> library routine.

     <br><dt><code>-fworking-directory</code><dd><a name="index-fworking_002ddirectory-942"></a><a name="index-fno_002dworking_002ddirectory-943"></a>Enable generation of linemarkers in the preprocessor output that will
let the compiler know the current working directory at the time of
preprocessing.  When this option is enabled, the preprocessor will
emit, after the initial linemarker, a second linemarker with the
current working directory followed by two slashes.  GCC will use this
directory, when it's present in the preprocessed input, as the
directory emitted as the current working directory in some debugging
information formats.  This option is implicitly enabled if debugging
information is enabled, but this can be inhibited with the negated
form <samp><span class="option">-fno-working-directory</span></samp>.  If the <samp><span class="option">-P</span></samp> flag is
present in the command line, this option has no effect, since no
<code>#line</code> directives are emitted whatsoever.

     <br><dt><code>-fno-show-column</code><dd><a name="index-fno_002dshow_002dcolumn-944"></a>Do not print column numbers in diagnostics.  This may be necessary if
diagnostics are being scanned by a program that does not understand the
column numbers, such as <samp><span class="command">dejagnu</span></samp>.

     <br><dt><code>-A </code><var>predicate</var><code>=</code><var>answer</var><dd><a name="index-A-945"></a>Make an assertion with the predicate <var>predicate</var> and answer
<var>answer</var>.  This form is preferred to the older form <samp><span class="option">-A
</span><var>predicate</var><span class="option">(</span><var>answer</var><span class="option">)</span></samp>, which is still supported, because
it does not use shell special characters.

     <br><dt><code>-A -</code><var>predicate</var><code>=</code><var>answer</var><dd>Cancel an assertion with the predicate <var>predicate</var> and answer
<var>answer</var>.

     <br><dt><code>-dCHARS</code><dd><var>CHARS</var> is a sequence of one or more of the following characters,
and must not be preceded by a space.  Other characters are interpreted
by the compiler proper, or reserved for future versions of GCC, and so
are silently ignored.  If you specify characters whose behavior
conflicts, the result is undefined.

          <dl>
<dt>&lsquo;<samp><span class="samp">M</span></samp>&rsquo;<dd><a name="index-dM-946"></a>Instead of the normal output, generate a list of &lsquo;<samp><span class="samp">#define</span></samp>&rsquo;
directives for all the macros defined during the execution of the
preprocessor, including predefined macros.  This gives you a way of
finding out what is predefined in your version of the preprocessor. 
Assuming you have no file <samp><span class="file">foo.h</span></samp>, the command

          <pre class="smallexample">               touch foo.h; cpp -dM foo.h
</pre>
          <p class="noindent">will show all the predefined macros.

          <p>If you use <samp><span class="option">-dM</span></samp> without the <samp><span class="option">-E</span></samp> option, <samp><span class="option">-dM</span></samp> is
interpreted as a synonym for <samp><span class="option">-fdump-rtl-mach</span></samp>. 
See <a href="gcc.html#Debugging-Options">Debugging Options</a>.

          <br><dt>&lsquo;<samp><span class="samp">D</span></samp>&rsquo;<dd><a name="index-dD-947"></a>Like &lsquo;<samp><span class="samp">M</span></samp>&rsquo; except in two respects: it does <em>not</em> include the
predefined macros, and it outputs <em>both</em> the &lsquo;<samp><span class="samp">#define</span></samp>&rsquo;
directives and the result of preprocessing.  Both kinds of output go to
the standard output file.

          <br><dt>&lsquo;<samp><span class="samp">N</span></samp>&rsquo;<dd><a name="index-dN-948"></a>Like &lsquo;<samp><span class="samp">D</span></samp>&rsquo;, but emit only the macro names, not their expansions.

          <br><dt>&lsquo;<samp><span class="samp">I</span></samp>&rsquo;<dd><a name="index-dI-949"></a>Output &lsquo;<samp><span class="samp">#include</span></samp>&rsquo; directives in addition to the result of
preprocessing.

          <br><dt>&lsquo;<samp><span class="samp">U</span></samp>&rsquo;<dd><a name="index-dU-950"></a>Like &lsquo;<samp><span class="samp">D</span></samp>&rsquo; except that only macros that are expanded, or whose
definedness is tested in preprocessor directives, are output; the
output is delayed until the use or test of the macro; and
&lsquo;<samp><span class="samp">#undef</span></samp>&rsquo; directives are also output for macros tested but
undefined at the time. 
</dl>

     <br><dt><code>-P</code><dd><a name="index-P-951"></a>Inhibit generation of linemarkers in the output from the preprocessor. 
This might be useful when running the preprocessor on something that is
not C code, and will be sent to a program which might be confused by the
linemarkers.

     <br><dt><code>-C</code><dd><a name="index-C-952"></a>Do not discard comments.  All comments are passed through to the output
file, except for comments in processed directives, which are deleted
along with the directive.

     <p>You should be prepared for side effects when using <samp><span class="option">-C</span></samp>; it
causes the preprocessor to treat comments as tokens in their own right. 
For example, comments appearing at the start of what would be a
directive line have the effect of turning that line into an ordinary
source line, since the first token on the line is no longer a &lsquo;<samp><span class="samp">#</span></samp>&rsquo;.

     <br><dt><code>-CC</code><dd>Do not discard comments, including during macro expansion.  This is
like <samp><span class="option">-C</span></samp>, except that comments contained within macros are
also passed through to the output file where the macro is expanded.

     <p>In addition to the side-effects of the <samp><span class="option">-C</span></samp> option, the
<samp><span class="option">-CC</span></samp> option causes all C++-style comments inside a macro
to be converted to C-style comments.  This is to prevent later use
of that macro from inadvertently commenting out the remainder of
the source line.

     <p>The <samp><span class="option">-CC</span></samp> option is generally used to support lint comments.

     <br><dt><code>-traditional-cpp</code><dd><a name="index-traditional_002dcpp-953"></a>Try to imitate the behavior of old-fashioned C preprocessors, as
opposed to ISO C preprocessors.

     <br><dt><code>-trigraphs</code><dd><a name="index-trigraphs-954"></a>Process trigraph sequences. 
These are three-character sequences, all starting with &lsquo;<samp><span class="samp">??</span></samp>&rsquo;, that
are defined by ISO C to stand for single characters.  For example,
&lsquo;<samp><span class="samp">??/</span></samp>&rsquo; stands for &lsquo;<samp><span class="samp">\</span></samp>&rsquo;, so &lsquo;<samp><span class="samp">'??/n'</span></samp>&rsquo; is a character
constant for a newline.  By default, GCC ignores trigraphs, but in
standard-conforming modes it converts them.  See the <samp><span class="option">-std</span></samp> and
<samp><span class="option">-ansi</span></samp> options.

     <p>The nine trigraphs and their replacements are

     <pre class="smallexample">          Trigraph:       ??(  ??)  ??&lt;  ??&gt;  ??=  ??/  ??'  ??!  ??-
          Replacement:      [    ]    {    }    #    \    ^    |    ~
</pre>
     <br><dt><code>-remap</code><dd><a name="index-remap-955"></a>Enable special code to work around file systems which only permit very
short file names, such as MS-DOS.

     <dt><code>--help</code><dt><code>--target-help</code><dd><a name="index-help-956"></a><a name="index-target_002dhelp-957"></a>Print text describing all the command line options instead of
preprocessing anything.

     <br><dt><code>-v</code><dd><a name="index-v-958"></a>Verbose mode.  Print out GNU CPP's version number at the beginning of
execution, and report the final form of the include path.

     <br><dt><code>-H</code><dd><a name="index-H-959"></a>Print the name of each header file used, in addition to other normal
activities.  Each name is indented to show how deep in the
&lsquo;<samp><span class="samp">#include</span></samp>&rsquo; stack it is.  Precompiled header files are also
printed, even if they are found to be invalid; an invalid precompiled
header file is printed with &lsquo;<samp><span class="samp">...x</span></samp>&rsquo; and a valid one with &lsquo;<samp><span class="samp">...!</span></samp>&rsquo; .

     <br><dt><code>-version</code><dt><code>--version</code><dd><a name="index-version-960"></a>Print out GNU CPP's version number.  With one dash, proceed to
preprocess as normal.  With two dashes, exit immediately. 
</dl>

<div class="node">
<a name="Assembler-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Link-Options">Link Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Preprocessor-Options">Preprocessor Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>

</div>

<h3 class="section">3.12 Passing Options to the Assembler</h3>

<!-- prevent bad page break with this line -->
<p>You can pass options to the assembler.

     <dl>
<dt><code>-Wa,</code><var>option</var><dd><a name="index-Wa-961"></a>Pass <var>option</var> as an option to the assembler.  If <var>option</var>
contains commas, it is split into multiple options at the commas.

     <br><dt><code>-Xassembler </code><var>option</var><dd><a name="index-Xassembler-962"></a>Pass <var>option</var> as an option to the assembler.  You can use this to
supply system-specific assembler options which GCC does not know how to
recognize.

     <p>If you want to pass an option that takes an argument, you must use
<samp><span class="option">-Xassembler</span></samp> twice, once for the option and once for the argument.

 </dl>

<div class="node">
<a name="Link-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Directory-Options">Directory Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Assembler-Options">Assembler Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>

</div>

<h3 class="section">3.13 Options for Linking</h3>

<p><a name="index-link-options-963"></a><a name="index-options_002c-linking-964"></a>
These options come into play when the compiler links object files into
an executable output file.  They are meaningless if the compiler is
not doing a link step.

     
<a name="index-file-names-965"></a>
<dl><dt><var>object-file-name</var><dd>A file name that does not end in a special recognized suffix is
considered to name an object file or library.  (Object files are
distinguished from libraries by the linker according to the file
contents.)  If linking is done, these object files are used as input
to the linker.

     <br><dt><code>-c</code><dt><code>-S</code><dt><code>-E</code><dd><a name="index-c-966"></a><a name="index-S-967"></a><a name="index-E-968"></a>If any of these options is used, then the linker is not run, and
object file names should not be used as arguments.  See <a href="#Overall-Options">Overall Options</a>.

     <p><a name="index-Libraries-969"></a><br><dt><code>-l</code><var>library</var><dt><code>-l </code><var>library</var><dd><a name="index-l-970"></a>Search the library named <var>library</var> when linking.  (The second
alternative with the library as a separate argument is only for
POSIX compliance and is not recommended.)

     <p>It makes a difference where in the command you write this option; the
linker searches and processes libraries and object files in the order they
are specified.  Thus, &lsquo;<samp><span class="samp">foo.o -lz bar.o</span></samp>&rsquo; searches library &lsquo;<samp><span class="samp">z</span></samp>&rsquo;
after file <samp><span class="file">foo.o</span></samp> but before <samp><span class="file">bar.o</span></samp>.  If <samp><span class="file">bar.o</span></samp> refers
to functions in &lsquo;<samp><span class="samp">z</span></samp>&rsquo;, those functions may not be loaded.

     <p>The linker searches a standard list of directories for the library,
which is actually a file named <samp><span class="file">lib</span><var>library</var><span class="file">.a</span></samp>.  The linker
then uses this file as if it had been specified precisely by name.

     <p>The directories searched include several standard system directories
plus any that you specify with <samp><span class="option">-L</span></samp>.

     <p>Normally the files found this way are library files&mdash;archive files
whose members are object files.  The linker handles an archive file by
scanning through it for members which define symbols that have so far
been referenced but not defined.  But if the file that is found is an
ordinary object file, it is linked in the usual fashion.  The only
difference between using an <samp><span class="option">-l</span></samp> option and specifying a file name
is that <samp><span class="option">-l</span></samp> surrounds <var>library</var> with &lsquo;<samp><span class="samp">lib</span></samp>&rsquo; and &lsquo;<samp><span class="samp">.a</span></samp>&rsquo;
and searches several directories.

     <br><dt><code>-lobjc</code><dd><a name="index-lobjc-971"></a>You need this special case of the <samp><span class="option">-l</span></samp> option in order to
link an Objective-C or Objective-C++ program.

     <br><dt><code>-nostartfiles</code><dd><a name="index-nostartfiles-972"></a>Do not use the standard system startup files when linking. 
The standard system libraries are used normally, unless <samp><span class="option">-nostdlib</span></samp>
or <samp><span class="option">-nodefaultlibs</span></samp> is used.

     <br><dt><code>-nodefaultlibs</code><dd><a name="index-nodefaultlibs-973"></a>Do not use the standard system libraries when linking. 
Only the libraries you specify will be passed to the linker, options
specifying linkage of the system libraries, such as <code>-static-libgcc</code>
or <code>-shared-libgcc</code>, will be ignored. 
The standard startup files are used normally, unless <samp><span class="option">-nostartfiles</span></samp>
is used.  The compiler may generate calls to <code>memcmp</code>,
<code>memset</code>, <code>memcpy</code> and <code>memmove</code>. 
These entries are usually resolved by entries in
libc.  These entry points should be supplied through some other
mechanism when this option is specified.

     <br><dt><code>-nostdlib</code><dd><a name="index-nostdlib-974"></a>Do not use the standard system startup files or libraries when linking. 
No startup files and only the libraries you specify will be passed to
the linker, options specifying linkage of the system libraries, such as
<code>-static-libgcc</code> or <code>-shared-libgcc</code>, will be ignored. 
The compiler may generate calls to <code>memcmp</code>, <code>memset</code>,
<code>memcpy</code> and <code>memmove</code>. 
These entries are usually resolved by entries in
libc.  These entry points should be supplied through some other
mechanism when this option is specified.

     <p><a name="index-g_t_0040option_007b_002dlgcc_007d_002c-use-with-_0040option_007b_002dnostdlib_007d-975"></a><a name="index-g_t_0040option_007b_002dnostdlib_007d-and-unresolved-references-976"></a><a name="index-unresolved-references-and-_0040option_007b_002dnostdlib_007d-977"></a><a name="index-g_t_0040option_007b_002dlgcc_007d_002c-use-with-_0040option_007b_002dnodefaultlibs_007d-978"></a><a name="index-g_t_0040option_007b_002dnodefaultlibs_007d-and-unresolved-references-979"></a><a name="index-unresolved-references-and-_0040option_007b_002dnodefaultlibs_007d-980"></a>One of the standard libraries bypassed by <samp><span class="option">-nostdlib</span></samp> and
<samp><span class="option">-nodefaultlibs</span></samp> is <samp><span class="file">libgcc.a</span></samp>, a library of internal subroutines
that GCC uses to overcome shortcomings of particular machines, or special
needs for some languages. 
(See <a href="{No value for `fngccint'}.html#Interface">Interfacing to GCC Output</a>,
for more discussion of <samp><span class="file">libgcc.a</span></samp>.) 
In most cases, you need <samp><span class="file">libgcc.a</span></samp> even when you want to avoid
other standard libraries.  In other words, when you specify <samp><span class="option">-nostdlib</span></samp>
or <samp><span class="option">-nodefaultlibs</span></samp> you should usually specify <samp><span class="option">-lgcc</span></samp> as well. 
This ensures that you have no unresolved references to internal GCC
library subroutines.  (For example, &lsquo;<samp><span class="samp">__main</span></samp>&rsquo;, used to ensure C++
constructors will be called; see <a href="{No value for `fngccint'}.html#Collect2"><code>collect2</code></a>.)

     <br><dt><code>-pie</code><dd><a name="index-pie-981"></a>Produce a position independent executable on targets which support it. 
For predictable results, you must also specify the same set of options
that were used to generate code (<samp><span class="option">-fpie</span></samp>, <samp><span class="option">-fPIE</span></samp>,
or model suboptions) when you specify this option.

     <br><dt><code>-rdynamic</code><dd><a name="index-rdynamic-982"></a>Pass the flag <samp><span class="option">-export-dynamic</span></samp> to the ELF linker, on targets
that support it. This instructs the linker to add all symbols, not
only used ones, to the dynamic symbol table. This option is needed
for some uses of <code>dlopen</code> or to allow obtaining backtraces
from within a program.

     <br><dt><code>-s</code><dd><a name="index-s-983"></a>Remove all symbol table and relocation information from the executable.

     <br><dt><code>-static</code><dd><a name="index-static-984"></a>On systems that support dynamic linking, this prevents linking with the shared
libraries.  On other systems, this option has no effect.

     <br><dt><code>-shared</code><dd><a name="index-shared-985"></a>Produce a shared object which can then be linked with other objects to
form an executable.  Not all systems support this option.  For predictable
results, you must also specify the same set of options that were used to
generate code (<samp><span class="option">-fpic</span></samp>, <samp><span class="option">-fPIC</span></samp>, or model suboptions)
when you specify this option.<a rel="footnote" href="#fn-1" name="fnd-1"><sup>1</sup></a>

     <br><dt><code>-shared-libgcc</code><dt><code>-static-libgcc</code><dd><a name="index-shared_002dlibgcc-986"></a><a name="index-static_002dlibgcc-987"></a>On systems that provide <samp><span class="file">libgcc</span></samp> as a shared library, these options
force the use of either the shared or static version respectively. 
If no shared version of <samp><span class="file">libgcc</span></samp> was built when the compiler was
configured, these options have no effect.

     <p>There are several situations in which an application should use the
shared <samp><span class="file">libgcc</span></samp> instead of the static version.  The most common
of these is when the application wishes to throw and catch exceptions
across different shared libraries.  In that case, each of the libraries
as well as the application itself should use the shared <samp><span class="file">libgcc</span></samp>.

     <p>Therefore, the G++ and GCJ drivers automatically add
<samp><span class="option">-shared-libgcc</span></samp> whenever you build a shared library or a main
executable, because C++ and Java programs typically use exceptions, so
this is the right thing to do.

     <p>If, instead, you use the GCC driver to create shared libraries, you may
find that they will not always be linked with the shared <samp><span class="file">libgcc</span></samp>. 
If GCC finds, at its configuration time, that you have a non-GNU linker
or a GNU linker that does not support option <samp><span class="option">--eh-frame-hdr</span></samp>,
it will link the shared version of <samp><span class="file">libgcc</span></samp> into shared libraries
by default.  Otherwise, it will take advantage of the linker and optimize
away the linking with the shared version of <samp><span class="file">libgcc</span></samp>, linking with
the static version of libgcc by default.  This allows exceptions to
propagate through such shared libraries, without incurring relocation
costs at library load time.

     <p>However, if a library or main executable is supposed to throw or catch
exceptions, you must link it using the G++ or GCJ driver, as appropriate
for the languages used in the program, or using the option
<samp><span class="option">-shared-libgcc</span></samp>, such that it is linked with the shared
<samp><span class="file">libgcc</span></samp>.

     <br><dt><code>-static-libstdc++</code><dd>When the <samp><span class="command">g++</span></samp> program is used to link a C++ program, it will
normally automatically link against <samp><span class="option">libstdc++</span></samp>.  If
<samp><span class="file">libstdc++</span></samp> is available as a shared library, and the
<samp><span class="option">-static</span></samp> option is not used, then this will link against the
shared version of <samp><span class="file">libstdc++</span></samp>.  That is normally fine.  However, it
is sometimes useful to freeze the version of <samp><span class="file">libstdc++</span></samp> used by
the program without going all the way to a fully static link.  The
<samp><span class="option">-static-libstdc++</span></samp> option directs the <samp><span class="command">g++</span></samp> driver to
link <samp><span class="file">libstdc++</span></samp> statically, without necessarily linking other
libraries statically.

     <br><dt><code>-symbolic</code><dd><a name="index-symbolic-988"></a>Bind references to global symbols when building a shared object.  Warn
about any unresolved references (unless overridden by the link editor
option &lsquo;<samp><span class="samp">-Xlinker -z -Xlinker defs</span></samp>&rsquo;).  Only a few systems support
this option.

     <br><dt><code>-T </code><var>script</var><dd><a name="index-T-989"></a><a name="index-linker-script-990"></a>Use <var>script</var> as the linker script.  This option is supported by most
systems using the GNU linker.  On some targets, such as bare-board
targets without an operating system, the <samp><span class="option">-T</span></samp> option may be required
when linking to avoid references to undefined symbols.

     <br><dt><code>-Xlinker </code><var>option</var><dd><a name="index-Xlinker-991"></a>Pass <var>option</var> as an option to the linker.  You can use this to
supply system-specific linker options which GCC does not know how to
recognize.

     <p>If you want to pass an option that takes a separate argument, you must use
<samp><span class="option">-Xlinker</span></samp> twice, once for the option and once for the argument. 
For example, to pass <samp><span class="option">-assert definitions</span></samp>, you must write
&lsquo;<samp><span class="samp">-Xlinker -assert -Xlinker definitions</span></samp>&rsquo;.  It does not work to write
<samp><span class="option">-Xlinker "-assert definitions"</span></samp>, because this passes the entire
string as a single argument, which is not what the linker expects.

     <p>When using the GNU linker, it is usually more convenient to pass
arguments to linker options using the <samp><var>option</var><span class="option">=</span><var>value</var></samp>
syntax than as separate arguments.  For example, you can specify
&lsquo;<samp><span class="samp">-Xlinker -Map=output.map</span></samp>&rsquo; rather than
&lsquo;<samp><span class="samp">-Xlinker -Map -Xlinker output.map</span></samp>&rsquo;.  Other linkers may not support
this syntax for command-line options.

     <br><dt><code>-Wl,</code><var>option</var><dd><a name="index-Wl-992"></a>Pass <var>option</var> as an option to the linker.  If <var>option</var> contains
commas, it is split into multiple options at the commas.  You can use this
syntax to pass an argument to the option. 
For example, &lsquo;<samp><span class="samp">-Wl,-Map,output.map</span></samp>&rsquo; passes &lsquo;<samp><span class="samp">-Map output.map</span></samp>&rsquo; to the
linker.  When using the GNU linker, you can also get the same effect with
&lsquo;<samp><span class="samp">-Wl,-Map=output.map</span></samp>&rsquo;.

     <p>NOTE: In Ubuntu 8.10 and later versions, for LDFLAGS, the option
<samp><span class="option">-Wl,-z,relro</span></samp> is used.  To disable, use <samp><span class="option">-Wl,-z,norelro</span></samp>.

     <br><dt><code>-u </code><var>symbol</var><dd><a name="index-u-993"></a>Pretend the symbol <var>symbol</var> is undefined, to force linking of
library modules to define it.  You can use <samp><span class="option">-u</span></samp> multiple times with
different symbols to force loading of additional library modules. 
</dl>

<div class="node">
<a name="Directory-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Spec-Files">Spec Files</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Link-Options">Link Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>

</div>

<h3 class="section">3.14 Options for Directory Search</h3>

<p><a name="index-directory-options-994"></a><a name="index-options_002c-directory-search-995"></a><a name="index-search-path-996"></a>
These options specify directories to search for header files, for
libraries and for parts of the compiler:

     <dl>
<dt><code>-I</code><var>dir</var><dd><a name="index-I-997"></a>Add the directory <var>dir</var> to the head of the list of directories to be
searched for header files.  This can be used to override a system header
file, substituting your own version, since these directories are
searched before the system header file directories.  However, you should
not use this option to add directories that contain vendor-supplied
system header files (use <samp><span class="option">-isystem</span></samp> for that).  If you use more than
one <samp><span class="option">-I</span></samp> option, the directories are scanned in left-to-right
order; the standard system directories come after.

     <p>If a standard system include directory, or a directory specified with
<samp><span class="option">-isystem</span></samp>, is also specified with <samp><span class="option">-I</span></samp>, the <samp><span class="option">-I</span></samp>
option will be ignored.  The directory will still be searched but as a
system directory at its normal position in the system include chain. 
This is to ensure that GCC's procedure to fix buggy system headers and
the ordering for the include_next directive are not inadvertently changed. 
If you really need to change the search order for system directories,
use the <samp><span class="option">-nostdinc</span></samp> and/or <samp><span class="option">-isystem</span></samp> options.

     <br><dt><code>-iplugindir=</code><var>dir</var><dd>Set the directory to search for plugins which are passed
by <samp><span class="option">-fplugin=</span><var>name</var></samp> instead of
<samp><span class="option">-fplugin=</span><var>path</var><span class="option">/</span><var>name</var><span class="option">.so</span></samp>.  This option is not meant
to be used by the user, but only passed by the driver.

     <br><dt><code>-iquote</code><var>dir</var><dd><a name="index-iquote-998"></a>Add the directory <var>dir</var> to the head of the list of directories to
be searched for header files only for the case of &lsquo;<samp><span class="samp">#include
"</span><var>file</var><span class="samp">"</span></samp>&rsquo;; they are not searched for &lsquo;<samp><span class="samp">#include &lt;</span><var>file</var><span class="samp">&gt;</span></samp>&rsquo;,
otherwise just like <samp><span class="option">-I</span></samp>.

     <br><dt><code>-L</code><var>dir</var><dd><a name="index-L-999"></a>Add directory <var>dir</var> to the list of directories to be searched
for <samp><span class="option">-l</span></samp>.

     <br><dt><code>-B</code><var>prefix</var><dd><a name="index-B-1000"></a>This option specifies where to find the executables, libraries,
include files, and data files of the compiler itself.

     <p>The compiler driver program runs one or more of the subprograms
<samp><span class="file">cpp</span></samp>, <samp><span class="file">cc1</span></samp>, <samp><span class="file">as</span></samp> and <samp><span class="file">ld</span></samp>.  It tries
<var>prefix</var> as a prefix for each program it tries to run, both with and
without &lsquo;<samp><var>machine</var><span class="samp">/</span><var>version</var><span class="samp">/</span></samp>&rsquo; (see <a href="#Target-Options">Target Options</a>).

     <p>For each subprogram to be run, the compiler driver first tries the
<samp><span class="option">-B</span></samp> prefix, if any.  If that name is not found, or if <samp><span class="option">-B</span></samp>
was not specified, the driver tries two standard prefixes, which are
<samp><span class="file">/usr/lib/gcc/</span></samp> and <samp><span class="file">/usr/local/lib/gcc/</span></samp>.  If neither of
those results in a file name that is found, the unmodified program
name is searched for using the directories specified in your
<samp><span class="env">PATH</span></samp> environment variable.

     <p>The compiler will check to see if the path provided by the <samp><span class="option">-B</span></samp>
refers to a directory, and if necessary it will add a directory
separator character at the end of the path.

     <p><samp><span class="option">-B</span></samp> prefixes that effectively specify directory names also apply
to libraries in the linker, because the compiler translates these
options into <samp><span class="option">-L</span></samp> options for the linker.  They also apply to
includes files in the preprocessor, because the compiler translates these
options into <samp><span class="option">-isystem</span></samp> options for the preprocessor.  In this case,
the compiler appends &lsquo;<samp><span class="samp">include</span></samp>&rsquo; to the prefix.

     <p>The run-time support file <samp><span class="file">libgcc.a</span></samp> can also be searched for using
the <samp><span class="option">-B</span></samp> prefix, if needed.  If it is not found there, the two
standard prefixes above are tried, and that is all.  The file is left
out of the link if it is not found by those means.

     <p>Another way to specify a prefix much like the <samp><span class="option">-B</span></samp> prefix is to use
the environment variable <samp><span class="env">GCC_EXEC_PREFIX</span></samp>.  See <a href="#Environment-Variables">Environment Variables</a>.

     <p>As a special kludge, if the path provided by <samp><span class="option">-B</span></samp> is
<samp><span class="file">[dir/]stage</span><var>N</var><span class="file">/</span></samp>, where <var>N</var> is a number in the range 0 to
9, then it will be replaced by <samp><span class="file">[dir/]include</span></samp>.  This is to help
with boot-strapping the compiler.

     <br><dt><code>-specs=</code><var>file</var><dd><a name="index-specs-1001"></a>Process <var>file</var> after the compiler reads in the standard <samp><span class="file">specs</span></samp>
file, in order to override the defaults that the <samp><span class="file">gcc</span></samp> driver
program uses when determining what switches to pass to <samp><span class="file">cc1</span></samp>,
<samp><span class="file">cc1plus</span></samp>, <samp><span class="file">as</span></samp>, <samp><span class="file">ld</span></samp>, etc.  More than one
<samp><span class="option">-specs=</span><var>file</var></samp> can be specified on the command line, and they
are processed in order, from left to right.

     <br><dt><code>--sysroot=</code><var>dir</var><dd><a name="index-sysroot-1002"></a>Use <var>dir</var> as the logical root directory for headers and libraries. 
For example, if the compiler would normally search for headers in
<samp><span class="file">/usr/include</span></samp> and libraries in <samp><span class="file">/usr/lib</span></samp>, it will instead
search <samp><var>dir</var><span class="file">/usr/include</span></samp> and <samp><var>dir</var><span class="file">/usr/lib</span></samp>.

     <p>If you use both this option and the <samp><span class="option">-isysroot</span></samp> option, then
the <samp><span class="option">--sysroot</span></samp> option will apply to libraries, but the
<samp><span class="option">-isysroot</span></samp> option will apply to header files.

     <p>The GNU linker (beginning with version 2.16) has the necessary support
for this option.  If your linker does not support this option, the
header file aspect of <samp><span class="option">--sysroot</span></samp> will still work, but the
library aspect will not.

     <br><dt><code>-I-</code><dd><a name="index-I_002d-1003"></a>This option has been deprecated.  Please use <samp><span class="option">-iquote</span></samp> instead for
<samp><span class="option">-I</span></samp> directories before the <samp><span class="option">-I-</span></samp> and remove the <samp><span class="option">-I-</span></samp>. 
Any directories you specify with <samp><span class="option">-I</span></samp> options before the <samp><span class="option">-I-</span></samp>
option are searched only for the case of &lsquo;<samp><span class="samp">#include "</span><var>file</var><span class="samp">"</span></samp>&rsquo;;
they are not searched for &lsquo;<samp><span class="samp">#include &lt;</span><var>file</var><span class="samp">&gt;</span></samp>&rsquo;.

     <p>If additional directories are specified with <samp><span class="option">-I</span></samp> options after
the <samp><span class="option">-I-</span></samp>, these directories are searched for all &lsquo;<samp><span class="samp">#include</span></samp>&rsquo;
directives.  (Ordinarily <em>all</em> <samp><span class="option">-I</span></samp> directories are used
this way.)

     <p>In addition, the <samp><span class="option">-I-</span></samp> option inhibits the use of the current
directory (where the current input file came from) as the first search
directory for &lsquo;<samp><span class="samp">#include "</span><var>file</var><span class="samp">"</span></samp>&rsquo;.  There is no way to
override this effect of <samp><span class="option">-I-</span></samp>.  With <samp><span class="option">-I.</span></samp> you can specify
searching the directory which was current when the compiler was
invoked.  That is not exactly the same as what the preprocessor does
by default, but it is often satisfactory.

     <p><samp><span class="option">-I-</span></samp> does not inhibit the use of the standard system directories
for header files.  Thus, <samp><span class="option">-I-</span></samp> and <samp><span class="option">-nostdinc</span></samp> are
independent. 
</dl>

<!-- man end -->
<div class="node">
<a name="Spec-Files"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Target-Options">Target Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Directory-Options">Directory Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>

</div>

<h3 class="section">3.15 Specifying subprocesses and the switches to pass to them</h3>

<p><a name="index-Spec-Files-1004"></a>
<samp><span class="command">gcc</span></samp> is a driver program.  It performs its job by invoking a
sequence of other programs to do the work of compiling, assembling and
linking.  GCC interprets its command-line parameters and uses these to
deduce which programs it should invoke, and which command-line options
it ought to place on their command lines.  This behavior is controlled
by <dfn>spec strings</dfn>.  In most cases there is one spec string for each
program that GCC can invoke, but a few programs have multiple spec
strings to control their behavior.  The spec strings built into GCC can
be overridden by using the <samp><span class="option">-specs=</span></samp> command-line switch to specify
a spec file.

 <p><dfn>Spec files</dfn> are plaintext files that are used to construct spec
strings.  They consist of a sequence of directives separated by blank
lines.  The type of directive is determined by the first non-whitespace
character on the line and it can be one of the following:

     <dl>
<dt><code>%</code><var>command</var><dd>Issues a <var>command</var> to the spec file processor.  The commands that can
appear here are:

          <dl>
<dt><code>%include &lt;</code><var>file</var><code>&gt;</code><dd><a name="index-g_t_0040code_007b_0025include_007d-1005"></a>Search for <var>file</var> and insert its text at the current point in the
specs file.

          <br><dt><code>%include_noerr &lt;</code><var>file</var><code>&gt;</code><dd><a name="index-g_t_0040code_007b_0025include_005fnoerr_007d-1006"></a>Just like &lsquo;<samp><span class="samp">%include</span></samp>&rsquo;, but do not generate an error message if the include
file cannot be found.

          <br><dt><code>%rename </code><var>old_name</var> <var>new_name</var><dd><a name="index-g_t_0040code_007b_0025rename_007d-1007"></a>Rename the spec string <var>old_name</var> to <var>new_name</var>.

     </dl>

     <br><dt><code>*[</code><var>spec_name</var><code>]:</code><dd>This tells the compiler to create, override or delete the named spec
string.  All lines after this directive up to the next directive or
blank line are considered to be the text for the spec string.  If this
results in an empty string then the spec will be deleted.  (Or, if the
spec did not exist, then nothing will happened.)  Otherwise, if the spec
does not currently exist a new spec will be created.  If the spec does
exist then its contents will be overridden by the text of this
directive, unless the first character of that text is the &lsquo;<samp><span class="samp">+</span></samp>&rsquo;
character, in which case the text will be appended to the spec.

     <br><dt><code>[</code><var>suffix</var><code>]:</code><dd>Creates a new &lsquo;<samp><span class="samp">[</span><var>suffix</var><span class="samp">] spec</span></samp>&rsquo; pair.  All lines after this directive
and up to the next directive or blank line are considered to make up the
spec string for the indicated suffix.  When the compiler encounters an
input file with the named suffix, it will processes the spec string in
order to work out how to compile that file.  For example:

     <pre class="smallexample">          .ZZ:
          z-compile -input %i
</pre>
     <p>This says that any input file whose name ends in &lsquo;<samp><span class="samp">.ZZ</span></samp>&rsquo; should be
passed to the program &lsquo;<samp><span class="samp">z-compile</span></samp>&rsquo;, which should be invoked with the
command-line switch <samp><span class="option">-input</span></samp> and with the result of performing the
&lsquo;<samp><span class="samp">%i</span></samp>&rsquo; substitution.  (See below.)

     <p>As an alternative to providing a spec string, the text that follows a
suffix directive can be one of the following:

          <dl>
<dt><code>@</code><var>language</var><dd>This says that the suffix is an alias for a known <var>language</var>.  This is
similar to using the <samp><span class="option">-x</span></samp> command-line switch to GCC to specify a
language explicitly.  For example:

          <pre class="smallexample">               .ZZ:
               @c++
</pre>
          <p>Says that .ZZ files are, in fact, C++ source files.

          <br><dt><code>#</code><var>name</var><dd>This causes an error messages saying:

          <pre class="smallexample">               <var>name</var> compiler not installed on this system.
</pre>
          </dl>

     <p>GCC already has an extensive list of suffixes built into it. 
This directive will add an entry to the end of the list of suffixes, but
since the list is searched from the end backwards, it is effectively
possible to override earlier entries using this technique.

 </dl>

 <p>GCC has the following spec strings built into it.  Spec files can
override these strings or create their own.  Note that individual
targets can also add their own spec strings to this list.

<pre class="smallexample">     asm          Options to pass to the assembler
     asm_final    Options to pass to the assembler post-processor
     cpp          Options to pass to the C preprocessor
     cc1          Options to pass to the C compiler
     cc1plus      Options to pass to the C++ compiler
     endfile      Object files to include at the end of the link
     link         Options to pass to the linker
     lib          Libraries to include on the command line to the linker
     libgcc       Decides which GCC support library to pass to the linker
     linker       Sets the name of the linker
     predefines   Defines to be passed to the C preprocessor
     signed_char  Defines to pass to CPP to say whether <code>char</code> is signed
                  by default
     startfile    Object files to include at the start of the link
</pre>
 <p>Here is a small example of a spec file:

<pre class="smallexample">     %rename lib                 old_lib
     
     *lib:
     --start-group -lgcc -lc -leval1 --end-group %(old_lib)
</pre>
 <p>This example renames the spec called &lsquo;<samp><span class="samp">lib</span></samp>&rsquo; to &lsquo;<samp><span class="samp">old_lib</span></samp>&rsquo; and
then overrides the previous definition of &lsquo;<samp><span class="samp">lib</span></samp>&rsquo; with a new one. 
The new definition adds in some extra command-line options before
including the text of the old definition.

 <p><dfn>Spec strings</dfn> are a list of command-line options to be passed to their
corresponding program.  In addition, the spec strings can contain
&lsquo;<samp><span class="samp">%</span></samp>&rsquo;-prefixed sequences to substitute variable text or to
conditionally insert text into the command line.  Using these constructs
it is possible to generate quite complex command lines.

 <p>Here is a table of all defined &lsquo;<samp><span class="samp">%</span></samp>&rsquo;-sequences for spec
strings.  Note that spaces are not generated automatically around the
results of expanding these sequences.  Therefore you can concatenate them
together or combine them with constant text in a single argument.

     <dl>
<dt><code>%%</code><dd>Substitute one &lsquo;<samp><span class="samp">%</span></samp>&rsquo; into the program name or argument.

     <br><dt><code>%i</code><dd>Substitute the name of the input file being processed.

     <br><dt><code>%b</code><dd>Substitute the basename of the input file being processed. 
This is the substring up to (and not including) the last period
and not including the directory.

     <br><dt><code>%B</code><dd>This is the same as &lsquo;<samp><span class="samp">%b</span></samp>&rsquo;, but include the file suffix (text after
the last period).

     <br><dt><code>%d</code><dd>Marks the argument containing or following the &lsquo;<samp><span class="samp">%d</span></samp>&rsquo; as a
temporary file name, so that that file will be deleted if GCC exits
successfully.  Unlike &lsquo;<samp><span class="samp">%g</span></samp>&rsquo;, this contributes no text to the
argument.

     <br><dt><code>%g</code><var>suffix</var><dd>Substitute a file name that has suffix <var>suffix</var> and is chosen
once per compilation, and mark the argument in the same way as
&lsquo;<samp><span class="samp">%d</span></samp>&rsquo;.  To reduce exposure to denial-of-service attacks, the file
name is now chosen in a way that is hard to predict even when previously
chosen file names are known.  For example, &lsquo;<samp><span class="samp">%g.s ... %g.o ... %g.s</span></samp>&rsquo;
might turn into &lsquo;<samp><span class="samp">ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s</span></samp>&rsquo;.  <var>suffix</var> matches
the regexp &lsquo;<samp><span class="samp">[.A-Za-z]*</span></samp>&rsquo; or the special string &lsquo;<samp><span class="samp">%O</span></samp>&rsquo;, which is
treated exactly as if &lsquo;<samp><span class="samp">%O</span></samp>&rsquo; had been preprocessed.  Previously, &lsquo;<samp><span class="samp">%g</span></samp>&rsquo;
was simply substituted with a file name chosen once per compilation,
without regard to any appended suffix (which was therefore treated
just like ordinary text), making such attacks more likely to succeed.

     <br><dt><code>%u</code><var>suffix</var><dd>Like &lsquo;<samp><span class="samp">%g</span></samp>&rsquo;, but generates a new temporary file name even if
&lsquo;<samp><span class="samp">%u</span><var>suffix</var></samp>&rsquo; was already seen.

     <br><dt><code>%U</code><var>suffix</var><dd>Substitutes the last file name generated with &lsquo;<samp><span class="samp">%u</span><var>suffix</var></samp>&rsquo;, generating a
new one if there is no such last file name.  In the absence of any
&lsquo;<samp><span class="samp">%u</span><var>suffix</var></samp>&rsquo;, this is just like &lsquo;<samp><span class="samp">%g</span><var>suffix</var></samp>&rsquo;, except they don't share
the same suffix <em>space</em>, so &lsquo;<samp><span class="samp">%g.s ... %U.s ... %g.s ... %U.s</span></samp>&rsquo;
would involve the generation of two distinct file names, one
for each &lsquo;<samp><span class="samp">%g.s</span></samp>&rsquo; and another for each &lsquo;<samp><span class="samp">%U.s</span></samp>&rsquo;.  Previously, &lsquo;<samp><span class="samp">%U</span></samp>&rsquo; was
simply substituted with a file name chosen for the previous &lsquo;<samp><span class="samp">%u</span></samp>&rsquo;,
without regard to any appended suffix.

     <br><dt><code>%j</code><var>suffix</var><dd>Substitutes the name of the <code>HOST_BIT_BUCKET</code>, if any, and if it is
writable, and if save-temps is off; otherwise, substitute the name
of a temporary file, just like &lsquo;<samp><span class="samp">%u</span></samp>&rsquo;.  This temporary file is not
meant for communication between processes, but rather as a junk
disposal mechanism.

     <br><dt><code>%|</code><var>suffix</var><dt><code>%m</code><var>suffix</var><dd>Like &lsquo;<samp><span class="samp">%g</span></samp>&rsquo;, except if <samp><span class="option">-pipe</span></samp> is in effect.  In that case
&lsquo;<samp><span class="samp">%|</span></samp>&rsquo; substitutes a single dash and &lsquo;<samp><span class="samp">%m</span></samp>&rsquo; substitutes nothing at
all.  These are the two most common ways to instruct a program that it
should read from standard input or write to standard output.  If you
need something more elaborate you can use an &lsquo;<samp><span class="samp">%{pipe:</span><code>X</code><span class="samp">}</span></samp>&rsquo;
construct: see for example <samp><span class="file">f/lang-specs.h</span></samp>.

     <br><dt><code>%.</code><var>SUFFIX</var><dd>Substitutes <var>.SUFFIX</var> for the suffixes of a matched switch's args
when it is subsequently output with &lsquo;<samp><span class="samp">%*</span></samp>&rsquo;.  <var>SUFFIX</var> is
terminated by the next space or %.

     <br><dt><code>%w</code><dd>Marks the argument containing or following the &lsquo;<samp><span class="samp">%w</span></samp>&rsquo; as the
designated output file of this compilation.  This puts the argument
into the sequence of arguments that &lsquo;<samp><span class="samp">%o</span></samp>&rsquo; will substitute later.

     <br><dt><code>%o</code><dd>Substitutes the names of all the output files, with spaces
automatically placed around them.  You should write spaces
around the &lsquo;<samp><span class="samp">%o</span></samp>&rsquo; as well or the results are undefined. 
&lsquo;<samp><span class="samp">%o</span></samp>&rsquo; is for use in the specs for running the linker. 
Input files whose names have no recognized suffix are not compiled
at all, but they are included among the output files, so they will
be linked.

     <br><dt><code>%O</code><dd>Substitutes the suffix for object files.  Note that this is
handled specially when it immediately follows &lsquo;<samp><span class="samp">%g, %u, or %U</span></samp>&rsquo;,
because of the need for those to form complete file names.  The
handling is such that &lsquo;<samp><span class="samp">%O</span></samp>&rsquo; is treated exactly as if it had already
been substituted, except that &lsquo;<samp><span class="samp">%g, %u, and %U</span></samp>&rsquo; do not currently
support additional <var>suffix</var> characters following &lsquo;<samp><span class="samp">%O</span></samp>&rsquo; as they would
following, for example, &lsquo;<samp><span class="samp">.o</span></samp>&rsquo;.

     <br><dt><code>%p</code><dd>Substitutes the standard macro predefinitions for the
current target machine.  Use this when running <code>cpp</code>.

     <br><dt><code>%P</code><dd>Like &lsquo;<samp><span class="samp">%p</span></samp>&rsquo;, but puts &lsquo;<samp><span class="samp">__</span></samp>&rsquo; before and after the name of each
predefined macro, except for macros that start with &lsquo;<samp><span class="samp">__</span></samp>&rsquo; or with
&lsquo;<samp><span class="samp">_</span><var>L</var></samp>&rsquo;, where <var>L</var> is an uppercase letter.  This is for ISO
C.

     <br><dt><code>%I</code><dd>Substitute any of <samp><span class="option">-iprefix</span></samp> (made from <samp><span class="env">GCC_EXEC_PREFIX</span></samp>),
<samp><span class="option">-isysroot</span></samp> (made from <samp><span class="env">TARGET_SYSTEM_ROOT</span></samp>),
<samp><span class="option">-isystem</span></samp> (made from <samp><span class="env">COMPILER_PATH</span></samp> and <samp><span class="option">-B</span></samp> options)
and <samp><span class="option">-imultilib</span></samp> as necessary.

     <br><dt><code>%s</code><dd>Current argument is the name of a library or startup file of some sort. 
Search for that file in a standard list of directories and substitute
the full name found.  The current working directory is included in the
list of directories scanned.

     <br><dt><code>%T</code><dd>Current argument is the name of a linker script.  Search for that file
in the current list of directories to scan for libraries. If the file
is located insert a <samp><span class="option">--script</span></samp> option into the command line
followed by the full path name found.  If the file is not found then
generate an error message.  Note: the current working directory is not
searched.

     <br><dt><code>%e</code><var>str</var><dd>Print <var>str</var> as an error message.  <var>str</var> is terminated by a newline. 
Use this when inconsistent options are detected.

     <br><dt><code>%(</code><var>name</var><code>)</code><dd>Substitute the contents of spec string <var>name</var> at this point.

     <br><dt><code>%[</code><var>name</var><code>]</code><dd>Like &lsquo;<samp><span class="samp">%(...)</span></samp>&rsquo; but put &lsquo;<samp><span class="samp">__</span></samp>&rsquo; around <samp><span class="option">-D</span></samp> arguments.

     <br><dt><code>%x{</code><var>option</var><code>}</code><dd>Accumulate an option for &lsquo;<samp><span class="samp">%X</span></samp>&rsquo;.

     <br><dt><code>%X</code><dd>Output the accumulated linker options specified by <samp><span class="option">-Wl</span></samp> or a &lsquo;<samp><span class="samp">%x</span></samp>&rsquo;
spec string.

     <br><dt><code>%Y</code><dd>Output the accumulated assembler options specified by <samp><span class="option">-Wa</span></samp>.

     <br><dt><code>%Z</code><dd>Output the accumulated preprocessor options specified by <samp><span class="option">-Wp</span></samp>.

     <br><dt><code>%a</code><dd>Process the <code>asm</code> spec.  This is used to compute the
switches to be passed to the assembler.

     <br><dt><code>%A</code><dd>Process the <code>asm_final</code> spec.  This is a spec string for
passing switches to an assembler post-processor, if such a program is
needed.

     <br><dt><code>%l</code><dd>Process the <code>link</code> spec.  This is the spec for computing the
command line passed to the linker.  Typically it will make use of the
&lsquo;<samp><span class="samp">%L %G %S %D and %E</span></samp>&rsquo; sequences.

     <br><dt><code>%D</code><dd>Dump out a <samp><span class="option">-L</span></samp> option for each directory that GCC believes might
contain startup files.  If the target supports multilibs then the
current multilib directory will be prepended to each of these paths.

     <br><dt><code>%L</code><dd>Process the <code>lib</code> spec.  This is a spec string for deciding which
libraries should be included on the command line to the linker.

     <br><dt><code>%G</code><dd>Process the <code>libgcc</code> spec.  This is a spec string for deciding
which GCC support library should be included on the command line to the linker.

     <br><dt><code>%S</code><dd>Process the <code>startfile</code> spec.  This is a spec for deciding which
object files should be the first ones passed to the linker.  Typically
this might be a file named <samp><span class="file">crt0.o</span></samp>.

     <br><dt><code>%E</code><dd>Process the <code>endfile</code> spec.  This is a spec string that specifies
the last object files that will be passed to the linker.

     <br><dt><code>%C</code><dd>Process the <code>cpp</code> spec.  This is used to construct the arguments
to be passed to the C preprocessor.

     <br><dt><code>%1</code><dd>Process the <code>cc1</code> spec.  This is used to construct the options to be
passed to the actual C compiler (&lsquo;<samp><span class="samp">cc1</span></samp>&rsquo;).

     <br><dt><code>%2</code><dd>Process the <code>cc1plus</code> spec.  This is used to construct the options to be
passed to the actual C++ compiler (&lsquo;<samp><span class="samp">cc1plus</span></samp>&rsquo;).

     <br><dt><code>%*</code><dd>Substitute the variable part of a matched option.  See below. 
Note that each comma in the substituted string is replaced by
a single space.

     <br><dt><code>%&lt;S</code><dd>Remove all occurrences of <code>-S</code> from the command line.  Note&mdash;this
command is position dependent.  &lsquo;<samp><span class="samp">%</span></samp>&rsquo; commands in the spec string
before this one will see <code>-S</code>, &lsquo;<samp><span class="samp">%</span></samp>&rsquo; commands in the spec string
after this one will not.

     <br><dt><code>%:</code><var>function</var><code>(</code><var>args</var><code>)</code><dd>Call the named function <var>function</var>, passing it <var>args</var>. 
<var>args</var> is first processed as a nested spec string, then split
into an argument vector in the usual fashion.  The function returns
a string which is processed as if it had appeared literally as part
of the current spec.

     <p>The following built-in spec functions are provided:

          <dl>
<dt><code>getenv</code><dd>The <code>getenv</code> spec function takes two arguments: an environment
variable name and a string.  If the environment variable is not
defined, a fatal error is issued.  Otherwise, the return value is the
value of the environment variable concatenated with the string.  For
example, if <samp><span class="env">TOPDIR</span></samp> is defined as <samp><span class="file">/path/to/top</span></samp>, then:

          <pre class="smallexample">               %:getenv(TOPDIR /include)
</pre>
          <p>expands to <samp><span class="file">/path/to/top/include</span></samp>.

          <br><dt><code>if-exists</code><dd>The <code>if-exists</code> spec function takes one argument, an absolute
pathname to a file.  If the file exists, <code>if-exists</code> returns the
pathname.  Here is a small example of its usage:

          <pre class="smallexample">               *startfile:
               crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
</pre>
          <br><dt><code>if-exists-else</code><dd>The <code>if-exists-else</code> spec function is similar to the <code>if-exists</code>
spec function, except that it takes two arguments.  The first argument is
an absolute pathname to a file.  If the file exists, <code>if-exists-else</code>
returns the pathname.  If it does not exist, it returns the second argument. 
This way, <code>if-exists-else</code> can be used to select one file or another,
based on the existence of the first.  Here is a small example of its usage:

          <pre class="smallexample">               *startfile:
               crt0%O%s %:if-exists(crti%O%s) \
               %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
</pre>
          <br><dt><code>replace-outfile</code><dd>The <code>replace-outfile</code> spec function takes two arguments.  It looks for the
first argument in the outfiles array and replaces it with the second argument.  Here
is a small example of its usage:

          <pre class="smallexample">               %{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)}
</pre>
          <br><dt><code>remove-outfile</code><dd>The <code>remove-outfile</code> spec function takes one argument.  It looks for the
first argument in the outfiles array and removes it.  Here is a small example
its usage:

          <pre class="smallexample">               %:remove-outfile(-lm)
</pre>
          <br><dt><code>pass-through-libs</code><dd>The <code>pass-through-libs</code> spec function takes any number of arguments.  It
finds any <samp><span class="option">-l</span></samp> options and any non-options ending in ".a" (which it
assumes are the names of linker input library archive files) and returns a
result containing all the found arguments each prepended by
<samp><span class="option">-plugin-opt=-pass-through=</span></samp> and joined by spaces.  This list is
intended to be passed to the LTO linker plugin.

          <pre class="smallexample">               %:pass-through-libs(%G %L %G)
</pre>
          <br><dt><code>print-asm-header</code><dd>The <code>print-asm-header</code> function takes no arguments and simply
prints a banner like:

          <pre class="smallexample">               Assembler options
               =================
               
               Use "-Wa,OPTION" to pass "OPTION" to the assembler.
</pre>
          <p>It is used to separate compiler options from assembler options
in the <samp><span class="option">--target-help</span></samp> output. 
</dl>

     <br><dt><code>%{S}</code><dd>Substitutes the <code>-S</code> switch, if that switch was given to GCC. 
If that switch was not specified, this substitutes nothing.  Note that
the leading dash is omitted when specifying this option, and it is
automatically inserted if the substitution is performed.  Thus the spec
string &lsquo;<samp><span class="samp">%{foo}</span></samp>&rsquo; would match the command-line option <samp><span class="option">-foo</span></samp>
and would output the command line option <samp><span class="option">-foo</span></samp>.

     <br><dt><code>%W{S}</code><dd>Like %{<code>S</code>} but mark last argument supplied within as a file to be
deleted on failure.

     <br><dt><code>%{S*}</code><dd>Substitutes all the switches specified to GCC whose names start
with <code>-S</code>, but which also take an argument.  This is used for
switches like <samp><span class="option">-o</span></samp>, <samp><span class="option">-D</span></samp>, <samp><span class="option">-I</span></samp>, etc. 
GCC considers <samp><span class="option">-o foo</span></samp> as being
one switch whose names starts with &lsquo;<samp><span class="samp">o</span></samp>&rsquo;.  %{o*} would substitute this
text, including the space.  Thus two arguments would be generated.

     <br><dt><code>%{S*&amp;T*}</code><dd>Like %{<code>S</code>*}, but preserve order of <code>S</code> and <code>T</code> options
(the order of <code>S</code> and <code>T</code> in the spec is not significant). 
There can be any number of ampersand-separated variables; for each the
wild card is optional.  Useful for CPP as &lsquo;<samp><span class="samp">%{D*&amp;U*&amp;A*}</span></samp>&rsquo;.

     <br><dt><code>%{S:X}</code><dd>Substitutes <code>X</code>, if the &lsquo;<samp><span class="samp">-S</span></samp>&rsquo; switch was given to GCC.

     <br><dt><code>%{!S:X}</code><dd>Substitutes <code>X</code>, if the &lsquo;<samp><span class="samp">-S</span></samp>&rsquo; switch was <em>not</em> given to GCC.

     <br><dt><code>%{S*:X}</code><dd>Substitutes <code>X</code> if one or more switches whose names start with
<code>-S</code> are specified to GCC.  Normally <code>X</code> is substituted only
once, no matter how many such switches appeared.  However, if <code>%*</code>
appears somewhere in <code>X</code>, then <code>X</code> will be substituted once
for each matching switch, with the <code>%*</code> replaced by the part of
that switch that matched the <code>*</code>.

     <br><dt><code>%{.S:X}</code><dd>Substitutes <code>X</code>, if processing a file with suffix <code>S</code>.

     <br><dt><code>%{!.S:X}</code><dd>Substitutes <code>X</code>, if <em>not</em> processing a file with suffix <code>S</code>.

     <br><dt><code>%{,S:X}</code><dd>Substitutes <code>X</code>, if processing a file for language <code>S</code>.

     <br><dt><code>%{!,S:X}</code><dd>Substitutes <code>X</code>, if not processing a file for language <code>S</code>.

     <br><dt><code>%{S|P:X}</code><dd>Substitutes <code>X</code> if either <code>-S</code> or <code>-P</code> was given to
GCC.  This may be combined with &lsquo;<samp><span class="samp">!</span></samp>&rsquo;, &lsquo;<samp><span class="samp">.</span></samp>&rsquo;, &lsquo;<samp><span class="samp">,</span></samp>&rsquo;, and
<code>*</code> sequences as well, although they have a stronger binding than
the &lsquo;<samp><span class="samp">|</span></samp>&rsquo;.  If <code>%*</code> appears in <code>X</code>, all of the
alternatives must be starred, and only the first matching alternative
is substituted.

     <p>For example, a spec string like this:

     <pre class="smallexample">          %{.c:-foo} %{!.c:-bar} %{.c|d:-baz} %{!.c|d:-boggle}
</pre>
     <p>will output the following command-line options from the following input
command-line options:

     <pre class="smallexample">          fred.c        -foo -baz
          jim.d         -bar -boggle
          -d fred.c     -foo -baz -boggle
          -d jim.d      -bar -baz -boggle
</pre>
     <br><dt><code>%{S:X; T:Y; :D}</code><dd>
If <code>S</code> was given to GCC, substitutes <code>X</code>; else if <code>T</code> was
given to GCC, substitutes <code>Y</code>; else substitutes <code>D</code>.  There can
be as many clauses as you need.  This may be combined with <code>.</code>,
<code>,</code>, <code>!</code>, <code>|</code>, and <code>*</code> as needed.

 </dl>

 <p>The conditional text <code>X</code> in a %{<code>S</code>:<code>X</code>} or similar
construct may contain other nested &lsquo;<samp><span class="samp">%</span></samp>&rsquo; constructs or spaces, or
even newlines.  They are processed as usual, as described above. 
Trailing white space in <code>X</code> is ignored.  White space may also
appear anywhere on the left side of the colon in these constructs,
except between <code>.</code> or <code>*</code> and the corresponding word.

 <p>The <samp><span class="option">-O</span></samp>, <samp><span class="option">-f</span></samp>, <samp><span class="option">-m</span></samp>, and <samp><span class="option">-W</span></samp> switches are
handled specifically in these constructs.  If another value of
<samp><span class="option">-O</span></samp> or the negated form of a <samp><span class="option">-f</span></samp>, <samp><span class="option">-m</span></samp>, or
<samp><span class="option">-W</span></samp> switch is found later in the command line, the earlier
switch value is ignored, except with {<code>S</code>*} where <code>S</code> is
just one letter, which passes all matching options.

 <p>The character &lsquo;<samp><span class="samp">|</span></samp>&rsquo; at the beginning of the predicate text is used to
indicate that a command should be piped to the following command, but
only if <samp><span class="option">-pipe</span></samp> is specified.

 <p>It is built into GCC which switches take arguments and which do not. 
(You might think it would be useful to generalize this to allow each
compiler's spec to say which switches take arguments.  But this cannot
be done in a consistent fashion.  GCC cannot even decide which input
files have been specified without knowing which switches take arguments,
and it must know which input files to compile in order to tell which
compilers to run).

 <p>GCC also knows implicitly that arguments starting in <samp><span class="option">-l</span></samp> are to be
treated as compiler output files, and passed to the linker in their
proper position among the other output files.

<!-- man begin OPTIONS -->
<div class="node">
<a name="Target-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Submodel-Options">Submodel Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Spec-Files">Spec Files</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>

</div>

<h3 class="section">3.16 Specifying Target Machine and Compiler Version</h3>

<p><a name="index-target-options-1008"></a><a name="index-cross-compiling-1009"></a><a name="index-specifying-machine-version-1010"></a><a name="index-specifying-compiler-version-and-target-machine-1011"></a><a name="index-compiler-version_002c-specifying-1012"></a><a name="index-target-machine_002c-specifying-1013"></a>
The usual way to run GCC is to run the executable called <samp><span class="command">gcc</span></samp>, or
<samp><var>machine</var><span class="command">-gcc</span></samp> when cross-compiling, or
<samp><var>machine</var><span class="command">-gcc-</span><var>version</var></samp> to run a version other than the
one that was installed last.

<div class="node">
<a name="Submodel-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Code-Gen-Options">Code Gen Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Target-Options">Target Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>

</div>

<h3 class="section">3.17 Hardware Models and Configurations</h3>

<p><a name="index-submodel-options-1014"></a><a name="index-specifying-hardware-config-1015"></a><a name="index-hardware-models-and-configurations_002c-specifying-1016"></a><a name="index-machine-dependent-options-1017"></a>
Each target machine types can have its own
special options, starting with &lsquo;<samp><span class="samp">-m</span></samp>&rsquo;, to choose among various
hardware models or configurations&mdash;for example, 68010 vs 68020,
floating coprocessor or none.  A single installed version of the
compiler can compile for any model or configuration, according to the
options specified.

 <p>Some configurations of the compiler also support additional special
options, usually for compatibility with other compilers on the same
platform.

<!-- This list is ordered alphanumerically by subsection name. -->
<!-- It should be the same order and spelling as these options are listed -->
<!-- in Machine Dependent Options -->
<ul class="menu">
<li><a accesskey="1" href="#ARC-Options">ARC Options</a>
<li><a accesskey="2" href="#ARM-Options">ARM Options</a>
<li><a accesskey="3" href="#AVR-Options">AVR Options</a>
<li><a accesskey="4" href="#Blackfin-Options">Blackfin Options</a>
<li><a accesskey="5" href="#CRIS-Options">CRIS Options</a>
<li><a accesskey="6" href="#CRX-Options">CRX Options</a>
<li><a accesskey="7" href="#Darwin-Options">Darwin Options</a>
<li><a accesskey="8" href="#DEC-Alpha-Options">DEC Alpha Options</a>
<li><a accesskey="9" href="#DEC-Alpha_002fVMS-Options">DEC Alpha/VMS Options</a>
<li><a href="#FR30-Options">FR30 Options</a>
<li><a href="#FRV-Options">FRV Options</a>
<li><a href="#GNU_002fLinux-Options">GNU/Linux Options</a>
<li><a href="#H8_002f300-Options">H8/300 Options</a>
<li><a href="#HPPA-Options">HPPA Options</a>
<li><a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a>
<li><a href="#i386-and-x86_002d64-Windows-Options">i386 and x86-64 Windows Options</a>
<li><a href="#IA_002d64-Options">IA-64 Options</a>
<li><a href="#IA_002d64_002fVMS-Options">IA-64/VMS Options</a>
<li><a href="#LM32-Options">LM32 Options</a>
<li><a href="#M32C-Options">M32C Options</a>
<li><a href="#M32R_002fD-Options">M32R/D Options</a>
<li><a href="#M680x0-Options">M680x0 Options</a>
<li><a href="#M68hc1x-Options">M68hc1x Options</a>
<li><a href="#MCore-Options">MCore Options</a>
<li><a href="#MeP-Options">MeP Options</a>
<li><a href="#MicroBlaze-Options">MicroBlaze Options</a>
<li><a href="#MIPS-Options">MIPS Options</a>
<li><a href="#MMIX-Options">MMIX Options</a>
<li><a href="#MN10300-Options">MN10300 Options</a>
<li><a href="#PDP_002d11-Options">PDP-11 Options</a>
<li><a href="#picoChip-Options">picoChip Options</a>
<li><a href="#PowerPC-Options">PowerPC Options</a>
<li><a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a>
<li><a href="#RX-Options">RX Options</a>
<li><a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a>
<li><a href="#Score-Options">Score Options</a>
<li><a href="#SH-Options">SH Options</a>
<li><a href="#Solaris-2-Options">Solaris 2 Options</a>
<li><a href="#SPARC-Options">SPARC Options</a>
<li><a href="#SPU-Options">SPU Options</a>
<li><a href="#System-V-Options">System V Options</a>
<li><a href="#V850-Options">V850 Options</a>
<li><a href="#VAX-Options">VAX Options</a>
<li><a href="#VxWorks-Options">VxWorks Options</a>
<li><a href="#x86_002d64-Options">x86-64 Options</a>
<li><a href="#Xstormy16-Options">Xstormy16 Options</a>
<li><a href="#Xtensa-Options">Xtensa Options</a>
<li><a href="#zSeries-Options">zSeries Options</a>
</ul>

<div class="node">
<a name="ARC-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#ARM-Options">ARM Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.1 ARC Options</h4>

<p><a name="index-ARC-Options-1018"></a>
These options are defined for ARC implementations:

     <dl>
<dt><code>-EL</code><dd><a name="index-EL-1019"></a>Compile code for little endian mode.  This is the default.

     <br><dt><code>-EB</code><dd><a name="index-EB-1020"></a>Compile code for big endian mode.

     <br><dt><code>-mmangle-cpu</code><dd><a name="index-mmangle_002dcpu-1021"></a>Prepend the name of the CPU to all public symbol names. 
In multiple-processor systems, there are many ARC variants with different
instruction and register set characteristics.  This flag prevents code
compiled for one CPU to be linked with code compiled for another. 
No facility exists for handling variants that are &ldquo;almost identical&rdquo;. 
This is an all or nothing option.

     <br><dt><code>-mcpu=</code><var>cpu</var><dd><a name="index-mcpu-1022"></a>Compile code for ARC variant <var>cpu</var>. 
Which variants are supported depend on the configuration. 
All variants support <samp><span class="option">-mcpu=base</span></samp>, this is the default.

     <br><dt><code>-mtext=</code><var>text-section</var><dt><code>-mdata=</code><var>data-section</var><dt><code>-mrodata=</code><var>readonly-data-section</var><dd><a name="index-mtext-1023"></a><a name="index-mdata-1024"></a><a name="index-mrodata-1025"></a>Put functions, data, and readonly data in <var>text-section</var>,
<var>data-section</var>, and <var>readonly-data-section</var> respectively
by default.  This can be overridden with the <code>section</code> attribute. 
See <a href="#Variable-Attributes">Variable Attributes</a>.

 </dl>

<div class="node">
<a name="ARM-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#AVR-Options">AVR Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#ARC-Options">ARC Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.2 ARM Options</h4>

<p><a name="index-ARM-options-1026"></a>
These &lsquo;<samp><span class="samp">-m</span></samp>&rsquo; options are defined for Advanced RISC Machines (ARM)
architectures:

     <dl>
<dt><code>-mabi=</code><var>name</var><dd><a name="index-mabi-1027"></a>Generate code for the specified ABI.  Permissible values are: &lsquo;<samp><span class="samp">apcs-gnu</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">atpcs</span></samp>&rsquo;, &lsquo;<samp><span class="samp">aapcs</span></samp>&rsquo;, &lsquo;<samp><span class="samp">aapcs-linux</span></samp>&rsquo; and &lsquo;<samp><span class="samp">iwmmxt</span></samp>&rsquo;.

     <br><dt><code>-mapcs-frame</code><dd><a name="index-mapcs_002dframe-1028"></a>Generate a stack frame that is compliant with the ARM Procedure Call
Standard for all functions, even if this is not strictly necessary for
correct execution of the code.  Specifying <samp><span class="option">-fomit-frame-pointer</span></samp>
with this option will cause the stack frames not to be generated for
leaf functions.  The default is <samp><span class="option">-mno-apcs-frame</span></samp>.

     <br><dt><code>-mapcs</code><dd><a name="index-mapcs-1029"></a>This is a synonym for <samp><span class="option">-mapcs-frame</span></samp>.

     <br><dt><code>-mthumb-interwork</code><dd><a name="index-mthumb_002dinterwork-1030"></a>Generate code which supports calling between the ARM and Thumb
instruction sets.  Without this option the two instruction sets cannot
be reliably used inside one program.  The default is
<samp><span class="option">-mno-thumb-interwork</span></samp>, since slightly larger code is generated
when <samp><span class="option">-mthumb-interwork</span></samp> is specified.

     <br><dt><code>-mno-sched-prolog</code><dd><a name="index-mno_002dsched_002dprolog-1031"></a>Prevent the reordering of instructions in the function prolog, or the
merging of those instruction with the instructions in the function's
body.  This means that all functions will start with a recognizable set
of instructions (or in fact one of a choice from a small set of
different function prologues), and this information can be used to
locate the start if functions inside an executable piece of code.  The
default is <samp><span class="option">-msched-prolog</span></samp>.

     <br><dt><code>-mfloat-abi=</code><var>name</var><dd><a name="index-mfloat_002dabi-1032"></a>Specifies which floating-point ABI to use.  Permissible values
are: &lsquo;<samp><span class="samp">soft</span></samp>&rsquo;, &lsquo;<samp><span class="samp">softfp</span></samp>&rsquo; and &lsquo;<samp><span class="samp">hard</span></samp>&rsquo;.

     <p>Specifying &lsquo;<samp><span class="samp">soft</span></samp>&rsquo; causes GCC to generate output containing
library calls for floating-point operations. 
&lsquo;<samp><span class="samp">softfp</span></samp>&rsquo; allows the generation of code using hardware floating-point
instructions, but still uses the soft-float calling conventions. 
&lsquo;<samp><span class="samp">hard</span></samp>&rsquo; allows generation of floating-point instructions
and uses FPU-specific calling conventions.

     <p>The default depends on the specific target configuration.  Note that
the hard-float and soft-float ABIs are not link-compatible; you must
compile your entire program with the same ABI, and link with a
compatible set of libraries.

     <br><dt><code>-mhard-float</code><dd><a name="index-mhard_002dfloat-1033"></a>Equivalent to <samp><span class="option">-mfloat-abi=hard</span></samp>.

     <br><dt><code>-msoft-float</code><dd><a name="index-msoft_002dfloat-1034"></a>Equivalent to <samp><span class="option">-mfloat-abi=soft</span></samp>.

     <br><dt><code>-mlittle-endian</code><dd><a name="index-mlittle_002dendian-1035"></a>Generate code for a processor running in little-endian mode.  This is
the default for all standard configurations.

     <br><dt><code>-mbig-endian</code><dd><a name="index-mbig_002dendian-1036"></a>Generate code for a processor running in big-endian mode; the default is
to compile code for a little-endian processor.

     <br><dt><code>-mwords-little-endian</code><dd><a name="index-mwords_002dlittle_002dendian-1037"></a>This option only applies when generating code for big-endian processors. 
Generate code for a little-endian word order but a big-endian byte
order.  That is, a byte order of the form &lsquo;<samp><span class="samp">32107654</span></samp>&rsquo;.  Note: this
option should only be used if you require compatibility with code for
big-endian ARM processors generated by versions of the compiler prior to
2.8.

     <br><dt><code>-mcpu=</code><var>name</var><dd><a name="index-mcpu-1038"></a>This specifies the name of the target ARM processor.  GCC uses this name
to determine what kind of instructions it can emit when generating
assembly code.  Permissible names are: &lsquo;<samp><span class="samp">arm2</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm250</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">arm3</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm6</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm60</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm600</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm610</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">arm620</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm7</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm7m</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm7d</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm7dm</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">arm7di</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm7dmi</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm70</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm700</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">arm700i</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm710</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm710c</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm7100</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">arm720</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">arm7500</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm7500fe</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm7tdmi</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm7tdmi-s</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">arm710t</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm720t</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm740t</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">strongarm</span></samp>&rsquo;, &lsquo;<samp><span class="samp">strongarm110</span></samp>&rsquo;, &lsquo;<samp><span class="samp">strongarm1100</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">strongarm1110</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">arm8</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm810</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm9</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm9e</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm920</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">arm920t</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm922t</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm946e-s</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm966e-s</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">arm968e-s</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm926ej-s</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm940t</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm9tdmi</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">arm10tdmi</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm1020t</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm1026ej-s</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">arm10e</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm1020e</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm1022e</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">arm1136j-s</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm1136jf-s</span></samp>&rsquo;, &lsquo;<samp><span class="samp">mpcore</span></samp>&rsquo;, &lsquo;<samp><span class="samp">mpcorenovfp</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">arm1156t2-s</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm1156t2f-s</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm1176jz-s</span></samp>&rsquo;, &lsquo;<samp><span class="samp">arm1176jzf-s</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">cortex-a5</span></samp>&rsquo;, &lsquo;<samp><span class="samp">cortex-a7</span></samp>&rsquo;, &lsquo;<samp><span class="samp">cortex-a8</span></samp>&rsquo;, &lsquo;<samp><span class="samp">cortex-a9</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">cortex-a15</span></samp>&rsquo;, &lsquo;<samp><span class="samp">cortex-r4</span></samp>&rsquo;, &lsquo;<samp><span class="samp">cortex-r4f</span></samp>&rsquo;, &lsquo;<samp><span class="samp">cortex-r5</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">cortex-m4</span></samp>&rsquo;, &lsquo;<samp><span class="samp">cortex-m3</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">cortex-m1</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">cortex-m0</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">xscale</span></samp>&rsquo;, &lsquo;<samp><span class="samp">iwmmxt</span></samp>&rsquo;, &lsquo;<samp><span class="samp">iwmmxt2</span></samp>&rsquo;, &lsquo;<samp><span class="samp">ep9312</span></samp>&rsquo;.

     <p><samp><span class="option">-mcpu=generic-</span><var>arch</var></samp> is also permissible, and is
equivalent to <samp><span class="option">-march=</span><var>arch</var><span class="option"> -mtune=generic-</span><var>arch</var></samp>. 
See <samp><span class="option">-mtune</span></samp> for more information.

     <p><samp><span class="option">-mcpu=native</span></samp> causes the compiler to auto-detect the CPU
of the build computer.  At present, this feature is only supported on
Linux, and not all architectures are recognised.  If the auto-detect is
unsuccessful the option has no effect.

     <br><dt><code>-mtune=</code><var>name</var><dd><a name="index-mtune-1039"></a>This option is very similar to the <samp><span class="option">-mcpu=</span></samp> option, except that
instead of specifying the actual target processor type, and hence
restricting which instructions can be used, it specifies that GCC should
tune the performance of the code as if the target were of the type
specified in this option, but still choosing the instructions that it
will generate based on the CPU specified by a <samp><span class="option">-mcpu=</span></samp> option. 
For some ARM implementations better performance can be obtained by using
this option.

     <p><samp><span class="option">-mtune=generic-</span><var>arch</var></samp> specifies that GCC should tune the
performance for a blend of processors within architecture <var>arch</var>. 
The aim is to generate code that run well on the current most popular
processors, balancing between optimizations that benefit some CPUs in the
range, and avoiding performance pitfalls of other CPUs.  The effects of
this option may change in future GCC versions as CPU models come and go.

     <p><samp><span class="option">-mtune=native</span></samp> causes the compiler to auto-detect the CPU
of the build computer.  At present, this feature is only supported on
Linux, and not all architectures are recognised.  If the auto-detect is
unsuccessful the option has no effect.

     <br><dt><code>-march=</code><var>name</var><dd><a name="index-march-1040"></a>This specifies the name of the target ARM architecture.  GCC uses this
name to determine what kind of instructions it can emit when generating
assembly code.  This option can be used in conjunction with or instead
of the <samp><span class="option">-mcpu=</span></samp> option.  Permissible names are: &lsquo;<samp><span class="samp">armv2</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">armv2a</span></samp>&rsquo;, &lsquo;<samp><span class="samp">armv3</span></samp>&rsquo;, &lsquo;<samp><span class="samp">armv3m</span></samp>&rsquo;, &lsquo;<samp><span class="samp">armv4</span></samp>&rsquo;, &lsquo;<samp><span class="samp">armv4t</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">armv5</span></samp>&rsquo;, &lsquo;<samp><span class="samp">armv5t</span></samp>&rsquo;, &lsquo;<samp><span class="samp">armv5e</span></samp>&rsquo;, &lsquo;<samp><span class="samp">armv5te</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">armv6</span></samp>&rsquo;, &lsquo;<samp><span class="samp">armv6j</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">armv6t2</span></samp>&rsquo;, &lsquo;<samp><span class="samp">armv6z</span></samp>&rsquo;, &lsquo;<samp><span class="samp">armv6zk</span></samp>&rsquo;, &lsquo;<samp><span class="samp">armv6-m</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">armv7</span></samp>&rsquo;, &lsquo;<samp><span class="samp">armv7-a</span></samp>&rsquo;, &lsquo;<samp><span class="samp">armv7-r</span></samp>&rsquo;, &lsquo;<samp><span class="samp">armv7-m</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">iwmmxt</span></samp>&rsquo;, &lsquo;<samp><span class="samp">iwmmxt2</span></samp>&rsquo;, &lsquo;<samp><span class="samp">ep9312</span></samp>&rsquo;.

     <p><samp><span class="option">-march=native</span></samp> causes the compiler to auto-detect the architecture
of the build computer.  At present, this feature is only supported on
Linux, and not all architectures are recognised.  If the auto-detect is
unsuccessful the option has no effect.

     <br><dt><code>-mfpu=</code><var>name</var><dt><code>-mfpe=</code><var>number</var><dt><code>-mfp=</code><var>number</var><dd><a name="index-mfpu-1041"></a><a name="index-mfpe-1042"></a><a name="index-mfp-1043"></a>This specifies what floating point hardware (or hardware emulation) is
available on the target.  Permissible names are: &lsquo;<samp><span class="samp">fpa</span></samp>&rsquo;, &lsquo;<samp><span class="samp">fpe2</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">fpe3</span></samp>&rsquo;, &lsquo;<samp><span class="samp">maverick</span></samp>&rsquo;, &lsquo;<samp><span class="samp">vfp</span></samp>&rsquo;, &lsquo;<samp><span class="samp">vfpv3</span></samp>&rsquo;, &lsquo;<samp><span class="samp">vfpv3-fp16</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">vfpv3-d16</span></samp>&rsquo;, &lsquo;<samp><span class="samp">vfpv3-d16-fp16</span></samp>&rsquo;, &lsquo;<samp><span class="samp">vfpv3xd</span></samp>&rsquo;, &lsquo;<samp><span class="samp">vfpv3xd-fp16</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">neon</span></samp>&rsquo;, &lsquo;<samp><span class="samp">neon-fp16</span></samp>&rsquo;, &lsquo;<samp><span class="samp">vfpv4</span></samp>&rsquo;, &lsquo;<samp><span class="samp">vfpv4-d16</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">fpv4-sp-d16</span></samp>&rsquo; and &lsquo;<samp><span class="samp">neon-vfpv4</span></samp>&rsquo;. 
<samp><span class="option">-mfp</span></samp> and <samp><span class="option">-mfpe</span></samp> are synonyms for
<samp><span class="option">-mfpu</span></samp>=&lsquo;<samp><span class="samp">fpe</span></samp>&rsquo;<var>number</var>, for compatibility with older versions
of GCC.

     <p>If <samp><span class="option">-msoft-float</span></samp> is specified this specifies the format of
floating point values.

     <p>If the selected floating-point hardware includes the NEON extension
(e.g. <samp><span class="option">-mfpu</span></samp>=&lsquo;<samp><span class="samp">neon</span></samp>&rsquo;), note that floating-point
operations will not be used by GCC's auto-vectorization pass unless
<samp><span class="option">-funsafe-math-optimizations</span></samp> is also specified.  This is
because NEON hardware does not fully implement the IEEE 754 standard for
floating-point arithmetic (in particular denormal values are treated as
zero), so the use of NEON instructions may lead to a loss of precision.

     <br><dt><code>-mfp16-format=</code><var>name</var><dd><a name="index-mfp16_002dformat-1044"></a>Specify the format of the <code>__fp16</code> half-precision floating-point type. 
Permissible names are &lsquo;<samp><span class="samp">none</span></samp>&rsquo;, &lsquo;<samp><span class="samp">ieee</span></samp>&rsquo;, and &lsquo;<samp><span class="samp">alternative</span></samp>&rsquo;;
the default is &lsquo;<samp><span class="samp">none</span></samp>&rsquo;, in which case the <code>__fp16</code> type is not
defined.  See <a href="#Half_002dPrecision">Half-Precision</a>, for more information.

     <br><dt><code>-mstructure-size-boundary=</code><var>n</var><dd><a name="index-mstructure_002dsize_002dboundary-1045"></a>The size of all structures and unions will be rounded up to a multiple
of the number of bits set by this option.  Permissible values are 8, 32
and 64.  The default value varies for different toolchains.  For the COFF
targeted toolchain the default value is 8.  A value of 64 is only allowed
if the underlying ABI supports it.

     <p>Specifying the larger number can produce faster, more efficient code, but
can also increase the size of the program.  Different values are potentially
incompatible.  Code compiled with one value cannot necessarily expect to
work with code or libraries compiled with another value, if they exchange
information using structures or unions.

     <br><dt><code>-mabort-on-noreturn</code><dd><a name="index-mabort_002don_002dnoreturn-1046"></a>Generate a call to the function <code>abort</code> at the end of a
<code>noreturn</code> function.  It will be executed if the function tries to
return.

     <br><dt><code>-mlong-calls</code><dt><code>-mno-long-calls</code><dd><a name="index-mlong_002dcalls-1047"></a><a name="index-mno_002dlong_002dcalls-1048"></a>Tells the compiler to perform function calls by first loading the
address of the function into a register and then performing a subroutine
call on this register.  This switch is needed if the target function
will lie outside of the 64 megabyte addressing range of the offset based
version of subroutine call instruction.

     <p>Even if this switch is enabled, not all function calls will be turned
into long calls.  The heuristic is that static functions, functions
which have the &lsquo;<samp><span class="samp">short-call</span></samp>&rsquo; attribute, functions that are inside
the scope of a &lsquo;<samp><span class="samp">#pragma no_long_calls</span></samp>&rsquo; directive and functions whose
definitions have already been compiled within the current compilation
unit, will not be turned into long calls.  The exception to this rule is
that weak function definitions, functions with the &lsquo;<samp><span class="samp">long-call</span></samp>&rsquo;
attribute or the &lsquo;<samp><span class="samp">section</span></samp>&rsquo; attribute, and functions that are within
the scope of a &lsquo;<samp><span class="samp">#pragma long_calls</span></samp>&rsquo; directive, will always be
turned into long calls.

     <p>This feature is not enabled by default.  Specifying
<samp><span class="option">-mno-long-calls</span></samp> will restore the default behavior, as will
placing the function calls within the scope of a &lsquo;<samp><span class="samp">#pragma
long_calls_off</span></samp>&rsquo; directive.  Note these switches have no effect on how
the compiler generates code to handle function calls via function
pointers.

     <br><dt><code>-msingle-pic-base</code><dd><a name="index-msingle_002dpic_002dbase-1049"></a>Treat the register used for PIC addressing as read-only, rather than
loading it in the prologue for each function.  The run-time system is
responsible for initializing this register with an appropriate value
before execution begins.

     <br><dt><code>-mpic-register=</code><var>reg</var><dd><a name="index-mpic_002dregister-1050"></a>Specify the register to be used for PIC addressing.  The default is R10
unless stack-checking is enabled, when R9 is used.

     <br><dt><code>-mcirrus-fix-invalid-insns</code><dd><a name="index-mcirrus_002dfix_002dinvalid_002dinsns-1051"></a><a name="index-mno_002dcirrus_002dfix_002dinvalid_002dinsns-1052"></a>Insert NOPs into the instruction stream to in order to work around
problems with invalid Maverick instruction combinations.  This option
is only valid if the <samp><span class="option">-mcpu=ep9312</span></samp> option has been used to
enable generation of instructions for the Cirrus Maverick floating
point co-processor.  This option is not enabled by default, since the
problem is only present in older Maverick implementations.  The default
can be re-enabled by use of the <samp><span class="option">-mno-cirrus-fix-invalid-insns</span></samp>
switch.

     <br><dt><code>-mpoke-function-name</code><dd><a name="index-mpoke_002dfunction_002dname-1053"></a>Write the name of each function into the text section, directly
preceding the function prologue.  The generated code is similar to this:

     <pre class="smallexample">               t0
                   .ascii "arm_poke_function_name", 0
                   .align
               t1
                   .word 0xff000000 + (t1 - t0)
               arm_poke_function_name
                   mov     ip, sp
                   stmfd   sp!, {fp, ip, lr, pc}
                   sub     fp, ip, #4
</pre>
     <p>When performing a stack backtrace, code can inspect the value of
<code>pc</code> stored at <code>fp + 0</code>.  If the trace function then looks at
location <code>pc - 12</code> and the top 8 bits are set, then we know that
there is a function name embedded immediately preceding this location
and has length <code>((pc[-3]) &amp; 0xff000000)</code>.

     <br><dt><code>-mthumb</code><dd><a name="index-mthumb-1054"></a>Generate code for the Thumb instruction set.  The default is to
use the 32-bit ARM instruction set. 
This option automatically enables either 16-bit Thumb-1 or
mixed 16/32-bit Thumb-2 instructions based on the <samp><span class="option">-mcpu=</span><var>name</var></samp>
and <samp><span class="option">-march=</span><var>name</var></samp> options.  This option is not passed to the
assembler. If you want to force assembler files to be interpreted as Thumb code,
either add a &lsquo;<samp><span class="samp">.thumb</span></samp>&rsquo; directive to the source or pass the <samp><span class="option">-mthumb</span></samp>
option directly to the assembler by prefixing it with <samp><span class="option">-Wa</span></samp>.

     <br><dt><code>-mtpcs-frame</code><dd><a name="index-mtpcs_002dframe-1055"></a>Generate a stack frame that is compliant with the Thumb Procedure Call
Standard for all non-leaf functions.  (A leaf function is one that does
not call any other functions.)  The default is <samp><span class="option">-mno-tpcs-frame</span></samp>.

     <br><dt><code>-mtpcs-leaf-frame</code><dd><a name="index-mtpcs_002dleaf_002dframe-1056"></a>Generate a stack frame that is compliant with the Thumb Procedure Call
Standard for all leaf functions.  (A leaf function is one that does
not call any other functions.)  The default is <samp><span class="option">-mno-apcs-leaf-frame</span></samp>.

     <br><dt><code>-mcallee-super-interworking</code><dd><a name="index-mcallee_002dsuper_002dinterworking-1057"></a>Gives all externally visible functions in the file being compiled an ARM
instruction set header which switches to Thumb mode before executing the
rest of the function.  This allows these functions to be called from
non-interworking code.  This option is not valid in AAPCS configurations
because interworking is enabled by default.

     <br><dt><code>-mcaller-super-interworking</code><dd><a name="index-mcaller_002dsuper_002dinterworking-1058"></a>Allows calls via function pointers (including virtual functions) to
execute correctly regardless of whether the target code has been
compiled for interworking or not.  There is a small overhead in the cost
of executing a function pointer if this option is enabled.  This option
is not valid in AAPCS configurations because interworking is enabled
by default.

     <br><dt><code>-mtp=</code><var>name</var><dd><a name="index-mtp-1059"></a>Specify the access model for the thread local storage pointer.  The valid
models are <samp><span class="option">soft</span></samp>, which generates calls to <code>__aeabi_read_tp</code>,
<samp><span class="option">cp15</span></samp>, which fetches the thread pointer from <code>cp15</code> directly
(supported in the arm6k architecture), and <samp><span class="option">auto</span></samp>, which uses the
best available method for the selected processor.  The default setting is
<samp><span class="option">auto</span></samp>.

     <br><dt><code>-mword-relocations</code><dd><a name="index-mword_002drelocations-1060"></a>Only generate absolute relocations on word sized values (i.e. R_ARM_ABS32). 
This is enabled by default on targets (uClinux, SymbianOS) where the runtime
loader imposes this restriction, and when <samp><span class="option">-fpic</span></samp> or <samp><span class="option">-fPIC</span></samp>
is specified.

     <br><dt><code>-mfix-cortex-m3-ldrd</code><dd><a name="index-mfix_002dcortex_002dm3_002dldrd-1061"></a>Some Cortex-M3 cores can cause data corruption when <code>ldrd</code> instructions
with overlapping destination and base registers are used.  This option avoids
generating these instructions.  This option is enabled by default when
<samp><span class="option">-mcpu=cortex-m3</span></samp> is specified.

 </dl>

<div class="node">
<a name="AVR-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Blackfin-Options">Blackfin Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#ARM-Options">ARM Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.3 AVR Options</h4>

<p><a name="index-AVR-Options-1062"></a>
These options are defined for AVR implementations:

     <dl>
<dt><code>-mmcu=</code><var>mcu</var><dd><a name="index-mmcu-1063"></a>Specify ATMEL AVR instruction set or MCU type.

     <p>Instruction set avr1 is for the minimal AVR core, not supported by the C
compiler, only for assembler programs (MCU types: at90s1200, attiny10,
attiny11, attiny12, attiny15, attiny28).

     <p>Instruction set avr2 (default) is for the classic AVR core with up to
8K program memory space (MCU types: at90s2313, at90s2323, attiny22,
at90s2333, at90s2343, at90s4414, at90s4433, at90s4434, at90s8515,
at90c8534, at90s8535).

     <p>Instruction set avr3 is for the classic AVR core with up to 128K program
memory space (MCU types: atmega103, atmega603, at43usb320, at76c711).

     <p>Instruction set avr4 is for the enhanced AVR core with up to 8K program
memory space (MCU types: atmega8, atmega83, atmega85).

     <p>Instruction set avr5 is for the enhanced AVR core with up to 128K program
memory space (MCU types: atmega16, atmega161, atmega163, atmega32, atmega323,
atmega64, atmega128, at43usb355, at94k).

     <br><dt><code>-mno-interrupts</code><dd><a name="index-mno_002dinterrupts-1064"></a>Generated code is not compatible with hardware interrupts. 
Code size will be smaller.

     <br><dt><code>-mcall-prologues</code><dd><a name="index-mcall_002dprologues-1065"></a>Functions prologues/epilogues expanded as call to appropriate
subroutines.  Code size will be smaller.

     <br><dt><code>-mtiny-stack</code><dd><a name="index-mtiny_002dstack-1066"></a>Change only the low 8 bits of the stack pointer.

     <br><dt><code>-mint8</code><dd><a name="index-mint8-1067"></a>Assume int to be 8 bit integer.  This affects the sizes of all types: A
char will be 1 byte, an int will be 1 byte, a long will be 2 bytes
and long long will be 4 bytes.  Please note that this option does not
comply to the C standards, but it will provide you with smaller code
size. 
</dl>

<h5 class="subsubsection">3.17.3.1 <code>EIND</code> and Devices with more than 128k Bytes of Flash</h5>

<p>Pointers in the implementation are 16 bits wide. 
The address of a function or label is represented as word address so
that indirect jumps and calls can address any code address in the
range of 64k words.

 <p>In order to faciliate indirect jump on devices with more than 128k
bytes of program memory space, there is a special function register called
<code>EIND</code> that serves as most significant part of the target address
when <code>EICALL</code> or <code>EIJMP</code> instructions are used.

 <p>Indirect jumps and calls on these devices are handled as follows and
are subject to some limitations:

     <ul>
<li>The compiler never sets <code>EIND</code>.

     <li>The startup code from libgcc never sets <code>EIND</code>. 
Notice that startup code is a blend of code from libgcc and avr-libc. 
For the impact of avr-libc on <code>EIND</code>, see the
<a href="http://nongnu.org/avr-libc/user-manual">avr-libc&nbsp;user&nbsp;manual</a><!-- /@w -->.

     <li>The compiler uses <code>EIND</code> implicitely in <code>EICALL</code>/<code>EIJMP</code>
instructions or might read <code>EIND</code> directly.

     <li>The compiler assumes that <code>EIND</code> never changes during the startup
code or run of the application. In particular, <code>EIND</code> is not
saved/restored in function or interrupt service routine
prologue/epilogue.

     <li>It is legitimate for user-specific startup code to set up <code>EIND</code>
early, for example by means of initialization code located in
section <code>.init3</code>, and thus prior to general startup code that
initializes RAM and calls constructors.

     <li>For indirect calls to functions and computed goto, the linker will
generate <em>stubs</em>. Stubs are jump pads sometimes also called
<em>trampolines</em>. Thus, the indirect call/jump will jump to such a stub. 
The stub contains a direct jump to the desired address.

     <li>Stubs will be generated automatically by the linker if
the following two conditions are met:
          <ul>
<li>The address of a label is taken by means of the <code>gs</code> modifier
(short for <em>generate stubs</em>) like so:
          <pre class="example">               LDI r24, lo8(gs(<var>func</var>))
               LDI r25, hi8(gs(<var>func</var>))
</pre>
          <li>The final location of that label is in a code segment
<em>outside</em> the segment where the stubs are located. 
</ul>

     <li>The compiler will emit such <code>gs</code> modifiers for code labels in the
following situations:
          <ul>
<li>Taking address of a function or code label. 
<li>Computed goto. 
<li>If prologue-save function is used, see <samp><span class="option">-mcall-prologues</span></samp>
command line option. 
<li>Switch/case dispatch tables. If you do not want such dispatch
tables you can specify the <samp><span class="option">-fno-jump-tables</span></samp> command line option. 
<li>C and C++ constructors/destructors called during startup/shutdown. 
<li>If the tools hit a <code>gs()</code> modifier explained above. 
</ul>

     <li>The default linker script is arranged for code with <code>EIND = 0</code>. 
If code is supposed to work for a setup with <code>EIND != 0</code>, a custom
linker script has to be used in order to place the sections whose
name start with <code>.trampolines</code> into the segment where <code>EIND</code>
points to.

     <li>Jumping to non-symbolic addresses like so is <em>not</em> supported:

     <pre class="example">          int main (void)
          {
              /* Call function at word address 0x2 */
              return ((int(*)(void)) 0x2)();
          }
</pre>
     <p>Instead, a stub has to be set up:

     <pre class="example">          int main (void)
          {
              extern int func_4 (void);
          
              /* Call function at byte address 0x4 */
              return func_4();
          }
</pre>
     <p>and the application be linked with <code>-Wl,--defsym,func_4=0x4</code>. 
Alternatively, <code>func_4</code> can be defined in the linker script. 
</ul>

<div class="node">
<a name="Blackfin-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#CRIS-Options">CRIS Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#AVR-Options">AVR Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.4 Blackfin Options</h4>

<p><a name="index-Blackfin-Options-1068"></a>
     <dl>
<dt><code>-mcpu=</code><var>cpu</var><span class="roman">[</span><code>-</code><var>sirevision</var><span class="roman">]</span><dd><a name="index-mcpu_003d-1069"></a>Specifies the name of the target Blackfin processor.  Currently, <var>cpu</var>
can be one of &lsquo;<samp><span class="samp">bf512</span></samp>&rsquo;, &lsquo;<samp><span class="samp">bf514</span></samp>&rsquo;, &lsquo;<samp><span class="samp">bf516</span></samp>&rsquo;, &lsquo;<samp><span class="samp">bf518</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">bf522</span></samp>&rsquo;, &lsquo;<samp><span class="samp">bf523</span></samp>&rsquo;, &lsquo;<samp><span class="samp">bf524</span></samp>&rsquo;, &lsquo;<samp><span class="samp">bf525</span></samp>&rsquo;, &lsquo;<samp><span class="samp">bf526</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">bf527</span></samp>&rsquo;, &lsquo;<samp><span class="samp">bf531</span></samp>&rsquo;, &lsquo;<samp><span class="samp">bf532</span></samp>&rsquo;, &lsquo;<samp><span class="samp">bf533</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">bf534</span></samp>&rsquo;, &lsquo;<samp><span class="samp">bf536</span></samp>&rsquo;, &lsquo;<samp><span class="samp">bf537</span></samp>&rsquo;, &lsquo;<samp><span class="samp">bf538</span></samp>&rsquo;, &lsquo;<samp><span class="samp">bf539</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">bf542</span></samp>&rsquo;, &lsquo;<samp><span class="samp">bf544</span></samp>&rsquo;, &lsquo;<samp><span class="samp">bf547</span></samp>&rsquo;, &lsquo;<samp><span class="samp">bf548</span></samp>&rsquo;, &lsquo;<samp><span class="samp">bf549</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">bf542m</span></samp>&rsquo;, &lsquo;<samp><span class="samp">bf544m</span></samp>&rsquo;, &lsquo;<samp><span class="samp">bf547m</span></samp>&rsquo;, &lsquo;<samp><span class="samp">bf548m</span></samp>&rsquo;, &lsquo;<samp><span class="samp">bf549m</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">bf561</span></samp>&rsquo;. 
The optional <var>sirevision</var> specifies the silicon revision of the target
Blackfin processor.  Any workarounds available for the targeted silicon revision
will be enabled.  If <var>sirevision</var> is &lsquo;<samp><span class="samp">none</span></samp>&rsquo;, no workarounds are enabled. 
If <var>sirevision</var> is &lsquo;<samp><span class="samp">any</span></samp>&rsquo;, all workarounds for the targeted processor
will be enabled.  The <code>__SILICON_REVISION__</code> macro is defined to two
hexadecimal digits representing the major and minor numbers in the silicon
revision.  If <var>sirevision</var> is &lsquo;<samp><span class="samp">none</span></samp>&rsquo;, the <code>__SILICON_REVISION__</code>
is not defined.  If <var>sirevision</var> is &lsquo;<samp><span class="samp">any</span></samp>&rsquo;, the
<code>__SILICON_REVISION__</code> is defined to be <code>0xffff</code>. 
If this optional <var>sirevision</var> is not used, GCC assumes the latest known
silicon revision of the targeted Blackfin processor.

     <p>Support for &lsquo;<samp><span class="samp">bf561</span></samp>&rsquo; is incomplete.  For &lsquo;<samp><span class="samp">bf561</span></samp>&rsquo;,
Only the processor macro is defined. 
Without this option, &lsquo;<samp><span class="samp">bf532</span></samp>&rsquo; is used as the processor by default. 
The corresponding predefined processor macros for <var>cpu</var> is to
be defined.  And for &lsquo;<samp><span class="samp">bfin-elf</span></samp>&rsquo; toolchain, this causes the hardware BSP
provided by libgloss to be linked in if <samp><span class="option">-msim</span></samp> is not given.

     <br><dt><code>-msim</code><dd><a name="index-msim-1070"></a>Specifies that the program will be run on the simulator.  This causes
the simulator BSP provided by libgloss to be linked in.  This option
has effect only for &lsquo;<samp><span class="samp">bfin-elf</span></samp>&rsquo; toolchain. 
Certain other options, such as <samp><span class="option">-mid-shared-library</span></samp> and
<samp><span class="option">-mfdpic</span></samp>, imply <samp><span class="option">-msim</span></samp>.

     <br><dt><code>-momit-leaf-frame-pointer</code><dd><a name="index-momit_002dleaf_002dframe_002dpointer-1071"></a>Don't keep the frame pointer in a register for leaf functions.  This
avoids the instructions to save, set up and restore frame pointers and
makes an extra register available in leaf functions.  The option
<samp><span class="option">-fomit-frame-pointer</span></samp> removes the frame pointer for all functions
which might make debugging harder.

     <br><dt><code>-mspecld-anomaly</code><dd><a name="index-mspecld_002danomaly-1072"></a>When enabled, the compiler will ensure that the generated code does not
contain speculative loads after jump instructions. If this option is used,
<code>__WORKAROUND_SPECULATIVE_LOADS</code> is defined.

     <br><dt><code>-mno-specld-anomaly</code><dd><a name="index-mno_002dspecld_002danomaly-1073"></a>Don't generate extra code to prevent speculative loads from occurring.

     <br><dt><code>-mcsync-anomaly</code><dd><a name="index-mcsync_002danomaly-1074"></a>When enabled, the compiler will ensure that the generated code does not
contain CSYNC or SSYNC instructions too soon after conditional branches. 
If this option is used, <code>__WORKAROUND_SPECULATIVE_SYNCS</code> is defined.

     <br><dt><code>-mno-csync-anomaly</code><dd><a name="index-mno_002dcsync_002danomaly-1075"></a>Don't generate extra code to prevent CSYNC or SSYNC instructions from
occurring too soon after a conditional branch.

     <br><dt><code>-mlow-64k</code><dd><a name="index-mlow_002d64k-1076"></a>When enabled, the compiler is free to take advantage of the knowledge that
the entire program fits into the low 64k of memory.

     <br><dt><code>-mno-low-64k</code><dd><a name="index-mno_002dlow_002d64k-1077"></a>Assume that the program is arbitrarily large.  This is the default.

     <br><dt><code>-mstack-check-l1</code><dd><a name="index-mstack_002dcheck_002dl1-1078"></a>Do stack checking using information placed into L1 scratchpad memory by the
uClinux kernel.

     <br><dt><code>-mid-shared-library</code><dd><a name="index-mid_002dshared_002dlibrary-1079"></a>Generate code that supports shared libraries via the library ID method. 
This allows for execute in place and shared libraries in an environment
without virtual memory management.  This option implies <samp><span class="option">-fPIC</span></samp>. 
With a &lsquo;<samp><span class="samp">bfin-elf</span></samp>&rsquo; target, this option implies <samp><span class="option">-msim</span></samp>.

     <br><dt><code>-mno-id-shared-library</code><dd><a name="index-mno_002did_002dshared_002dlibrary-1080"></a>Generate code that doesn't assume ID based shared libraries are being used. 
This is the default.

     <br><dt><code>-mleaf-id-shared-library</code><dd><a name="index-mleaf_002did_002dshared_002dlibrary-1081"></a>Generate code that supports shared libraries via the library ID method,
but assumes that this library or executable won't link against any other
ID shared libraries.  That allows the compiler to use faster code for jumps
and calls.

     <br><dt><code>-mno-leaf-id-shared-library</code><dd><a name="index-mno_002dleaf_002did_002dshared_002dlibrary-1082"></a>Do not assume that the code being compiled won't link against any ID shared
libraries.  Slower code will be generated for jump and call insns.

     <br><dt><code>-mshared-library-id=n</code><dd><a name="index-mshared_002dlibrary_002did-1083"></a>Specified the identification number of the ID based shared library being
compiled.  Specifying a value of 0 will generate more compact code, specifying
other values will force the allocation of that number to the current
library but is no more space or time efficient than omitting this option.

     <br><dt><code>-msep-data</code><dd><a name="index-msep_002ddata-1084"></a>Generate code that allows the data segment to be located in a different
area of memory from the text segment.  This allows for execute in place in
an environment without virtual memory management by eliminating relocations
against the text section.

     <br><dt><code>-mno-sep-data</code><dd><a name="index-mno_002dsep_002ddata-1085"></a>Generate code that assumes that the data segment follows the text segment. 
This is the default.

     <br><dt><code>-mlong-calls</code><dt><code>-mno-long-calls</code><dd><a name="index-mlong_002dcalls-1086"></a><a name="index-mno_002dlong_002dcalls-1087"></a>Tells the compiler to perform function calls by first loading the
address of the function into a register and then performing a subroutine
call on this register.  This switch is needed if the target function
will lie outside of the 24 bit addressing range of the offset based
version of subroutine call instruction.

     <p>This feature is not enabled by default.  Specifying
<samp><span class="option">-mno-long-calls</span></samp> will restore the default behavior.  Note these
switches have no effect on how the compiler generates code to handle
function calls via function pointers.

     <br><dt><code>-mfast-fp</code><dd><a name="index-mfast_002dfp-1088"></a>Link with the fast floating-point library. This library relaxes some of
the IEEE floating-point standard's rules for checking inputs against
Not-a-Number (NAN), in the interest of performance.

     <br><dt><code>-minline-plt</code><dd><a name="index-minline_002dplt-1089"></a>Enable inlining of PLT entries in function calls to functions that are
not known to bind locally.  It has no effect without <samp><span class="option">-mfdpic</span></samp>.

     <br><dt><code>-mmulticore</code><dd><a name="index-mmulticore-1090"></a>Build standalone application for multicore Blackfin processor. Proper
start files and link scripts will be used to support multicore. 
This option defines <code>__BFIN_MULTICORE</code>. It can only be used with
<samp><span class="option">-mcpu=bf561[-</span><var>sirevision</var><span class="option">]</span></samp>. It can be used with
<samp><span class="option">-mcorea</span></samp> or <samp><span class="option">-mcoreb</span></samp>. If it's used without
<samp><span class="option">-mcorea</span></samp> or <samp><span class="option">-mcoreb</span></samp>, single application/dual core
programming model is used. In this model, the main function of Core B
should be named as coreb_main. If it's used with <samp><span class="option">-mcorea</span></samp> or
<samp><span class="option">-mcoreb</span></samp>, one application per core programming model is used. 
If this option is not used, single core application programming
model is used.

     <br><dt><code>-mcorea</code><dd><a name="index-mcorea-1091"></a>Build standalone application for Core A of BF561 when using
one application per core programming model. Proper start files
and link scripts will be used to support Core A. This option
defines <code>__BFIN_COREA</code>. It must be used with <samp><span class="option">-mmulticore</span></samp>.

     <br><dt><code>-mcoreb</code><dd><a name="index-mcoreb-1092"></a>Build standalone application for Core B of BF561 when using
one application per core programming model. Proper start files
and link scripts will be used to support Core B. This option
defines <code>__BFIN_COREB</code>. When this option is used, coreb_main
should be used instead of main. It must be used with
<samp><span class="option">-mmulticore</span></samp>.

     <br><dt><code>-msdram</code><dd><a name="index-msdram-1093"></a>Build standalone application for SDRAM. Proper start files and
link scripts will be used to put the application into SDRAM. 
Loader should initialize SDRAM before loading the application
into SDRAM. This option defines <code>__BFIN_SDRAM</code>.

     <br><dt><code>-micplb</code><dd><a name="index-micplb-1094"></a>Assume that ICPLBs are enabled at runtime.  This has an effect on certain
anomaly workarounds.  For Linux targets, the default is to assume ICPLBs
are enabled; for standalone applications the default is off. 
</dl>

<div class="node">
<a name="CRIS-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#CRX-Options">CRX Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Blackfin-Options">Blackfin Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.5 CRIS Options</h4>

<p><a name="index-CRIS-Options-1095"></a>
These options are defined specifically for the CRIS ports.

     <dl>
<dt><code>-march=</code><var>architecture-type</var><dt><code>-mcpu=</code><var>architecture-type</var><dd><a name="index-march-1096"></a><a name="index-mcpu-1097"></a>Generate code for the specified architecture.  The choices for
<var>architecture-type</var> are &lsquo;<samp><span class="samp">v3</span></samp>&rsquo;, &lsquo;<samp><span class="samp">v8</span></samp>&rsquo; and &lsquo;<samp><span class="samp">v10</span></samp>&rsquo; for
respectively ETRAX&nbsp;<!-- /@w -->4, ETRAX&nbsp;<!-- /@w -->100, and ETRAX&nbsp;<!-- /@w -->100&nbsp;<!-- /@w -->LX. 
Default is &lsquo;<samp><span class="samp">v0</span></samp>&rsquo; except for cris-axis-linux-gnu, where the default is
&lsquo;<samp><span class="samp">v10</span></samp>&rsquo;.

     <br><dt><code>-mtune=</code><var>architecture-type</var><dd><a name="index-mtune-1098"></a>Tune to <var>architecture-type</var> everything applicable about the generated
code, except for the ABI and the set of available instructions.  The
choices for <var>architecture-type</var> are the same as for
<samp><span class="option">-march=</span><var>architecture-type</var></samp>.

     <br><dt><code>-mmax-stack-frame=</code><var>n</var><dd><a name="index-mmax_002dstack_002dframe-1099"></a>Warn when the stack frame of a function exceeds <var>n</var> bytes.

     <br><dt><code>-metrax4</code><dt><code>-metrax100</code><dd><a name="index-metrax4-1100"></a><a name="index-metrax100-1101"></a>The options <samp><span class="option">-metrax4</span></samp> and <samp><span class="option">-metrax100</span></samp> are synonyms for
<samp><span class="option">-march=v3</span></samp> and <samp><span class="option">-march=v8</span></samp> respectively.

     <br><dt><code>-mmul-bug-workaround</code><dt><code>-mno-mul-bug-workaround</code><dd><a name="index-mmul_002dbug_002dworkaround-1102"></a><a name="index-mno_002dmul_002dbug_002dworkaround-1103"></a>Work around a bug in the <code>muls</code> and <code>mulu</code> instructions for CPU
models where it applies.  This option is active by default.

     <br><dt><code>-mpdebug</code><dd><a name="index-mpdebug-1104"></a>Enable CRIS-specific verbose debug-related information in the assembly
code.  This option also has the effect to turn off the &lsquo;<samp><span class="samp">#NO_APP</span></samp>&rsquo;
formatted-code indicator to the assembler at the beginning of the
assembly file.

     <br><dt><code>-mcc-init</code><dd><a name="index-mcc_002dinit-1105"></a>Do not use condition-code results from previous instruction; always emit
compare and test instructions before use of condition codes.

     <br><dt><code>-mno-side-effects</code><dd><a name="index-mno_002dside_002deffects-1106"></a>Do not emit instructions with side-effects in addressing modes other than
post-increment.

     <br><dt><code>-mstack-align</code><dt><code>-mno-stack-align</code><dt><code>-mdata-align</code><dt><code>-mno-data-align</code><dt><code>-mconst-align</code><dt><code>-mno-const-align</code><dd><a name="index-mstack_002dalign-1107"></a><a name="index-mno_002dstack_002dalign-1108"></a><a name="index-mdata_002dalign-1109"></a><a name="index-mno_002ddata_002dalign-1110"></a><a name="index-mconst_002dalign-1111"></a><a name="index-mno_002dconst_002dalign-1112"></a>These options (no-options) arranges (eliminate arrangements) for the
stack-frame, individual data and constants to be aligned for the maximum
single data access size for the chosen CPU model.  The default is to
arrange for 32-bit alignment.  ABI details such as structure layout are
not affected by these options.

     <br><dt><code>-m32-bit</code><dt><code>-m16-bit</code><dt><code>-m8-bit</code><dd><a name="index-m32_002dbit-1113"></a><a name="index-m16_002dbit-1114"></a><a name="index-m8_002dbit-1115"></a>Similar to the stack- data- and const-align options above, these options
arrange for stack-frame, writable data and constants to all be 32-bit,
16-bit or 8-bit aligned.  The default is 32-bit alignment.

     <br><dt><code>-mno-prologue-epilogue</code><dt><code>-mprologue-epilogue</code><dd><a name="index-mno_002dprologue_002depilogue-1116"></a><a name="index-mprologue_002depilogue-1117"></a>With <samp><span class="option">-mno-prologue-epilogue</span></samp>, the normal function prologue and
epilogue that sets up the stack-frame are omitted and no return
instructions or return sequences are generated in the code.  Use this
option only together with visual inspection of the compiled code: no
warnings or errors are generated when call-saved registers must be saved,
or storage for local variable needs to be allocated.

     <br><dt><code>-mno-gotplt</code><dt><code>-mgotplt</code><dd><a name="index-mno_002dgotplt-1118"></a><a name="index-mgotplt-1119"></a>With <samp><span class="option">-fpic</span></samp> and <samp><span class="option">-fPIC</span></samp>, don't generate (do generate)
instruction sequences that load addresses for functions from the PLT part
of the GOT rather than (traditional on other architectures) calls to the
PLT.  The default is <samp><span class="option">-mgotplt</span></samp>.

     <br><dt><code>-melf</code><dd><a name="index-melf-1120"></a>Legacy no-op option only recognized with the cris-axis-elf and
cris-axis-linux-gnu targets.

     <br><dt><code>-mlinux</code><dd><a name="index-mlinux-1121"></a>Legacy no-op option only recognized with the cris-axis-linux-gnu target.

     <br><dt><code>-sim</code><dd><a name="index-sim-1122"></a>This option, recognized for the cris-axis-elf arranges
to link with input-output functions from a simulator library.  Code,
initialized data and zero-initialized data are allocated consecutively.

     <br><dt><code>-sim2</code><dd><a name="index-sim2-1123"></a>Like <samp><span class="option">-sim</span></samp>, but pass linker options to locate initialized data at
0x40000000 and zero-initialized data at 0x80000000. 
</dl>

<div class="node">
<a name="CRX-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Darwin-Options">Darwin Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#CRIS-Options">CRIS Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.6 CRX Options</h4>

<p><a name="index-CRX-Options-1124"></a>
These options are defined specifically for the CRX ports.

     <dl>
<dt><code>-mmac</code><dd><a name="index-mmac-1125"></a>Enable the use of multiply-accumulate instructions. Disabled by default.

     <br><dt><code>-mpush-args</code><dd><a name="index-mpush_002dargs-1126"></a>Push instructions will be used to pass outgoing arguments when functions
are called. Enabled by default. 
</dl>

<div class="node">
<a name="Darwin-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#DEC-Alpha-Options">DEC Alpha Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#CRX-Options">CRX Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.7 Darwin Options</h4>

<p><a name="index-Darwin-options-1127"></a>
These options are defined for all architectures running the Darwin operating
system.

 <p>FSF GCC on Darwin does not create &ldquo;fat&rdquo; object files; it will create
an object file for the single architecture that it was built to
target.  Apple's GCC on Darwin does create &ldquo;fat&rdquo; files if multiple
<samp><span class="option">-arch</span></samp> options are used; it does so by running the compiler or
linker multiple times and joining the results together with
<samp><span class="file">lipo</span></samp>.

 <p>The subtype of the file created (like &lsquo;<samp><span class="samp">ppc7400</span></samp>&rsquo; or &lsquo;<samp><span class="samp">ppc970</span></samp>&rsquo; or
&lsquo;<samp><span class="samp">i686</span></samp>&rsquo;) is determined by the flags that specify the ISA
that GCC is targetting, like <samp><span class="option">-mcpu</span></samp> or <samp><span class="option">-march</span></samp>.  The
<samp><span class="option">-force_cpusubtype_ALL</span></samp> option can be used to override this.

 <p>The Darwin tools vary in their behavior when presented with an ISA
mismatch.  The assembler, <samp><span class="file">as</span></samp>, will only permit instructions to
be used that are valid for the subtype of the file it is generating,
so you cannot put 64-bit instructions in a &lsquo;<samp><span class="samp">ppc750</span></samp>&rsquo; object file. 
The linker for shared libraries, <samp><span class="file">/usr/bin/libtool</span></samp>, will fail
and print an error if asked to create a shared library with a less
restrictive subtype than its input files (for instance, trying to put
a &lsquo;<samp><span class="samp">ppc970</span></samp>&rsquo; object file in a &lsquo;<samp><span class="samp">ppc7400</span></samp>&rsquo; library).  The linker
for executables, <samp><span class="file">ld</span></samp>, will quietly give the executable the most
restrictive subtype of any of its input files.

     <dl>
<dt><code>-F</code><var>dir</var><dd><a name="index-F-1128"></a>Add the framework directory <var>dir</var> to the head of the list of
directories to be searched for header files.  These directories are
interleaved with those specified by <samp><span class="option">-I</span></samp> options and are
scanned in a left-to-right order.

     <p>A framework directory is a directory with frameworks in it.  A
framework is a directory with a &lsquo;<samp><span class="samp">"Headers"</span></samp>&rsquo; and/or
&lsquo;<samp><span class="samp">"PrivateHeaders"</span></samp>&rsquo; directory contained directly in it that ends
in &lsquo;<samp><span class="samp">".framework"</span></samp>&rsquo;.  The name of a framework is the name of this
directory excluding the &lsquo;<samp><span class="samp">".framework"</span></samp>&rsquo;.  Headers associated with
the framework are found in one of those two directories, with
&lsquo;<samp><span class="samp">"Headers"</span></samp>&rsquo; being searched first.  A subframework is a framework
directory that is in a framework's &lsquo;<samp><span class="samp">"Frameworks"</span></samp>&rsquo; directory. 
Includes of subframework headers can only appear in a header of a
framework that contains the subframework, or in a sibling subframework
header.  Two subframeworks are siblings if they occur in the same
framework.  A subframework should not have the same name as a
framework, a warning will be issued if this is violated.  Currently a
subframework cannot have subframeworks, in the future, the mechanism
may be extended to support this.  The standard frameworks can be found
in &lsquo;<samp><span class="samp">"/System/Library/Frameworks"</span></samp>&rsquo; and
&lsquo;<samp><span class="samp">"/Library/Frameworks"</span></samp>&rsquo;.  An example include looks like
<code>#include &lt;Framework/header.h&gt;</code>, where &lsquo;<samp><span class="samp">Framework</span></samp>&rsquo; denotes
the name of the framework and header.h is found in the
&lsquo;<samp><span class="samp">"PrivateHeaders"</span></samp>&rsquo; or &lsquo;<samp><span class="samp">"Headers"</span></samp>&rsquo; directory.

     <br><dt><code>-iframework</code><var>dir</var><dd><a name="index-iframework-1129"></a>Like <samp><span class="option">-F</span></samp> except the directory is a treated as a system
directory.  The main difference between this <samp><span class="option">-iframework</span></samp> and
<samp><span class="option">-F</span></samp> is that with <samp><span class="option">-iframework</span></samp> the compiler does not
warn about constructs contained within header files found via
<var>dir</var>.  This option is valid only for the C family of languages.

     <br><dt><code>-gused</code><dd><a name="index-gused-1130"></a>Emit debugging information for symbols that are used.  For STABS
debugging format, this enables <samp><span class="option">-feliminate-unused-debug-symbols</span></samp>. 
This is by default ON.

     <br><dt><code>-gfull</code><dd><a name="index-gfull-1131"></a>Emit debugging information for all symbols and types.

     <br><dt><code>-mmacosx-version-min=</code><var>version</var><dd>The earliest version of MacOS X that this executable will run on
is <var>version</var>.  Typical values of <var>version</var> include <code>10.1</code>,
<code>10.2</code>, and <code>10.3.9</code>.

     <p>If the compiler was built to use the system's headers by default,
then the default for this option is the system version on which the
compiler is running, otherwise the default is to make choices which
are compatible with as many systems and code bases as possible.

     <br><dt><code>-mkernel</code><dd><a name="index-mkernel-1132"></a>Enable kernel development mode.  The <samp><span class="option">-mkernel</span></samp> option sets
<samp><span class="option">-static</span></samp>, <samp><span class="option">-fno-common</span></samp>, <samp><span class="option">-fno-cxa-atexit</span></samp>,
<samp><span class="option">-fno-exceptions</span></samp>, <samp><span class="option">-fno-non-call-exceptions</span></samp>,
<samp><span class="option">-fapple-kext</span></samp>, <samp><span class="option">-fno-weak</span></samp> and <samp><span class="option">-fno-rtti</span></samp> where
applicable.  This mode also sets <samp><span class="option">-mno-altivec</span></samp>,
<samp><span class="option">-msoft-float</span></samp>, <samp><span class="option">-fno-builtin</span></samp> and
<samp><span class="option">-mlong-branch</span></samp> for PowerPC targets.

     <br><dt><code>-mone-byte-bool</code><dd><a name="index-mone_002dbyte_002dbool-1133"></a>Override the defaults for &lsquo;<samp><span class="samp">bool</span></samp>&rsquo; so that &lsquo;<samp><span class="samp">sizeof(bool)==1</span></samp>&rsquo;. 
By default &lsquo;<samp><span class="samp">sizeof(bool)</span></samp>&rsquo; is &lsquo;<samp><span class="samp">4</span></samp>&rsquo; when compiling for
Darwin/PowerPC and &lsquo;<samp><span class="samp">1</span></samp>&rsquo; when compiling for Darwin/x86, so this
option has no effect on x86.

     <p><strong>Warning:</strong> The <samp><span class="option">-mone-byte-bool</span></samp> switch causes GCC
to generate code that is not binary compatible with code generated
without that switch.  Using this switch may require recompiling all
other modules in a program, including system libraries.  Use this
switch to conform to a non-default data model.

     <br><dt><code>-mfix-and-continue</code><dt><code>-ffix-and-continue</code><dt><code>-findirect-data</code><dd><a name="index-mfix_002dand_002dcontinue-1134"></a><a name="index-ffix_002dand_002dcontinue-1135"></a><a name="index-findirect_002ddata-1136"></a>Generate code suitable for fast turn around development.  Needed to
enable gdb to dynamically load <code>.o</code> files into already running
programs.  <samp><span class="option">-findirect-data</span></samp> and <samp><span class="option">-ffix-and-continue</span></samp>
are provided for backwards compatibility.

     <br><dt><code>-all_load</code><dd><a name="index-all_005fload-1137"></a>Loads all members of static archive libraries. 
See man ld(1) for more information.

     <br><dt><code>-arch_errors_fatal</code><dd><a name="index-arch_005ferrors_005ffatal-1138"></a>Cause the errors having to do with files that have the wrong architecture
to be fatal.

     <br><dt><code>-bind_at_load</code><dd><a name="index-bind_005fat_005fload-1139"></a>Causes the output file to be marked such that the dynamic linker will
bind all undefined references when the file is loaded or launched.

     <br><dt><code>-bundle</code><dd><a name="index-bundle-1140"></a>Produce a Mach-o bundle format file. 
See man ld(1) for more information.

     <br><dt><code>-bundle_loader </code><var>executable</var><dd><a name="index-bundle_005floader-1141"></a>This option specifies the <var>executable</var> that will be loading the build
output file being linked.  See man ld(1) for more information.

     <br><dt><code>-dynamiclib</code><dd><a name="index-dynamiclib-1142"></a>When passed this option, GCC will produce a dynamic library instead of
an executable when linking, using the Darwin <samp><span class="file">libtool</span></samp> command.

     <br><dt><code>-force_cpusubtype_ALL</code><dd><a name="index-force_005fcpusubtype_005fALL-1143"></a>This causes GCC's output file to have the <var>ALL</var> subtype, instead of
one controlled by the <samp><span class="option">-mcpu</span></samp> or <samp><span class="option">-march</span></samp> option.

     <br><dt><code>-allowable_client  </code><var>client_name</var><dt><code>-client_name</code><dt><code>-compatibility_version</code><dt><code>-current_version</code><dt><code>-dead_strip</code><dt><code>-dependency-file</code><dt><code>-dylib_file</code><dt><code>-dylinker_install_name</code><dt><code>-dynamic</code><dt><code>-exported_symbols_list</code><dt><code>-filelist</code><dt><code>-flat_namespace</code><dt><code>-force_flat_namespace</code><dt><code>-headerpad_max_install_names</code><dt><code>-image_base</code><dt><code>-init</code><dt><code>-install_name</code><dt><code>-keep_private_externs</code><dt><code>-multi_module</code><dt><code>-multiply_defined</code><dt><code>-multiply_defined_unused</code><dt><code>-noall_load</code><dt><code>-no_dead_strip_inits_and_terms</code><dt><code>-nofixprebinding</code><dt><code>-nomultidefs</code><dt><code>-noprebind</code><dt><code>-noseglinkedit</code><dt><code>-pagezero_size</code><dt><code>-prebind</code><dt><code>-prebind_all_twolevel_modules</code><dt><code>-private_bundle</code><dt><code>-read_only_relocs</code><dt><code>-sectalign</code><dt><code>-sectobjectsymbols</code><dt><code>-whyload</code><dt><code>-seg1addr</code><dt><code>-sectcreate</code><dt><code>-sectobjectsymbols</code><dt><code>-sectorder</code><dt><code>-segaddr</code><dt><code>-segs_read_only_addr</code><dt><code>-segs_read_write_addr</code><dt><code>-seg_addr_table</code><dt><code>-seg_addr_table_filename</code><dt><code>-seglinkedit</code><dt><code>-segprot</code><dt><code>-segs_read_only_addr</code><dt><code>-segs_read_write_addr</code><dt><code>-single_module</code><dt><code>-static</code><dt><code>-sub_library</code><dt><code>-sub_umbrella</code><dt><code>-twolevel_namespace</code><dt><code>-umbrella</code><dt><code>-undefined</code><dt><code>-unexported_symbols_list</code><dt><code>-weak_reference_mismatches</code><dt><code>-whatsloaded</code><dd><a name="index-allowable_005fclient-1144"></a><a name="index-client_005fname-1145"></a><a name="index-compatibility_005fversion-1146"></a><a name="index-current_005fversion-1147"></a><a name="index-dead_005fstrip-1148"></a><a name="index-dependency_002dfile-1149"></a><a name="index-dylib_005ffile-1150"></a><a name="index-dylinker_005finstall_005fname-1151"></a><a name="index-dynamic-1152"></a><a name="index-exported_005fsymbols_005flist-1153"></a><a name="index-filelist-1154"></a><a name="index-flat_005fnamespace-1155"></a><a name="index-force_005fflat_005fnamespace-1156"></a><a name="index-headerpad_005fmax_005finstall_005fnames-1157"></a><a name="index-image_005fbase-1158"></a><a name="index-init-1159"></a><a name="index-install_005fname-1160"></a><a name="index-keep_005fprivate_005fexterns-1161"></a><a name="index-multi_005fmodule-1162"></a><a name="index-multiply_005fdefined-1163"></a><a name="index-multiply_005fdefined_005funused-1164"></a><a name="index-noall_005fload-1165"></a><a name="index-no_005fdead_005fstrip_005finits_005fand_005fterms-1166"></a><a name="index-nofixprebinding-1167"></a><a name="index-nomultidefs-1168"></a><a name="index-noprebind-1169"></a><a name="index-noseglinkedit-1170"></a><a name="index-pagezero_005fsize-1171"></a><a name="index-prebind-1172"></a><a name="index-prebind_005fall_005ftwolevel_005fmodules-1173"></a><a name="index-private_005fbundle-1174"></a><a name="index-read_005fonly_005frelocs-1175"></a><a name="index-sectalign-1176"></a><a name="index-sectobjectsymbols-1177"></a><a name="index-whyload-1178"></a><a name="index-seg1addr-1179"></a><a name="index-sectcreate-1180"></a><a name="index-sectobjectsymbols-1181"></a><a name="index-sectorder-1182"></a><a name="index-segaddr-1183"></a><a name="index-segs_005fread_005fonly_005faddr-1184"></a><a name="index-segs_005fread_005fwrite_005faddr-1185"></a><a name="index-seg_005faddr_005ftable-1186"></a><a name="index-seg_005faddr_005ftable_005ffilename-1187"></a><a name="index-seglinkedit-1188"></a><a name="index-segprot-1189"></a><a name="index-segs_005fread_005fonly_005faddr-1190"></a><a name="index-segs_005fread_005fwrite_005faddr-1191"></a><a name="index-single_005fmodule-1192"></a><a name="index-static-1193"></a><a name="index-sub_005flibrary-1194"></a><a name="index-sub_005fumbrella-1195"></a><a name="index-twolevel_005fnamespace-1196"></a><a name="index-umbrella-1197"></a><a name="index-undefined-1198"></a><a name="index-unexported_005fsymbols_005flist-1199"></a><a name="index-weak_005freference_005fmismatches-1200"></a><a name="index-whatsloaded-1201"></a>These options are passed to the Darwin linker.  The Darwin linker man page
describes them in detail. 
</dl>

<div class="node">
<a name="DEC-Alpha-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#DEC-Alpha_002fVMS-Options">DEC Alpha/VMS Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Darwin-Options">Darwin Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.8 DEC Alpha Options</h4>

<p>These &lsquo;<samp><span class="samp">-m</span></samp>&rsquo; options are defined for the DEC Alpha implementations:

     <dl>
<dt><code>-mno-soft-float</code><dt><code>-msoft-float</code><dd><a name="index-mno_002dsoft_002dfloat-1202"></a><a name="index-msoft_002dfloat-1203"></a>Use (do not use) the hardware floating-point instructions for
floating-point operations.  When <samp><span class="option">-msoft-float</span></samp> is specified,
functions in <samp><span class="file">libgcc.a</span></samp> will be used to perform floating-point
operations.  Unless they are replaced by routines that emulate the
floating-point operations, or compiled in such a way as to call such
emulations routines, these routines will issue floating-point
operations.   If you are compiling for an Alpha without floating-point
operations, you must ensure that the library is built so as not to call
them.

     <p>Note that Alpha implementations without floating-point operations are
required to have floating-point registers.

     <br><dt><code>-mfp-reg</code><dt><code>-mno-fp-regs</code><dd><a name="index-mfp_002dreg-1204"></a><a name="index-mno_002dfp_002dregs-1205"></a>Generate code that uses (does not use) the floating-point register set. 
<samp><span class="option">-mno-fp-regs</span></samp> implies <samp><span class="option">-msoft-float</span></samp>.  If the floating-point
register set is not used, floating point operands are passed in integer
registers as if they were integers and floating-point results are passed
in <code>$0</code> instead of <code>$f0</code>.  This is a non-standard calling sequence,
so any function with a floating-point argument or return value called by code
compiled with <samp><span class="option">-mno-fp-regs</span></samp> must also be compiled with that
option.

     <p>A typical use of this option is building a kernel that does not use,
and hence need not save and restore, any floating-point registers.

     <br><dt><code>-mieee</code><dd><a name="index-mieee-1206"></a>The Alpha architecture implements floating-point hardware optimized for
maximum performance.  It is mostly compliant with the IEEE floating
point standard.  However, for full compliance, software assistance is
required.  This option generates code fully IEEE compliant code
<em>except</em> that the <var>inexact-flag</var> is not maintained (see below). 
If this option is turned on, the preprocessor macro <code>_IEEE_FP</code> is
defined during compilation.  The resulting code is less efficient but is
able to correctly support denormalized numbers and exceptional IEEE
values such as not-a-number and plus/minus infinity.  Other Alpha
compilers call this option <samp><span class="option">-ieee_with_no_inexact</span></samp>.

     <br><dt><code>-mieee-with-inexact</code><dd><a name="index-mieee_002dwith_002dinexact-1207"></a>This is like <samp><span class="option">-mieee</span></samp> except the generated code also maintains
the IEEE <var>inexact-flag</var>.  Turning on this option causes the
generated code to implement fully-compliant IEEE math.  In addition to
<code>_IEEE_FP</code>, <code>_IEEE_FP_EXACT</code> is defined as a preprocessor
macro.  On some Alpha implementations the resulting code may execute
significantly slower than the code generated by default.  Since there is
very little code that depends on the <var>inexact-flag</var>, you should
normally not specify this option.  Other Alpha compilers call this
option <samp><span class="option">-ieee_with_inexact</span></samp>.

     <br><dt><code>-mfp-trap-mode=</code><var>trap-mode</var><dd><a name="index-mfp_002dtrap_002dmode-1208"></a>This option controls what floating-point related traps are enabled. 
Other Alpha compilers call this option <samp><span class="option">-fptm </span><var>trap-mode</var></samp>. 
The trap mode can be set to one of four values:

          <dl>
<dt>&lsquo;<samp><span class="samp">n</span></samp>&rsquo;<dd>This is the default (normal) setting.  The only traps that are enabled
are the ones that cannot be disabled in software (e.g., division by zero
trap).

          <br><dt>&lsquo;<samp><span class="samp">u</span></samp>&rsquo;<dd>In addition to the traps enabled by &lsquo;<samp><span class="samp">n</span></samp>&rsquo;, underflow traps are enabled
as well.

          <br><dt>&lsquo;<samp><span class="samp">su</span></samp>&rsquo;<dd>Like &lsquo;<samp><span class="samp">u</span></samp>&rsquo;, but the instructions are marked to be safe for software
completion (see Alpha architecture manual for details).

          <br><dt>&lsquo;<samp><span class="samp">sui</span></samp>&rsquo;<dd>Like &lsquo;<samp><span class="samp">su</span></samp>&rsquo;, but inexact traps are enabled as well. 
</dl>

     <br><dt><code>-mfp-rounding-mode=</code><var>rounding-mode</var><dd><a name="index-mfp_002drounding_002dmode-1209"></a>Selects the IEEE rounding mode.  Other Alpha compilers call this option
<samp><span class="option">-fprm </span><var>rounding-mode</var></samp>.  The <var>rounding-mode</var> can be one
of:

          <dl>
<dt>&lsquo;<samp><span class="samp">n</span></samp>&rsquo;<dd>Normal IEEE rounding mode.  Floating point numbers are rounded towards
the nearest machine number or towards the even machine number in case
of a tie.

          <br><dt>&lsquo;<samp><span class="samp">m</span></samp>&rsquo;<dd>Round towards minus infinity.

          <br><dt>&lsquo;<samp><span class="samp">c</span></samp>&rsquo;<dd>Chopped rounding mode.  Floating point numbers are rounded towards zero.

          <br><dt>&lsquo;<samp><span class="samp">d</span></samp>&rsquo;<dd>Dynamic rounding mode.  A field in the floating point control register
(<var>fpcr</var>, see Alpha architecture reference manual) controls the
rounding mode in effect.  The C library initializes this register for
rounding towards plus infinity.  Thus, unless your program modifies the
<var>fpcr</var>, &lsquo;<samp><span class="samp">d</span></samp>&rsquo; corresponds to round towards plus infinity. 
</dl>

     <br><dt><code>-mtrap-precision=</code><var>trap-precision</var><dd><a name="index-mtrap_002dprecision-1210"></a>In the Alpha architecture, floating point traps are imprecise.  This
means without software assistance it is impossible to recover from a
floating trap and program execution normally needs to be terminated. 
GCC can generate code that can assist operating system trap handlers
in determining the exact location that caused a floating point trap. 
Depending on the requirements of an application, different levels of
precisions can be selected:

          <dl>
<dt>&lsquo;<samp><span class="samp">p</span></samp>&rsquo;<dd>Program precision.  This option is the default and means a trap handler
can only identify which program caused a floating point exception.

          <br><dt>&lsquo;<samp><span class="samp">f</span></samp>&rsquo;<dd>Function precision.  The trap handler can determine the function that
caused a floating point exception.

          <br><dt>&lsquo;<samp><span class="samp">i</span></samp>&rsquo;<dd>Instruction precision.  The trap handler can determine the exact
instruction that caused a floating point exception. 
</dl>

     <p>Other Alpha compilers provide the equivalent options called
<samp><span class="option">-scope_safe</span></samp> and <samp><span class="option">-resumption_safe</span></samp>.

     <br><dt><code>-mieee-conformant</code><dd><a name="index-mieee_002dconformant-1211"></a>This option marks the generated code as IEEE conformant.  You must not
use this option unless you also specify <samp><span class="option">-mtrap-precision=i</span></samp> and either
<samp><span class="option">-mfp-trap-mode=su</span></samp> or <samp><span class="option">-mfp-trap-mode=sui</span></samp>.  Its only effect
is to emit the line &lsquo;<samp><span class="samp">.eflag 48</span></samp>&rsquo; in the function prologue of the
generated assembly file.  Under DEC Unix, this has the effect that
IEEE-conformant math library routines will be linked in.

     <br><dt><code>-mbuild-constants</code><dd><a name="index-mbuild_002dconstants-1212"></a>Normally GCC examines a 32- or 64-bit integer constant to
see if it can construct it from smaller constants in two or three
instructions.  If it cannot, it will output the constant as a literal and
generate code to load it from the data segment at runtime.

     <p>Use this option to require GCC to construct <em>all</em> integer constants
using code, even if it takes more instructions (the maximum is six).

     <p>You would typically use this option to build a shared library dynamic
loader.  Itself a shared library, it must relocate itself in memory
before it can find the variables and constants in its own data segment.

     <br><dt><code>-malpha-as</code><dt><code>-mgas</code><dd><a name="index-malpha_002das-1213"></a><a name="index-mgas-1214"></a>Select whether to generate code to be assembled by the vendor-supplied
assembler (<samp><span class="option">-malpha-as</span></samp>) or by the GNU assembler <samp><span class="option">-mgas</span></samp>.

     <br><dt><code>-mbwx</code><dt><code>-mno-bwx</code><dt><code>-mcix</code><dt><code>-mno-cix</code><dt><code>-mfix</code><dt><code>-mno-fix</code><dt><code>-mmax</code><dt><code>-mno-max</code><dd><a name="index-mbwx-1215"></a><a name="index-mno_002dbwx-1216"></a><a name="index-mcix-1217"></a><a name="index-mno_002dcix-1218"></a><a name="index-mfix-1219"></a><a name="index-mno_002dfix-1220"></a><a name="index-mmax-1221"></a><a name="index-mno_002dmax-1222"></a>Indicate whether GCC should generate code to use the optional BWX,
CIX, FIX and MAX instruction sets.  The default is to use the instruction
sets supported by the CPU type specified via <samp><span class="option">-mcpu=</span></samp> option or that
of the CPU on which GCC was built if none was specified.

     <br><dt><code>-mfloat-vax</code><dt><code>-mfloat-ieee</code><dd><a name="index-mfloat_002dvax-1223"></a><a name="index-mfloat_002dieee-1224"></a>Generate code that uses (does not use) VAX F and G floating point
arithmetic instead of IEEE single and double precision.

     <br><dt><code>-mexplicit-relocs</code><dt><code>-mno-explicit-relocs</code><dd><a name="index-mexplicit_002drelocs-1225"></a><a name="index-mno_002dexplicit_002drelocs-1226"></a>Older Alpha assemblers provided no way to generate symbol relocations
except via assembler macros.  Use of these macros does not allow
optimal instruction scheduling.  GNU binutils as of version 2.12
supports a new syntax that allows the compiler to explicitly mark
which relocations should apply to which instructions.  This option
is mostly useful for debugging, as GCC detects the capabilities of
the assembler when it is built and sets the default accordingly.

     <br><dt><code>-msmall-data</code><dt><code>-mlarge-data</code><dd><a name="index-msmall_002ddata-1227"></a><a name="index-mlarge_002ddata-1228"></a>When <samp><span class="option">-mexplicit-relocs</span></samp> is in effect, static data is
accessed via <dfn>gp-relative</dfn> relocations.  When <samp><span class="option">-msmall-data</span></samp>
is used, objects 8 bytes long or smaller are placed in a <dfn>small data area</dfn>
(the <code>.sdata</code> and <code>.sbss</code> sections) and are accessed via
16-bit relocations off of the <code>$gp</code> register.  This limits the
size of the small data area to 64KB, but allows the variables to be
directly accessed via a single instruction.

     <p>The default is <samp><span class="option">-mlarge-data</span></samp>.  With this option the data area
is limited to just below 2GB.  Programs that require more than 2GB of
data must use <code>malloc</code> or <code>mmap</code> to allocate the data in the
heap instead of in the program's data segment.

     <p>When generating code for shared libraries, <samp><span class="option">-fpic</span></samp> implies
<samp><span class="option">-msmall-data</span></samp> and <samp><span class="option">-fPIC</span></samp> implies <samp><span class="option">-mlarge-data</span></samp>.

     <br><dt><code>-msmall-text</code><dt><code>-mlarge-text</code><dd><a name="index-msmall_002dtext-1229"></a><a name="index-mlarge_002dtext-1230"></a>When <samp><span class="option">-msmall-text</span></samp> is used, the compiler assumes that the
code of the entire program (or shared library) fits in 4MB, and is
thus reachable with a branch instruction.  When <samp><span class="option">-msmall-data</span></samp>
is used, the compiler can assume that all local symbols share the
same <code>$gp</code> value, and thus reduce the number of instructions
required for a function call from 4 to 1.

     <p>The default is <samp><span class="option">-mlarge-text</span></samp>.

     <br><dt><code>-mcpu=</code><var>cpu_type</var><dd><a name="index-mcpu-1231"></a>Set the instruction set and instruction scheduling parameters for
machine type <var>cpu_type</var>.  You can specify either the &lsquo;<samp><span class="samp">EV</span></samp>&rsquo;
style name or the corresponding chip number.  GCC supports scheduling
parameters for the EV4, EV5 and EV6 family of processors and will
choose the default values for the instruction set from the processor
you specify.  If you do not specify a processor type, GCC will default
to the processor on which the compiler was built.

     <p>Supported values for <var>cpu_type</var> are

          <dl>
<dt>&lsquo;<samp><span class="samp">ev4</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">ev45</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">21064</span></samp>&rsquo;<dd>Schedules as an EV4 and has no instruction set extensions.

          <br><dt>&lsquo;<samp><span class="samp">ev5</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">21164</span></samp>&rsquo;<dd>Schedules as an EV5 and has no instruction set extensions.

          <br><dt>&lsquo;<samp><span class="samp">ev56</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">21164a</span></samp>&rsquo;<dd>Schedules as an EV5 and supports the BWX extension.

          <br><dt>&lsquo;<samp><span class="samp">pca56</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">21164pc</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">21164PC</span></samp>&rsquo;<dd>Schedules as an EV5 and supports the BWX and MAX extensions.

          <br><dt>&lsquo;<samp><span class="samp">ev6</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">21264</span></samp>&rsquo;<dd>Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.

          <br><dt>&lsquo;<samp><span class="samp">ev67</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">21264a</span></samp>&rsquo;<dd>Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions. 
</dl>

     <p>Native Linux/GNU toolchains also support the value &lsquo;<samp><span class="samp">native</span></samp>&rsquo;,
which selects the best architecture option for the host processor. 
<samp><span class="option">-mcpu=native</span></samp> has no effect if GCC does not recognize
the processor.

     <br><dt><code>-mtune=</code><var>cpu_type</var><dd><a name="index-mtune-1232"></a>Set only the instruction scheduling parameters for machine type
<var>cpu_type</var>.  The instruction set is not changed.

     <p>Native Linux/GNU toolchains also support the value &lsquo;<samp><span class="samp">native</span></samp>&rsquo;,
which selects the best architecture option for the host processor. 
<samp><span class="option">-mtune=native</span></samp> has no effect if GCC does not recognize
the processor.

     <br><dt><code>-mmemory-latency=</code><var>time</var><dd><a name="index-mmemory_002dlatency-1233"></a>Sets the latency the scheduler should assume for typical memory
references as seen by the application.  This number is highly
dependent on the memory access patterns used by the application
and the size of the external cache on the machine.

     <p>Valid options for <var>time</var> are

          <dl>
<dt>&lsquo;<samp><var>number</var></samp>&rsquo;<dd>A decimal number representing clock cycles.

          <br><dt>&lsquo;<samp><span class="samp">L1</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">L2</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">L3</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">main</span></samp>&rsquo;<dd>The compiler contains estimates of the number of clock cycles for
&ldquo;typical&rdquo; EV4 &amp; EV5 hardware for the Level 1, 2 &amp; 3 caches
(also called Dcache, Scache, and Bcache), as well as to main memory. 
Note that L3 is only valid for EV5.

     </dl>
     </dl>

<div class="node">
<a name="DEC-Alpha%2fVMS-Options"></a>
<a name="DEC-Alpha_002fVMS-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#FR30-Options">FR30 Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#DEC-Alpha-Options">DEC Alpha Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.9 DEC Alpha/VMS Options</h4>

<p>These &lsquo;<samp><span class="samp">-m</span></samp>&rsquo; options are defined for the DEC Alpha/VMS implementations:

     <dl>
<dt><code>-mvms-return-codes</code><dd><a name="index-mvms_002dreturn_002dcodes-1234"></a>Return VMS condition codes from main.  The default is to return POSIX
style condition (e.g. error) codes.

     <br><dt><code>-mdebug-main=</code><var>prefix</var><dd><a name="index-mdebug_002dmain_003d_0040var_007bprefix_007d-1235"></a>Flag the first routine whose name starts with <var>prefix</var> as the main
routine for the debugger.

     <br><dt><code>-mmalloc64</code><dd><a name="index-mmalloc64-1236"></a>Default to 64bit memory allocation routines. 
</dl>

<div class="node">
<a name="FR30-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#FRV-Options">FRV Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#DEC-Alpha_002fVMS-Options">DEC Alpha/VMS Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.10 FR30 Options</h4>

<p><a name="index-FR30-Options-1237"></a>
These options are defined specifically for the FR30 port.

     <dl>
<dt><code>-msmall-model</code><dd><a name="index-msmall_002dmodel-1238"></a>Use the small address space model.  This can produce smaller code, but
it does assume that all symbolic values and addresses will fit into a
20-bit range.

     <br><dt><code>-mno-lsim</code><dd><a name="index-mno_002dlsim-1239"></a>Assume that run-time support has been provided and so there is no need
to include the simulator library (<samp><span class="file">libsim.a</span></samp>) on the linker
command line.

 </dl>

<div class="node">
<a name="FRV-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#GNU_002fLinux-Options">GNU/Linux Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#FR30-Options">FR30 Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.11 FRV Options</h4>

<p><a name="index-FRV-Options-1240"></a>
     <dl>
<dt><code>-mgpr-32</code><dd><a name="index-mgpr_002d32-1241"></a>
Only use the first 32 general purpose registers.

     <br><dt><code>-mgpr-64</code><dd><a name="index-mgpr_002d64-1242"></a>
Use all 64 general purpose registers.

     <br><dt><code>-mfpr-32</code><dd><a name="index-mfpr_002d32-1243"></a>
Use only the first 32 floating point registers.

     <br><dt><code>-mfpr-64</code><dd><a name="index-mfpr_002d64-1244"></a>
Use all 64 floating point registers

     <br><dt><code>-mhard-float</code><dd><a name="index-mhard_002dfloat-1245"></a>
Use hardware instructions for floating point operations.

     <br><dt><code>-msoft-float</code><dd><a name="index-msoft_002dfloat-1246"></a>
Use library routines for floating point operations.

     <br><dt><code>-malloc-cc</code><dd><a name="index-malloc_002dcc-1247"></a>
Dynamically allocate condition code registers.

     <br><dt><code>-mfixed-cc</code><dd><a name="index-mfixed_002dcc-1248"></a>
Do not try to dynamically allocate condition code registers, only
use <code>icc0</code> and <code>fcc0</code>.

     <br><dt><code>-mdword</code><dd><a name="index-mdword-1249"></a>
Change ABI to use double word insns.

     <br><dt><code>-mno-dword</code><dd><a name="index-mno_002ddword-1250"></a>
Do not use double word instructions.

     <br><dt><code>-mdouble</code><dd><a name="index-mdouble-1251"></a>
Use floating point double instructions.

     <br><dt><code>-mno-double</code><dd><a name="index-mno_002ddouble-1252"></a>
Do not use floating point double instructions.

     <br><dt><code>-mmedia</code><dd><a name="index-mmedia-1253"></a>
Use media instructions.

     <br><dt><code>-mno-media</code><dd><a name="index-mno_002dmedia-1254"></a>
Do not use media instructions.

     <br><dt><code>-mmuladd</code><dd><a name="index-mmuladd-1255"></a>
Use multiply and add/subtract instructions.

     <br><dt><code>-mno-muladd</code><dd><a name="index-mno_002dmuladd-1256"></a>
Do not use multiply and add/subtract instructions.

     <br><dt><code>-mfdpic</code><dd><a name="index-mfdpic-1257"></a>
Select the FDPIC ABI, that uses function descriptors to represent
pointers to functions.  Without any PIC/PIE-related options, it
implies <samp><span class="option">-fPIE</span></samp>.  With <samp><span class="option">-fpic</span></samp> or <samp><span class="option">-fpie</span></samp>, it
assumes GOT entries and small data are within a 12-bit range from the
GOT base address; with <samp><span class="option">-fPIC</span></samp> or <samp><span class="option">-fPIE</span></samp>, GOT offsets
are computed with 32 bits. 
With a &lsquo;<samp><span class="samp">bfin-elf</span></samp>&rsquo; target, this option implies <samp><span class="option">-msim</span></samp>.

     <br><dt><code>-minline-plt</code><dd><a name="index-minline_002dplt-1258"></a>
Enable inlining of PLT entries in function calls to functions that are
not known to bind locally.  It has no effect without <samp><span class="option">-mfdpic</span></samp>. 
It's enabled by default if optimizing for speed and compiling for
shared libraries (i.e., <samp><span class="option">-fPIC</span></samp> or <samp><span class="option">-fpic</span></samp>), or when an
optimization option such as <samp><span class="option">-O3</span></samp> or above is present in the
command line.

     <br><dt><code>-mTLS</code><dd><a name="index-mTLS-1259"></a>
Assume a large TLS segment when generating thread-local code.

     <br><dt><code>-mtls</code><dd><a name="index-mtls-1260"></a>
Do not assume a large TLS segment when generating thread-local code.

     <br><dt><code>-mgprel-ro</code><dd><a name="index-mgprel_002dro-1261"></a>
Enable the use of <code>GPREL</code> relocations in the FDPIC ABI for data
that is known to be in read-only sections.  It's enabled by default,
except for <samp><span class="option">-fpic</span></samp> or <samp><span class="option">-fpie</span></samp>: even though it may help
make the global offset table smaller, it trades 1 instruction for 4. 
With <samp><span class="option">-fPIC</span></samp> or <samp><span class="option">-fPIE</span></samp>, it trades 3 instructions for 4,
one of which may be shared by multiple symbols, and it avoids the need
for a GOT entry for the referenced symbol, so it's more likely to be a
win.  If it is not, <samp><span class="option">-mno-gprel-ro</span></samp> can be used to disable it.

     <br><dt><code>-multilib-library-pic</code><dd><a name="index-multilib_002dlibrary_002dpic-1262"></a>
Link with the (library, not FD) pic libraries.  It's implied by
<samp><span class="option">-mlibrary-pic</span></samp>, as well as by <samp><span class="option">-fPIC</span></samp> and
<samp><span class="option">-fpic</span></samp> without <samp><span class="option">-mfdpic</span></samp>.  You should never have to use
it explicitly.

     <br><dt><code>-mlinked-fp</code><dd><a name="index-mlinked_002dfp-1263"></a>
Follow the EABI requirement of always creating a frame pointer whenever
a stack frame is allocated.  This option is enabled by default and can
be disabled with <samp><span class="option">-mno-linked-fp</span></samp>.

     <br><dt><code>-mlong-calls</code><dd><a name="index-mlong_002dcalls-1264"></a>
Use indirect addressing to call functions outside the current
compilation unit.  This allows the functions to be placed anywhere
within the 32-bit address space.

     <br><dt><code>-malign-labels</code><dd><a name="index-malign_002dlabels-1265"></a>
Try to align labels to an 8-byte boundary by inserting nops into the
previous packet.  This option only has an effect when VLIW packing
is enabled.  It doesn't create new packets; it merely adds nops to
existing ones.

     <br><dt><code>-mlibrary-pic</code><dd><a name="index-mlibrary_002dpic-1266"></a>
Generate position-independent EABI code.

     <br><dt><code>-macc-4</code><dd><a name="index-macc_002d4-1267"></a>
Use only the first four media accumulator registers.

     <br><dt><code>-macc-8</code><dd><a name="index-macc_002d8-1268"></a>
Use all eight media accumulator registers.

     <br><dt><code>-mpack</code><dd><a name="index-mpack-1269"></a>
Pack VLIW instructions.

     <br><dt><code>-mno-pack</code><dd><a name="index-mno_002dpack-1270"></a>
Do not pack VLIW instructions.

     <br><dt><code>-mno-eflags</code><dd><a name="index-mno_002deflags-1271"></a>
Do not mark ABI switches in e_flags.

     <br><dt><code>-mcond-move</code><dd><a name="index-mcond_002dmove-1272"></a>
Enable the use of conditional-move instructions (default).

     <p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.

     <br><dt><code>-mno-cond-move</code><dd><a name="index-mno_002dcond_002dmove-1273"></a>
Disable the use of conditional-move instructions.

     <p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.

     <br><dt><code>-mscc</code><dd><a name="index-mscc-1274"></a>
Enable the use of conditional set instructions (default).

     <p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.

     <br><dt><code>-mno-scc</code><dd><a name="index-mno_002dscc-1275"></a>
Disable the use of conditional set instructions.

     <p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.

     <br><dt><code>-mcond-exec</code><dd><a name="index-mcond_002dexec-1276"></a>
Enable the use of conditional execution (default).

     <p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.

     <br><dt><code>-mno-cond-exec</code><dd><a name="index-mno_002dcond_002dexec-1277"></a>
Disable the use of conditional execution.

     <p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.

     <br><dt><code>-mvliw-branch</code><dd><a name="index-mvliw_002dbranch-1278"></a>
Run a pass to pack branches into VLIW instructions (default).

     <p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.

     <br><dt><code>-mno-vliw-branch</code><dd><a name="index-mno_002dvliw_002dbranch-1279"></a>
Do not run a pass to pack branches into VLIW instructions.

     <p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.

     <br><dt><code>-mmulti-cond-exec</code><dd><a name="index-mmulti_002dcond_002dexec-1280"></a>
Enable optimization of <code>&amp;&amp;</code> and <code>||</code> in conditional execution
(default).

     <p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.

     <br><dt><code>-mno-multi-cond-exec</code><dd><a name="index-mno_002dmulti_002dcond_002dexec-1281"></a>
Disable optimization of <code>&amp;&amp;</code> and <code>||</code> in conditional execution.

     <p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.

     <br><dt><code>-mnested-cond-exec</code><dd><a name="index-mnested_002dcond_002dexec-1282"></a>
Enable nested conditional execution optimizations (default).

     <p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.

     <br><dt><code>-mno-nested-cond-exec</code><dd><a name="index-mno_002dnested_002dcond_002dexec-1283"></a>
Disable nested conditional execution optimizations.

     <p>This switch is mainly for debugging the compiler and will likely be removed
in a future version.

     <br><dt><code>-moptimize-membar</code><dd><a name="index-moptimize_002dmembar-1284"></a>
This switch removes redundant <code>membar</code> instructions from the
compiler generated code.  It is enabled by default.

     <br><dt><code>-mno-optimize-membar</code><dd><a name="index-mno_002doptimize_002dmembar-1285"></a>
This switch disables the automatic removal of redundant <code>membar</code>
instructions from the generated code.

     <br><dt><code>-mtomcat-stats</code><dd><a name="index-mtomcat_002dstats-1286"></a>
Cause gas to print out tomcat statistics.

     <br><dt><code>-mcpu=</code><var>cpu</var><dd><a name="index-mcpu-1287"></a>
Select the processor type for which to generate code.  Possible values are
&lsquo;<samp><span class="samp">frv</span></samp>&rsquo;, &lsquo;<samp><span class="samp">fr550</span></samp>&rsquo;, &lsquo;<samp><span class="samp">tomcat</span></samp>&rsquo;, &lsquo;<samp><span class="samp">fr500</span></samp>&rsquo;, &lsquo;<samp><span class="samp">fr450</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">fr405</span></samp>&rsquo;, &lsquo;<samp><span class="samp">fr400</span></samp>&rsquo;, &lsquo;<samp><span class="samp">fr300</span></samp>&rsquo; and &lsquo;<samp><span class="samp">simple</span></samp>&rsquo;.

 </dl>

<div class="node">
<a name="GNU%2fLinux-Options"></a>
<a name="GNU_002fLinux-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#H8_002f300-Options">H8/300 Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#FRV-Options">FRV Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.12 GNU/Linux Options</h4>

<p>These &lsquo;<samp><span class="samp">-m</span></samp>&rsquo; options are defined for GNU/Linux targets:

     <dl>
<dt><code>-mglibc</code><dd><a name="index-mglibc-1288"></a>Use the GNU C library.  This is the default except
on &lsquo;<samp><span class="samp">*-*-linux-*uclibc*</span></samp>&rsquo; and &lsquo;<samp><span class="samp">*-*-linux-*android*</span></samp>&rsquo; targets.

     <br><dt><code>-muclibc</code><dd><a name="index-muclibc-1289"></a>Use uClibc C library.  This is the default on
&lsquo;<samp><span class="samp">*-*-linux-*uclibc*</span></samp>&rsquo; targets.

     <br><dt><code>-mbionic</code><dd><a name="index-mbionic-1290"></a>Use Bionic C library.  This is the default on
&lsquo;<samp><span class="samp">*-*-linux-*android*</span></samp>&rsquo; targets.

     <br><dt><code>-mandroid</code><dd><a name="index-mandroid-1291"></a>Compile code compatible with Android platform.  This is the default on
&lsquo;<samp><span class="samp">*-*-linux-*android*</span></samp>&rsquo; targets.

     <p>When compiling, this option enables <samp><span class="option">-mbionic</span></samp>, <samp><span class="option">-fPIC</span></samp>,
<samp><span class="option">-fno-exceptions</span></samp> and <samp><span class="option">-fno-rtti</span></samp> by default.  When linking,
this option makes the GCC driver pass Android-specific options to the linker. 
Finally, this option causes the preprocessor macro <code>__ANDROID__</code>
to be defined.

     <br><dt><code>-tno-android-cc</code><dd><a name="index-tno_002dandroid_002dcc-1292"></a>Disable compilation effects of <samp><span class="option">-mandroid</span></samp>, i.e., do not enable
<samp><span class="option">-mbionic</span></samp>, <samp><span class="option">-fPIC</span></samp>, <samp><span class="option">-fno-exceptions</span></samp> and
<samp><span class="option">-fno-rtti</span></samp> by default.

     <br><dt><code>-tno-android-ld</code><dd><a name="index-tno_002dandroid_002dld-1293"></a>Disable linking effects of <samp><span class="option">-mandroid</span></samp>, i.e., pass standard Linux
linking options to the linker.

 </dl>

<div class="node">
<a name="H8%2f300-Options"></a>
<a name="H8_002f300-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#HPPA-Options">HPPA Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#GNU_002fLinux-Options">GNU/Linux Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.13 H8/300 Options</h4>

<p>These &lsquo;<samp><span class="samp">-m</span></samp>&rsquo; options are defined for the H8/300 implementations:

     <dl>
<dt><code>-mrelax</code><dd><a name="index-mrelax-1294"></a>Shorten some address references at link time, when possible; uses the
linker option <samp><span class="option">-relax</span></samp>.  See <a href="ld.html#H8_002f300"><code>ld</code> and the H8/300</a>, for a fuller description.

     <br><dt><code>-mh</code><dd><a name="index-mh-1295"></a>Generate code for the H8/300H.

     <br><dt><code>-ms</code><dd><a name="index-ms-1296"></a>Generate code for the H8S.

     <br><dt><code>-mn</code><dd><a name="index-mn-1297"></a>Generate code for the H8S and H8/300H in the normal mode.  This switch
must be used either with <samp><span class="option">-mh</span></samp> or <samp><span class="option">-ms</span></samp>.

     <br><dt><code>-ms2600</code><dd><a name="index-ms2600-1298"></a>Generate code for the H8S/2600.  This switch must be used with <samp><span class="option">-ms</span></samp>.

     <br><dt><code>-mint32</code><dd><a name="index-mint32-1299"></a>Make <code>int</code> data 32 bits by default.

     <br><dt><code>-malign-300</code><dd><a name="index-malign_002d300-1300"></a>On the H8/300H and H8S, use the same alignment rules as for the H8/300. 
The default for the H8/300H and H8S is to align longs and floats on 4
byte boundaries. 
<samp><span class="option">-malign-300</span></samp> causes them to be aligned on 2 byte boundaries. 
This option has no effect on the H8/300. 
</dl>

<div class="node">
<a name="HPPA-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#H8_002f300-Options">H8/300 Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.14 HPPA Options</h4>

<p><a name="index-HPPA-Options-1301"></a>
These &lsquo;<samp><span class="samp">-m</span></samp>&rsquo; options are defined for the HPPA family of computers:

     <dl>
<dt><code>-march=</code><var>architecture-type</var><dd><a name="index-march-1302"></a>Generate code for the specified architecture.  The choices for
<var>architecture-type</var> are &lsquo;<samp><span class="samp">1.0</span></samp>&rsquo; for PA 1.0, &lsquo;<samp><span class="samp">1.1</span></samp>&rsquo; for PA
1.1, and &lsquo;<samp><span class="samp">2.0</span></samp>&rsquo; for PA 2.0 processors.  Refer to
<samp><span class="file">/usr/lib/sched.models</span></samp> on an HP-UX system to determine the proper
architecture option for your machine.  Code compiled for lower numbered
architectures will run on higher numbered architectures, but not the
other way around.

     <br><dt><code>-mpa-risc-1-0</code><dt><code>-mpa-risc-1-1</code><dt><code>-mpa-risc-2-0</code><dd><a name="index-mpa_002drisc_002d1_002d0-1303"></a><a name="index-mpa_002drisc_002d1_002d1-1304"></a><a name="index-mpa_002drisc_002d2_002d0-1305"></a>Synonyms for <samp><span class="option">-march=1.0</span></samp>, <samp><span class="option">-march=1.1</span></samp>, and <samp><span class="option">-march=2.0</span></samp> respectively.

     <br><dt><code>-mbig-switch</code><dd><a name="index-mbig_002dswitch-1306"></a>Generate code suitable for big switch tables.  Use this option only if
the assembler/linker complain about out of range branches within a switch
table.

     <br><dt><code>-mjump-in-delay</code><dd><a name="index-mjump_002din_002ddelay-1307"></a>Fill delay slots of function calls with unconditional jump instructions
by modifying the return pointer for the function call to be the target
of the conditional jump.

     <br><dt><code>-mdisable-fpregs</code><dd><a name="index-mdisable_002dfpregs-1308"></a>Prevent floating point registers from being used in any manner.  This is
necessary for compiling kernels which perform lazy context switching of
floating point registers.  If you use this option and attempt to perform
floating point operations, the compiler will abort.

     <br><dt><code>-mdisable-indexing</code><dd><a name="index-mdisable_002dindexing-1309"></a>Prevent the compiler from using indexing address modes.  This avoids some
rather obscure problems when compiling MIG generated code under MACH.

     <br><dt><code>-mno-space-regs</code><dd><a name="index-mno_002dspace_002dregs-1310"></a>Generate code that assumes the target has no space registers.  This allows
GCC to generate faster indirect calls and use unscaled index address modes.

     <p>Such code is suitable for level 0 PA systems and kernels.

     <br><dt><code>-mfast-indirect-calls</code><dd><a name="index-mfast_002dindirect_002dcalls-1311"></a>Generate code that assumes calls never cross space boundaries.  This
allows GCC to emit code which performs faster indirect calls.

     <p>This option will not work in the presence of shared libraries or nested
functions.

     <br><dt><code>-mfixed-range=</code><var>register-range</var><dd><a name="index-mfixed_002drange-1312"></a>Generate code treating the given register range as fixed registers. 
A fixed register is one that the register allocator can not use.  This is
useful when compiling kernel code.  A register range is specified as
two registers separated by a dash.  Multiple register ranges can be
specified separated by a comma.

     <br><dt><code>-mlong-load-store</code><dd><a name="index-mlong_002dload_002dstore-1313"></a>Generate 3-instruction load and store sequences as sometimes required by
the HP-UX 10 linker.  This is equivalent to the &lsquo;<samp><span class="samp">+k</span></samp>&rsquo; option to
the HP compilers.

     <br><dt><code>-mportable-runtime</code><dd><a name="index-mportable_002druntime-1314"></a>Use the portable calling conventions proposed by HP for ELF systems.

     <br><dt><code>-mgas</code><dd><a name="index-mgas-1315"></a>Enable the use of assembler directives only GAS understands.

     <br><dt><code>-mschedule=</code><var>cpu-type</var><dd><a name="index-mschedule-1316"></a>Schedule code according to the constraints for the machine type
<var>cpu-type</var>.  The choices for <var>cpu-type</var> are &lsquo;<samp><span class="samp">700</span></samp>&rsquo;
&lsquo;<samp><span class="samp">7100</span></samp>&rsquo;, &lsquo;<samp><span class="samp">7100LC</span></samp>&rsquo;, &lsquo;<samp><span class="samp">7200</span></samp>&rsquo;, &lsquo;<samp><span class="samp">7300</span></samp>&rsquo; and &lsquo;<samp><span class="samp">8000</span></samp>&rsquo;.  Refer
to <samp><span class="file">/usr/lib/sched.models</span></samp> on an HP-UX system to determine the
proper scheduling option for your machine.  The default scheduling is
&lsquo;<samp><span class="samp">8000</span></samp>&rsquo;.

     <br><dt><code>-mlinker-opt</code><dd><a name="index-mlinker_002dopt-1317"></a>Enable the optimization pass in the HP-UX linker.  Note this makes symbolic
debugging impossible.  It also triggers a bug in the HP-UX 8 and HP-UX 9
linkers in which they give bogus error messages when linking some programs.

     <br><dt><code>-msoft-float</code><dd><a name="index-msoft_002dfloat-1318"></a>Generate output containing library calls for floating point. 
<strong>Warning:</strong> the requisite libraries are not available for all HPPA
targets.  Normally the facilities of the machine's usual C compiler are
used, but this cannot be done directly in cross-compilation.  You must make
your own arrangements to provide suitable library functions for
cross-compilation.

     <p><samp><span class="option">-msoft-float</span></samp> changes the calling convention in the output file;
therefore, it is only useful if you compile <em>all</em> of a program with
this option.  In particular, you need to compile <samp><span class="file">libgcc.a</span></samp>, the
library that comes with GCC, with <samp><span class="option">-msoft-float</span></samp> in order for
this to work.

     <br><dt><code>-msio</code><dd><a name="index-msio-1319"></a>Generate the predefine, <code>_SIO</code>, for server IO.  The default is
<samp><span class="option">-mwsio</span></samp>.  This generates the predefines, <code>__hp9000s700</code>,
<code>__hp9000s700__</code> and <code>_WSIO</code>, for workstation IO.  These
options are available under HP-UX and HI-UX.

     <br><dt><code>-mgnu-ld</code><dd><a name="index-mgnu_002dld-1320"></a>Use GNU ld specific options.  This passes <samp><span class="option">-shared</span></samp> to ld when
building a shared library.  It is the default when GCC is configured,
explicitly or implicitly, with the GNU linker.  This option does not
have any affect on which ld is called, it only changes what parameters
are passed to that ld.  The ld that is called is determined by the
<samp><span class="option">--with-ld</span></samp> configure option, GCC's program search path, and
finally by the user's <samp><span class="env">PATH</span></samp>.  The linker used by GCC can be printed
using &lsquo;<samp><span class="samp">which `gcc -print-prog-name=ld`</span></samp>&rsquo;.  This option is only available
on the 64 bit HP-UX GCC, i.e. configured with &lsquo;<samp><span class="samp">hppa*64*-*-hpux*</span></samp>&rsquo;.

     <br><dt><code>-mhp-ld</code><dd><a name="index-mhp_002dld-1321"></a>Use HP ld specific options.  This passes <samp><span class="option">-b</span></samp> to ld when building
a shared library and passes <samp><span class="option">+Accept TypeMismatch</span></samp> to ld on all
links.  It is the default when GCC is configured, explicitly or
implicitly, with the HP linker.  This option does not have any affect on
which ld is called, it only changes what parameters are passed to that
ld.  The ld that is called is determined by the <samp><span class="option">--with-ld</span></samp>
configure option, GCC's program search path, and finally by the user's
<samp><span class="env">PATH</span></samp>.  The linker used by GCC can be printed using &lsquo;<samp><span class="samp">which
`gcc -print-prog-name=ld`</span></samp>&rsquo;.  This option is only available on the 64 bit
HP-UX GCC, i.e. configured with &lsquo;<samp><span class="samp">hppa*64*-*-hpux*</span></samp>&rsquo;.

     <br><dt><code>-mlong-calls</code><dd><a name="index-mno_002dlong_002dcalls-1322"></a>Generate code that uses long call sequences.  This ensures that a call
is always able to reach linker generated stubs.  The default is to generate
long calls only when the distance from the call site to the beginning
of the function or translation unit, as the case may be, exceeds a
predefined limit set by the branch type being used.  The limits for
normal calls are 7,600,000 and 240,000 bytes, respectively for the
PA 2.0 and PA 1.X architectures.  Sibcalls are always limited at
240,000 bytes.

     <p>Distances are measured from the beginning of functions when using the
<samp><span class="option">-ffunction-sections</span></samp> option, or when using the <samp><span class="option">-mgas</span></samp>
and <samp><span class="option">-mno-portable-runtime</span></samp> options together under HP-UX with
the SOM linker.

     <p>It is normally not desirable to use this option as it will degrade
performance.  However, it may be useful in large applications,
particularly when partial linking is used to build the application.

     <p>The types of long calls used depends on the capabilities of the
assembler and linker, and the type of code being generated.  The
impact on systems that support long absolute calls, and long pic
symbol-difference or pc-relative calls should be relatively small. 
However, an indirect call is used on 32-bit ELF systems in pic code
and it is quite long.

     <br><dt><code>-munix=</code><var>unix-std</var><dd><a name="index-march-1323"></a>Generate compiler predefines and select a startfile for the specified
UNIX standard.  The choices for <var>unix-std</var> are &lsquo;<samp><span class="samp">93</span></samp>&rsquo;, &lsquo;<samp><span class="samp">95</span></samp>&rsquo;
and &lsquo;<samp><span class="samp">98</span></samp>&rsquo;.  &lsquo;<samp><span class="samp">93</span></samp>&rsquo; is supported on all HP-UX versions.  &lsquo;<samp><span class="samp">95</span></samp>&rsquo;
is available on HP-UX 10.10 and later.  &lsquo;<samp><span class="samp">98</span></samp>&rsquo; is available on HP-UX
11.11 and later.  The default values are &lsquo;<samp><span class="samp">93</span></samp>&rsquo; for HP-UX 10.00,
&lsquo;<samp><span class="samp">95</span></samp>&rsquo; for HP-UX 10.10 though to 11.00, and &lsquo;<samp><span class="samp">98</span></samp>&rsquo; for HP-UX 11.11
and later.

     <p><samp><span class="option">-munix=93</span></samp> provides the same predefines as GCC 3.3 and 3.4. 
<samp><span class="option">-munix=95</span></samp> provides additional predefines for <code>XOPEN_UNIX</code>
and <code>_XOPEN_SOURCE_EXTENDED</code>, and the startfile <samp><span class="file">unix95.o</span></samp>. 
<samp><span class="option">-munix=98</span></samp> provides additional predefines for <code>_XOPEN_UNIX</code>,
<code>_XOPEN_SOURCE_EXTENDED</code>, <code>_INCLUDE__STDC_A1_SOURCE</code> and
<code>_INCLUDE_XOPEN_SOURCE_500</code>, and the startfile <samp><span class="file">unix98.o</span></samp>.

     <p>It is <em>important</em> to note that this option changes the interfaces
for various library routines.  It also affects the operational behavior
of the C library.  Thus, <em>extreme</em> care is needed in using this
option.

     <p>Library code that is intended to operate with more than one UNIX
standard must test, set and restore the variable <var>__xpg4_extended_mask</var>
as appropriate.  Most GNU software doesn't provide this capability.

     <br><dt><code>-nolibdld</code><dd><a name="index-nolibdld-1324"></a>Suppress the generation of link options to search libdld.sl when the
<samp><span class="option">-static</span></samp> option is specified on HP-UX 10 and later.

     <br><dt><code>-static</code><dd><a name="index-static-1325"></a>The HP-UX implementation of setlocale in libc has a dependency on
libdld.sl.  There isn't an archive version of libdld.sl.  Thus,
when the <samp><span class="option">-static</span></samp> option is specified, special link options
are needed to resolve this dependency.

     <p>On HP-UX 10 and later, the GCC driver adds the necessary options to
link with libdld.sl when the <samp><span class="option">-static</span></samp> option is specified. 
This causes the resulting binary to be dynamic.  On the 64-bit port,
the linkers generate dynamic binaries by default in any case.  The
<samp><span class="option">-nolibdld</span></samp> option can be used to prevent the GCC driver from
adding these link options.

     <br><dt><code>-threads</code><dd><a name="index-threads-1326"></a>Add support for multithreading with the <dfn>dce thread</dfn> library
under HP-UX.  This option sets flags for both the preprocessor and
linker. 
</dl>

<div class="node">
<a name="i386-and-x86-64-Options"></a>
<a name="i386-and-x86_002d64-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#i386-and-x86_002d64-Windows-Options">i386 and x86-64 Windows Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#HPPA-Options">HPPA Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.15 Intel 386 and AMD x86-64 Options</h4>

<p><a name="index-i386-Options-1327"></a><a name="index-x86_002d64-Options-1328"></a><a name="index-Intel-386-Options-1329"></a><a name="index-AMD-x86_002d64-Options-1330"></a>
These &lsquo;<samp><span class="samp">-m</span></samp>&rsquo; options are defined for the i386 and x86-64 family of
computers:

     <dl>
<dt><code>-mtune=</code><var>cpu-type</var><dd><a name="index-mtune-1331"></a>Tune to <var>cpu-type</var> everything applicable about the generated code, except
for the ABI and the set of available instructions.  The choices for
<var>cpu-type</var> are:
          <dl>
<dt><em>generic</em><dd>Produce code optimized for the most common IA32/AMD64/EM64T processors. 
If you know the CPU on which your code will run, then you should use
the corresponding <samp><span class="option">-mtune</span></samp> option instead of
<samp><span class="option">-mtune=generic</span></samp>.  But, if you do not know exactly what CPU users
of your application will have, then you should use this option.

          <p>As new processors are deployed in the marketplace, the behavior of this
option will change.  Therefore, if you upgrade to a newer version of
GCC, the code generated option will change to reflect the processors
that were most common when that version of GCC was released.

          <p>There is no <samp><span class="option">-march=generic</span></samp> option because <samp><span class="option">-march</span></samp>
indicates the instruction set the compiler can use, and there is no
generic instruction set applicable to all processors.  In contrast,
<samp><span class="option">-mtune</span></samp> indicates the processor (or, in this case, collection of
processors) for which the code is optimized. 
<br><dt><em>native</em><dd>This selects the CPU to tune for at compilation time by determining
the processor type of the compiling machine.  Using <samp><span class="option">-mtune=native</span></samp>
will produce code optimized for the local machine under the constraints
of the selected instruction set.  Using <samp><span class="option">-march=native</span></samp> will
enable all instruction subsets supported by the local machine (hence
the result might not run on different machines). 
<br><dt><em>i386</em><dd>Original Intel's i386 CPU. 
<br><dt><em>i486</em><dd>Intel's i486 CPU.  (No scheduling is implemented for this chip.) 
<br><dt><em>i586, pentium</em><dd>Intel Pentium CPU with no MMX support. 
<br><dt><em>pentium-mmx</em><dd>Intel PentiumMMX CPU based on Pentium core with MMX instruction set support. 
<br><dt><em>pentiumpro</em><dd>Intel PentiumPro CPU. 
<br><dt><em>i686</em><dd>Same as <code>generic</code>, but when used as <code>march</code> option, PentiumPro
instruction set will be used, so the code will run on all i686 family chips. 
<br><dt><em>pentium2</em><dd>Intel Pentium2 CPU based on PentiumPro core with MMX instruction set support. 
<br><dt><em>pentium3, pentium3m</em><dd>Intel Pentium3 CPU based on PentiumPro core with MMX and SSE instruction set
support. 
<br><dt><em>pentium-m</em><dd>Low power version of Intel Pentium3 CPU with MMX, SSE and SSE2 instruction set
support.  Used by Centrino notebooks. 
<br><dt><em>pentium4, pentium4m</em><dd>Intel Pentium4 CPU with MMX, SSE and SSE2 instruction set support. 
<br><dt><em>prescott</em><dd>Improved version of Intel Pentium4 CPU with MMX, SSE, SSE2 and SSE3 instruction
set support. 
<br><dt><em>nocona</em><dd>Improved version of Intel Pentium4 CPU with 64-bit extensions, MMX, SSE,
SSE2 and SSE3 instruction set support. 
<br><dt><em>core2</em><dd>Intel Core2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
instruction set support. 
<br><dt><em>corei7</em><dd>Intel Core i7 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1
and SSE4.2 instruction set support. 
<br><dt><em>corei7-avx</em><dd>Intel Core i7 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, AVX, AES and PCLMUL instruction set support. 
<br><dt><em>core-avx-i</em><dd>Intel Core CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C instruction
set support. 
<br><dt><em>atom</em><dd>Intel Atom CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
instruction set support. 
<br><dt><em>k6</em><dd>AMD K6 CPU with MMX instruction set support. 
<br><dt><em>k6-2, k6-3</em><dd>Improved versions of AMD K6 CPU with MMX and 3DNow! instruction set support. 
<br><dt><em>athlon, athlon-tbird</em><dd>AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow! and SSE prefetch instructions
support. 
<br><dt><em>athlon-4, athlon-xp, athlon-mp</em><dd>Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow! and full SSE
instruction set support. 
<br><dt><em>k8, opteron, athlon64, athlon-fx</em><dd>AMD K8 core based CPUs with x86-64 instruction set support.  (This supersets
MMX, SSE, SSE2, 3DNow!, enhanced 3DNow! and 64-bit instruction set extensions.) 
<br><dt><em>k8-sse3, opteron-sse3, athlon64-sse3</em><dd>Improved versions of k8, opteron and athlon64 with SSE3 instruction set support. 
<br><dt><em>amdfam10, barcelona</em><dd>AMD Family 10h core based CPUs with x86-64 instruction set support.  (This
supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
instruction set extensions.) 
<br><dt><em>winchip-c6</em><dd>IDT Winchip C6 CPU, dealt in same way as i486 with additional MMX instruction
set support. 
<br><dt><em>winchip2</em><dd>IDT Winchip2 CPU, dealt in same way as i486 with additional MMX and 3DNow! 
instruction set support. 
<br><dt><em>c3</em><dd>Via C3 CPU with MMX and 3DNow! instruction set support.  (No scheduling is
implemented for this chip.) 
<br><dt><em>c3-2</em><dd>Via C3-2 CPU with MMX and SSE instruction set support.  (No scheduling is
implemented for this chip.) 
<br><dt><em>geode</em><dd>Embedded AMD CPU with MMX and 3DNow! instruction set support. 
</dl>

     <p>While picking a specific <var>cpu-type</var> will schedule things appropriately
for that particular chip, the compiler will not generate any code that
does not run on the i386 without the <samp><span class="option">-march=</span><var>cpu-type</var></samp> option
being used.

     <br><dt><code>-march=</code><var>cpu-type</var><dd><a name="index-march-1332"></a>Generate instructions for the machine type <var>cpu-type</var>.  The choices
for <var>cpu-type</var> are the same as for <samp><span class="option">-mtune</span></samp>.  Moreover,
specifying <samp><span class="option">-march=</span><var>cpu-type</var></samp> implies <samp><span class="option">-mtune=</span><var>cpu-type</var></samp>.

     <br><dt><code>-mcpu=</code><var>cpu-type</var><dd><a name="index-mcpu-1333"></a>A deprecated synonym for <samp><span class="option">-mtune</span></samp>.

     <br><dt><code>-mfpmath=</code><var>unit</var><dd><a name="index-mfpmath-1334"></a>Generate floating point arithmetics for selected unit <var>unit</var>.  The choices
for <var>unit</var> are:

          <dl>
<dt>&lsquo;<samp><span class="samp">387</span></samp>&rsquo;<dd>Use the standard 387 floating point coprocessor present majority of chips and
emulated otherwise.  Code compiled with this option will run almost everywhere. 
The temporary results are computed in 80bit precision instead of precision
specified by the type resulting in slightly different results compared to most
of other chips.  See <samp><span class="option">-ffloat-store</span></samp> for more detailed description.

          <p>This is the default choice for i386 compiler.

          <br><dt>&lsquo;<samp><span class="samp">sse</span></samp>&rsquo;<dd>Use scalar floating point instructions present in the SSE instruction set. 
This instruction set is supported by Pentium3 and newer chips, in the AMD line
by Athlon-4, Athlon-xp and Athlon-mp chips.  The earlier version of SSE
instruction set supports only single precision arithmetics, thus the double and
extended precision arithmetics is still done using 387.  Later version, present
only in Pentium4 and the future AMD x86-64 chips supports double precision
arithmetics too.

          <p>For the i386 compiler, you need to use <samp><span class="option">-march=</span><var>cpu-type</var></samp>, <samp><span class="option">-msse</span></samp>
or <samp><span class="option">-msse2</span></samp> switches to enable SSE extensions and make this option
effective.  For the x86-64 compiler, these extensions are enabled by default.

          <p>The resulting code should be considerably faster in the majority of cases and avoid
the numerical instability problems of 387 code, but may break some existing
code that expects temporaries to be 80bit.

          <p>This is the default choice for the x86-64 compiler.

          <br><dt>&lsquo;<samp><span class="samp">sse,387</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">sse+387</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">both</span></samp>&rsquo;<dd>Attempt to utilize both instruction sets at once.  This effectively double the
amount of available registers and on chips with separate execution units for
387 and SSE the execution resources too.  Use this option with care, as it is
still experimental, because the GCC register allocator does not model separate
functional units well resulting in instable performance. 
</dl>

     <br><dt><code>-masm=</code><var>dialect</var><dd><a name="index-masm_003d_0040var_007bdialect_007d-1335"></a>Output asm instructions using selected <var>dialect</var>.  Supported
choices are &lsquo;<samp><span class="samp">intel</span></samp>&rsquo; or &lsquo;<samp><span class="samp">att</span></samp>&rsquo; (the default one).  Darwin does
not support &lsquo;<samp><span class="samp">intel</span></samp>&rsquo;.

     <br><dt><code>-mieee-fp</code><dt><code>-mno-ieee-fp</code><dd><a name="index-mieee_002dfp-1336"></a><a name="index-mno_002dieee_002dfp-1337"></a>Control whether or not the compiler uses IEEE floating point
comparisons.  These handle correctly the case where the result of a
comparison is unordered.

     <br><dt><code>-msoft-float</code><dd><a name="index-msoft_002dfloat-1338"></a>Generate output containing library calls for floating point. 
<strong>Warning:</strong> the requisite libraries are not part of GCC. 
Normally the facilities of the machine's usual C compiler are used, but
this can't be done directly in cross-compilation.  You must make your
own arrangements to provide suitable library functions for
cross-compilation.

     <p>On machines where a function returns floating point results in the 80387
register stack, some floating point opcodes may be emitted even if
<samp><span class="option">-msoft-float</span></samp> is used.

     <br><dt><code>-mno-fp-ret-in-387</code><dd><a name="index-mno_002dfp_002dret_002din_002d387-1339"></a>Do not use the FPU registers for return values of functions.

     <p>The usual calling convention has functions return values of types
<code>float</code> and <code>double</code> in an FPU register, even if there
is no FPU.  The idea is that the operating system should emulate
an FPU.

     <p>The option <samp><span class="option">-mno-fp-ret-in-387</span></samp> causes such values to be returned
in ordinary CPU registers instead.

     <br><dt><code>-mno-fancy-math-387</code><dd><a name="index-mno_002dfancy_002dmath_002d387-1340"></a>Some 387 emulators do not support the <code>sin</code>, <code>cos</code> and
<code>sqrt</code> instructions for the 387.  Specify this option to avoid
generating those instructions.  This option is the default on FreeBSD,
OpenBSD and NetBSD.  This option is overridden when <samp><span class="option">-march</span></samp>
indicates that the target CPU will always have an FPU and so the
instruction will not need emulation.  As of revision 2.6.1, these
instructions are not generated unless you also use the
<samp><span class="option">-funsafe-math-optimizations</span></samp> switch.

     <br><dt><code>-malign-double</code><dt><code>-mno-align-double</code><dd><a name="index-malign_002ddouble-1341"></a><a name="index-mno_002dalign_002ddouble-1342"></a>Control whether GCC aligns <code>double</code>, <code>long double</code>, and
<code>long long</code> variables on a two word boundary or a one word
boundary.  Aligning <code>double</code> variables on a two word boundary will
produce code that runs somewhat faster on a &lsquo;<samp><span class="samp">Pentium</span></samp>&rsquo; at the
expense of more memory.

     <p>On x86-64, <samp><span class="option">-malign-double</span></samp> is enabled by default.

     <p><strong>Warning:</strong> if you use the <samp><span class="option">-malign-double</span></samp> switch,
structures containing the above types will be aligned differently than
the published application binary interface specifications for the 386
and will not be binary compatible with structures in code compiled
without that switch.

     <br><dt><code>-m96bit-long-double</code><dt><code>-m128bit-long-double</code><dd><a name="index-m96bit_002dlong_002ddouble-1343"></a><a name="index-m128bit_002dlong_002ddouble-1344"></a>These switches control the size of <code>long double</code> type.  The i386
application binary interface specifies the size to be 96 bits,
so <samp><span class="option">-m96bit-long-double</span></samp> is the default in 32 bit mode.

     <p>Modern architectures (Pentium and newer) would prefer <code>long double</code>
to be aligned to an 8 or 16 byte boundary.  In arrays or structures
conforming to the ABI, this would not be possible.  So specifying a
<samp><span class="option">-m128bit-long-double</span></samp> will align <code>long double</code>
to a 16 byte boundary by padding the <code>long double</code> with an additional
32 bit zero.

     <p>In the x86-64 compiler, <samp><span class="option">-m128bit-long-double</span></samp> is the default choice as
its ABI specifies that <code>long double</code> is to be aligned on 16 byte boundary.

     <p>Notice that neither of these options enable any extra precision over the x87
standard of 80 bits for a <code>long double</code>.

     <p><strong>Warning:</strong> if you override the default value for your target ABI, the
structures and arrays containing <code>long double</code> variables will change
their size as well as function calling convention for function taking
<code>long double</code> will be modified.  Hence they will not be binary
compatible with arrays or structures in code compiled without that switch.

     <br><dt><code>-mlarge-data-threshold=</code><var>number</var><dd><a name="index-mlarge_002ddata_002dthreshold_003d_0040var_007bnumber_007d-1345"></a>When <samp><span class="option">-mcmodel=medium</span></samp> is specified, the data greater than
<var>threshold</var> are placed in large data section.  This value must be the
same across all object linked into the binary and defaults to 65535.

     <br><dt><code>-mrtd</code><dd><a name="index-mrtd-1346"></a>Use a different function-calling convention, in which functions that
take a fixed number of arguments return with the <code>ret</code> <var>num</var>
instruction, which pops their arguments while returning.  This saves one
instruction in the caller since there is no need to pop the arguments
there.

     <p>You can specify that an individual function is called with this calling
sequence with the function attribute &lsquo;<samp><span class="samp">stdcall</span></samp>&rsquo;.  You can also
override the <samp><span class="option">-mrtd</span></samp> option by using the function attribute
&lsquo;<samp><span class="samp">cdecl</span></samp>&rsquo;.  See <a href="#Function-Attributes">Function Attributes</a>.

     <p><strong>Warning:</strong> this calling convention is incompatible with the one
normally used on Unix, so you cannot use it if you need to call
libraries compiled with the Unix compiler.

     <p>Also, you must provide function prototypes for all functions that
take variable numbers of arguments (including <code>printf</code>);
otherwise incorrect code will be generated for calls to those
functions.

     <p>In addition, seriously incorrect code will result if you call a
function with too many arguments.  (Normally, extra arguments are
harmlessly ignored.)

     <br><dt><code>-mregparm=</code><var>num</var><dd><a name="index-mregparm-1347"></a>Control how many registers are used to pass integer arguments.  By
default, no registers are used to pass arguments, and at most 3
registers can be used.  You can control this behavior for a specific
function by using the function attribute &lsquo;<samp><span class="samp">regparm</span></samp>&rsquo;. 
See <a href="#Function-Attributes">Function Attributes</a>.

     <p><strong>Warning:</strong> if you use this switch, and
<var>num</var> is nonzero, then you must build all modules with the same
value, including any libraries.  This includes the system libraries and
startup modules.

     <br><dt><code>-msseregparm</code><dd><a name="index-msseregparm-1348"></a>Use SSE register passing conventions for float and double arguments
and return values.  You can control this behavior for a specific
function by using the function attribute &lsquo;<samp><span class="samp">sseregparm</span></samp>&rsquo;. 
See <a href="#Function-Attributes">Function Attributes</a>.

     <p><strong>Warning:</strong> if you use this switch then you must build all
modules with the same value, including any libraries.  This includes
the system libraries and startup modules.

     <br><dt><code>-mvect8-ret-in-mem</code><dd><a name="index-mvect8_002dret_002din_002dmem-1349"></a>Return 8-byte vectors in memory instead of MMX registers.  This is the
default on Solaris&nbsp;8 and 9 and VxWorks to match the ABI of the Sun
Studio compilers until version 12.  Later compiler versions (starting
with Studio 12 Update&nbsp;1) follow the ABI used by other x86 targets, which
is the default on Solaris&nbsp;10 and later.  <em>Only</em> use this option if
you need to remain compatible with existing code produced by those
previous compiler versions or older versions of GCC.

     <br><dt><code>-mpc32</code><dt><code>-mpc64</code><dt><code>-mpc80</code><dd><a name="index-mpc32-1350"></a><a name="index-mpc64-1351"></a><a name="index-mpc80-1352"></a>
Set 80387 floating-point precision to 32, 64 or 80 bits.  When <samp><span class="option">-mpc32</span></samp>
is specified, the significands of results of floating-point operations are
rounded to 24 bits (single precision); <samp><span class="option">-mpc64</span></samp> rounds the
significands of results of floating-point operations to 53 bits (double
precision) and <samp><span class="option">-mpc80</span></samp> rounds the significands of results of
floating-point operations to 64 bits (extended double precision), which is
the default.  When this option is used, floating-point operations in higher
precisions are not available to the programmer without setting the FPU
control word explicitly.

     <p>Setting the rounding of floating-point operations to less than the default
80 bits can speed some programs by 2% or more.  Note that some mathematical
libraries assume that extended precision (80 bit) floating-point operations
are enabled by default; routines in such libraries could suffer significant
loss of accuracy, typically through so-called "catastrophic cancellation",
when this option is used to set the precision to less than extended precision.

     <br><dt><code>-mstackrealign</code><dd><a name="index-mstackrealign-1353"></a>Realign the stack at entry.  On the Intel x86, the <samp><span class="option">-mstackrealign</span></samp>
option will generate an alternate prologue and epilogue that realigns the
runtime stack if necessary.  This supports mixing legacy codes that keep
a 4-byte aligned stack with modern codes that keep a 16-byte stack for
SSE compatibility.  See also the attribute <code>force_align_arg_pointer</code>,
applicable to individual functions.

     <br><dt><code>-mpreferred-stack-boundary=</code><var>num</var><dd><a name="index-mpreferred_002dstack_002dboundary-1354"></a>Attempt to keep the stack boundary aligned to a 2 raised to <var>num</var>
byte boundary.  If <samp><span class="option">-mpreferred-stack-boundary</span></samp> is not specified,
the default is 4 (16 bytes or 128 bits).

     <br><dt><code>-mincoming-stack-boundary=</code><var>num</var><dd><a name="index-mincoming_002dstack_002dboundary-1355"></a>Assume the incoming stack is aligned to a 2 raised to <var>num</var> byte
boundary.  If <samp><span class="option">-mincoming-stack-boundary</span></samp> is not specified,
the one specified by <samp><span class="option">-mpreferred-stack-boundary</span></samp> will be used.

     <p>On Pentium and PentiumPro, <code>double</code> and <code>long double</code> values
should be aligned to an 8 byte boundary (see <samp><span class="option">-malign-double</span></samp>) or
suffer significant run time performance penalties.  On Pentium III, the
Streaming SIMD Extension (SSE) data type <code>__m128</code> may not work
properly if it is not 16 byte aligned.

     <p>To ensure proper alignment of this values on the stack, the stack boundary
must be as aligned as that required by any value stored on the stack. 
Further, every function must be generated such that it keeps the stack
aligned.  Thus calling a function compiled with a higher preferred
stack boundary from a function compiled with a lower preferred stack
boundary will most likely misalign the stack.  It is recommended that
libraries that use callbacks always use the default setting.

     <p>This extra alignment does consume extra stack space, and generally
increases code size.  Code that is sensitive to stack space usage, such
as embedded systems and operating system kernels, may want to reduce the
preferred alignment to <samp><span class="option">-mpreferred-stack-boundary=2</span></samp>.

     <br><dt><code>-mmmx</code><dt><code>-mno-mmx</code><dt><code>-msse</code><dt><code>-mno-sse</code><dt><code>-msse2</code><dt><code>-mno-sse2</code><dt><code>-msse3</code><dt><code>-mno-sse3</code><dt><code>-mssse3</code><dt><code>-mno-ssse3</code><dt><code>-msse4.1</code><dt><code>-mno-sse4.1</code><dt><code>-msse4.2</code><dt><code>-mno-sse4.2</code><dt><code>-msse4</code><dt><code>-mno-sse4</code><dt><code>-mavx</code><dt><code>-mno-avx</code><dt><code>-maes</code><dt><code>-mno-aes</code><dt><code>-mpclmul</code><dt><code>-mno-pclmul</code><dt><code>-mfsgsbase</code><dt><code>-mno-fsgsbase</code><dt><code>-mrdrnd</code><dt><code>-mno-rdrnd</code><dt><code>-mf16c</code><dt><code>-mno-f16c</code><dt><code>-msse4a</code><dt><code>-mno-sse4a</code><dt><code>-mfma4</code><dt><code>-mno-fma4</code><dt><code>-mxop</code><dt><code>-mno-xop</code><dt><code>-mlwp</code><dt><code>-mno-lwp</code><dt><code>-m3dnow</code><dt><code>-mno-3dnow</code><dt><code>-mpopcnt</code><dt><code>-mno-popcnt</code><dt><code>-mabm</code><dt><code>-mno-abm</code><dt><code>-mbmi</code><dt><code>-mno-bmi</code><dt><code>-mtbm</code><dt><code>-mno-tbm</code><dd><a name="index-mmmx-1356"></a><a name="index-mno_002dmmx-1357"></a><a name="index-msse-1358"></a><a name="index-mno_002dsse-1359"></a><a name="index-m3dnow-1360"></a><a name="index-mno_002d3dnow-1361"></a>These switches enable or disable the use of instructions in the MMX,
SSE, SSE2, SSE3, SSSE3, SSE4.1, AVX, AES, PCLMUL, FSGSBASE, RDRND,
F16C, SSE4A, FMA4, XOP, LWP, ABM, BMI, or 3DNow! extended instruction sets. 
These extensions are also available as built-in functions: see
<a href="#X86-Built_002din-Functions">X86 Built-in Functions</a>, for details of the functions enabled and
disabled by these switches.

     <p>To have SSE/SSE2 instructions generated automatically from floating-point
code (as opposed to 387 instructions), see <samp><span class="option">-mfpmath=sse</span></samp>.

     <p>GCC depresses SSEx instructions when <samp><span class="option">-mavx</span></samp> is used. Instead, it
generates new AVX instructions or AVX equivalence for all SSEx instructions
when needed.

     <p>These options will enable GCC to use these extended instructions in
generated code, even without <samp><span class="option">-mfpmath=sse</span></samp>.  Applications which
perform runtime CPU detection must compile separate files for each
supported architecture, using the appropriate flags.  In particular,
the file containing the CPU detection code should be compiled without
these options.

     <br><dt><code>-mfused-madd</code><dt><code>-mno-fused-madd</code><dd><a name="index-mfused_002dmadd-1362"></a><a name="index-mno_002dfused_002dmadd-1363"></a>Do (don't) generate code that uses the fused multiply/add or multiply/subtract
instructions.  The default is to use these instructions.

     <br><dt><code>-mcld</code><dd><a name="index-mcld-1364"></a>This option instructs GCC to emit a <code>cld</code> instruction in the prologue
of functions that use string instructions.  String instructions depend on
the DF flag to select between autoincrement or autodecrement mode.  While the
ABI specifies the DF flag to be cleared on function entry, some operating
systems violate this specification by not clearing the DF flag in their
exception dispatchers.  The exception handler can be invoked with the DF flag
set which leads to wrong direction mode, when string instructions are used. 
This option can be enabled by default on 32-bit x86 targets by configuring
GCC with the <samp><span class="option">--enable-cld</span></samp> configure option.  Generation of <code>cld</code>
instructions can be suppressed with the <samp><span class="option">-mno-cld</span></samp> compiler option
in this case.

     <br><dt><code>-mvzeroupper</code><dd><a name="index-mvzeroupper-1365"></a>This option instructs GCC to emit a <code>vzeroupper</code> instruction
before a transfer of control flow out of the function to minimize
AVX to SSE transition penalty as well as remove unnecessary zeroupper
intrinsics.

     <br><dt><code>-mcx16</code><dd><a name="index-mcx16-1366"></a>This option will enable GCC to use CMPXCHG16B instruction in generated code. 
CMPXCHG16B allows for atomic operations on 128-bit double quadword (or oword)
data types.  This is useful for high resolution counters that could be updated
by multiple processors (or cores).  This instruction is generated as part of
atomic built-in functions: see <a href="#Atomic-Builtins">Atomic Builtins</a> for details.

     <br><dt><code>-msahf</code><dd><a name="index-msahf-1367"></a>This option will enable GCC to use SAHF instruction in generated 64-bit code. 
Early Intel CPUs with Intel 64 lacked LAHF and SAHF instructions supported
by AMD64 until introduction of Pentium 4 G1 step in December 2005.  LAHF and
SAHF are load and store instructions, respectively, for certain status flags. 
In 64-bit mode, SAHF instruction is used to optimize <code>fmod</code>, <code>drem</code>
or <code>remainder</code> built-in functions: see <a href="#Other-Builtins">Other Builtins</a> for details.

     <br><dt><code>-mmovbe</code><dd><a name="index-mmovbe-1368"></a>This option will enable GCC to use movbe instruction to implement
<code>__builtin_bswap32</code> and <code>__builtin_bswap64</code>.

     <br><dt><code>-mcrc32</code><dd><a name="index-mcrc32-1369"></a>This option will enable built-in functions, <code>__builtin_ia32_crc32qi</code>,
<code>__builtin_ia32_crc32hi</code>. <code>__builtin_ia32_crc32si</code> and
<code>__builtin_ia32_crc32di</code> to generate the crc32 machine instruction.

     <br><dt><code>-mrecip</code><dd><a name="index-mrecip-1370"></a>This option will enable GCC to use RCPSS and RSQRTSS instructions (and their
vectorized variants RCPPS and RSQRTPS) with an additional Newton-Raphson step
to increase precision instead of DIVSS and SQRTSS (and their vectorized
variants) for single precision floating point arguments.  These instructions
are generated only when <samp><span class="option">-funsafe-math-optimizations</span></samp> is enabled
together with <samp><span class="option">-finite-math-only</span></samp> and <samp><span class="option">-fno-trapping-math</span></samp>. 
Note that while the throughput of the sequence is higher than the throughput
of the non-reciprocal instruction, the precision of the sequence can be
decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).

     <p>Note that GCC implements 1.0f/sqrtf(x) in terms of RSQRTSS (or RSQRTPS)
already with <samp><span class="option">-ffast-math</span></samp> (or the above option combination), and
doesn't need <samp><span class="option">-mrecip</span></samp>.

     <br><dt><code>-mveclibabi=</code><var>type</var><dd><a name="index-mveclibabi-1371"></a>Specifies the ABI type to use for vectorizing intrinsics using an
external library.  Supported types are <code>svml</code> for the Intel short
vector math library and <code>acml</code> for the AMD math core library style
of interfacing.  GCC will currently emit calls to <code>vmldExp2</code>,
<code>vmldLn2</code>, <code>vmldLog102</code>, <code>vmldLog102</code>, <code>vmldPow2</code>,
<code>vmldTanh2</code>, <code>vmldTan2</code>, <code>vmldAtan2</code>, <code>vmldAtanh2</code>,
<code>vmldCbrt2</code>, <code>vmldSinh2</code>, <code>vmldSin2</code>, <code>vmldAsinh2</code>,
<code>vmldAsin2</code>, <code>vmldCosh2</code>, <code>vmldCos2</code>, <code>vmldAcosh2</code>,
<code>vmldAcos2</code>, <code>vmlsExp4</code>, <code>vmlsLn4</code>, <code>vmlsLog104</code>,
<code>vmlsLog104</code>, <code>vmlsPow4</code>, <code>vmlsTanh4</code>, <code>vmlsTan4</code>,
<code>vmlsAtan4</code>, <code>vmlsAtanh4</code>, <code>vmlsCbrt4</code>, <code>vmlsSinh4</code>,
<code>vmlsSin4</code>, <code>vmlsAsinh4</code>, <code>vmlsAsin4</code>, <code>vmlsCosh4</code>,
<code>vmlsCos4</code>, <code>vmlsAcosh4</code> and <code>vmlsAcos4</code> for corresponding
function type when <samp><span class="option">-mveclibabi=svml</span></samp> is used and <code>__vrd2_sin</code>,
<code>__vrd2_cos</code>, <code>__vrd2_exp</code>, <code>__vrd2_log</code>, <code>__vrd2_log2</code>,
<code>__vrd2_log10</code>, <code>__vrs4_sinf</code>, <code>__vrs4_cosf</code>,
<code>__vrs4_expf</code>, <code>__vrs4_logf</code>, <code>__vrs4_log2f</code>,
<code>__vrs4_log10f</code> and <code>__vrs4_powf</code> for corresponding function type
when <samp><span class="option">-mveclibabi=acml</span></samp> is used. Both <samp><span class="option">-ftree-vectorize</span></samp> and
<samp><span class="option">-funsafe-math-optimizations</span></samp> have to be enabled. A SVML or ACML ABI
compatible library will have to be specified at link time.

     <br><dt><code>-mabi=</code><var>name</var><dd><a name="index-mabi-1372"></a>Generate code for the specified calling convention.  Permissible values
are: &lsquo;<samp><span class="samp">sysv</span></samp>&rsquo; for the ABI used on GNU/Linux and other systems and
&lsquo;<samp><span class="samp">ms</span></samp>&rsquo; for the Microsoft ABI.  The default is to use the Microsoft
ABI when targeting Windows.  On all other systems, the default is the
SYSV ABI.  You can control this behavior for a specific function by
using the function attribute &lsquo;<samp><span class="samp">ms_abi</span></samp>&rsquo;/&lsquo;<samp><span class="samp">sysv_abi</span></samp>&rsquo;. 
See <a href="#Function-Attributes">Function Attributes</a>.

     <br><dt><code>-mpush-args</code><dt><code>-mno-push-args</code><dd><a name="index-mpush_002dargs-1373"></a><a name="index-mno_002dpush_002dargs-1374"></a>Use PUSH operations to store outgoing parameters.  This method is shorter
and usually equally fast as method using SUB/MOV operations and is enabled
by default.  In some cases disabling it may improve performance because of
improved scheduling and reduced dependencies.

     <br><dt><code>-maccumulate-outgoing-args</code><dd><a name="index-maccumulate_002doutgoing_002dargs-1375"></a>If enabled, the maximum amount of space required for outgoing arguments will be
computed in the function prologue.  This is faster on most modern CPUs
because of reduced dependencies, improved scheduling and reduced stack usage
when preferred stack boundary is not equal to 2.  The drawback is a notable
increase in code size.  This switch implies <samp><span class="option">-mno-push-args</span></samp>.

     <br><dt><code>-mthreads</code><dd><a name="index-mthreads-1376"></a>Support thread-safe exception handling on &lsquo;<samp><span class="samp">Mingw32</span></samp>&rsquo;.  Code that relies
on thread-safe exception handling must compile and link all code with the
<samp><span class="option">-mthreads</span></samp> option.  When compiling, <samp><span class="option">-mthreads</span></samp> defines
<samp><span class="option">-D_MT</span></samp>; when linking, it links in a special thread helper library
<samp><span class="option">-lmingwthrd</span></samp> which cleans up per thread exception handling data.

     <br><dt><code>-mno-align-stringops</code><dd><a name="index-mno_002dalign_002dstringops-1377"></a>Do not align destination of inlined string operations.  This switch reduces
code size and improves performance in case the destination is already aligned,
but GCC doesn't know about it.

     <br><dt><code>-minline-all-stringops</code><dd><a name="index-minline_002dall_002dstringops-1378"></a>By default GCC inlines string operations only when destination is known to be
aligned at least to 4 byte boundary.  This enables more inlining, increase code
size, but may improve performance of code that depends on fast memcpy, strlen
and memset for short lengths.

     <br><dt><code>-minline-stringops-dynamically</code><dd><a name="index-minline_002dstringops_002ddynamically-1379"></a>For string operation of unknown size, inline runtime checks so for small
blocks inline code is used, while for large blocks library call is used.

     <br><dt><code>-mstringop-strategy=</code><var>alg</var><dd><a name="index-mstringop_002dstrategy_003d_0040var_007balg_007d-1380"></a>Overwrite internal decision heuristic about particular algorithm to inline
string operation with.  The allowed values are <code>rep_byte</code>,
<code>rep_4byte</code>, <code>rep_8byte</code> for expanding using i386 <code>rep</code> prefix
of specified size, <code>byte_loop</code>, <code>loop</code>, <code>unrolled_loop</code> for
expanding inline loop, <code>libcall</code> for always expanding library call.

     <br><dt><code>-momit-leaf-frame-pointer</code><dd><a name="index-momit_002dleaf_002dframe_002dpointer-1381"></a>Don't keep the frame pointer in a register for leaf functions.  This
avoids the instructions to save, set up and restore frame pointers and
makes an extra register available in leaf functions.  The option
<samp><span class="option">-fomit-frame-pointer</span></samp> removes the frame pointer for all functions
which might make debugging harder.

     <br><dt><code>-mtls-direct-seg-refs</code><dt><code>-mno-tls-direct-seg-refs</code><dd><a name="index-mtls_002ddirect_002dseg_002drefs-1382"></a>Controls whether TLS variables may be accessed with offsets from the
TLS segment register (<code>%gs</code> for 32-bit, <code>%fs</code> for 64-bit),
or whether the thread base pointer must be added.  Whether or not this
is legal depends on the operating system, and whether it maps the
segment to cover the entire TLS area.

     <p>For systems that use GNU libc, the default is on.

     <br><dt><code>-msse2avx</code><dt><code>-mno-sse2avx</code><dd><a name="index-msse2avx-1383"></a>Specify that the assembler should encode SSE instructions with VEX
prefix.  The option <samp><span class="option">-mavx</span></samp> turns this on by default.

     <br><dt><code>-mfentry</code><dt><code>-mno-fentry</code><dd><a name="index-mfentry-1384"></a>If profiling is active <samp><span class="option">-pg</span></samp> put the profiling
counter call before prologue. 
Note: On x86 architectures the attribute <code>ms_hook_prologue</code>
isn't possible at the moment for <samp><span class="option">-mfentry</span></samp> and <samp><span class="option">-pg</span></samp>.

     <br><dt><code>-m8bit-idiv</code><dt><code>-mno-8bit-idiv</code><dd><a name="index-g_t8bit_002didiv-1385"></a>On some processors, like Intel Atom, 8bit unsigned integer divide is
much faster than 32bit/64bit integer divide.  This option will generate a
runt-time check.  If both dividend and divisor are within range of 0
to 255, 8bit unsigned integer divide will be used instead of
32bit/64bit integer divide.

     <br><dt><code>-mavx256-split-unaligned-load</code><br><dt><code>-mavx256-split-unaligned-store</code><dd><a name="index-avx256_002dsplit_002dunaligned_002dload-1386"></a><a name="index-avx256_002dsplit_002dunaligned_002dstore-1387"></a>Split 32-byte AVX unaligned load and store.

 </dl>

 <p>These &lsquo;<samp><span class="samp">-m</span></samp>&rsquo; switches are supported in addition to the above
on AMD x86-64 processors in 64-bit environments.

     <dl>
<dt><code>-m32</code><dt><code>-m64</code><dd><a name="index-m32-1388"></a><a name="index-m64-1389"></a>Generate code for a 32-bit or 64-bit environment. 
The 32-bit environment sets int, long and pointer to 32 bits and
generates code that runs on any i386 system. 
The 64-bit environment sets int to 32 bits and long and pointer
to 64 bits and generates code for AMD's x86-64 architecture. For
darwin only the -m64 option turns off the <samp><span class="option">-fno-pic</span></samp> and
<samp><span class="option">-mdynamic-no-pic</span></samp> options.

     <br><dt><code>-mno-red-zone</code><dd><a name="index-mno_002dred_002dzone-1390"></a>Do not use a so called red zone for x86-64 code.  The red zone is mandated
by the x86-64 ABI, it is a 128-byte area beyond the location of the
stack pointer that will not be modified by signal or interrupt handlers
and therefore can be used for temporary data without adjusting the stack
pointer.  The flag <samp><span class="option">-mno-red-zone</span></samp> disables this red zone.

     <br><dt><code>-mcmodel=small</code><dd><a name="index-mcmodel_003dsmall-1391"></a>Generate code for the small code model: the program and its symbols must
be linked in the lower 2 GB of the address space.  Pointers are 64 bits. 
Programs can be statically or dynamically linked.  This is the default
code model.

     <br><dt><code>-mcmodel=kernel</code><dd><a name="index-mcmodel_003dkernel-1392"></a>Generate code for the kernel code model.  The kernel runs in the
negative 2 GB of the address space. 
This model has to be used for Linux kernel code.

     <br><dt><code>-mcmodel=medium</code><dd><a name="index-mcmodel_003dmedium-1393"></a>Generate code for the medium model: The program is linked in the lower 2
GB of the address space.  Small symbols are also placed there.  Symbols
with sizes larger than <samp><span class="option">-mlarge-data-threshold</span></samp> are put into
large data or bss sections and can be located above 2GB.  Programs can
be statically or dynamically linked.

     <br><dt><code>-mcmodel=large</code><dd><a name="index-mcmodel_003dlarge-1394"></a>Generate code for the large model: This model makes no assumptions
about addresses and sizes of sections. 
</dl>

<div class="node">
<a name="i386-and-x86-64-Windows-Options"></a>
<a name="i386-and-x86_002d64-Windows-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#IA_002d64-Options">IA-64 Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.16 i386 and x86-64 Windows Options</h4>

<p><a name="index-i386-and-x86_002d64-Windows-Options-1395"></a>
These additional options are available for Windows targets:

     <dl>
<dt><code>-mconsole</code><dd><a name="index-mconsole-1396"></a>This option is available for Cygwin and MinGW targets.  It
specifies that a console application is to be generated, by
instructing the linker to set the PE header subsystem type
required for console applications. 
This is the default behavior for Cygwin and MinGW targets.

     <br><dt><code>-mdll</code><dd><a name="index-mdll-1397"></a>This option is available for Cygwin and MinGW targets.  It
specifies that a DLL - a dynamic link library - is to be
generated, enabling the selection of the required runtime
startup object and entry point.

     <br><dt><code>-mnop-fun-dllimport</code><dd><a name="index-mnop_002dfun_002ddllimport-1398"></a>This option is available for Cygwin and MinGW targets.  It
specifies that the dllimport attribute should be ignored.

     <br><dt><code>-mthread</code><dd><a name="index-mthread-1399"></a>This option is available for MinGW targets. It specifies
that MinGW-specific thread support is to be used.

     <br><dt><code>-municode</code><dd><a name="index-municode-1400"></a>This option is available for mingw-w64 targets.  It specifies
that the UNICODE macro is getting pre-defined and that the
unicode capable runtime startup code is chosen.

     <br><dt><code>-mwin32</code><dd><a name="index-mwin32-1401"></a>This option is available for Cygwin and MinGW targets.  It
specifies that the typical Windows pre-defined macros are to
be set in the pre-processor, but does not influence the choice
of runtime library/startup code.

     <br><dt><code>-mwindows</code><dd><a name="index-mwindows-1402"></a>This option is available for Cygwin and MinGW targets.  It
specifies that a GUI application is to be generated by
instructing the linker to set the PE header subsystem type
appropriately.

     <br><dt><code>-fno-set-stack-executable</code><dd><a name="index-fno_002dset_002dstack_002dexecutable-1403"></a>This option is available for MinGW targets. It specifies that
the executable flag for stack used by nested functions isn't
set. This is necessary for binaries running in kernel mode of
Windows, as there the user32 API, which is used to set executable
privileges, isn't available.

     <br><dt><code>-mpe-aligned-commons</code><dd><a name="index-mpe_002daligned_002dcommons-1404"></a>This option is available for Cygwin and MinGW targets.  It
specifies that the GNU extension to the PE file format that
permits the correct alignment of COMMON variables should be
used when generating code.  It will be enabled by default if
GCC detects that the target assembler found during configuration
supports the feature. 
</dl>

 <p>See also under <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a> for standard options.

<div class="node">
<a name="IA-64-Options"></a>
<a name="IA_002d64-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#IA_002d64_002fVMS-Options">IA-64/VMS Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#i386-and-x86_002d64-Windows-Options">i386 and x86-64 Windows Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.17 IA-64 Options</h4>

<p><a name="index-IA_002d64-Options-1405"></a>
These are the &lsquo;<samp><span class="samp">-m</span></samp>&rsquo; options defined for the Intel IA-64 architecture.

     <dl>
<dt><code>-mbig-endian</code><dd><a name="index-mbig_002dendian-1406"></a>Generate code for a big endian target.  This is the default for HP-UX.

     <br><dt><code>-mlittle-endian</code><dd><a name="index-mlittle_002dendian-1407"></a>Generate code for a little endian target.  This is the default for AIX5
and GNU/Linux.

     <br><dt><code>-mgnu-as</code><dt><code>-mno-gnu-as</code><dd><a name="index-mgnu_002das-1408"></a><a name="index-mno_002dgnu_002das-1409"></a>Generate (or don't) code for the GNU assembler.  This is the default. 
<!-- Also, this is the default if the configure option @option{-with-gnu-as} -->
<!-- is used. -->

     <br><dt><code>-mgnu-ld</code><dt><code>-mno-gnu-ld</code><dd><a name="index-mgnu_002dld-1410"></a><a name="index-mno_002dgnu_002dld-1411"></a>Generate (or don't) code for the GNU linker.  This is the default. 
<!-- Also, this is the default if the configure option @option{-with-gnu-ld} -->
<!-- is used. -->

     <br><dt><code>-mno-pic</code><dd><a name="index-mno_002dpic-1412"></a>Generate code that does not use a global pointer register.  The result
is not position independent code, and violates the IA-64 ABI.

     <br><dt><code>-mvolatile-asm-stop</code><dt><code>-mno-volatile-asm-stop</code><dd><a name="index-mvolatile_002dasm_002dstop-1413"></a><a name="index-mno_002dvolatile_002dasm_002dstop-1414"></a>Generate (or don't) a stop bit immediately before and after volatile asm
statements.

     <br><dt><code>-mregister-names</code><dt><code>-mno-register-names</code><dd><a name="index-mregister_002dnames-1415"></a><a name="index-mno_002dregister_002dnames-1416"></a>Generate (or don't) &lsquo;<samp><span class="samp">in</span></samp>&rsquo;, &lsquo;<samp><span class="samp">loc</span></samp>&rsquo;, and &lsquo;<samp><span class="samp">out</span></samp>&rsquo; register names for
the stacked registers.  This may make assembler output more readable.

     <br><dt><code>-mno-sdata</code><dt><code>-msdata</code><dd><a name="index-mno_002dsdata-1417"></a><a name="index-msdata-1418"></a>Disable (or enable) optimizations that use the small data section.  This may
be useful for working around optimizer bugs.

     <br><dt><code>-mconstant-gp</code><dd><a name="index-mconstant_002dgp-1419"></a>Generate code that uses a single constant global pointer value.  This is
useful when compiling kernel code.

     <br><dt><code>-mauto-pic</code><dd><a name="index-mauto_002dpic-1420"></a>Generate code that is self-relocatable.  This implies <samp><span class="option">-mconstant-gp</span></samp>. 
This is useful when compiling firmware code.

     <br><dt><code>-minline-float-divide-min-latency</code><dd><a name="index-minline_002dfloat_002ddivide_002dmin_002dlatency-1421"></a>Generate code for inline divides of floating point values
using the minimum latency algorithm.

     <br><dt><code>-minline-float-divide-max-throughput</code><dd><a name="index-minline_002dfloat_002ddivide_002dmax_002dthroughput-1422"></a>Generate code for inline divides of floating point values
using the maximum throughput algorithm.

     <br><dt><code>-mno-inline-float-divide</code><dd><a name="index-mno_002dinline_002dfloat_002ddivide-1423"></a>Do not generate inline code for divides of floating point values.

     <br><dt><code>-minline-int-divide-min-latency</code><dd><a name="index-minline_002dint_002ddivide_002dmin_002dlatency-1424"></a>Generate code for inline divides of integer values
using the minimum latency algorithm.

     <br><dt><code>-minline-int-divide-max-throughput</code><dd><a name="index-minline_002dint_002ddivide_002dmax_002dthroughput-1425"></a>Generate code for inline divides of integer values
using the maximum throughput algorithm.

     <br><dt><code>-mno-inline-int-divide</code><dd><a name="index-mno_002dinline_002dint_002ddivide-1426"></a>Do not generate inline code for divides of integer values.

     <br><dt><code>-minline-sqrt-min-latency</code><dd><a name="index-minline_002dsqrt_002dmin_002dlatency-1427"></a>Generate code for inline square roots
using the minimum latency algorithm.

     <br><dt><code>-minline-sqrt-max-throughput</code><dd><a name="index-minline_002dsqrt_002dmax_002dthroughput-1428"></a>Generate code for inline square roots
using the maximum throughput algorithm.

     <br><dt><code>-mno-inline-sqrt</code><dd><a name="index-mno_002dinline_002dsqrt-1429"></a>Do not generate inline code for sqrt.

     <br><dt><code>-mfused-madd</code><dt><code>-mno-fused-madd</code><dd><a name="index-mfused_002dmadd-1430"></a><a name="index-mno_002dfused_002dmadd-1431"></a>Do (don't) generate code that uses the fused multiply/add or multiply/subtract
instructions.  The default is to use these instructions.

     <br><dt><code>-mno-dwarf2-asm</code><dt><code>-mdwarf2-asm</code><dd><a name="index-mno_002ddwarf2_002dasm-1432"></a><a name="index-mdwarf2_002dasm-1433"></a>Don't (or do) generate assembler code for the DWARF2 line number debugging
info.  This may be useful when not using the GNU assembler.

     <br><dt><code>-mearly-stop-bits</code><dt><code>-mno-early-stop-bits</code><dd><a name="index-mearly_002dstop_002dbits-1434"></a><a name="index-mno_002dearly_002dstop_002dbits-1435"></a>Allow stop bits to be placed earlier than immediately preceding the
instruction that triggered the stop bit.  This can improve instruction
scheduling, but does not always do so.

     <br><dt><code>-mfixed-range=</code><var>register-range</var><dd><a name="index-mfixed_002drange-1436"></a>Generate code treating the given register range as fixed registers. 
A fixed register is one that the register allocator can not use.  This is
useful when compiling kernel code.  A register range is specified as
two registers separated by a dash.  Multiple register ranges can be
specified separated by a comma.

     <br><dt><code>-mtls-size=</code><var>tls-size</var><dd><a name="index-mtls_002dsize-1437"></a>Specify bit size of immediate TLS offsets.  Valid values are 14, 22, and
64.

     <br><dt><code>-mtune=</code><var>cpu-type</var><dd><a name="index-mtune-1438"></a>Tune the instruction scheduling for a particular CPU, Valid values are
itanium, itanium1, merced, itanium2, and mckinley.

     <br><dt><code>-milp32</code><dt><code>-mlp64</code><dd><a name="index-milp32-1439"></a><a name="index-mlp64-1440"></a>Generate code for a 32-bit or 64-bit environment. 
The 32-bit environment sets int, long and pointer to 32 bits. 
The 64-bit environment sets int to 32 bits and long and pointer
to 64 bits.  These are HP-UX specific flags.

     <br><dt><code>-mno-sched-br-data-spec</code><dt><code>-msched-br-data-spec</code><dd><a name="index-mno_002dsched_002dbr_002ddata_002dspec-1441"></a><a name="index-msched_002dbr_002ddata_002dspec-1442"></a>(Dis/En)able data speculative scheduling before reload. 
This will result in generation of the ld.a instructions and
the corresponding check instructions (ld.c / chk.a). 
The default is 'disable'.

     <br><dt><code>-msched-ar-data-spec</code><dt><code>-mno-sched-ar-data-spec</code><dd><a name="index-msched_002dar_002ddata_002dspec-1443"></a><a name="index-mno_002dsched_002dar_002ddata_002dspec-1444"></a>(En/Dis)able data speculative scheduling after reload. 
This will result in generation of the ld.a instructions and
the corresponding check instructions (ld.c / chk.a). 
The default is 'enable'.

     <br><dt><code>-mno-sched-control-spec</code><dt><code>-msched-control-spec</code><dd><a name="index-mno_002dsched_002dcontrol_002dspec-1445"></a><a name="index-msched_002dcontrol_002dspec-1446"></a>(Dis/En)able control speculative scheduling.  This feature is
available only during region scheduling (i.e. before reload). 
This will result in generation of the ld.s instructions and
the corresponding check instructions chk.s . 
The default is 'disable'.

     <br><dt><code>-msched-br-in-data-spec</code><dt><code>-mno-sched-br-in-data-spec</code><dd><a name="index-msched_002dbr_002din_002ddata_002dspec-1447"></a><a name="index-mno_002dsched_002dbr_002din_002ddata_002dspec-1448"></a>(En/Dis)able speculative scheduling of the instructions that
are dependent on the data speculative loads before reload. 
This is effective only with <samp><span class="option">-msched-br-data-spec</span></samp> enabled. 
The default is 'enable'.

     <br><dt><code>-msched-ar-in-data-spec</code><dt><code>-mno-sched-ar-in-data-spec</code><dd><a name="index-msched_002dar_002din_002ddata_002dspec-1449"></a><a name="index-mno_002dsched_002dar_002din_002ddata_002dspec-1450"></a>(En/Dis)able speculative scheduling of the instructions that
are dependent on the data speculative loads after reload. 
This is effective only with <samp><span class="option">-msched-ar-data-spec</span></samp> enabled. 
The default is 'enable'.

     <br><dt><code>-msched-in-control-spec</code><dt><code>-mno-sched-in-control-spec</code><dd><a name="index-msched_002din_002dcontrol_002dspec-1451"></a><a name="index-mno_002dsched_002din_002dcontrol_002dspec-1452"></a>(En/Dis)able speculative scheduling of the instructions that
are dependent on the control speculative loads. 
This is effective only with <samp><span class="option">-msched-control-spec</span></samp> enabled. 
The default is 'enable'.

     <br><dt><code>-mno-sched-prefer-non-data-spec-insns</code><dt><code>-msched-prefer-non-data-spec-insns</code><dd><a name="index-mno_002dsched_002dprefer_002dnon_002ddata_002dspec_002dinsns-1453"></a><a name="index-msched_002dprefer_002dnon_002ddata_002dspec_002dinsns-1454"></a>If enabled, data speculative instructions will be chosen for schedule
only if there are no other choices at the moment.  This will make
the use of the data speculation much more conservative. 
The default is 'disable'.

     <br><dt><code>-mno-sched-prefer-non-control-spec-insns</code><dt><code>-msched-prefer-non-control-spec-insns</code><dd><a name="index-mno_002dsched_002dprefer_002dnon_002dcontrol_002dspec_002dinsns-1455"></a><a name="index-msched_002dprefer_002dnon_002dcontrol_002dspec_002dinsns-1456"></a>If enabled, control speculative instructions will be chosen for schedule
only if there are no other choices at the moment.  This will make
the use of the control speculation much more conservative. 
The default is 'disable'.

     <br><dt><code>-mno-sched-count-spec-in-critical-path</code><dt><code>-msched-count-spec-in-critical-path</code><dd><a name="index-mno_002dsched_002dcount_002dspec_002din_002dcritical_002dpath-1457"></a><a name="index-msched_002dcount_002dspec_002din_002dcritical_002dpath-1458"></a>If enabled, speculative dependencies will be considered during
computation of the instructions priorities.  This will make the use of the
speculation a bit more conservative. 
The default is 'disable'.

     <br><dt><code>-msched-spec-ldc</code><dd><a name="index-msched_002dspec_002dldc-1459"></a>Use a simple data speculation check.  This option is on by default.

     <br><dt><code>-msched-control-spec-ldc</code><dd><a name="index-msched_002dspec_002dldc-1460"></a>Use a simple check for control speculation.  This option is on by default.

     <br><dt><code>-msched-stop-bits-after-every-cycle</code><dd><a name="index-msched_002dstop_002dbits_002dafter_002devery_002dcycle-1461"></a>Place a stop bit after every cycle when scheduling.  This option is on
by default.

     <br><dt><code>-msched-fp-mem-deps-zero-cost</code><dd><a name="index-msched_002dfp_002dmem_002ddeps_002dzero_002dcost-1462"></a>Assume that floating-point stores and loads are not likely to cause a conflict
when placed into the same instruction group.  This option is disabled by
default.

     <br><dt><code>-msel-sched-dont-check-control-spec</code><dd><a name="index-msel_002dsched_002ddont_002dcheck_002dcontrol_002dspec-1463"></a>Generate checks for control speculation in selective scheduling. 
This flag is disabled by default.

     <br><dt><code>-msched-max-memory-insns=</code><var>max-insns</var><dd><a name="index-msched_002dmax_002dmemory_002dinsns-1464"></a>Limit on the number of memory insns per instruction group, giving lower
priority to subsequent memory insns attempting to schedule in the same
instruction group. Frequently useful to prevent cache bank conflicts. 
The default value is 1.

     <br><dt><code>-msched-max-memory-insns-hard-limit</code><dd><a name="index-msched_002dmax_002dmemory_002dinsns_002dhard_002dlimit-1465"></a>Disallow more than `msched-max-memory-insns' in instruction group. 
Otherwise, limit is `soft' meaning that we would prefer non-memory operations
when limit is reached but may still schedule memory operations.

 </dl>

<div class="node">
<a name="IA-64%2fVMS-Options"></a>
<a name="IA_002d64_002fVMS-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#LM32-Options">LM32 Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#IA_002d64-Options">IA-64 Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.18 IA-64/VMS Options</h4>

<p>These &lsquo;<samp><span class="samp">-m</span></samp>&rsquo; options are defined for the IA-64/VMS implementations:

     <dl>
<dt><code>-mvms-return-codes</code><dd><a name="index-mvms_002dreturn_002dcodes-1466"></a>Return VMS condition codes from main. The default is to return POSIX
style condition (e.g. error) codes.

     <br><dt><code>-mdebug-main=</code><var>prefix</var><dd><a name="index-mdebug_002dmain_003d_0040var_007bprefix_007d-1467"></a>Flag the first routine whose name starts with <var>prefix</var> as the main
routine for the debugger.

     <br><dt><code>-mmalloc64</code><dd><a name="index-mmalloc64-1468"></a>Default to 64bit memory allocation routines. 
</dl>

<div class="node">
<a name="LM32-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#M32C-Options">M32C Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#IA_002d64_002fVMS-Options">IA-64/VMS Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.19 LM32 Options</h4>

<p><a name="index-LM32-options-1469"></a>
These <samp><span class="option">-m</span></samp> options are defined for the Lattice Mico32 architecture:

     <dl>
<dt><code>-mbarrel-shift-enabled</code><dd><a name="index-mbarrel_002dshift_002denabled-1470"></a>Enable barrel-shift instructions.

     <br><dt><code>-mdivide-enabled</code><dd><a name="index-mdivide_002denabled-1471"></a>Enable divide and modulus instructions.

     <br><dt><code>-mmultiply-enabled</code><dd><a name="index-multiply_002denabled-1472"></a>Enable multiply instructions.

     <br><dt><code>-msign-extend-enabled</code><dd><a name="index-msign_002dextend_002denabled-1473"></a>Enable sign extend instructions.

     <br><dt><code>-muser-enabled</code><dd><a name="index-muser_002denabled-1474"></a>Enable user-defined instructions.

 </dl>

<div class="node">
<a name="M32C-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#M32R_002fD-Options">M32R/D Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#LM32-Options">LM32 Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.20 M32C Options</h4>

<p><a name="index-M32C-options-1475"></a>
     <dl>
<dt><code>-mcpu=</code><var>name</var><dd><a name="index-mcpu_003d-1476"></a>Select the CPU for which code is generated.  <var>name</var> may be one of
&lsquo;<samp><span class="samp">r8c</span></samp>&rsquo; for the R8C/Tiny series, &lsquo;<samp><span class="samp">m16c</span></samp>&rsquo; for the M16C (up to
/60) series, &lsquo;<samp><span class="samp">m32cm</span></samp>&rsquo; for the M16C/80 series, or &lsquo;<samp><span class="samp">m32c</span></samp>&rsquo; for
the M32C/80 series.

     <br><dt><code>-msim</code><dd><a name="index-msim-1477"></a>Specifies that the program will be run on the simulator.  This causes
an alternate runtime library to be linked in which supports, for
example, file I/O.  You must not use this option when generating
programs that will run on real hardware; you must provide your own
runtime library for whatever I/O functions are needed.

     <br><dt><code>-memregs=</code><var>number</var><dd><a name="index-memregs_003d-1478"></a>Specifies the number of memory-based pseudo-registers GCC will use
during code generation.  These pseudo-registers will be used like real
registers, so there is a tradeoff between GCC's ability to fit the
code into available registers, and the performance penalty of using
memory instead of registers.  Note that all modules in a program must
be compiled with the same value for this option.  Because of that, you
must not use this option with the default runtime libraries gcc
builds.

 </dl>

<div class="node">
<a name="M32R%2fD-Options"></a>
<a name="M32R_002fD-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#M680x0-Options">M680x0 Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#M32C-Options">M32C Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.21 M32R/D Options</h4>

<p><a name="index-M32R_002fD-options-1479"></a>
These <samp><span class="option">-m</span></samp> options are defined for Renesas M32R/D architectures:

     <dl>
<dt><code>-m32r2</code><dd><a name="index-m32r2-1480"></a>Generate code for the M32R/2.

     <br><dt><code>-m32rx</code><dd><a name="index-m32rx-1481"></a>Generate code for the M32R/X.

     <br><dt><code>-m32r</code><dd><a name="index-m32r-1482"></a>Generate code for the M32R.  This is the default.

     <br><dt><code>-mmodel=small</code><dd><a name="index-mmodel_003dsmall-1483"></a>Assume all objects live in the lower 16MB of memory (so that their addresses
can be loaded with the <code>ld24</code> instruction), and assume all subroutines
are reachable with the <code>bl</code> instruction. 
This is the default.

     <p>The addressability of a particular object can be set with the
<code>model</code> attribute.

     <br><dt><code>-mmodel=medium</code><dd><a name="index-mmodel_003dmedium-1484"></a>Assume objects may be anywhere in the 32-bit address space (the compiler
will generate <code>seth/add3</code> instructions to load their addresses), and
assume all subroutines are reachable with the <code>bl</code> instruction.

     <br><dt><code>-mmodel=large</code><dd><a name="index-mmodel_003dlarge-1485"></a>Assume objects may be anywhere in the 32-bit address space (the compiler
will generate <code>seth/add3</code> instructions to load their addresses), and
assume subroutines may not be reachable with the <code>bl</code> instruction
(the compiler will generate the much slower <code>seth/add3/jl</code>
instruction sequence).

     <br><dt><code>-msdata=none</code><dd><a name="index-msdata_003dnone-1486"></a>Disable use of the small data area.  Variables will be put into
one of &lsquo;<samp><span class="samp">.data</span></samp>&rsquo;, &lsquo;<samp><span class="samp">bss</span></samp>&rsquo;, or &lsquo;<samp><span class="samp">.rodata</span></samp>&rsquo; (unless the
<code>section</code> attribute has been specified). 
This is the default.

     <p>The small data area consists of sections &lsquo;<samp><span class="samp">.sdata</span></samp>&rsquo; and &lsquo;<samp><span class="samp">.sbss</span></samp>&rsquo;. 
Objects may be explicitly put in the small data area with the
<code>section</code> attribute using one of these sections.

     <br><dt><code>-msdata=sdata</code><dd><a name="index-msdata_003dsdata-1487"></a>Put small global and static data in the small data area, but do not
generate special code to reference them.

     <br><dt><code>-msdata=use</code><dd><a name="index-msdata_003duse-1488"></a>Put small global and static data in the small data area, and generate
special instructions to reference them.

     <br><dt><code>-G </code><var>num</var><dd><a name="index-G-1489"></a><a name="index-smaller-data-references-1490"></a>Put global and static objects less than or equal to <var>num</var> bytes
into the small data or bss sections instead of the normal data or bss
sections.  The default value of <var>num</var> is 8. 
The <samp><span class="option">-msdata</span></samp> option must be set to one of &lsquo;<samp><span class="samp">sdata</span></samp>&rsquo; or &lsquo;<samp><span class="samp">use</span></samp>&rsquo;
for this option to have any effect.

     <p>All modules should be compiled with the same <samp><span class="option">-G </span><var>num</var></samp> value. 
Compiling with different values of <var>num</var> may or may not work; if it
doesn't the linker will give an error message&mdash;incorrect code will not be
generated.

     <br><dt><code>-mdebug</code><dd><a name="index-mdebug-1491"></a>Makes the M32R specific code in the compiler display some statistics
that might help in debugging programs.

     <br><dt><code>-malign-loops</code><dd><a name="index-malign_002dloops-1492"></a>Align all loops to a 32-byte boundary.

     <br><dt><code>-mno-align-loops</code><dd><a name="index-mno_002dalign_002dloops-1493"></a>Do not enforce a 32-byte alignment for loops.  This is the default.

     <br><dt><code>-missue-rate=</code><var>number</var><dd><a name="index-missue_002drate_003d_0040var_007bnumber_007d-1494"></a>Issue <var>number</var> instructions per cycle.  <var>number</var> can only be 1
or 2.

     <br><dt><code>-mbranch-cost=</code><var>number</var><dd><a name="index-mbranch_002dcost_003d_0040var_007bnumber_007d-1495"></a><var>number</var> can only be 1 or 2.  If it is 1 then branches will be
preferred over conditional code, if it is 2, then the opposite will
apply.

     <br><dt><code>-mflush-trap=</code><var>number</var><dd><a name="index-mflush_002dtrap_003d_0040var_007bnumber_007d-1496"></a>Specifies the trap number to use to flush the cache.  The default is
12.  Valid numbers are between 0 and 15 inclusive.

     <br><dt><code>-mno-flush-trap</code><dd><a name="index-mno_002dflush_002dtrap-1497"></a>Specifies that the cache cannot be flushed by using a trap.

     <br><dt><code>-mflush-func=</code><var>name</var><dd><a name="index-mflush_002dfunc_003d_0040var_007bname_007d-1498"></a>Specifies the name of the operating system function to call to flush
the cache.  The default is <em>_flush_cache</em>, but a function call
will only be used if a trap is not available.

     <br><dt><code>-mno-flush-func</code><dd><a name="index-mno_002dflush_002dfunc-1499"></a>Indicates that there is no OS function for flushing the cache.

 </dl>

<div class="node">
<a name="M680x0-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#M68hc1x-Options">M68hc1x Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#M32R_002fD-Options">M32R/D Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.22 M680x0 Options</h4>

<p><a name="index-M680x0-options-1500"></a>
These are the &lsquo;<samp><span class="samp">-m</span></samp>&rsquo; options defined for M680x0 and ColdFire processors. 
The default settings depend on which architecture was selected when
the compiler was configured; the defaults for the most common choices
are given below.

     <dl>
<dt><code>-march=</code><var>arch</var><dd><a name="index-march-1501"></a>Generate code for a specific M680x0 or ColdFire instruction set
architecture.  Permissible values of <var>arch</var> for M680x0
architectures are: &lsquo;<samp><span class="samp">68000</span></samp>&rsquo;, &lsquo;<samp><span class="samp">68010</span></samp>&rsquo;, &lsquo;<samp><span class="samp">68020</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">68030</span></samp>&rsquo;, &lsquo;<samp><span class="samp">68040</span></samp>&rsquo;, &lsquo;<samp><span class="samp">68060</span></samp>&rsquo; and &lsquo;<samp><span class="samp">cpu32</span></samp>&rsquo;.  ColdFire
architectures are selected according to Freescale's ISA classification
and the permissible values are: &lsquo;<samp><span class="samp">isaa</span></samp>&rsquo;, &lsquo;<samp><span class="samp">isaaplus</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">isab</span></samp>&rsquo; and &lsquo;<samp><span class="samp">isac</span></samp>&rsquo;.

     <p>gcc defines a macro &lsquo;<samp><span class="samp">__mcf</span><var>arch</var><span class="samp">__</span></samp>&rsquo; whenever it is generating
code for a ColdFire target.  The <var>arch</var> in this macro is one of the
<samp><span class="option">-march</span></samp> arguments given above.

     <p>When used together, <samp><span class="option">-march</span></samp> and <samp><span class="option">-mtune</span></samp> select code
that runs on a family of similar processors but that is optimized
for a particular microarchitecture.

     <br><dt><code>-mcpu=</code><var>cpu</var><dd><a name="index-mcpu-1502"></a>Generate code for a specific M680x0 or ColdFire processor. 
The M680x0 <var>cpu</var>s are: &lsquo;<samp><span class="samp">68000</span></samp>&rsquo;, &lsquo;<samp><span class="samp">68010</span></samp>&rsquo;, &lsquo;<samp><span class="samp">68020</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">68030</span></samp>&rsquo;, &lsquo;<samp><span class="samp">68040</span></samp>&rsquo;, &lsquo;<samp><span class="samp">68060</span></samp>&rsquo;, &lsquo;<samp><span class="samp">68302</span></samp>&rsquo;, &lsquo;<samp><span class="samp">68332</span></samp>&rsquo;
and &lsquo;<samp><span class="samp">cpu32</span></samp>&rsquo;.  The ColdFire <var>cpu</var>s are given by the table
below, which also classifies the CPUs into families:

     <p><table summary=""><tr align="left"><td valign="top" width="20%"><strong>Family</strong> </td><td valign="top" width="80%"><strong>&lsquo;</strong><samp><span class="samp">-mcpu</span></samp><strong>&rsquo; arguments</strong>
<br></td></tr><tr align="left"><td valign="top" width="20%">&lsquo;<samp><span class="samp">51</span></samp>&rsquo; </td><td valign="top" width="80%">&lsquo;<samp><span class="samp">51</span></samp>&rsquo; &lsquo;<samp><span class="samp">51ac</span></samp>&rsquo; &lsquo;<samp><span class="samp">51cn</span></samp>&rsquo; &lsquo;<samp><span class="samp">51em</span></samp>&rsquo; &lsquo;<samp><span class="samp">51qe</span></samp>&rsquo;
<br></td></tr><tr align="left"><td valign="top" width="20%">&lsquo;<samp><span class="samp">5206</span></samp>&rsquo; </td><td valign="top" width="80%">&lsquo;<samp><span class="samp">5202</span></samp>&rsquo; &lsquo;<samp><span class="samp">5204</span></samp>&rsquo; &lsquo;<samp><span class="samp">5206</span></samp>&rsquo;
<br></td></tr><tr align="left"><td valign="top" width="20%">&lsquo;<samp><span class="samp">5206e</span></samp>&rsquo; </td><td valign="top" width="80%">&lsquo;<samp><span class="samp">5206e</span></samp>&rsquo;
<br></td></tr><tr align="left"><td valign="top" width="20%">&lsquo;<samp><span class="samp">5208</span></samp>&rsquo; </td><td valign="top" width="80%">&lsquo;<samp><span class="samp">5207</span></samp>&rsquo; &lsquo;<samp><span class="samp">5208</span></samp>&rsquo;
<br></td></tr><tr align="left"><td valign="top" width="20%">&lsquo;<samp><span class="samp">5211a</span></samp>&rsquo; </td><td valign="top" width="80%">&lsquo;<samp><span class="samp">5210a</span></samp>&rsquo; &lsquo;<samp><span class="samp">5211a</span></samp>&rsquo;
<br></td></tr><tr align="left"><td valign="top" width="20%">&lsquo;<samp><span class="samp">5213</span></samp>&rsquo; </td><td valign="top" width="80%">&lsquo;<samp><span class="samp">5211</span></samp>&rsquo; &lsquo;<samp><span class="samp">5212</span></samp>&rsquo; &lsquo;<samp><span class="samp">5213</span></samp>&rsquo;
<br></td></tr><tr align="left"><td valign="top" width="20%">&lsquo;<samp><span class="samp">5216</span></samp>&rsquo; </td><td valign="top" width="80%">&lsquo;<samp><span class="samp">5214</span></samp>&rsquo; &lsquo;<samp><span class="samp">5216</span></samp>&rsquo;
<br></td></tr><tr align="left"><td valign="top" width="20%">&lsquo;<samp><span class="samp">52235</span></samp>&rsquo; </td><td valign="top" width="80%">&lsquo;<samp><span class="samp">52230</span></samp>&rsquo; &lsquo;<samp><span class="samp">52231</span></samp>&rsquo; &lsquo;<samp><span class="samp">52232</span></samp>&rsquo; &lsquo;<samp><span class="samp">52233</span></samp>&rsquo; &lsquo;<samp><span class="samp">52234</span></samp>&rsquo; &lsquo;<samp><span class="samp">52235</span></samp>&rsquo;
<br></td></tr><tr align="left"><td valign="top" width="20%">&lsquo;<samp><span class="samp">5225</span></samp>&rsquo; </td><td valign="top" width="80%">&lsquo;<samp><span class="samp">5224</span></samp>&rsquo; &lsquo;<samp><span class="samp">5225</span></samp>&rsquo;
<br></td></tr><tr align="left"><td valign="top" width="20%">&lsquo;<samp><span class="samp">52259</span></samp>&rsquo; </td><td valign="top" width="80%">&lsquo;<samp><span class="samp">52252</span></samp>&rsquo; &lsquo;<samp><span class="samp">52254</span></samp>&rsquo; &lsquo;<samp><span class="samp">52255</span></samp>&rsquo; &lsquo;<samp><span class="samp">52256</span></samp>&rsquo; &lsquo;<samp><span class="samp">52258</span></samp>&rsquo; &lsquo;<samp><span class="samp">52259</span></samp>&rsquo;
<br></td></tr><tr align="left"><td valign="top" width="20%">&lsquo;<samp><span class="samp">5235</span></samp>&rsquo; </td><td valign="top" width="80%">&lsquo;<samp><span class="samp">5232</span></samp>&rsquo; &lsquo;<samp><span class="samp">5233</span></samp>&rsquo; &lsquo;<samp><span class="samp">5234</span></samp>&rsquo; &lsquo;<samp><span class="samp">5235</span></samp>&rsquo; &lsquo;<samp><span class="samp">523x</span></samp>&rsquo;
<br></td></tr><tr align="left"><td valign="top" width="20%">&lsquo;<samp><span class="samp">5249</span></samp>&rsquo; </td><td valign="top" width="80%">&lsquo;<samp><span class="samp">5249</span></samp>&rsquo;
<br></td></tr><tr align="left"><td valign="top" width="20%">&lsquo;<samp><span class="samp">5250</span></samp>&rsquo; </td><td valign="top" width="80%">&lsquo;<samp><span class="samp">5250</span></samp>&rsquo;
<br></td></tr><tr align="left"><td valign="top" width="20%">&lsquo;<samp><span class="samp">5271</span></samp>&rsquo; </td><td valign="top" width="80%">&lsquo;<samp><span class="samp">5270</span></samp>&rsquo; &lsquo;<samp><span class="samp">5271</span></samp>&rsquo;
<br></td></tr><tr align="left"><td valign="top" width="20%">&lsquo;<samp><span class="samp">5272</span></samp>&rsquo; </td><td valign="top" width="80%">&lsquo;<samp><span class="samp">5272</span></samp>&rsquo;
<br></td></tr><tr align="left"><td valign="top" width="20%">&lsquo;<samp><span class="samp">5275</span></samp>&rsquo; </td><td valign="top" width="80%">&lsquo;<samp><span class="samp">5274</span></samp>&rsquo; &lsquo;<samp><span class="samp">5275</span></samp>&rsquo;
<br></td></tr><tr align="left"><td valign="top" width="20%">&lsquo;<samp><span class="samp">5282</span></samp>&rsquo; </td><td valign="top" width="80%">&lsquo;<samp><span class="samp">5280</span></samp>&rsquo; &lsquo;<samp><span class="samp">5281</span></samp>&rsquo; &lsquo;<samp><span class="samp">5282</span></samp>&rsquo; &lsquo;<samp><span class="samp">528x</span></samp>&rsquo;
<br></td></tr><tr align="left"><td valign="top" width="20%">&lsquo;<samp><span class="samp">53017</span></samp>&rsquo; </td><td valign="top" width="80%">&lsquo;<samp><span class="samp">53011</span></samp>&rsquo; &lsquo;<samp><span class="samp">53012</span></samp>&rsquo; &lsquo;<samp><span class="samp">53013</span></samp>&rsquo; &lsquo;<samp><span class="samp">53014</span></samp>&rsquo; &lsquo;<samp><span class="samp">53015</span></samp>&rsquo; &lsquo;<samp><span class="samp">53016</span></samp>&rsquo; &lsquo;<samp><span class="samp">53017</span></samp>&rsquo;
<br></td></tr><tr align="left"><td valign="top" width="20%">&lsquo;<samp><span class="samp">5307</span></samp>&rsquo; </td><td valign="top" width="80%">&lsquo;<samp><span class="samp">5307</span></samp>&rsquo;
<br></td></tr><tr align="left"><td valign="top" width="20%">&lsquo;<samp><span class="samp">5329</span></samp>&rsquo; </td><td valign="top" width="80%">&lsquo;<samp><span class="samp">5327</span></samp>&rsquo; &lsquo;<samp><span class="samp">5328</span></samp>&rsquo; &lsquo;<samp><span class="samp">5329</span></samp>&rsquo; &lsquo;<samp><span class="samp">532x</span></samp>&rsquo;
<br></td></tr><tr align="left"><td valign="top" width="20%">&lsquo;<samp><span class="samp">5373</span></samp>&rsquo; </td><td valign="top" width="80%">&lsquo;<samp><span class="samp">5372</span></samp>&rsquo; &lsquo;<samp><span class="samp">5373</span></samp>&rsquo; &lsquo;<samp><span class="samp">537x</span></samp>&rsquo;
<br></td></tr><tr align="left"><td valign="top" width="20%">&lsquo;<samp><span class="samp">5407</span></samp>&rsquo; </td><td valign="top" width="80%">&lsquo;<samp><span class="samp">5407</span></samp>&rsquo;
<br></td></tr><tr align="left"><td valign="top" width="20%">&lsquo;<samp><span class="samp">5475</span></samp>&rsquo; </td><td valign="top" width="80%">&lsquo;<samp><span class="samp">5470</span></samp>&rsquo; &lsquo;<samp><span class="samp">5471</span></samp>&rsquo; &lsquo;<samp><span class="samp">5472</span></samp>&rsquo; &lsquo;<samp><span class="samp">5473</span></samp>&rsquo; &lsquo;<samp><span class="samp">5474</span></samp>&rsquo; &lsquo;<samp><span class="samp">5475</span></samp>&rsquo; &lsquo;<samp><span class="samp">547x</span></samp>&rsquo; &lsquo;<samp><span class="samp">5480</span></samp>&rsquo; &lsquo;<samp><span class="samp">5481</span></samp>&rsquo; &lsquo;<samp><span class="samp">5482</span></samp>&rsquo; &lsquo;<samp><span class="samp">5483</span></samp>&rsquo; &lsquo;<samp><span class="samp">5484</span></samp>&rsquo; &lsquo;<samp><span class="samp">5485</span></samp>&rsquo;
     <br></td></tr></table>

     <p><samp><span class="option">-mcpu=</span><var>cpu</var></samp> overrides <samp><span class="option">-march=</span><var>arch</var></samp> if
<var>arch</var> is compatible with <var>cpu</var>.  Other combinations of
<samp><span class="option">-mcpu</span></samp> and <samp><span class="option">-march</span></samp> are rejected.

     <p>gcc defines the macro &lsquo;<samp><span class="samp">__mcf_cpu_</span><var>cpu</var></samp>&rsquo; when ColdFire target
<var>cpu</var> is selected.  It also defines &lsquo;<samp><span class="samp">__mcf_family_</span><var>family</var></samp>&rsquo;,
where the value of <var>family</var> is given by the table above.

     <br><dt><code>-mtune=</code><var>tune</var><dd><a name="index-mtune-1503"></a>Tune the code for a particular microarchitecture, within the
constraints set by <samp><span class="option">-march</span></samp> and <samp><span class="option">-mcpu</span></samp>. 
The M680x0 microarchitectures are: &lsquo;<samp><span class="samp">68000</span></samp>&rsquo;, &lsquo;<samp><span class="samp">68010</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">68020</span></samp>&rsquo;, &lsquo;<samp><span class="samp">68030</span></samp>&rsquo;, &lsquo;<samp><span class="samp">68040</span></samp>&rsquo;, &lsquo;<samp><span class="samp">68060</span></samp>&rsquo;
and &lsquo;<samp><span class="samp">cpu32</span></samp>&rsquo;.  The ColdFire microarchitectures
are: &lsquo;<samp><span class="samp">cfv1</span></samp>&rsquo;, &lsquo;<samp><span class="samp">cfv2</span></samp>&rsquo;, &lsquo;<samp><span class="samp">cfv3</span></samp>&rsquo;, &lsquo;<samp><span class="samp">cfv4</span></samp>&rsquo; and &lsquo;<samp><span class="samp">cfv4e</span></samp>&rsquo;.

     <p>You can also use <samp><span class="option">-mtune=68020-40</span></samp> for code that needs
to run relatively well on 68020, 68030 and 68040 targets. 
<samp><span class="option">-mtune=68020-60</span></samp> is similar but includes 68060 targets
as well.  These two options select the same tuning decisions as
<samp><span class="option">-m68020-40</span></samp> and <samp><span class="option">-m68020-60</span></samp> respectively.

     <p>gcc defines the macros &lsquo;<samp><span class="samp">__mc</span><var>arch</var></samp>&rsquo; and &lsquo;<samp><span class="samp">__mc</span><var>arch</var><span class="samp">__</span></samp>&rsquo;
when tuning for 680x0 architecture <var>arch</var>.  It also defines
&lsquo;<samp><span class="samp">mc</span><var>arch</var></samp>&rsquo; unless either <samp><span class="option">-ansi</span></samp> or a non-GNU <samp><span class="option">-std</span></samp>
option is used.  If gcc is tuning for a range of architectures,
as selected by <samp><span class="option">-mtune=68020-40</span></samp> or <samp><span class="option">-mtune=68020-60</span></samp>,
it defines the macros for every architecture in the range.

     <p>gcc also defines the macro &lsquo;<samp><span class="samp">__m</span><var>uarch</var><span class="samp">__</span></samp>&rsquo; when tuning for
ColdFire microarchitecture <var>uarch</var>, where <var>uarch</var> is one
of the arguments given above.

     <br><dt><code>-m68000</code><dt><code>-mc68000</code><dd><a name="index-m68000-1504"></a><a name="index-mc68000-1505"></a>Generate output for a 68000.  This is the default
when the compiler is configured for 68000-based systems. 
It is equivalent to <samp><span class="option">-march=68000</span></samp>.

     <p>Use this option for microcontrollers with a 68000 or EC000 core,
including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.

     <br><dt><code>-m68010</code><dd><a name="index-m68010-1506"></a>Generate output for a 68010.  This is the default
when the compiler is configured for 68010-based systems. 
It is equivalent to <samp><span class="option">-march=68010</span></samp>.

     <br><dt><code>-m68020</code><dt><code>-mc68020</code><dd><a name="index-m68020-1507"></a><a name="index-mc68020-1508"></a>Generate output for a 68020.  This is the default
when the compiler is configured for 68020-based systems. 
It is equivalent to <samp><span class="option">-march=68020</span></samp>.

     <br><dt><code>-m68030</code><dd><a name="index-m68030-1509"></a>Generate output for a 68030.  This is the default when the compiler is
configured for 68030-based systems.  It is equivalent to
<samp><span class="option">-march=68030</span></samp>.

     <br><dt><code>-m68040</code><dd><a name="index-m68040-1510"></a>Generate output for a 68040.  This is the default when the compiler is
configured for 68040-based systems.  It is equivalent to
<samp><span class="option">-march=68040</span></samp>.

     <p>This option inhibits the use of 68881/68882 instructions that have to be
emulated by software on the 68040.  Use this option if your 68040 does not
have code to emulate those instructions.

     <br><dt><code>-m68060</code><dd><a name="index-m68060-1511"></a>Generate output for a 68060.  This is the default when the compiler is
configured for 68060-based systems.  It is equivalent to
<samp><span class="option">-march=68060</span></samp>.

     <p>This option inhibits the use of 68020 and 68881/68882 instructions that
have to be emulated by software on the 68060.  Use this option if your 68060
does not have code to emulate those instructions.

     <br><dt><code>-mcpu32</code><dd><a name="index-mcpu32-1512"></a>Generate output for a CPU32.  This is the default
when the compiler is configured for CPU32-based systems. 
It is equivalent to <samp><span class="option">-march=cpu32</span></samp>.

     <p>Use this option for microcontrollers with a
CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
68336, 68340, 68341, 68349 and 68360.

     <br><dt><code>-m5200</code><dd><a name="index-m5200-1513"></a>Generate output for a 520X ColdFire CPU.  This is the default
when the compiler is configured for 520X-based systems. 
It is equivalent to <samp><span class="option">-mcpu=5206</span></samp>, and is now deprecated
in favor of that option.

     <p>Use this option for microcontroller with a 5200 core, including
the MCF5202, MCF5203, MCF5204 and MCF5206.

     <br><dt><code>-m5206e</code><dd><a name="index-m5206e-1514"></a>Generate output for a 5206e ColdFire CPU.  The option is now
deprecated in favor of the equivalent <samp><span class="option">-mcpu=5206e</span></samp>.

     <br><dt><code>-m528x</code><dd><a name="index-m528x-1515"></a>Generate output for a member of the ColdFire 528X family. 
The option is now deprecated in favor of the equivalent
<samp><span class="option">-mcpu=528x</span></samp>.

     <br><dt><code>-m5307</code><dd><a name="index-m5307-1516"></a>Generate output for a ColdFire 5307 CPU.  The option is now deprecated
in favor of the equivalent <samp><span class="option">-mcpu=5307</span></samp>.

     <br><dt><code>-m5407</code><dd><a name="index-m5407-1517"></a>Generate output for a ColdFire 5407 CPU.  The option is now deprecated
in favor of the equivalent <samp><span class="option">-mcpu=5407</span></samp>.

     <br><dt><code>-mcfv4e</code><dd><a name="index-mcfv4e-1518"></a>Generate output for a ColdFire V4e family CPU (e.g. 547x/548x). 
This includes use of hardware floating point instructions. 
The option is equivalent to <samp><span class="option">-mcpu=547x</span></samp>, and is now
deprecated in favor of that option.

     <br><dt><code>-m68020-40</code><dd><a name="index-m68020_002d40-1519"></a>Generate output for a 68040, without using any of the new instructions. 
This results in code which can run relatively efficiently on either a
68020/68881 or a 68030 or a 68040.  The generated code does use the
68881 instructions that are emulated on the 68040.

     <p>The option is equivalent to <samp><span class="option">-march=68020</span></samp> <samp><span class="option">-mtune=68020-40</span></samp>.

     <br><dt><code>-m68020-60</code><dd><a name="index-m68020_002d60-1520"></a>Generate output for a 68060, without using any of the new instructions. 
This results in code which can run relatively efficiently on either a
68020/68881 or a 68030 or a 68040.  The generated code does use the
68881 instructions that are emulated on the 68060.

     <p>The option is equivalent to <samp><span class="option">-march=68020</span></samp> <samp><span class="option">-mtune=68020-60</span></samp>.

     <br><dt><code>-mhard-float</code><dt><code>-m68881</code><dd><a name="index-mhard_002dfloat-1521"></a><a name="index-m68881-1522"></a>Generate floating-point instructions.  This is the default for 68020
and above, and for ColdFire devices that have an FPU.  It defines the
macro &lsquo;<samp><span class="samp">__HAVE_68881__</span></samp>&rsquo; on M680x0 targets and &lsquo;<samp><span class="samp">__mcffpu__</span></samp>&rsquo;
on ColdFire targets.

     <br><dt><code>-msoft-float</code><dd><a name="index-msoft_002dfloat-1523"></a>Do not generate floating-point instructions; use library calls instead. 
This is the default for 68000, 68010, and 68832 targets.  It is also
the default for ColdFire devices that have no FPU.

     <br><dt><code>-mdiv</code><dt><code>-mno-div</code><dd><a name="index-mdiv-1524"></a><a name="index-mno_002ddiv-1525"></a>Generate (do not generate) ColdFire hardware divide and remainder
instructions.  If <samp><span class="option">-march</span></samp> is used without <samp><span class="option">-mcpu</span></samp>,
the default is &ldquo;on&rdquo; for ColdFire architectures and &ldquo;off&rdquo; for M680x0
architectures.  Otherwise, the default is taken from the target CPU
(either the default CPU, or the one specified by <samp><span class="option">-mcpu</span></samp>).  For
example, the default is &ldquo;off&rdquo; for <samp><span class="option">-mcpu=5206</span></samp> and &ldquo;on&rdquo; for
<samp><span class="option">-mcpu=5206e</span></samp>.

     <p>gcc defines the macro &lsquo;<samp><span class="samp">__mcfhwdiv__</span></samp>&rsquo; when this option is enabled.

     <br><dt><code>-mshort</code><dd><a name="index-mshort-1526"></a>Consider type <code>int</code> to be 16 bits wide, like <code>short int</code>. 
Additionally, parameters passed on the stack are also aligned to a
16-bit boundary even on targets whose API mandates promotion to 32-bit.

     <br><dt><code>-mno-short</code><dd><a name="index-mno_002dshort-1527"></a>Do not consider type <code>int</code> to be 16 bits wide.  This is the default.

     <br><dt><code>-mnobitfield</code><dt><code>-mno-bitfield</code><dd><a name="index-mnobitfield-1528"></a><a name="index-mno_002dbitfield-1529"></a>Do not use the bit-field instructions.  The <samp><span class="option">-m68000</span></samp>, <samp><span class="option">-mcpu32</span></samp>
and <samp><span class="option">-m5200</span></samp> options imply <samp><span class="option">-mnobitfield</span></samp><!-- /@w -->.

     <br><dt><code>-mbitfield</code><dd><a name="index-mbitfield-1530"></a>Do use the bit-field instructions.  The <samp><span class="option">-m68020</span></samp> option implies
<samp><span class="option">-mbitfield</span></samp>.  This is the default if you use a configuration
designed for a 68020.

     <br><dt><code>-mrtd</code><dd><a name="index-mrtd-1531"></a>Use a different function-calling convention, in which functions
that take a fixed number of arguments return with the <code>rtd</code>
instruction, which pops their arguments while returning.  This
saves one instruction in the caller since there is no need to pop
the arguments there.

     <p>This calling convention is incompatible with the one normally
used on Unix, so you cannot use it if you need to call libraries
compiled with the Unix compiler.

     <p>Also, you must provide function prototypes for all functions that
take variable numbers of arguments (including <code>printf</code>);
otherwise incorrect code will be generated for calls to those
functions.

     <p>In addition, seriously incorrect code will result if you call a
function with too many arguments.  (Normally, extra arguments are
harmlessly ignored.)

     <p>The <code>rtd</code> instruction is supported by the 68010, 68020, 68030,
68040, 68060 and CPU32 processors, but not by the 68000 or 5200.

     <br><dt><code>-mno-rtd</code><dd><a name="index-mno_002drtd-1532"></a>Do not use the calling conventions selected by <samp><span class="option">-mrtd</span></samp>. 
This is the default.

     <br><dt><code>-malign-int</code><dt><code>-mno-align-int</code><dd><a name="index-malign_002dint-1533"></a><a name="index-mno_002dalign_002dint-1534"></a>Control whether GCC aligns <code>int</code>, <code>long</code>, <code>long long</code>,
<code>float</code>, <code>double</code>, and <code>long double</code> variables on a 32-bit
boundary (<samp><span class="option">-malign-int</span></samp>) or a 16-bit boundary (<samp><span class="option">-mno-align-int</span></samp>). 
Aligning variables on 32-bit boundaries produces code that runs somewhat
faster on processors with 32-bit busses at the expense of more memory.

     <p><strong>Warning:</strong> if you use the <samp><span class="option">-malign-int</span></samp> switch, GCC will
align structures containing the above types  differently than
most published application binary interface specifications for the m68k.

     <br><dt><code>-mpcrel</code><dd><a name="index-mpcrel-1535"></a>Use the pc-relative addressing mode of the 68000 directly, instead of
using a global offset table.  At present, this option implies <samp><span class="option">-fpic</span></samp>,
allowing at most a 16-bit offset for pc-relative addressing.  <samp><span class="option">-fPIC</span></samp> is
not presently supported with <samp><span class="option">-mpcrel</span></samp>, though this could be supported for
68020 and higher processors.

     <br><dt><code>-mno-strict-align</code><dt><code>-mstrict-align</code><dd><a name="index-mno_002dstrict_002dalign-1536"></a><a name="index-mstrict_002dalign-1537"></a>Do not (do) assume that unaligned memory references will be handled by
the system.

     <br><dt><code>-msep-data</code><dd>Generate code that allows the data segment to be located in a different
area of memory from the text segment.  This allows for execute in place in
an environment without virtual memory management.  This option implies
<samp><span class="option">-fPIC</span></samp>.

     <br><dt><code>-mno-sep-data</code><dd>Generate code that assumes that the data segment follows the text segment. 
This is the default.

     <br><dt><code>-mid-shared-library</code><dd>Generate code that supports shared libraries via the library ID method. 
This allows for execute in place and shared libraries in an environment
without virtual memory management.  This option implies <samp><span class="option">-fPIC</span></samp>.

     <br><dt><code>-mno-id-shared-library</code><dd>Generate code that doesn't assume ID based shared libraries are being used. 
This is the default.

     <br><dt><code>-mshared-library-id=n</code><dd>Specified the identification number of the ID based shared library being
compiled.  Specifying a value of 0 will generate more compact code, specifying
other values will force the allocation of that number to the current
library but is no more space or time efficient than omitting this option.

     <br><dt><code>-mxgot</code><dt><code>-mno-xgot</code><dd><a name="index-mxgot-1538"></a><a name="index-mno_002dxgot-1539"></a>When generating position-independent code for ColdFire, generate code
that works if the GOT has more than 8192 entries.  This code is
larger and slower than code generated without this option.  On M680x0
processors, this option is not needed; <samp><span class="option">-fPIC</span></samp> suffices.

     <p>GCC normally uses a single instruction to load values from the GOT. 
While this is relatively efficient, it only works if the GOT
is smaller than about 64k.  Anything larger causes the linker
to report an error such as:

     <p><a name="index-relocation-truncated-to-fit-_0028ColdFire_0029-1540"></a>
     <pre class="smallexample">          relocation truncated to fit: R_68K_GOT16O foobar
</pre>
     <p>If this happens, you should recompile your code with <samp><span class="option">-mxgot</span></samp>. 
It should then work with very large GOTs.  However, code generated with
<samp><span class="option">-mxgot</span></samp> is less efficient, since it takes 4 instructions to fetch
the value of a global symbol.

     <p>Note that some linkers, including newer versions of the GNU linker,
can create multiple GOTs and sort GOT entries.  If you have such a linker,
you should only need to use <samp><span class="option">-mxgot</span></samp> when compiling a single
object file that accesses more than 8192 GOT entries.  Very few do.

     <p>These options have no effect unless GCC is generating
position-independent code.

 </dl>

<div class="node">
<a name="M68hc1x-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#MCore-Options">MCore Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#M680x0-Options">M680x0 Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.23 M68hc1x Options</h4>

<p><a name="index-M68hc1x-options-1541"></a>
These are the &lsquo;<samp><span class="samp">-m</span></samp>&rsquo; options defined for the 68hc11 and 68hc12
microcontrollers.  The default values for these options depends on
which style of microcontroller was selected when the compiler was configured;
the defaults for the most common choices are given below.

     <dl>
<dt><code>-m6811</code><dt><code>-m68hc11</code><dd><a name="index-m6811-1542"></a><a name="index-m68hc11-1543"></a>Generate output for a 68HC11.  This is the default
when the compiler is configured for 68HC11-based systems.

     <br><dt><code>-m6812</code><dt><code>-m68hc12</code><dd><a name="index-m6812-1544"></a><a name="index-m68hc12-1545"></a>Generate output for a 68HC12.  This is the default
when the compiler is configured for 68HC12-based systems.

     <br><dt><code>-m68S12</code><dt><code>-m68hcs12</code><dd><a name="index-m68S12-1546"></a><a name="index-m68hcs12-1547"></a>Generate output for a 68HCS12.

     <br><dt><code>-mauto-incdec</code><dd><a name="index-mauto_002dincdec-1548"></a>Enable the use of 68HC12 pre and post auto-increment and auto-decrement
addressing modes.

     <br><dt><code>-minmax</code><dt><code>-mnominmax</code><dd><a name="index-minmax-1549"></a><a name="index-mnominmax-1550"></a>Enable the use of 68HC12 min and max instructions.

     <br><dt><code>-mlong-calls</code><dt><code>-mno-long-calls</code><dd><a name="index-mlong_002dcalls-1551"></a><a name="index-mno_002dlong_002dcalls-1552"></a>Treat all calls as being far away (near).  If calls are assumed to be
far away, the compiler will use the <code>call</code> instruction to
call a function and the <code>rtc</code> instruction for returning.

     <br><dt><code>-mshort</code><dd><a name="index-mshort-1553"></a>Consider type <code>int</code> to be 16 bits wide, like <code>short int</code>.

     <br><dt><code>-msoft-reg-count=</code><var>count</var><dd><a name="index-msoft_002dreg_002dcount-1554"></a>Specify the number of pseudo-soft registers which are used for the
code generation.  The maximum number is 32.  Using more pseudo-soft
register may or may not result in better code depending on the program. 
The default is 4 for 68HC11 and 2 for 68HC12.

 </dl>

<div class="node">
<a name="MCore-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#MeP-Options">MeP Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#M68hc1x-Options">M68hc1x Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.24 MCore Options</h4>

<p><a name="index-MCore-options-1555"></a>
These are the &lsquo;<samp><span class="samp">-m</span></samp>&rsquo; options defined for the Motorola M*Core
processors.

     <dl>
<dt><code>-mhardlit</code><dt><code>-mno-hardlit</code><dd><a name="index-mhardlit-1556"></a><a name="index-mno_002dhardlit-1557"></a>Inline constants into the code stream if it can be done in two
instructions or less.

     <br><dt><code>-mdiv</code><dt><code>-mno-div</code><dd><a name="index-mdiv-1558"></a><a name="index-mno_002ddiv-1559"></a>Use the divide instruction.  (Enabled by default).

     <br><dt><code>-mrelax-immediate</code><dt><code>-mno-relax-immediate</code><dd><a name="index-mrelax_002dimmediate-1560"></a><a name="index-mno_002drelax_002dimmediate-1561"></a>Allow arbitrary sized immediates in bit operations.

     <br><dt><code>-mwide-bitfields</code><dt><code>-mno-wide-bitfields</code><dd><a name="index-mwide_002dbitfields-1562"></a><a name="index-mno_002dwide_002dbitfields-1563"></a>Always treat bit-fields as int-sized.

     <br><dt><code>-m4byte-functions</code><dt><code>-mno-4byte-functions</code><dd><a name="index-m4byte_002dfunctions-1564"></a><a name="index-mno_002d4byte_002dfunctions-1565"></a>Force all functions to be aligned to a four byte boundary.

     <br><dt><code>-mcallgraph-data</code><dt><code>-mno-callgraph-data</code><dd><a name="index-mcallgraph_002ddata-1566"></a><a name="index-mno_002dcallgraph_002ddata-1567"></a>Emit callgraph information.

     <br><dt><code>-mslow-bytes</code><dt><code>-mno-slow-bytes</code><dd><a name="index-mslow_002dbytes-1568"></a><a name="index-mno_002dslow_002dbytes-1569"></a>Prefer word access when reading byte quantities.

     <br><dt><code>-mlittle-endian</code><dt><code>-mbig-endian</code><dd><a name="index-mlittle_002dendian-1570"></a><a name="index-mbig_002dendian-1571"></a>Generate code for a little endian target.

     <br><dt><code>-m210</code><dt><code>-m340</code><dd><a name="index-m210-1572"></a><a name="index-m340-1573"></a>Generate code for the 210 processor.

     <br><dt><code>-mno-lsim</code><dd><a name="index-mno_002dlsim-1574"></a>Assume that run-time support has been provided and so omit the
simulator library (<samp><span class="file">libsim.a)</span></samp> from the linker command line.

     <br><dt><code>-mstack-increment=</code><var>size</var><dd><a name="index-mstack_002dincrement-1575"></a>Set the maximum amount for a single stack increment operation.  Large
values can increase the speed of programs which contain functions
that need a large amount of stack space, but they can also trigger a
segmentation fault if the stack is extended too much.  The default
value is 0x1000.

 </dl>

<div class="node">
<a name="MeP-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#MicroBlaze-Options">MicroBlaze Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#MCore-Options">MCore Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.25 MeP Options</h4>

<p><a name="index-MeP-options-1576"></a>
     <dl>
<dt><code>-mabsdiff</code><dd><a name="index-mabsdiff-1577"></a>Enables the <code>abs</code> instruction, which is the absolute difference
between two registers.

     <br><dt><code>-mall-opts</code><dd><a name="index-mall_002dopts-1578"></a>Enables all the optional instructions - average, multiply, divide, bit
operations, leading zero, absolute difference, min/max, clip, and
saturation.

     <br><dt><code>-maverage</code><dd><a name="index-maverage-1579"></a>Enables the <code>ave</code> instruction, which computes the average of two
registers.

     <br><dt><code>-mbased=</code><var>n</var><dd><a name="index-mbased_003d-1580"></a>Variables of size <var>n</var> bytes or smaller will be placed in the
<code>.based</code> section by default.  Based variables use the <code>$tp</code>
register as a base register, and there is a 128 byte limit to the
<code>.based</code> section.

     <br><dt><code>-mbitops</code><dd><a name="index-mbitops-1581"></a>Enables the bit operation instructions - bit test (<code>btstm</code>), set
(<code>bsetm</code>), clear (<code>bclrm</code>), invert (<code>bnotm</code>), and
test-and-set (<code>tas</code>).

     <br><dt><code>-mc=</code><var>name</var><dd><a name="index-mc_003d-1582"></a>Selects which section constant data will be placed in.  <var>name</var> may
be <code>tiny</code>, <code>near</code>, or <code>far</code>.

     <br><dt><code>-mclip</code><dd><a name="index-mclip-1583"></a>Enables the <code>clip</code> instruction.  Note that <code>-mclip</code> is not
useful unless you also provide <code>-mminmax</code>.

     <br><dt><code>-mconfig=</code><var>name</var><dd><a name="index-mconfig_003d-1584"></a>Selects one of the build-in core configurations.  Each MeP chip has
one or more modules in it; each module has a core CPU and a variety of
coprocessors, optional instructions, and peripherals.  The
<code>MeP-Integrator</code> tool, not part of GCC, provides these
configurations through this option; using this option is the same as
using all the corresponding command line options.  The default
configuration is <code>default</code>.

     <br><dt><code>-mcop</code><dd><a name="index-mcop-1585"></a>Enables the coprocessor instructions.  By default, this is a 32-bit
coprocessor.  Note that the coprocessor is normally enabled via the
<code>-mconfig=</code> option.

     <br><dt><code>-mcop32</code><dd><a name="index-mcop32-1586"></a>Enables the 32-bit coprocessor's instructions.

     <br><dt><code>-mcop64</code><dd><a name="index-mcop64-1587"></a>Enables the 64-bit coprocessor's instructions.

     <br><dt><code>-mivc2</code><dd><a name="index-mivc2-1588"></a>Enables IVC2 scheduling.  IVC2 is a 64-bit VLIW coprocessor.

     <br><dt><code>-mdc</code><dd><a name="index-mdc-1589"></a>Causes constant variables to be placed in the <code>.near</code> section.

     <br><dt><code>-mdiv</code><dd><a name="index-mdiv-1590"></a>Enables the <code>div</code> and <code>divu</code> instructions.

     <br><dt><code>-meb</code><dd><a name="index-meb-1591"></a>Generate big-endian code.

     <br><dt><code>-mel</code><dd><a name="index-mel-1592"></a>Generate little-endian code.

     <br><dt><code>-mio-volatile</code><dd><a name="index-mio_002dvolatile-1593"></a>Tells the compiler that any variable marked with the <code>io</code>
attribute is to be considered volatile.

     <br><dt><code>-ml</code><dd><a name="index-ml-1594"></a>Causes variables to be assigned to the <code>.far</code> section by default.

     <br><dt><code>-mleadz</code><dd><a name="index-mleadz-1595"></a>Enables the <code>leadz</code> (leading zero) instruction.

     <br><dt><code>-mm</code><dd><a name="index-mm-1596"></a>Causes variables to be assigned to the <code>.near</code> section by default.

     <br><dt><code>-mminmax</code><dd><a name="index-mminmax-1597"></a>Enables the <code>min</code> and <code>max</code> instructions.

     <br><dt><code>-mmult</code><dd><a name="index-mmult-1598"></a>Enables the multiplication and multiply-accumulate instructions.

     <br><dt><code>-mno-opts</code><dd><a name="index-mno_002dopts-1599"></a>Disables all the optional instructions enabled by <code>-mall-opts</code>.

     <br><dt><code>-mrepeat</code><dd><a name="index-mrepeat-1600"></a>Enables the <code>repeat</code> and <code>erepeat</code> instructions, used for
low-overhead looping.

     <br><dt><code>-ms</code><dd><a name="index-ms-1601"></a>Causes all variables to default to the <code>.tiny</code> section.  Note
that there is a 65536 byte limit to this section.  Accesses to these
variables use the <code>%gp</code> base register.

     <br><dt><code>-msatur</code><dd><a name="index-msatur-1602"></a>Enables the saturation instructions.  Note that the compiler does not
currently generate these itself, but this option is included for
compatibility with other tools, like <code>as</code>.

     <br><dt><code>-msdram</code><dd><a name="index-msdram-1603"></a>Link the SDRAM-based runtime instead of the default ROM-based runtime.

     <br><dt><code>-msim</code><dd><a name="index-msim-1604"></a>Link the simulator runtime libraries.

     <br><dt><code>-msimnovec</code><dd><a name="index-msimnovec-1605"></a>Link the simulator runtime libraries, excluding built-in support
for reset and exception vectors and tables.

     <br><dt><code>-mtf</code><dd><a name="index-mtf-1606"></a>Causes all functions to default to the <code>.far</code> section.  Without
this option, functions default to the <code>.near</code> section.

     <br><dt><code>-mtiny=</code><var>n</var><dd><a name="index-mtiny_003d-1607"></a>Variables that are <var>n</var> bytes or smaller will be allocated to the
<code>.tiny</code> section.  These variables use the <code>$gp</code> base
register.  The default for this option is 4, but note that there's a
65536 byte limit to the <code>.tiny</code> section.

 </dl>

<div class="node">
<a name="MicroBlaze-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#MIPS-Options">MIPS Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#MeP-Options">MeP Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.26 MicroBlaze Options</h4>

<p><a name="index-MicroBlaze-Options-1608"></a>
     <dl>
<dt><code>-msoft-float</code><dd><a name="index-msoft_002dfloat-1609"></a>Use software emulation for floating point (default).

     <br><dt><code>-mhard-float</code><dd><a name="index-mhard_002dfloat-1610"></a>Use hardware floating point instructions.

     <br><dt><code>-mmemcpy</code><dd><a name="index-mmemcpy-1611"></a>Do not optimize block moves, use <code>memcpy</code>.

     <br><dt><code>-mno-clearbss</code><dd><a name="index-mno_002dclearbss-1612"></a>This option is deprecated.  Use <samp><span class="option">-fno-zero-initialized-in-bss</span></samp> instead.

     <br><dt><code>-mcpu=</code><var>cpu-type</var><dd><a name="index-mcpu_003d-1613"></a>Use features of and schedule code for given CPU. 
Supported values are in the format &lsquo;<samp><span class="samp">v</span><var>X</var><span class="samp">.</span><var>YY</var><span class="samp">.</span><var>Z</var></samp>&rsquo;,
where <var>X</var> is a major version, <var>YY</var> is the minor version, and
<var>Z</var> is compatibility code.  Example values are &lsquo;<samp><span class="samp">v3.00.a</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">v4.00.b</span></samp>&rsquo;, &lsquo;<samp><span class="samp">v5.00.a</span></samp>&rsquo;, &lsquo;<samp><span class="samp">v5.00.b</span></samp>&rsquo;, &lsquo;<samp><span class="samp">v5.00.b</span></samp>&rsquo;, &lsquo;<samp><span class="samp">v6.00.a</span></samp>&rsquo;.

     <br><dt><code>-mxl-soft-mul</code><dd><a name="index-mxl_002dsoft_002dmul-1614"></a>Use software multiply emulation (default).

     <br><dt><code>-mxl-soft-div</code><dd><a name="index-mxl_002dsoft_002ddiv-1615"></a>Use software emulation for divides (default).

     <br><dt><code>-mxl-barrel-shift</code><dd><a name="index-mxl_002dbarrel_002dshift-1616"></a>Use the hardware barrel shifter.

     <br><dt><code>-mxl-pattern-compare</code><dd><a name="index-mxl_002dpattern_002dcompare-1617"></a>Use pattern compare instructions.

     <br><dt><code>-msmall-divides</code><dd><a name="index-msmall_002ddivides-1618"></a>Use table lookup optimization for small signed integer divisions.

     <br><dt><code>-mxl-stack-check</code><dd><a name="index-mxl_002dstack_002dcheck-1619"></a>This option is deprecated.  Use -fstack-check instead.

     <br><dt><code>-mxl-gp-opt</code><dd><a name="index-mxl_002dgp_002dopt-1620"></a>Use GP relative sdata/sbss sections.

     <br><dt><code>-mxl-multiply-high</code><dd><a name="index-mxl_002dmultiply_002dhigh-1621"></a>Use multiply high instructions for high part of 32x32 multiply.

     <br><dt><code>-mxl-float-convert</code><dd><a name="index-mxl_002dfloat_002dconvert-1622"></a>Use hardware floating point conversion instructions.

     <br><dt><code>-mxl-float-sqrt</code><dd><a name="index-mxl_002dfloat_002dsqrt-1623"></a>Use hardware floating point square root instruction.

     <br><dt><code>-mxl-mode-</code><var>app-model</var><dd>Select application model <var>app-model</var>.  Valid models are
          <dl>
<dt>&lsquo;<samp><span class="samp">executable</span></samp>&rsquo;<dd>normal executable (default), uses startup code <samp><span class="file">crt0.o</span></samp>.

          <br><dt>&lsquo;<samp><span class="samp">xmdstub</span></samp>&rsquo;<dd>for use with Xilinx Microprocessor Debugger (XMD) based
software intrusive debug agent called xmdstub. This uses startup file
<samp><span class="file">crt1.o</span></samp> and sets the start address of the program to be 0x800.

          <br><dt>&lsquo;<samp><span class="samp">bootstrap</span></samp>&rsquo;<dd>for applications that are loaded using a bootloader. 
This model uses startup file <samp><span class="file">crt2.o</span></samp> which does not contain a processor
reset vector handler. This is suitable for transferring control on a
processor reset to the bootloader rather than the application.

          <br><dt>&lsquo;<samp><span class="samp">novectors</span></samp>&rsquo;<dd>for applications that do not require any of the
MicroBlaze vectors. This option may be useful for applications running
within a monitoring application. This model uses <samp><span class="file">crt3.o</span></samp> as a startup file. 
</dl>

     <p>Option <samp><span class="option">-xl-mode-</span><var>app-model</var></samp> is a deprecated alias for
<samp><span class="option">-mxl-mode-</span><var>app-model</var></samp>.

 </dl>

<div class="node">
<a name="MIPS-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#MMIX-Options">MMIX Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#MicroBlaze-Options">MicroBlaze Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.27 MIPS Options</h4>

<p><a name="index-MIPS-options-1624"></a>
     <dl>
<dt><code>-EB</code><dd><a name="index-EB-1625"></a>Generate big-endian code.

     <br><dt><code>-EL</code><dd><a name="index-EL-1626"></a>Generate little-endian code.  This is the default for &lsquo;<samp><span class="samp">mips*el-*-*</span></samp>&rsquo;
configurations.

     <br><dt><code>-march=</code><var>arch</var><dd><a name="index-march-1627"></a>Generate code that will run on <var>arch</var>, which can be the name of a
generic MIPS ISA, or the name of a particular processor. 
The ISA names are:
&lsquo;<samp><span class="samp">mips1</span></samp>&rsquo;, &lsquo;<samp><span class="samp">mips2</span></samp>&rsquo;, &lsquo;<samp><span class="samp">mips3</span></samp>&rsquo;, &lsquo;<samp><span class="samp">mips4</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">mips32</span></samp>&rsquo;, &lsquo;<samp><span class="samp">mips32r2</span></samp>&rsquo;, &lsquo;<samp><span class="samp">mips64</span></samp>&rsquo; and &lsquo;<samp><span class="samp">mips64r2</span></samp>&rsquo;. 
The processor names are:
&lsquo;<samp><span class="samp">4kc</span></samp>&rsquo;, &lsquo;<samp><span class="samp">4km</span></samp>&rsquo;, &lsquo;<samp><span class="samp">4kp</span></samp>&rsquo;, &lsquo;<samp><span class="samp">4ksc</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">4kec</span></samp>&rsquo;, &lsquo;<samp><span class="samp">4kem</span></samp>&rsquo;, &lsquo;<samp><span class="samp">4kep</span></samp>&rsquo;, &lsquo;<samp><span class="samp">4ksd</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">5kc</span></samp>&rsquo;, &lsquo;<samp><span class="samp">5kf</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">20kc</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">24kc</span></samp>&rsquo;, &lsquo;<samp><span class="samp">24kf2_1</span></samp>&rsquo;, &lsquo;<samp><span class="samp">24kf1_1</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">24kec</span></samp>&rsquo;, &lsquo;<samp><span class="samp">24kef2_1</span></samp>&rsquo;, &lsquo;<samp><span class="samp">24kef1_1</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">34kc</span></samp>&rsquo;, &lsquo;<samp><span class="samp">34kf2_1</span></samp>&rsquo;, &lsquo;<samp><span class="samp">34kf1_1</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">74kc</span></samp>&rsquo;, &lsquo;<samp><span class="samp">74kf2_1</span></samp>&rsquo;, &lsquo;<samp><span class="samp">74kf1_1</span></samp>&rsquo;, &lsquo;<samp><span class="samp">74kf3_2</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">1004kc</span></samp>&rsquo;, &lsquo;<samp><span class="samp">1004kf2_1</span></samp>&rsquo;, &lsquo;<samp><span class="samp">1004kf1_1</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">loongson2e</span></samp>&rsquo;, &lsquo;<samp><span class="samp">loongson2f</span></samp>&rsquo;, &lsquo;<samp><span class="samp">loongson3a</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">m4k</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">octeon</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">orion</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">r2000</span></samp>&rsquo;, &lsquo;<samp><span class="samp">r3000</span></samp>&rsquo;, &lsquo;<samp><span class="samp">r3900</span></samp>&rsquo;, &lsquo;<samp><span class="samp">r4000</span></samp>&rsquo;, &lsquo;<samp><span class="samp">r4400</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">r4600</span></samp>&rsquo;, &lsquo;<samp><span class="samp">r4650</span></samp>&rsquo;, &lsquo;<samp><span class="samp">r6000</span></samp>&rsquo;, &lsquo;<samp><span class="samp">r8000</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">rm7000</span></samp>&rsquo;, &lsquo;<samp><span class="samp">rm9000</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">r10000</span></samp>&rsquo;, &lsquo;<samp><span class="samp">r12000</span></samp>&rsquo;, &lsquo;<samp><span class="samp">r14000</span></samp>&rsquo;, &lsquo;<samp><span class="samp">r16000</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">sb1</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">sr71000</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">vr4100</span></samp>&rsquo;, &lsquo;<samp><span class="samp">vr4111</span></samp>&rsquo;, &lsquo;<samp><span class="samp">vr4120</span></samp>&rsquo;, &lsquo;<samp><span class="samp">vr4130</span></samp>&rsquo;, &lsquo;<samp><span class="samp">vr4300</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">vr5000</span></samp>&rsquo;, &lsquo;<samp><span class="samp">vr5400</span></samp>&rsquo;, &lsquo;<samp><span class="samp">vr5500</span></samp>&rsquo;
and &lsquo;<samp><span class="samp">xlr</span></samp>&rsquo;. 
The special value &lsquo;<samp><span class="samp">from-abi</span></samp>&rsquo; selects the
most compatible architecture for the selected ABI (that is,
&lsquo;<samp><span class="samp">mips1</span></samp>&rsquo; for 32-bit ABIs and &lsquo;<samp><span class="samp">mips3</span></samp>&rsquo; for 64-bit ABIs).

     <p>Native Linux/GNU toolchains also support the value &lsquo;<samp><span class="samp">native</span></samp>&rsquo;,
which selects the best architecture option for the host processor. 
<samp><span class="option">-march=native</span></samp> has no effect if GCC does not recognize
the processor.

     <p>In processor names, a final &lsquo;<samp><span class="samp">000</span></samp>&rsquo; can be abbreviated as &lsquo;<samp><span class="samp">k</span></samp>&rsquo;
(for example, &lsquo;<samp><span class="samp">-march=r2k</span></samp>&rsquo;).  Prefixes are optional, and
&lsquo;<samp><span class="samp">vr</span></samp>&rsquo; may be written &lsquo;<samp><span class="samp">r</span></samp>&rsquo;.

     <p>Names of the form &lsquo;<samp><var>n</var><span class="samp">f2_1</span></samp>&rsquo; refer to processors with
FPUs clocked at half the rate of the core, names of the form
&lsquo;<samp><var>n</var><span class="samp">f1_1</span></samp>&rsquo; refer to processors with FPUs clocked at the same
rate as the core, and names of the form &lsquo;<samp><var>n</var><span class="samp">f3_2</span></samp>&rsquo; refer to
processors with FPUs clocked a ratio of 3:2 with respect to the core. 
For compatibility reasons, &lsquo;<samp><var>n</var><span class="samp">f</span></samp>&rsquo; is accepted as a synonym
for &lsquo;<samp><var>n</var><span class="samp">f2_1</span></samp>&rsquo; while &lsquo;<samp><var>n</var><span class="samp">x</span></samp>&rsquo; and &lsquo;<samp><var>b</var><span class="samp">fx</span></samp>&rsquo; are
accepted as synonyms for &lsquo;<samp><var>n</var><span class="samp">f1_1</span></samp>&rsquo;.

     <p>GCC defines two macros based on the value of this option.  The first
is &lsquo;<samp><span class="samp">_MIPS_ARCH</span></samp>&rsquo;, which gives the name of target architecture, as
a string.  The second has the form &lsquo;<samp><span class="samp">_MIPS_ARCH_</span><var>foo</var></samp>&rsquo;,
where <var>foo</var> is the capitalized value of &lsquo;<samp><span class="samp">_MIPS_ARCH</span></samp>&rsquo;. 
For example, &lsquo;<samp><span class="samp">-march=r2000</span></samp>&rsquo; will set &lsquo;<samp><span class="samp">_MIPS_ARCH</span></samp>&rsquo;
to &lsquo;<samp><span class="samp">"r2000"</span></samp>&rsquo; and define the macro &lsquo;<samp><span class="samp">_MIPS_ARCH_R2000</span></samp>&rsquo;.

     <p>Note that the &lsquo;<samp><span class="samp">_MIPS_ARCH</span></samp>&rsquo; macro uses the processor names given
above.  In other words, it will have the full prefix and will not
abbreviate &lsquo;<samp><span class="samp">000</span></samp>&rsquo; as &lsquo;<samp><span class="samp">k</span></samp>&rsquo;.  In the case of &lsquo;<samp><span class="samp">from-abi</span></samp>&rsquo;,
the macro names the resolved architecture (either &lsquo;<samp><span class="samp">"mips1"</span></samp>&rsquo; or
&lsquo;<samp><span class="samp">"mips3"</span></samp>&rsquo;).  It names the default architecture when no
<samp><span class="option">-march</span></samp> option is given.

     <br><dt><code>-mtune=</code><var>arch</var><dd><a name="index-mtune-1628"></a>Optimize for <var>arch</var>.  Among other things, this option controls
the way instructions are scheduled, and the perceived cost of arithmetic
operations.  The list of <var>arch</var> values is the same as for
<samp><span class="option">-march</span></samp>.

     <p>When this option is not used, GCC will optimize for the processor
specified by <samp><span class="option">-march</span></samp>.  By using <samp><span class="option">-march</span></samp> and
<samp><span class="option">-mtune</span></samp> together, it is possible to generate code that will
run on a family of processors, but optimize the code for one
particular member of that family.

     <p>&lsquo;<samp><span class="samp">-mtune</span></samp>&rsquo; defines the macros &lsquo;<samp><span class="samp">_MIPS_TUNE</span></samp>&rsquo; and
&lsquo;<samp><span class="samp">_MIPS_TUNE_</span><var>foo</var></samp>&rsquo;, which work in the same way as the
&lsquo;<samp><span class="samp">-march</span></samp>&rsquo; ones described above.

     <br><dt><code>-mips1</code><dd><a name="index-mips1-1629"></a>Equivalent to &lsquo;<samp><span class="samp">-march=mips1</span></samp>&rsquo;.

     <br><dt><code>-mips2</code><dd><a name="index-mips2-1630"></a>Equivalent to &lsquo;<samp><span class="samp">-march=mips2</span></samp>&rsquo;.

     <br><dt><code>-mips3</code><dd><a name="index-mips3-1631"></a>Equivalent to &lsquo;<samp><span class="samp">-march=mips3</span></samp>&rsquo;.

     <br><dt><code>-mips4</code><dd><a name="index-mips4-1632"></a>Equivalent to &lsquo;<samp><span class="samp">-march=mips4</span></samp>&rsquo;.

     <br><dt><code>-mips32</code><dd><a name="index-mips32-1633"></a>Equivalent to &lsquo;<samp><span class="samp">-march=mips32</span></samp>&rsquo;.

     <br><dt><code>-mips32r2</code><dd><a name="index-mips32r2-1634"></a>Equivalent to &lsquo;<samp><span class="samp">-march=mips32r2</span></samp>&rsquo;.

     <br><dt><code>-mips64</code><dd><a name="index-mips64-1635"></a>Equivalent to &lsquo;<samp><span class="samp">-march=mips64</span></samp>&rsquo;.

     <br><dt><code>-mips64r2</code><dd><a name="index-mips64r2-1636"></a>Equivalent to &lsquo;<samp><span class="samp">-march=mips64r2</span></samp>&rsquo;.

     <br><dt><code>-mips16</code><dt><code>-mno-mips16</code><dd><a name="index-mips16-1637"></a><a name="index-mno_002dmips16-1638"></a>Generate (do not generate) MIPS16 code.  If GCC is targetting a
MIPS32 or MIPS64 architecture, it will make use of the MIPS16e ASE.

     <p>MIPS16 code generation can also be controlled on a per-function basis
by means of <code>mips16</code> and <code>nomips16</code> attributes. 
See <a href="#Function-Attributes">Function Attributes</a>, for more information.

     <br><dt><code>-mflip-mips16</code><dd><a name="index-mflip_002dmips16-1639"></a>Generate MIPS16 code on alternating functions.  This option is provided
for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
not intended for ordinary use in compiling user code.

     <br><dt><code>-minterlink-mips16</code><dt><code>-mno-interlink-mips16</code><dd><a name="index-minterlink_002dmips16-1640"></a><a name="index-mno_002dinterlink_002dmips16-1641"></a>Require (do not require) that non-MIPS16 code be link-compatible with
MIPS16 code.

     <p>For example, non-MIPS16 code cannot jump directly to MIPS16 code;
it must either use a call or an indirect jump.  <samp><span class="option">-minterlink-mips16</span></samp>
therefore disables direct jumps unless GCC knows that the target of the
jump is not MIPS16.

     <br><dt><code>-mabi=32</code><dt><code>-mabi=o64</code><dt><code>-mabi=n32</code><dt><code>-mabi=64</code><dt><code>-mabi=eabi</code><dd><a name="index-mabi_003d32-1642"></a><a name="index-mabi_003do64-1643"></a><a name="index-mabi_003dn32-1644"></a><a name="index-mabi_003d64-1645"></a><a name="index-mabi_003deabi-1646"></a>Generate code for the given ABI.

     <p>Note that the EABI has a 32-bit and a 64-bit variant.  GCC normally
generates 64-bit code when you select a 64-bit architecture, but you
can use <samp><span class="option">-mgp32</span></samp> to get 32-bit code instead.

     <p>For information about the O64 ABI, see
<a href="http://gcc.gnu.org/projects/mipso64-abi.html">http://gcc.gnu.org/projects/mipso64-abi.html</a>.

     <p>GCC supports a variant of the o32 ABI in which floating-point registers
are 64 rather than 32 bits wide.  You can select this combination with
<samp><span class="option">-mabi=32</span></samp> <samp><span class="option">-mfp64</span></samp>.  This ABI relies on the &lsquo;<samp><span class="samp">mthc1</span></samp>&rsquo;
and &lsquo;<samp><span class="samp">mfhc1</span></samp>&rsquo; instructions and is therefore only supported for
MIPS32R2 processors.

     <p>The register assignments for arguments and return values remain the
same, but each scalar value is passed in a single 64-bit register
rather than a pair of 32-bit registers.  For example, scalar
floating-point values are returned in &lsquo;<samp><span class="samp">$f0</span></samp>&rsquo; only, not a
&lsquo;<samp><span class="samp">$f0</span></samp>&rsquo;/&lsquo;<samp><span class="samp">$f1</span></samp>&rsquo; pair.  The set of call-saved registers also
remains the same, but all 64 bits are saved.

     <br><dt><code>-mabicalls</code><dt><code>-mno-abicalls</code><dd><a name="index-mabicalls-1647"></a><a name="index-mno_002dabicalls-1648"></a>Generate (do not generate) code that is suitable for SVR4-style
dynamic objects.  <samp><span class="option">-mabicalls</span></samp> is the default for SVR4-based
systems.

     <br><dt><code>-mshared</code><dt><code>-mno-shared</code><dd>Generate (do not generate) code that is fully position-independent,
and that can therefore be linked into shared libraries.  This option
only affects <samp><span class="option">-mabicalls</span></samp>.

     <p>All <samp><span class="option">-mabicalls</span></samp> code has traditionally been position-independent,
regardless of options like <samp><span class="option">-fPIC</span></samp> and <samp><span class="option">-fpic</span></samp>.  However,
as an extension, the GNU toolchain allows executables to use absolute
accesses for locally-binding symbols.  It can also use shorter GP
initialization sequences and generate direct calls to locally-defined
functions.  This mode is selected by <samp><span class="option">-mno-shared</span></samp>.

     <p><samp><span class="option">-mno-shared</span></samp> depends on binutils 2.16 or higher and generates
objects that can only be linked by the GNU linker.  However, the option
does not affect the ABI of the final executable; it only affects the ABI
of relocatable objects.  Using <samp><span class="option">-mno-shared</span></samp> will generally make
executables both smaller and quicker.

     <p><samp><span class="option">-mshared</span></samp> is the default.

     <br><dt><code>-mplt</code><dt><code>-mno-plt</code><dd><a name="index-mplt-1649"></a><a name="index-mno_002dplt-1650"></a>Assume (do not assume) that the static and dynamic linkers
support PLTs and copy relocations.  This option only affects
&lsquo;<samp><span class="samp">-mno-shared -mabicalls</span></samp>&rsquo;.  For the n64 ABI, this option
has no effect without &lsquo;<samp><span class="samp">-msym32</span></samp>&rsquo;.

     <p>You can make <samp><span class="option">-mplt</span></samp> the default by configuring
GCC with <samp><span class="option">--with-mips-plt</span></samp>.  The default is
<samp><span class="option">-mno-plt</span></samp> otherwise.

     <br><dt><code>-mxgot</code><dt><code>-mno-xgot</code><dd><a name="index-mxgot-1651"></a><a name="index-mno_002dxgot-1652"></a>Lift (do not lift) the usual restrictions on the size of the global
offset table.

     <p>GCC normally uses a single instruction to load values from the GOT. 
While this is relatively efficient, it will only work if the GOT
is smaller than about 64k.  Anything larger will cause the linker
to report an error such as:

     <p><a name="index-relocation-truncated-to-fit-_0028MIPS_0029-1653"></a>
     <pre class="smallexample">          relocation truncated to fit: R_MIPS_GOT16 foobar
</pre>
     <p>If this happens, you should recompile your code with <samp><span class="option">-mxgot</span></samp>. 
It should then work with very large GOTs, although it will also be
less efficient, since it will take three instructions to fetch the
value of a global symbol.

     <p>Note that some linkers can create multiple GOTs.  If you have such a
linker, you should only need to use <samp><span class="option">-mxgot</span></samp> when a single object
file accesses more than 64k's worth of GOT entries.  Very few do.

     <p>These options have no effect unless GCC is generating position
independent code.

     <br><dt><code>-mgp32</code><dd><a name="index-mgp32-1654"></a>Assume that general-purpose registers are 32 bits wide.

     <br><dt><code>-mgp64</code><dd><a name="index-mgp64-1655"></a>Assume that general-purpose registers are 64 bits wide.

     <br><dt><code>-mfp32</code><dd><a name="index-mfp32-1656"></a>Assume that floating-point registers are 32 bits wide.

     <br><dt><code>-mfp64</code><dd><a name="index-mfp64-1657"></a>Assume that floating-point registers are 64 bits wide.

     <br><dt><code>-mhard-float</code><dd><a name="index-mhard_002dfloat-1658"></a>Use floating-point coprocessor instructions.

     <br><dt><code>-msoft-float</code><dd><a name="index-msoft_002dfloat-1659"></a>Do not use floating-point coprocessor instructions.  Implement
floating-point calculations using library calls instead.

     <br><dt><code>-msingle-float</code><dd><a name="index-msingle_002dfloat-1660"></a>Assume that the floating-point coprocessor only supports single-precision
operations.

     <br><dt><code>-mdouble-float</code><dd><a name="index-mdouble_002dfloat-1661"></a>Assume that the floating-point coprocessor supports double-precision
operations.  This is the default.

     <br><dt><code>-mllsc</code><dt><code>-mno-llsc</code><dd><a name="index-mllsc-1662"></a><a name="index-mno_002dllsc-1663"></a>Use (do not use) &lsquo;<samp><span class="samp">ll</span></samp>&rsquo;, &lsquo;<samp><span class="samp">sc</span></samp>&rsquo;, and &lsquo;<samp><span class="samp">sync</span></samp>&rsquo; instructions to
implement atomic memory built-in functions.  When neither option is
specified, GCC will use the instructions if the target architecture
supports them.

     <p><samp><span class="option">-mllsc</span></samp> is useful if the runtime environment can emulate the
instructions and <samp><span class="option">-mno-llsc</span></samp> can be useful when compiling for
nonstandard ISAs.  You can make either option the default by
configuring GCC with <samp><span class="option">--with-llsc</span></samp> and <samp><span class="option">--without-llsc</span></samp>
respectively.  <samp><span class="option">--with-llsc</span></samp> is the default for some
configurations; see the installation documentation for details.

     <br><dt><code>-mdsp</code><dt><code>-mno-dsp</code><dd><a name="index-mdsp-1664"></a><a name="index-mno_002ddsp-1665"></a>Use (do not use) revision 1 of the MIPS DSP ASE. 
See <a href="#MIPS-DSP-Built_002din-Functions">MIPS DSP Built-in Functions</a>.  This option defines the
preprocessor macro &lsquo;<samp><span class="samp">__mips_dsp</span></samp>&rsquo;.  It also defines
&lsquo;<samp><span class="samp">__mips_dsp_rev</span></samp>&rsquo; to 1.

     <br><dt><code>-mdspr2</code><dt><code>-mno-dspr2</code><dd><a name="index-mdspr2-1666"></a><a name="index-mno_002ddspr2-1667"></a>Use (do not use) revision 2 of the MIPS DSP ASE. 
See <a href="#MIPS-DSP-Built_002din-Functions">MIPS DSP Built-in Functions</a>.  This option defines the
preprocessor macros &lsquo;<samp><span class="samp">__mips_dsp</span></samp>&rsquo; and &lsquo;<samp><span class="samp">__mips_dspr2</span></samp>&rsquo;. 
It also defines &lsquo;<samp><span class="samp">__mips_dsp_rev</span></samp>&rsquo; to 2.

     <br><dt><code>-msmartmips</code><dt><code>-mno-smartmips</code><dd><a name="index-msmartmips-1668"></a><a name="index-mno_002dsmartmips-1669"></a>Use (do not use) the MIPS SmartMIPS ASE.

     <br><dt><code>-mpaired-single</code><dt><code>-mno-paired-single</code><dd><a name="index-mpaired_002dsingle-1670"></a><a name="index-mno_002dpaired_002dsingle-1671"></a>Use (do not use) paired-single floating-point instructions. 
See <a href="#MIPS-Paired_002dSingle-Support">MIPS Paired-Single Support</a>.  This option requires
hardware floating-point support to be enabled.

     <br><dt><code>-mdmx</code><dt><code>-mno-mdmx</code><dd><a name="index-mdmx-1672"></a><a name="index-mno_002dmdmx-1673"></a>Use (do not use) MIPS Digital Media Extension instructions. 
This option can only be used when generating 64-bit code and requires
hardware floating-point support to be enabled.

     <br><dt><code>-mips3d</code><dt><code>-mno-mips3d</code><dd><a name="index-mips3d-1674"></a><a name="index-mno_002dmips3d-1675"></a>Use (do not use) the MIPS-3D ASE.  See <a href="#MIPS_002d3D-Built_002din-Functions">MIPS-3D Built-in Functions</a>. 
The option <samp><span class="option">-mips3d</span></samp> implies <samp><span class="option">-mpaired-single</span></samp>.

     <br><dt><code>-mmt</code><dt><code>-mno-mt</code><dd><a name="index-mmt-1676"></a><a name="index-mno_002dmt-1677"></a>Use (do not use) MT Multithreading instructions.

     <br><dt><code>-mlong64</code><dd><a name="index-mlong64-1678"></a>Force <code>long</code> types to be 64 bits wide.  See <samp><span class="option">-mlong32</span></samp> for
an explanation of the default and the way that the pointer size is
determined.

     <br><dt><code>-mlong32</code><dd><a name="index-mlong32-1679"></a>Force <code>long</code>, <code>int</code>, and pointer types to be 32 bits wide.

     <p>The default size of <code>int</code>s, <code>long</code>s and pointers depends on
the ABI.  All the supported ABIs use 32-bit <code>int</code>s.  The n64 ABI
uses 64-bit <code>long</code>s, as does the 64-bit EABI; the others use
32-bit <code>long</code>s.  Pointers are the same size as <code>long</code>s,
or the same size as integer registers, whichever is smaller.

     <br><dt><code>-msym32</code><dt><code>-mno-sym32</code><dd><a name="index-msym32-1680"></a><a name="index-mno_002dsym32-1681"></a>Assume (do not assume) that all symbols have 32-bit values, regardless
of the selected ABI.  This option is useful in combination with
<samp><span class="option">-mabi=64</span></samp> and <samp><span class="option">-mno-abicalls</span></samp> because it allows GCC
to generate shorter and faster references to symbolic addresses.

     <br><dt><code>-G </code><var>num</var><dd><a name="index-G-1682"></a>Put definitions of externally-visible data in a small data section
if that data is no bigger than <var>num</var> bytes.  GCC can then access
the data more efficiently; see <samp><span class="option">-mgpopt</span></samp> for details.

     <p>The default <samp><span class="option">-G</span></samp> option depends on the configuration.

     <br><dt><code>-mlocal-sdata</code><dt><code>-mno-local-sdata</code><dd><a name="index-mlocal_002dsdata-1683"></a><a name="index-mno_002dlocal_002dsdata-1684"></a>Extend (do not extend) the <samp><span class="option">-G</span></samp> behavior to local data too,
such as to static variables in C.  <samp><span class="option">-mlocal-sdata</span></samp> is the
default for all configurations.

     <p>If the linker complains that an application is using too much small data,
you might want to try rebuilding the less performance-critical parts with
<samp><span class="option">-mno-local-sdata</span></samp>.  You might also want to build large
libraries with <samp><span class="option">-mno-local-sdata</span></samp>, so that the libraries leave
more room for the main program.

     <br><dt><code>-mextern-sdata</code><dt><code>-mno-extern-sdata</code><dd><a name="index-mextern_002dsdata-1685"></a><a name="index-mno_002dextern_002dsdata-1686"></a>Assume (do not assume) that externally-defined data will be in
a small data section if that data is within the <samp><span class="option">-G</span></samp> limit. 
<samp><span class="option">-mextern-sdata</span></samp> is the default for all configurations.

     <p>If you compile a module <var>Mod</var> with <samp><span class="option">-mextern-sdata</span></samp> <samp><span class="option">-G
</span><var>num</var></samp> <samp><span class="option">-mgpopt</span></samp>, and <var>Mod</var> references a variable <var>Var</var>
that is no bigger than <var>num</var> bytes, you must make sure that <var>Var</var>
is placed in a small data section.  If <var>Var</var> is defined by another
module, you must either compile that module with a high-enough
<samp><span class="option">-G</span></samp> setting or attach a <code>section</code> attribute to <var>Var</var>'s
definition.  If <var>Var</var> is common, you must link the application
with a high-enough <samp><span class="option">-G</span></samp> setting.

     <p>The easiest way of satisfying these restrictions is to compile
and link every module with the same <samp><span class="option">-G</span></samp> option.  However,
you may wish to build a library that supports several different
small data limits.  You can do this by compiling the library with
the highest supported <samp><span class="option">-G</span></samp> setting and additionally using
<samp><span class="option">-mno-extern-sdata</span></samp> to stop the library from making assumptions
about externally-defined data.

     <br><dt><code>-mgpopt</code><dt><code>-mno-gpopt</code><dd><a name="index-mgpopt-1687"></a><a name="index-mno_002dgpopt-1688"></a>Use (do not use) GP-relative accesses for symbols that are known to be
in a small data section; see <samp><span class="option">-G</span></samp>, <samp><span class="option">-mlocal-sdata</span></samp> and
<samp><span class="option">-mextern-sdata</span></samp>.  <samp><span class="option">-mgpopt</span></samp> is the default for all
configurations.

     <p><samp><span class="option">-mno-gpopt</span></samp> is useful for cases where the <code>$gp</code> register
might not hold the value of <code>_gp</code>.  For example, if the code is
part of a library that might be used in a boot monitor, programs that
call boot monitor routines will pass an unknown value in <code>$gp</code>. 
(In such situations, the boot monitor itself would usually be compiled
with <samp><span class="option">-G0</span></samp>.)

     <p><samp><span class="option">-mno-gpopt</span></samp> implies <samp><span class="option">-mno-local-sdata</span></samp> and
<samp><span class="option">-mno-extern-sdata</span></samp>.

     <br><dt><code>-membedded-data</code><dt><code>-mno-embedded-data</code><dd><a name="index-membedded_002ddata-1689"></a><a name="index-mno_002dembedded_002ddata-1690"></a>Allocate variables to the read-only data section first if possible, then
next in the small data section if possible, otherwise in data.  This gives
slightly slower code than the default, but reduces the amount of RAM required
when executing, and thus may be preferred for some embedded systems.

     <br><dt><code>-muninit-const-in-rodata</code><dt><code>-mno-uninit-const-in-rodata</code><dd><a name="index-muninit_002dconst_002din_002drodata-1691"></a><a name="index-mno_002duninit_002dconst_002din_002drodata-1692"></a>Put uninitialized <code>const</code> variables in the read-only data section. 
This option is only meaningful in conjunction with <samp><span class="option">-membedded-data</span></samp>.

     <br><dt><code>-mcode-readable=</code><var>setting</var><dd><a name="index-mcode_002dreadable-1693"></a>Specify whether GCC may generate code that reads from executable sections. 
There are three possible settings:

          <dl>
<dt><code>-mcode-readable=yes</code><dd>Instructions may freely access executable sections.  This is the
default setting.

          <br><dt><code>-mcode-readable=pcrel</code><dd>MIPS16 PC-relative load instructions can access executable sections,
but other instructions must not do so.  This option is useful on 4KSc
and 4KSd processors when the code TLBs have the Read Inhibit bit set. 
It is also useful on processors that can be configured to have a dual
instruction/data SRAM interface and that, like the M4K, automatically
redirect PC-relative loads to the instruction RAM.

          <br><dt><code>-mcode-readable=no</code><dd>Instructions must not access executable sections.  This option can be
useful on targets that are configured to have a dual instruction/data
SRAM interface but that (unlike the M4K) do not automatically redirect
PC-relative loads to the instruction RAM. 
</dl>

     <br><dt><code>-msplit-addresses</code><dt><code>-mno-split-addresses</code><dd><a name="index-msplit_002daddresses-1694"></a><a name="index-mno_002dsplit_002daddresses-1695"></a>Enable (disable) use of the <code>%hi()</code> and <code>%lo()</code> assembler
relocation operators.  This option has been superseded by
<samp><span class="option">-mexplicit-relocs</span></samp> but is retained for backwards compatibility.

     <br><dt><code>-mexplicit-relocs</code><dt><code>-mno-explicit-relocs</code><dd><a name="index-mexplicit_002drelocs-1696"></a><a name="index-mno_002dexplicit_002drelocs-1697"></a>Use (do not use) assembler relocation operators when dealing with symbolic
addresses.  The alternative, selected by <samp><span class="option">-mno-explicit-relocs</span></samp>,
is to use assembler macros instead.

     <p><samp><span class="option">-mexplicit-relocs</span></samp> is the default if GCC was configured
to use an assembler that supports relocation operators.

     <br><dt><code>-mcheck-zero-division</code><dt><code>-mno-check-zero-division</code><dd><a name="index-mcheck_002dzero_002ddivision-1698"></a><a name="index-mno_002dcheck_002dzero_002ddivision-1699"></a>Trap (do not trap) on integer division by zero.

     <p>The default is <samp><span class="option">-mcheck-zero-division</span></samp>.

     <br><dt><code>-mdivide-traps</code><dt><code>-mdivide-breaks</code><dd><a name="index-mdivide_002dtraps-1700"></a><a name="index-mdivide_002dbreaks-1701"></a>MIPS systems check for division by zero by generating either a
conditional trap or a break instruction.  Using traps results in
smaller code, but is only supported on MIPS II and later.  Also, some
versions of the Linux kernel have a bug that prevents trap from
generating the proper signal (<code>SIGFPE</code>).  Use <samp><span class="option">-mdivide-traps</span></samp> to
allow conditional traps on architectures that support them and
<samp><span class="option">-mdivide-breaks</span></samp> to force the use of breaks.

     <p>The default is usually <samp><span class="option">-mdivide-traps</span></samp>, but this can be
overridden at configure time using <samp><span class="option">--with-divide=breaks</span></samp>. 
Divide-by-zero checks can be completely disabled using
<samp><span class="option">-mno-check-zero-division</span></samp>.

     <br><dt><code>-mmemcpy</code><dt><code>-mno-memcpy</code><dd><a name="index-mmemcpy-1702"></a><a name="index-mno_002dmemcpy-1703"></a>Force (do not force) the use of <code>memcpy()</code> for non-trivial block
moves.  The default is <samp><span class="option">-mno-memcpy</span></samp>, which allows GCC to inline
most constant-sized copies.

     <br><dt><code>-mlong-calls</code><dt><code>-mno-long-calls</code><dd><a name="index-mlong_002dcalls-1704"></a><a name="index-mno_002dlong_002dcalls-1705"></a>Disable (do not disable) use of the <code>jal</code> instruction.  Calling
functions using <code>jal</code> is more efficient but requires the caller
and callee to be in the same 256 megabyte segment.

     <p>This option has no effect on abicalls code.  The default is
<samp><span class="option">-mno-long-calls</span></samp>.

     <br><dt><code>-mmad</code><dt><code>-mno-mad</code><dd><a name="index-mmad-1706"></a><a name="index-mno_002dmad-1707"></a>Enable (disable) use of the <code>mad</code>, <code>madu</code> and <code>mul</code>
instructions, as provided by the R4650 ISA.

     <br><dt><code>-mfused-madd</code><dt><code>-mno-fused-madd</code><dd><a name="index-mfused_002dmadd-1708"></a><a name="index-mno_002dfused_002dmadd-1709"></a>Enable (disable) use of the floating point multiply-accumulate
instructions, when they are available.  The default is
<samp><span class="option">-mfused-madd</span></samp>.

     <p>When multiply-accumulate instructions are used, the intermediate
product is calculated to infinite precision and is not subject to
the FCSR Flush to Zero bit.  This may be undesirable in some
circumstances.

     <br><dt><code>-nocpp</code><dd><a name="index-nocpp-1710"></a>Tell the MIPS assembler to not run its preprocessor over user
assembler files (with a &lsquo;<samp><span class="samp">.s</span></samp>&rsquo; suffix) when assembling them.

     <br><dt><code>-mfix-r4000</code><dt><code>-mno-fix-r4000</code><dd><a name="index-mfix_002dr4000-1711"></a><a name="index-mno_002dfix_002dr4000-1712"></a>Work around certain R4000 CPU errata:
          <ul>
<li>A double-word or a variable shift may give an incorrect result if executed
immediately after starting an integer division. 
<li>A double-word or a variable shift may give an incorrect result if executed
while an integer multiplication is in progress. 
<li>An integer division may give an incorrect result if started in a delay slot
of a taken branch or a jump. 
</ul>

     <br><dt><code>-mfix-r4400</code><dt><code>-mno-fix-r4400</code><dd><a name="index-mfix_002dr4400-1713"></a><a name="index-mno_002dfix_002dr4400-1714"></a>Work around certain R4400 CPU errata:
          <ul>
<li>A double-word or a variable shift may give an incorrect result if executed
immediately after starting an integer division. 
</ul>

     <br><dt><code>-mfix-r10000</code><dt><code>-mno-fix-r10000</code><dd><a name="index-mfix_002dr10000-1715"></a><a name="index-mno_002dfix_002dr10000-1716"></a>Work around certain R10000 errata:
          <ul>
<li><code>ll</code>/<code>sc</code> sequences may not behave atomically on revisions
prior to 3.0.  They may deadlock on revisions 2.6 and earlier. 
</ul>

     <p>This option can only be used if the target architecture supports
branch-likely instructions.  <samp><span class="option">-mfix-r10000</span></samp> is the default when
<samp><span class="option">-march=r10000</span></samp> is used; <samp><span class="option">-mno-fix-r10000</span></samp> is the default
otherwise.

     <br><dt><code>-mfix-vr4120</code><dt><code>-mno-fix-vr4120</code><dd><a name="index-mfix_002dvr4120-1717"></a>Work around certain VR4120 errata:
          <ul>
<li><code>dmultu</code> does not always produce the correct result. 
<li><code>div</code> and <code>ddiv</code> do not always produce the correct result if one
of the operands is negative. 
</ul>
     The workarounds for the division errata rely on special functions in
<samp><span class="file">libgcc.a</span></samp>.  At present, these functions are only provided by
the <code>mips64vr*-elf</code> configurations.

     <p>Other VR4120 errata require a nop to be inserted between certain pairs of
instructions.  These errata are handled by the assembler, not by GCC itself.

     <br><dt><code>-mfix-vr4130</code><dd><a name="index-mfix_002dvr4130-1718"></a>Work around the VR4130 <code>mflo</code>/<code>mfhi</code> errata.  The
workarounds are implemented by the assembler rather than by GCC,
although GCC will avoid using <code>mflo</code> and <code>mfhi</code> if the
VR4130 <code>macc</code>, <code>macchi</code>, <code>dmacc</code> and <code>dmacchi</code>
instructions are available instead.

     <br><dt><code>-mfix-sb1</code><dt><code>-mno-fix-sb1</code><dd><a name="index-mfix_002dsb1-1719"></a>Work around certain SB-1 CPU core errata. 
(This flag currently works around the SB-1 revision 2
&ldquo;F1&rdquo; and &ldquo;F2&rdquo; floating point errata.)

     <br><dt><code>-mr10k-cache-barrier=</code><var>setting</var><dd><a name="index-mr10k_002dcache_002dbarrier-1720"></a>Specify whether GCC should insert cache barriers to avoid the
side-effects of speculation on R10K processors.

     <p>In common with many processors, the R10K tries to predict the outcome
of a conditional branch and speculatively executes instructions from
the &ldquo;taken&rdquo; branch.  It later aborts these instructions if the
predicted outcome was wrong.  However, on the R10K, even aborted
instructions can have side effects.

     <p>This problem only affects kernel stores and, depending on the system,
kernel loads.  As an example, a speculatively-executed store may load
the target memory into cache and mark the cache line as dirty, even if
the store itself is later aborted.  If a DMA operation writes to the
same area of memory before the &ldquo;dirty&rdquo; line is flushed, the cached
data will overwrite the DMA-ed data.  See the R10K processor manual
for a full description, including other potential problems.

     <p>One workaround is to insert cache barrier instructions before every memory
access that might be speculatively executed and that might have side
effects even if aborted.  <samp><span class="option">-mr10k-cache-barrier=</span><var>setting</var></samp>
controls GCC's implementation of this workaround.  It assumes that
aborted accesses to any byte in the following regions will not have
side effects:

          <ol type=1 start=1>
<li>the memory occupied by the current function's stack frame;

          <li>the memory occupied by an incoming stack argument;

          <li>the memory occupied by an object with a link-time-constant address.
          </ol>

     <p>It is the kernel's responsibility to ensure that speculative
accesses to these regions are indeed safe.

     <p>If the input program contains a function declaration such as:

     <pre class="smallexample">          void foo (void);
</pre>
     <p>then the implementation of <code>foo</code> must allow <code>j foo</code> and
<code>jal foo</code> to be executed speculatively.  GCC honors this
restriction for functions it compiles itself.  It expects non-GCC
functions (such as hand-written assembly code) to do the same.

     <p>The option has three forms:

          <dl>
<dt><code>-mr10k-cache-barrier=load-store</code><dd>Insert a cache barrier before a load or store that might be
speculatively executed and that might have side effects even
if aborted.

          <br><dt><code>-mr10k-cache-barrier=store</code><dd>Insert a cache barrier before a store that might be speculatively
executed and that might have side effects even if aborted.

          <br><dt><code>-mr10k-cache-barrier=none</code><dd>Disable the insertion of cache barriers.  This is the default setting. 
</dl>

     <br><dt><code>-mflush-func=</code><var>func</var><dt><code>-mno-flush-func</code><dd><a name="index-mflush_002dfunc-1721"></a>Specifies the function to call to flush the I and D caches, or to not
call any such function.  If called, the function must take the same
arguments as the common <code>_flush_func()</code>, that is, the address of the
memory range for which the cache is being flushed, the size of the
memory range, and the number 3 (to flush both caches).  The default
depends on the target GCC was configured for, but commonly is either
&lsquo;<samp><span class="samp">_flush_func</span></samp>&rsquo; or &lsquo;<samp><span class="samp">__cpu_flush</span></samp>&rsquo;.

     <br><dt><code>mbranch-cost=</code><var>num</var><dd><a name="index-mbranch_002dcost-1722"></a>Set the cost of branches to roughly <var>num</var> &ldquo;simple&rdquo; instructions. 
This cost is only a heuristic and is not guaranteed to produce
consistent results across releases.  A zero cost redundantly selects
the default, which is based on the <samp><span class="option">-mtune</span></samp> setting.

     <br><dt><code>-mbranch-likely</code><dt><code>-mno-branch-likely</code><dd><a name="index-mbranch_002dlikely-1723"></a><a name="index-mno_002dbranch_002dlikely-1724"></a>Enable or disable use of Branch Likely instructions, regardless of the
default for the selected architecture.  By default, Branch Likely
instructions may be generated if they are supported by the selected
architecture.  An exception is for the MIPS32 and MIPS64 architectures
and processors which implement those architectures; for those, Branch
Likely instructions will not be generated by default because the MIPS32
and MIPS64 architectures specifically deprecate their use.

     <br><dt><code>-mfp-exceptions</code><dt><code>-mno-fp-exceptions</code><dd><a name="index-mfp_002dexceptions-1725"></a>Specifies whether FP exceptions are enabled.  This affects how we schedule
FP instructions for some processors.  The default is that FP exceptions are
enabled.

     <p>For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
64-bit code, then we can use both FP pipes.  Otherwise, we can only use one
FP pipe.

     <br><dt><code>-mvr4130-align</code><dt><code>-mno-vr4130-align</code><dd><a name="index-mvr4130_002dalign-1726"></a>The VR4130 pipeline is two-way superscalar, but can only issue two
instructions together if the first one is 8-byte aligned.  When this
option is enabled, GCC will align pairs of instructions that it
thinks should execute in parallel.

     <p>This option only has an effect when optimizing for the VR4130. 
It normally makes code faster, but at the expense of making it bigger. 
It is enabled by default at optimization level <samp><span class="option">-O3</span></samp>.

     <br><dt><code>-msynci</code><dt><code>-mno-synci</code><dd><a name="index-msynci-1727"></a>Enable (disable) generation of <code>synci</code> instructions on
architectures that support it.  The <code>synci</code> instructions (if
enabled) will be generated when <code>__builtin___clear_cache()</code> is
compiled.

     <p>This option defaults to <code>-mno-synci</code>, but the default can be
overridden by configuring with <code>--with-synci</code>.

     <p>When compiling code for single processor systems, it is generally safe
to use <code>synci</code>.  However, on many multi-core (SMP) systems, it
will not invalidate the instruction caches on all cores and may lead
to undefined behavior.

     <br><dt><code>-mrelax-pic-calls</code><dt><code>-mno-relax-pic-calls</code><dd><a name="index-mrelax_002dpic_002dcalls-1728"></a>Try to turn PIC calls that are normally dispatched via register
<code>$25</code> into direct calls.  This is only possible if the linker can
resolve the destination at link-time and if the destination is within
range for a direct call.

     <p><samp><span class="option">-mrelax-pic-calls</span></samp> is the default if GCC was configured to use
an assembler and a linker that supports the <code>.reloc</code> assembly
directive and <code>-mexplicit-relocs</code> is in effect.  With
<code>-mno-explicit-relocs</code>, this optimization can be performed by the
assembler and the linker alone without help from the compiler.

     <br><dt><code>-mmcount-ra-address</code><dt><code>-mno-mcount-ra-address</code><dd><a name="index-mmcount_002dra_002daddress-1729"></a><a name="index-mno_002dmcount_002dra_002daddress-1730"></a>Emit (do not emit) code that allows <code>_mcount</code> to modify the
calling function's return address.  When enabled, this option extends
the usual <code>_mcount</code> interface with a new <var>ra-address</var>
parameter, which has type <code>intptr_t *</code> and is passed in register
<code>$12</code>.  <code>_mcount</code> can then modify the return address by
doing both of the following:
          <ul>
<li>Returning the new address in register <code>$31</code>. 
<li>Storing the new address in <code>*</code><var>ra-address</var>,
if <var>ra-address</var> is nonnull. 
</ul>

     <p>The default is <samp><span class="option">-mno-mcount-ra-address</span></samp>.

 </dl>

<div class="node">
<a name="MMIX-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#MN10300-Options">MN10300 Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#MIPS-Options">MIPS Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.28 MMIX Options</h4>

<p><a name="index-MMIX-Options-1731"></a>
These options are defined for the MMIX:

     <dl>
<dt><code>-mlibfuncs</code><dt><code>-mno-libfuncs</code><dd><a name="index-mlibfuncs-1732"></a><a name="index-mno_002dlibfuncs-1733"></a>Specify that intrinsic library functions are being compiled, passing all
values in registers, no matter the size.

     <br><dt><code>-mepsilon</code><dt><code>-mno-epsilon</code><dd><a name="index-mepsilon-1734"></a><a name="index-mno_002depsilon-1735"></a>Generate floating-point comparison instructions that compare with respect
to the <code>rE</code> epsilon register.

     <br><dt><code>-mabi=mmixware</code><dt><code>-mabi=gnu</code><dd><a name="index-mabi_003dmmixware-1736"></a><a name="index-mabi_003dgnu-1737"></a>Generate code that passes function parameters and return values that (in
the called function) are seen as registers <code>$0</code> and up, as opposed to
the GNU ABI which uses global registers <code>$231</code> and up.

     <br><dt><code>-mzero-extend</code><dt><code>-mno-zero-extend</code><dd><a name="index-mzero_002dextend-1738"></a><a name="index-mno_002dzero_002dextend-1739"></a>When reading data from memory in sizes shorter than 64 bits, use (do not
use) zero-extending load instructions by default, rather than
sign-extending ones.

     <br><dt><code>-mknuthdiv</code><dt><code>-mno-knuthdiv</code><dd><a name="index-mknuthdiv-1740"></a><a name="index-mno_002dknuthdiv-1741"></a>Make the result of a division yielding a remainder have the same sign as
the divisor.  With the default, <samp><span class="option">-mno-knuthdiv</span></samp>, the sign of the
remainder follows the sign of the dividend.  Both methods are
arithmetically valid, the latter being almost exclusively used.

     <br><dt><code>-mtoplevel-symbols</code><dt><code>-mno-toplevel-symbols</code><dd><a name="index-mtoplevel_002dsymbols-1742"></a><a name="index-mno_002dtoplevel_002dsymbols-1743"></a>Prepend (do not prepend) a &lsquo;<samp><span class="samp">:</span></samp>&rsquo; to all global symbols, so the assembly
code can be used with the <code>PREFIX</code> assembly directive.

     <br><dt><code>-melf</code><dd><a name="index-melf-1744"></a>Generate an executable in the ELF format, rather than the default
&lsquo;<samp><span class="samp">mmo</span></samp>&rsquo; format used by the <samp><span class="command">mmix</span></samp> simulator.

     <br><dt><code>-mbranch-predict</code><dt><code>-mno-branch-predict</code><dd><a name="index-mbranch_002dpredict-1745"></a><a name="index-mno_002dbranch_002dpredict-1746"></a>Use (do not use) the probable-branch instructions, when static branch
prediction indicates a probable branch.

     <br><dt><code>-mbase-addresses</code><dt><code>-mno-base-addresses</code><dd><a name="index-mbase_002daddresses-1747"></a><a name="index-mno_002dbase_002daddresses-1748"></a>Generate (do not generate) code that uses <em>base addresses</em>.  Using a
base address automatically generates a request (handled by the assembler
and the linker) for a constant to be set up in a global register.  The
register is used for one or more base address requests within the range 0
to 255 from the value held in the register.  The generally leads to short
and fast code, but the number of different data items that can be
addressed is limited.  This means that a program that uses lots of static
data may require <samp><span class="option">-mno-base-addresses</span></samp>.

     <br><dt><code>-msingle-exit</code><dt><code>-mno-single-exit</code><dd><a name="index-msingle_002dexit-1749"></a><a name="index-mno_002dsingle_002dexit-1750"></a>Force (do not force) generated code to have a single exit point in each
function. 
</dl>

<div class="node">
<a name="MN10300-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#PDP_002d11-Options">PDP-11 Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#MMIX-Options">MMIX Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.29 MN10300 Options</h4>

<p><a name="index-MN10300-options-1751"></a>
These <samp><span class="option">-m</span></samp> options are defined for Matsushita MN10300 architectures:

     <dl>
<dt><code>-mmult-bug</code><dd><a name="index-mmult_002dbug-1752"></a>Generate code to avoid bugs in the multiply instructions for the MN10300
processors.  This is the default.

     <br><dt><code>-mno-mult-bug</code><dd><a name="index-mno_002dmult_002dbug-1753"></a>Do not generate code to avoid bugs in the multiply instructions for the
MN10300 processors.

     <br><dt><code>-mam33</code><dd><a name="index-mam33-1754"></a>Generate code which uses features specific to the AM33 processor.

     <br><dt><code>-mno-am33</code><dd><a name="index-mno_002dam33-1755"></a>Do not generate code which uses features specific to the AM33 processor.  This
is the default.

     <br><dt><code>-mam33-2</code><dd><a name="index-mam33_002d2-1756"></a>Generate code which uses features specific to the AM33/2.0 processor.

     <br><dt><code>-mam34</code><dd><a name="index-mam34-1757"></a>Generate code which uses features specific to the AM34 processor.

     <br><dt><code>-mtune=</code><var>cpu-type</var><dd><a name="index-mtune-1758"></a>Use the timing characteristics of the indicated CPU type when
scheduling instructions.  This does not change the targeted processor
type.  The CPU type must be one of &lsquo;<samp><span class="samp">mn10300</span></samp>&rsquo;, &lsquo;<samp><span class="samp">am33</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">am33-2</span></samp>&rsquo; or &lsquo;<samp><span class="samp">am34</span></samp>&rsquo;.

     <br><dt><code>-mreturn-pointer-on-d0</code><dd><a name="index-mreturn_002dpointer_002don_002dd0-1759"></a>When generating a function which returns a pointer, return the pointer
in both <code>a0</code> and <code>d0</code>.  Otherwise, the pointer is returned
only in a0, and attempts to call such functions without a prototype
would result in errors.  Note that this option is on by default; use
<samp><span class="option">-mno-return-pointer-on-d0</span></samp> to disable it.

     <br><dt><code>-mno-crt0</code><dd><a name="index-mno_002dcrt0-1760"></a>Do not link in the C run-time initialization object file.

     <br><dt><code>-mrelax</code><dd><a name="index-mrelax-1761"></a>Indicate to the linker that it should perform a relaxation optimization pass
to shorten branches, calls and absolute memory addresses.  This option only
has an effect when used on the command line for the final link step.

     <p>This option makes symbolic debugging impossible.

     <br><dt><code>-mliw</code><dd><a name="index-mliw-1762"></a>Allow the compiler to generate <em>Long Instruction Word</em>
instructions if the target is the &lsquo;<samp><span class="samp">AM33</span></samp>&rsquo; or later.  This is the
default.  This option defines the preprocessor macro &lsquo;<samp><span class="samp">__LIW__</span></samp>&rsquo;.

     <br><dt><code>-mnoliw</code><dd><a name="index-mnoliw-1763"></a>Do not allow the compiler to generate <em>Long Instruction Word</em>
instructions.  This option defines the preprocessor macro
&lsquo;<samp><span class="samp">__NO_LIW__</span></samp>&rsquo;.

 </dl>

<div class="node">
<a name="PDP-11-Options"></a>
<a name="PDP_002d11-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#picoChip-Options">picoChip Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#MN10300-Options">MN10300 Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.30 PDP-11 Options</h4>

<p><a name="index-PDP_002d11-Options-1764"></a>
These options are defined for the PDP-11:

     <dl>
<dt><code>-mfpu</code><dd><a name="index-mfpu-1765"></a>Use hardware FPP floating point.  This is the default.  (FIS floating
point on the PDP-11/40 is not supported.)

     <br><dt><code>-msoft-float</code><dd><a name="index-msoft_002dfloat-1766"></a>Do not use hardware floating point.

     <br><dt><code>-mac0</code><dd><a name="index-mac0-1767"></a>Return floating-point results in ac0 (fr0 in Unix assembler syntax).

     <br><dt><code>-mno-ac0</code><dd><a name="index-mno_002dac0-1768"></a>Return floating-point results in memory.  This is the default.

     <br><dt><code>-m40</code><dd><a name="index-m40-1769"></a>Generate code for a PDP-11/40.

     <br><dt><code>-m45</code><dd><a name="index-m45-1770"></a>Generate code for a PDP-11/45.  This is the default.

     <br><dt><code>-m10</code><dd><a name="index-m10-1771"></a>Generate code for a PDP-11/10.

     <br><dt><code>-mbcopy-builtin</code><dd><a name="index-mbcopy_002dbuiltin-1772"></a>Use inline <code>movmemhi</code> patterns for copying memory.  This is the
default.

     <br><dt><code>-mbcopy</code><dd><a name="index-mbcopy-1773"></a>Do not use inline <code>movmemhi</code> patterns for copying memory.

     <br><dt><code>-mint16</code><dt><code>-mno-int32</code><dd><a name="index-mint16-1774"></a><a name="index-mno_002dint32-1775"></a>Use 16-bit <code>int</code>.  This is the default.

     <br><dt><code>-mint32</code><dt><code>-mno-int16</code><dd><a name="index-mint32-1776"></a><a name="index-mno_002dint16-1777"></a>Use 32-bit <code>int</code>.

     <br><dt><code>-mfloat64</code><dt><code>-mno-float32</code><dd><a name="index-mfloat64-1778"></a><a name="index-mno_002dfloat32-1779"></a>Use 64-bit <code>float</code>.  This is the default.

     <br><dt><code>-mfloat32</code><dt><code>-mno-float64</code><dd><a name="index-mfloat32-1780"></a><a name="index-mno_002dfloat64-1781"></a>Use 32-bit <code>float</code>.

     <br><dt><code>-mabshi</code><dd><a name="index-mabshi-1782"></a>Use <code>abshi2</code> pattern.  This is the default.

     <br><dt><code>-mno-abshi</code><dd><a name="index-mno_002dabshi-1783"></a>Do not use <code>abshi2</code> pattern.

     <br><dt><code>-mbranch-expensive</code><dd><a name="index-mbranch_002dexpensive-1784"></a>Pretend that branches are expensive.  This is for experimenting with
code generation only.

     <br><dt><code>-mbranch-cheap</code><dd><a name="index-mbranch_002dcheap-1785"></a>Do not pretend that branches are expensive.  This is the default.

     <br><dt><code>-munix-asm</code><dd><a name="index-munix_002dasm-1786"></a>Use Unix assembler syntax.  This is the default when configured for
&lsquo;<samp><span class="samp">pdp11-*-bsd</span></samp>&rsquo;.

     <br><dt><code>-mdec-asm</code><dd><a name="index-mdec_002dasm-1787"></a>Use DEC assembler syntax.  This is the default when configured for any
PDP-11 target other than &lsquo;<samp><span class="samp">pdp11-*-bsd</span></samp>&rsquo;. 
</dl>

<div class="node">
<a name="picoChip-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#PowerPC-Options">PowerPC Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#PDP_002d11-Options">PDP-11 Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.31 picoChip Options</h4>

<p><a name="index-picoChip-options-1788"></a>
These &lsquo;<samp><span class="samp">-m</span></samp>&rsquo; options are defined for picoChip implementations:

     <dl>
<dt><code>-mae=</code><var>ae_type</var><dd><a name="index-mcpu-1789"></a>Set the instruction set, register set, and instruction scheduling
parameters for array element type <var>ae_type</var>.  Supported values
for <var>ae_type</var> are &lsquo;<samp><span class="samp">ANY</span></samp>&rsquo;, &lsquo;<samp><span class="samp">MUL</span></samp>&rsquo;, and &lsquo;<samp><span class="samp">MAC</span></samp>&rsquo;.

     <p><samp><span class="option">-mae=ANY</span></samp> selects a completely generic AE type.  Code
generated with this option will run on any of the other AE types.  The
code will not be as efficient as it would be if compiled for a specific
AE type, and some types of operation (e.g., multiplication) will not
work properly on all types of AE.

     <p><samp><span class="option">-mae=MUL</span></samp> selects a MUL AE type.  This is the most useful AE type
for compiled code, and is the default.

     <p><samp><span class="option">-mae=MAC</span></samp> selects a DSP-style MAC AE.  Code compiled with this
option may suffer from poor performance of byte (char) manipulation,
since the DSP AE does not provide hardware support for byte load/stores.

     <br><dt><code>-msymbol-as-address</code><dd>Enable the compiler to directly use a symbol name as an address in a
load/store instruction, without first loading it into a
register.  Typically, the use of this option will generate larger
programs, which run faster than when the option isn't used.  However, the
results vary from program to program, so it is left as a user option,
rather than being permanently enabled.

     <br><dt><code>-mno-inefficient-warnings</code><dd>Disables warnings about the generation of inefficient code.  These
warnings can be generated, for example, when compiling code which
performs byte-level memory operations on the MAC AE type.  The MAC AE has
no hardware support for byte-level memory operations, so all byte
load/stores must be synthesized from word load/store operations.  This is
inefficient and a warning will be generated indicating to the programmer
that they should rewrite the code to avoid byte operations, or to target
an AE type which has the necessary hardware support.  This option enables
the warning to be turned off.

 </dl>

<div class="node">
<a name="PowerPC-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#picoChip-Options">picoChip Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.32 PowerPC Options</h4>

<p><a name="index-PowerPC-options-1790"></a>
These are listed under See <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a>.

<div class="node">
<a name="RS%2f6000-and-PowerPC-Options"></a>
<a name="RS_002f6000-and-PowerPC-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#RX-Options">RX Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#PowerPC-Options">PowerPC Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.33 IBM RS/6000 and PowerPC Options</h4>

<p><a name="index-RS_002f6000-and-PowerPC-Options-1791"></a><a name="index-IBM-RS_002f6000-and-PowerPC-Options-1792"></a>
These &lsquo;<samp><span class="samp">-m</span></samp>&rsquo; options are defined for the IBM RS/6000 and PowerPC:
     <dl>
<dt><code>-mpower</code><dt><code>-mno-power</code><dt><code>-mpower2</code><dt><code>-mno-power2</code><dt><code>-mpowerpc</code><dt><code>-mno-powerpc</code><dt><code>-mpowerpc-gpopt</code><dt><code>-mno-powerpc-gpopt</code><dt><code>-mpowerpc-gfxopt</code><dt><code>-mno-powerpc-gfxopt</code><dt><code>-mpowerpc64</code><dt><code>-mno-powerpc64</code><dt><code>-mmfcrf</code><dt><code>-mno-mfcrf</code><dt><code>-mpopcntb</code><dt><code>-mno-popcntb</code><dt><code>-mpopcntd</code><dt><code>-mno-popcntd</code><dt><code>-mfprnd</code><dt><code>-mno-fprnd</code><dt><code>-mcmpb</code><dt><code>-mno-cmpb</code><dt><code>-mmfpgpr</code><dt><code>-mno-mfpgpr</code><dt><code>-mhard-dfp</code><dt><code>-mno-hard-dfp</code><dd><a name="index-mpower-1793"></a><a name="index-mno_002dpower-1794"></a><a name="index-mpower2-1795"></a><a name="index-mno_002dpower2-1796"></a><a name="index-mpowerpc-1797"></a><a name="index-mno_002dpowerpc-1798"></a><a name="index-mpowerpc_002dgpopt-1799"></a><a name="index-mno_002dpowerpc_002dgpopt-1800"></a><a name="index-mpowerpc_002dgfxopt-1801"></a><a name="index-mno_002dpowerpc_002dgfxopt-1802"></a><a name="index-mpowerpc64-1803"></a><a name="index-mno_002dpowerpc64-1804"></a><a name="index-mmfcrf-1805"></a><a name="index-mno_002dmfcrf-1806"></a><a name="index-mpopcntb-1807"></a><a name="index-mno_002dpopcntb-1808"></a><a name="index-mpopcntd-1809"></a><a name="index-mno_002dpopcntd-1810"></a><a name="index-mfprnd-1811"></a><a name="index-mno_002dfprnd-1812"></a><a name="index-mcmpb-1813"></a><a name="index-mno_002dcmpb-1814"></a><a name="index-mmfpgpr-1815"></a><a name="index-mno_002dmfpgpr-1816"></a><a name="index-mhard_002ddfp-1817"></a><a name="index-mno_002dhard_002ddfp-1818"></a>GCC supports two related instruction set architectures for the
RS/6000 and PowerPC.  The <dfn>POWER</dfn> instruction set are those
instructions supported by the &lsquo;<samp><span class="samp">rios</span></samp>&rsquo; chip set used in the original
RS/6000 systems and the <dfn>PowerPC</dfn> instruction set is the
architecture of the Freescale MPC5xx, MPC6xx, MPC8xx microprocessors, and
the IBM 4xx, 6xx, and follow-on microprocessors.

     <p>Neither architecture is a subset of the other.  However there is a
large common subset of instructions supported by both.  An MQ
register is included in processors supporting the POWER architecture.

     <p>You use these options to specify which instructions are available on the
processor you are using.  The default value of these options is
determined when configuring GCC.  Specifying the
<samp><span class="option">-mcpu=</span><var>cpu_type</var></samp> overrides the specification of these
options.  We recommend you use the <samp><span class="option">-mcpu=</span><var>cpu_type</var></samp> option
rather than the options listed above.

     <p>The <samp><span class="option">-mpower</span></samp> option allows GCC to generate instructions that
are found only in the POWER architecture and to use the MQ register. 
Specifying <samp><span class="option">-mpower2</span></samp> implies <samp><span class="option">-power</span></samp> and also allows GCC
to generate instructions that are present in the POWER2 architecture but
not the original POWER architecture.

     <p>The <samp><span class="option">-mpowerpc</span></samp> option allows GCC to generate instructions that
are found only in the 32-bit subset of the PowerPC architecture. 
Specifying <samp><span class="option">-mpowerpc-gpopt</span></samp> implies <samp><span class="option">-mpowerpc</span></samp> and also allows
GCC to use the optional PowerPC architecture instructions in the
General Purpose group, including floating-point square root.  Specifying
<samp><span class="option">-mpowerpc-gfxopt</span></samp> implies <samp><span class="option">-mpowerpc</span></samp> and also allows GCC to
use the optional PowerPC architecture instructions in the Graphics
group, including floating-point select.

     <p>The <samp><span class="option">-mmfcrf</span></samp> option allows GCC to generate the move from
condition register field instruction implemented on the POWER4
processor and other processors that support the PowerPC V2.01
architecture. 
The <samp><span class="option">-mpopcntb</span></samp> option allows GCC to generate the popcount and
double precision FP reciprocal estimate instruction implemented on the
POWER5 processor and other processors that support the PowerPC V2.02
architecture. 
The <samp><span class="option">-mpopcntd</span></samp> option allows GCC to generate the popcount
instruction implemented on the POWER7 processor and other processors
that support the PowerPC V2.06 architecture. 
The <samp><span class="option">-mfprnd</span></samp> option allows GCC to generate the FP round to
integer instructions implemented on the POWER5+ processor and other
processors that support the PowerPC V2.03 architecture. 
The <samp><span class="option">-mcmpb</span></samp> option allows GCC to generate the compare bytes
instruction implemented on the POWER6 processor and other processors
that support the PowerPC V2.05 architecture. 
The <samp><span class="option">-mmfpgpr</span></samp> option allows GCC to generate the FP move to/from
general purpose register instructions implemented on the POWER6X
processor and other processors that support the extended PowerPC V2.05
architecture. 
The <samp><span class="option">-mhard-dfp</span></samp> option allows GCC to generate the decimal floating
point instructions implemented on some POWER processors.

     <p>The <samp><span class="option">-mpowerpc64</span></samp> option allows GCC to generate the additional
64-bit instructions that are found in the full PowerPC64 architecture
and to treat GPRs as 64-bit, doubleword quantities.  GCC defaults to
<samp><span class="option">-mno-powerpc64</span></samp>.

     <p>If you specify both <samp><span class="option">-mno-power</span></samp> and <samp><span class="option">-mno-powerpc</span></samp>, GCC
will use only the instructions in the common subset of both
architectures plus some special AIX common-mode calls, and will not use
the MQ register.  Specifying both <samp><span class="option">-mpower</span></samp> and <samp><span class="option">-mpowerpc</span></samp>
permits GCC to use any instruction from either architecture and to
allow use of the MQ register; specify this for the Motorola MPC601.

     <br><dt><code>-mnew-mnemonics</code><dt><code>-mold-mnemonics</code><dd><a name="index-mnew_002dmnemonics-1819"></a><a name="index-mold_002dmnemonics-1820"></a>Select which mnemonics to use in the generated assembler code.  With
<samp><span class="option">-mnew-mnemonics</span></samp>, GCC uses the assembler mnemonics defined for
the PowerPC architecture.  With <samp><span class="option">-mold-mnemonics</span></samp> it uses the
assembler mnemonics defined for the POWER architecture.  Instructions
defined in only one architecture have only one mnemonic; GCC uses that
mnemonic irrespective of which of these options is specified.

     <p>GCC defaults to the mnemonics appropriate for the architecture in
use.  Specifying <samp><span class="option">-mcpu=</span><var>cpu_type</var></samp> sometimes overrides the
value of these option.  Unless you are building a cross-compiler, you
should normally not specify either <samp><span class="option">-mnew-mnemonics</span></samp> or
<samp><span class="option">-mold-mnemonics</span></samp>, but should instead accept the default.

     <br><dt><code>-mcpu=</code><var>cpu_type</var><dd><a name="index-mcpu-1821"></a>Set architecture type, register usage, choice of mnemonics, and
instruction scheduling parameters for machine type <var>cpu_type</var>. 
Supported values for <var>cpu_type</var> are &lsquo;<samp><span class="samp">401</span></samp>&rsquo;, &lsquo;<samp><span class="samp">403</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">405</span></samp>&rsquo;, &lsquo;<samp><span class="samp">405fp</span></samp>&rsquo;, &lsquo;<samp><span class="samp">440</span></samp>&rsquo;, &lsquo;<samp><span class="samp">440fp</span></samp>&rsquo;, &lsquo;<samp><span class="samp">464</span></samp>&rsquo;, &lsquo;<samp><span class="samp">464fp</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">476</span></samp>&rsquo;, &lsquo;<samp><span class="samp">476fp</span></samp>&rsquo;, &lsquo;<samp><span class="samp">505</span></samp>&rsquo;, &lsquo;<samp><span class="samp">601</span></samp>&rsquo;, &lsquo;<samp><span class="samp">602</span></samp>&rsquo;, &lsquo;<samp><span class="samp">603</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">603e</span></samp>&rsquo;, &lsquo;<samp><span class="samp">604</span></samp>&rsquo;, &lsquo;<samp><span class="samp">604e</span></samp>&rsquo;, &lsquo;<samp><span class="samp">620</span></samp>&rsquo;, &lsquo;<samp><span class="samp">630</span></samp>&rsquo;, &lsquo;<samp><span class="samp">740</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">7400</span></samp>&rsquo;, &lsquo;<samp><span class="samp">7450</span></samp>&rsquo;, &lsquo;<samp><span class="samp">750</span></samp>&rsquo;, &lsquo;<samp><span class="samp">801</span></samp>&rsquo;, &lsquo;<samp><span class="samp">821</span></samp>&rsquo;, &lsquo;<samp><span class="samp">823</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">860</span></samp>&rsquo;, &lsquo;<samp><span class="samp">970</span></samp>&rsquo;, &lsquo;<samp><span class="samp">8540</span></samp>&rsquo;, &lsquo;<samp><span class="samp">a2</span></samp>&rsquo;, &lsquo;<samp><span class="samp">e300c2</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">e300c3</span></samp>&rsquo;, &lsquo;<samp><span class="samp">e500mc</span></samp>&rsquo;, &lsquo;<samp><span class="samp">e500mc64</span></samp>&rsquo;, &lsquo;<samp><span class="samp">ec603e</span></samp>&rsquo;, &lsquo;<samp><span class="samp">G3</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">G4</span></samp>&rsquo;, &lsquo;<samp><span class="samp">G5</span></samp>&rsquo;, &lsquo;<samp><span class="samp">titan</span></samp>&rsquo;, &lsquo;<samp><span class="samp">power</span></samp>&rsquo;, &lsquo;<samp><span class="samp">power2</span></samp>&rsquo;, &lsquo;<samp><span class="samp">power3</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">power4</span></samp>&rsquo;, &lsquo;<samp><span class="samp">power5</span></samp>&rsquo;, &lsquo;<samp><span class="samp">power5+</span></samp>&rsquo;, &lsquo;<samp><span class="samp">power6</span></samp>&rsquo;, &lsquo;<samp><span class="samp">power6x</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">power7</span></samp>&rsquo;, &lsquo;<samp><span class="samp">common</span></samp>&rsquo;, &lsquo;<samp><span class="samp">powerpc</span></samp>&rsquo;, &lsquo;<samp><span class="samp">powerpc64</span></samp>&rsquo;, &lsquo;<samp><span class="samp">rios</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">rios1</span></samp>&rsquo;, &lsquo;<samp><span class="samp">rios2</span></samp>&rsquo;, &lsquo;<samp><span class="samp">rsc</span></samp>&rsquo;, and &lsquo;<samp><span class="samp">rs64</span></samp>&rsquo;.

     <p><samp><span class="option">-mcpu=common</span></samp> selects a completely generic processor.  Code
generated under this option will run on any POWER or PowerPC processor. 
GCC will use only the instructions in the common subset of both
architectures, and will not use the MQ register.  GCC assumes a generic
processor model for scheduling purposes.

     <p><samp><span class="option">-mcpu=power</span></samp>, <samp><span class="option">-mcpu=power2</span></samp>, <samp><span class="option">-mcpu=powerpc</span></samp>, and
<samp><span class="option">-mcpu=powerpc64</span></samp> specify generic POWER, POWER2, pure 32-bit
PowerPC (i.e., not MPC601), and 64-bit PowerPC architecture machine
types, with an appropriate, generic processor model assumed for
scheduling purposes.

     <p>The other options specify a specific processor.  Code generated under
those options will run best on that processor, and may not run at all on
others.

     <p>The <samp><span class="option">-mcpu</span></samp> options automatically enable or disable the
following options:

     <pre class="smallexample">          -maltivec  -mfprnd  -mhard-float  -mmfcrf  -mmultiple 
          -mnew-mnemonics  -mpopcntb -mpopcntd  -mpower  -mpower2  -mpowerpc64 
          -mpowerpc-gpopt  -mpowerpc-gfxopt  -msingle-float -mdouble-float 
          -msimple-fpu -mstring  -mmulhw  -mdlmzb  -mmfpgpr -mvsx
</pre>
     <p>The particular options set for any particular CPU will vary between
compiler versions, depending on what setting seems to produce optimal
code for that CPU; it doesn't necessarily reflect the actual hardware's
capabilities.  If you wish to set an individual option to a particular
value, you may specify it after the <samp><span class="option">-mcpu</span></samp> option, like
&lsquo;<samp><span class="samp">-mcpu=970 -mno-altivec</span></samp>&rsquo;.

     <p>On AIX, the <samp><span class="option">-maltivec</span></samp> and <samp><span class="option">-mpowerpc64</span></samp> options are
not enabled or disabled by the <samp><span class="option">-mcpu</span></samp> option at present because
AIX does not have full support for these options.  You may still
enable or disable them individually if you're sure it'll work in your
environment.

     <br><dt><code>-mtune=</code><var>cpu_type</var><dd><a name="index-mtune-1822"></a>Set the instruction scheduling parameters for machine type
<var>cpu_type</var>, but do not set the architecture type, register usage, or
choice of mnemonics, as <samp><span class="option">-mcpu=</span><var>cpu_type</var></samp> would.  The same
values for <var>cpu_type</var> are used for <samp><span class="option">-mtune</span></samp> as for
<samp><span class="option">-mcpu</span></samp>.  If both are specified, the code generated will use the
architecture, registers, and mnemonics set by <samp><span class="option">-mcpu</span></samp>, but the
scheduling parameters set by <samp><span class="option">-mtune</span></samp>.

     <br><dt><code>-mcmodel=small</code><dd><a name="index-mcmodel_003dsmall-1823"></a>Generate PowerPC64 code for the small model: The TOC is limited to
64k.

     <br><dt><code>-mcmodel=medium</code><dd><a name="index-mcmodel_003dmedium-1824"></a>Generate PowerPC64 code for the medium model: The TOC and other static
data may be up to a total of 4G in size.

     <br><dt><code>-mcmodel=large</code><dd><a name="index-mcmodel_003dlarge-1825"></a>Generate PowerPC64 code for the large model: The TOC may be up to 4G
in size.  Other data and code is only limited by the 64-bit address
space.

     <br><dt><code>-maltivec</code><dt><code>-mno-altivec</code><dd><a name="index-maltivec-1826"></a><a name="index-mno_002daltivec-1827"></a>Generate code that uses (does not use) AltiVec instructions, and also
enable the use of built-in functions that allow more direct access to
the AltiVec instruction set.  You may also need to set
<samp><span class="option">-mabi=altivec</span></samp> to adjust the current ABI with AltiVec ABI
enhancements.

     <br><dt><code>-mvrsave</code><dt><code>-mno-vrsave</code><dd><a name="index-mvrsave-1828"></a><a name="index-mno_002dvrsave-1829"></a>Generate VRSAVE instructions when generating AltiVec code.

     <br><dt><code>-mgen-cell-microcode</code><dd><a name="index-mgen_002dcell_002dmicrocode-1830"></a>Generate Cell microcode instructions

     <br><dt><code>-mwarn-cell-microcode</code><dd><a name="index-mwarn_002dcell_002dmicrocode-1831"></a>Warning when a Cell microcode instruction is going to emitted.  An example
of a Cell microcode instruction is a variable shift.

     <br><dt><code>-msecure-plt</code><dd><a name="index-msecure_002dplt-1832"></a>Generate code that allows ld and ld.so to build executables and shared
libraries with non-exec .plt and .got sections.  This is a PowerPC
32-bit SYSV ABI option.

     <br><dt><code>-mbss-plt</code><dd><a name="index-mbss_002dplt-1833"></a>Generate code that uses a BSS .plt section that ld.so fills in, and
requires .plt and .got sections that are both writable and executable. 
This is a PowerPC 32-bit SYSV ABI option.

     <br><dt><code>-misel</code><dt><code>-mno-isel</code><dd><a name="index-misel-1834"></a><a name="index-mno_002disel-1835"></a>This switch enables or disables the generation of ISEL instructions.

     <br><dt><code>-misel=</code><var>yes/no</var><dd>This switch has been deprecated.  Use <samp><span class="option">-misel</span></samp> and
<samp><span class="option">-mno-isel</span></samp> instead.

     <br><dt><code>-mspe</code><dt><code>-mno-spe</code><dd><a name="index-mspe-1836"></a><a name="index-mno_002dspe-1837"></a>This switch enables or disables the generation of SPE simd
instructions.

     <br><dt><code>-mpaired</code><dt><code>-mno-paired</code><dd><a name="index-mpaired-1838"></a><a name="index-mno_002dpaired-1839"></a>This switch enables or disables the generation of PAIRED simd
instructions.

     <br><dt><code>-mspe=</code><var>yes/no</var><dd>This option has been deprecated.  Use <samp><span class="option">-mspe</span></samp> and
<samp><span class="option">-mno-spe</span></samp> instead.

     <br><dt><code>-mvsx</code><dt><code>-mno-vsx</code><dd><a name="index-mvsx-1840"></a><a name="index-mno_002dvsx-1841"></a>Generate code that uses (does not use) vector/scalar (VSX)
instructions, and also enable the use of built-in functions that allow
more direct access to the VSX instruction set.

     <br><dt><code>-mfloat-gprs=</code><var>yes/single/double/no</var><dt><code>-mfloat-gprs</code><dd><a name="index-mfloat_002dgprs-1842"></a>This switch enables or disables the generation of floating point
operations on the general purpose registers for architectures that
support it.

     <p>The argument <var>yes</var> or <var>single</var> enables the use of
single-precision floating point operations.

     <p>The argument <var>double</var> enables the use of single and
double-precision floating point operations.

     <p>The argument <var>no</var> disables floating point operations on the
general purpose registers.

     <p>This option is currently only available on the MPC854x.

     <br><dt><code>-m32</code><dt><code>-m64</code><dd><a name="index-m32-1843"></a><a name="index-m64-1844"></a>Generate code for 32-bit or 64-bit environments of Darwin and SVR4
targets (including GNU/Linux).  The 32-bit environment sets int, long
and pointer to 32 bits and generates code that runs on any PowerPC
variant.  The 64-bit environment sets int to 32 bits and long and
pointer to 64 bits, and generates code for PowerPC64, as for
<samp><span class="option">-mpowerpc64</span></samp>.

     <br><dt><code>-mfull-toc</code><dt><code>-mno-fp-in-toc</code><dt><code>-mno-sum-in-toc</code><dt><code>-mminimal-toc</code><dd><a name="index-mfull_002dtoc-1845"></a><a name="index-mno_002dfp_002din_002dtoc-1846"></a><a name="index-mno_002dsum_002din_002dtoc-1847"></a><a name="index-mminimal_002dtoc-1848"></a>Modify generation of the TOC (Table Of Contents), which is created for
every executable file.  The <samp><span class="option">-mfull-toc</span></samp> option is selected by
default.  In that case, GCC will allocate at least one TOC entry for
each unique non-automatic variable reference in your program.  GCC
will also place floating-point constants in the TOC.  However, only
16,384 entries are available in the TOC.

     <p>If you receive a linker error message that saying you have overflowed
the available TOC space, you can reduce the amount of TOC space used
with the <samp><span class="option">-mno-fp-in-toc</span></samp> and <samp><span class="option">-mno-sum-in-toc</span></samp> options. 
<samp><span class="option">-mno-fp-in-toc</span></samp> prevents GCC from putting floating-point
constants in the TOC and <samp><span class="option">-mno-sum-in-toc</span></samp> forces GCC to
generate code to calculate the sum of an address and a constant at
run-time instead of putting that sum into the TOC.  You may specify one
or both of these options.  Each causes GCC to produce very slightly
slower and larger code at the expense of conserving TOC space.

     <p>If you still run out of space in the TOC even when you specify both of
these options, specify <samp><span class="option">-mminimal-toc</span></samp> instead.  This option causes
GCC to make only one TOC entry for every file.  When you specify this
option, GCC will produce code that is slower and larger but which
uses extremely little TOC space.  You may wish to use this option
only on files that contain less frequently executed code.

     <br><dt><code>-maix64</code><dt><code>-maix32</code><dd><a name="index-maix64-1849"></a><a name="index-maix32-1850"></a>Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
<code>long</code> type, and the infrastructure needed to support them. 
Specifying <samp><span class="option">-maix64</span></samp> implies <samp><span class="option">-mpowerpc64</span></samp> and
<samp><span class="option">-mpowerpc</span></samp>, while <samp><span class="option">-maix32</span></samp> disables the 64-bit ABI and
implies <samp><span class="option">-mno-powerpc64</span></samp>.  GCC defaults to <samp><span class="option">-maix32</span></samp>.

     <br><dt><code>-mxl-compat</code><dt><code>-mno-xl-compat</code><dd><a name="index-mxl_002dcompat-1851"></a><a name="index-mno_002dxl_002dcompat-1852"></a>Produce code that conforms more closely to IBM XL compiler semantics
when using AIX-compatible ABI.  Pass floating-point arguments to
prototyped functions beyond the register save area (RSA) on the stack
in addition to argument FPRs.  Do not assume that most significant
double in 128-bit long double value is properly rounded when comparing
values and converting to double.  Use XL symbol names for long double
support routines.

     <p>The AIX calling convention was extended but not initially documented to
handle an obscure K&amp;R C case of calling a function that takes the
address of its arguments with fewer arguments than declared.  IBM XL
compilers access floating point arguments which do not fit in the
RSA from the stack when a subroutine is compiled without
optimization.  Because always storing floating-point arguments on the
stack is inefficient and rarely needed, this option is not enabled by
default and only is necessary when calling subroutines compiled by IBM
XL compilers without optimization.

     <br><dt><code>-mpe</code><dd><a name="index-mpe-1853"></a>Support <dfn>IBM RS/6000 SP</dfn> <dfn>Parallel Environment</dfn> (PE).  Link an
application written to use message passing with special startup code to
enable the application to run.  The system must have PE installed in the
standard location (<samp><span class="file">/usr/lpp/ppe.poe/</span></samp>), or the <samp><span class="file">specs</span></samp> file
must be overridden with the <samp><span class="option">-specs=</span></samp> option to specify the
appropriate directory location.  The Parallel Environment does not
support threads, so the <samp><span class="option">-mpe</span></samp> option and the <samp><span class="option">-pthread</span></samp>
option are incompatible.

     <br><dt><code>-malign-natural</code><dt><code>-malign-power</code><dd><a name="index-malign_002dnatural-1854"></a><a name="index-malign_002dpower-1855"></a>On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
<samp><span class="option">-malign-natural</span></samp> overrides the ABI-defined alignment of larger
types, such as floating-point doubles, on their natural size-based boundary. 
The option <samp><span class="option">-malign-power</span></samp> instructs GCC to follow the ABI-specified
alignment rules.  GCC defaults to the standard alignment defined in the ABI.

     <p>On 64-bit Darwin, natural alignment is the default, and <samp><span class="option">-malign-power</span></samp>
is not supported.

     <br><dt><code>-msoft-float</code><dt><code>-mhard-float</code><dd><a name="index-msoft_002dfloat-1856"></a><a name="index-mhard_002dfloat-1857"></a>Generate code that does not use (uses) the floating-point register set. 
Software floating point emulation is provided if you use the
<samp><span class="option">-msoft-float</span></samp> option, and pass the option to GCC when linking.

     <br><dt><code>-msingle-float</code><dt><code>-mdouble-float</code><dd><a name="index-msingle_002dfloat-1858"></a><a name="index-mdouble_002dfloat-1859"></a>Generate code for single or double-precision floating point operations. 
<samp><span class="option">-mdouble-float</span></samp> implies <samp><span class="option">-msingle-float</span></samp>.

     <br><dt><code>-msimple-fpu</code><dd><a name="index-msimple_002dfpu-1860"></a>Do not generate sqrt and div instructions for hardware floating point unit.

     <br><dt><code>-mfpu</code><dd><a name="index-mfpu-1861"></a>Specify type of floating point unit.  Valid values are <var>sp_lite</var>
(equivalent to -msingle-float -msimple-fpu), <var>dp_lite</var> (equivalent
to -mdouble-float -msimple-fpu), <var>sp_full</var> (equivalent to -msingle-float),
and <var>dp_full</var> (equivalent to -mdouble-float).

     <br><dt><code>-mxilinx-fpu</code><dd><a name="index-mxilinx_002dfpu-1862"></a>Perform optimizations for floating point unit on Xilinx PPC 405/440.

     <br><dt><code>-mmultiple</code><dt><code>-mno-multiple</code><dd><a name="index-mmultiple-1863"></a><a name="index-mno_002dmultiple-1864"></a>Generate code that uses (does not use) the load multiple word
instructions and the store multiple word instructions.  These
instructions are generated by default on POWER systems, and not
generated on PowerPC systems.  Do not use <samp><span class="option">-mmultiple</span></samp> on little
endian PowerPC systems, since those instructions do not work when the
processor is in little endian mode.  The exceptions are PPC740 and
PPC750 which permit the instructions usage in little endian mode.

     <br><dt><code>-mstring</code><dt><code>-mno-string</code><dd><a name="index-mstring-1865"></a><a name="index-mno_002dstring-1866"></a>Generate code that uses (does not use) the load string instructions
and the store string word instructions to save multiple registers and
do small block moves.  These instructions are generated by default on
POWER systems, and not generated on PowerPC systems.  Do not use
<samp><span class="option">-mstring</span></samp> on little endian PowerPC systems, since those
instructions do not work when the processor is in little endian mode. 
The exceptions are PPC740 and PPC750 which permit the instructions
usage in little endian mode.

     <br><dt><code>-mupdate</code><dt><code>-mno-update</code><dd><a name="index-mupdate-1867"></a><a name="index-mno_002dupdate-1868"></a>Generate code that uses (does not use) the load or store instructions
that update the base register to the address of the calculated memory
location.  These instructions are generated by default.  If you use
<samp><span class="option">-mno-update</span></samp>, there is a small window between the time that the
stack pointer is updated and the address of the previous frame is
stored, which means code that walks the stack frame across interrupts or
signals may get corrupted data.

     <br><dt><code>-mavoid-indexed-addresses</code><dt><code>-mno-avoid-indexed-addresses</code><dd><a name="index-mavoid_002dindexed_002daddresses-1869"></a><a name="index-mno_002davoid_002dindexed_002daddresses-1870"></a>Generate code that tries to avoid (not avoid) the use of indexed load
or store instructions. These instructions can incur a performance
penalty on Power6 processors in certain situations, such as when
stepping through large arrays that cross a 16M boundary.  This option
is enabled by default when targetting Power6 and disabled otherwise.

     <br><dt><code>-mfused-madd</code><dt><code>-mno-fused-madd</code><dd><a name="index-mfused_002dmadd-1871"></a><a name="index-mno_002dfused_002dmadd-1872"></a>Generate code that uses (does not use) the floating point multiply and
accumulate instructions.  These instructions are generated by default
if hardware floating point is used.  The machine dependent
<samp><span class="option">-mfused-madd</span></samp> option is now mapped to the machine independent
<samp><span class="option">-ffp-contract=fast</span></samp> option, and <samp><span class="option">-mno-fused-madd</span></samp> is
mapped to <samp><span class="option">-ffp-contract=off</span></samp>.

     <br><dt><code>-mmulhw</code><dt><code>-mno-mulhw</code><dd><a name="index-mmulhw-1873"></a><a name="index-mno_002dmulhw-1874"></a>Generate code that uses (does not use) the half-word multiply and
multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors. 
These instructions are generated by default when targetting those
processors.

     <br><dt><code>-mdlmzb</code><dt><code>-mno-dlmzb</code><dd><a name="index-mdlmzb-1875"></a><a name="index-mno_002ddlmzb-1876"></a>Generate code that uses (does not use) the string-search &lsquo;<samp><span class="samp">dlmzb</span></samp>&rsquo;
instruction on the IBM 405, 440, 464 and 476 processors.  This instruction is
generated by default when targetting those processors.

     <br><dt><code>-mno-bit-align</code><dt><code>-mbit-align</code><dd><a name="index-mno_002dbit_002dalign-1877"></a><a name="index-mbit_002dalign-1878"></a>On System V.4 and embedded PowerPC systems do not (do) force structures
and unions that contain bit-fields to be aligned to the base type of the
bit-field.

     <p>For example, by default a structure containing nothing but 8
<code>unsigned</code> bit-fields of length 1 would be aligned to a 4 byte
boundary and have a size of 4 bytes.  By using <samp><span class="option">-mno-bit-align</span></samp>,
the structure would be aligned to a 1 byte boundary and be one byte in
size.

     <br><dt><code>-mno-strict-align</code><dt><code>-mstrict-align</code><dd><a name="index-mno_002dstrict_002dalign-1879"></a><a name="index-mstrict_002dalign-1880"></a>On System V.4 and embedded PowerPC systems do not (do) assume that
unaligned memory references will be handled by the system.

     <br><dt><code>-mrelocatable</code><dt><code>-mno-relocatable</code><dd><a name="index-mrelocatable-1881"></a><a name="index-mno_002drelocatable-1882"></a>Generate code that allows (does not allow) a static executable to be
relocated to a different address at runtime.  A simple embedded
PowerPC system loader should relocate the entire contents of
<code>.got2</code> and 4-byte locations listed in the <code>.fixup</code> section,
a table of 32-bit addresses generated by this option.  For this to
work, all objects linked together must be compiled with
<samp><span class="option">-mrelocatable</span></samp> or <samp><span class="option">-mrelocatable-lib</span></samp>. 
<samp><span class="option">-mrelocatable</span></samp> code aligns the stack to an 8 byte boundary.

     <br><dt><code>-mrelocatable-lib</code><dt><code>-mno-relocatable-lib</code><dd><a name="index-mrelocatable_002dlib-1883"></a><a name="index-mno_002drelocatable_002dlib-1884"></a>Like <samp><span class="option">-mrelocatable</span></samp>, <samp><span class="option">-mrelocatable-lib</span></samp> generates a
<code>.fixup</code> section to allow static executables to be relocated at
runtime, but <samp><span class="option">-mrelocatable-lib</span></samp> does not use the smaller stack
alignment of <samp><span class="option">-mrelocatable</span></samp>.  Objects compiled with
<samp><span class="option">-mrelocatable-lib</span></samp> may be linked with objects compiled with
any combination of the <samp><span class="option">-mrelocatable</span></samp> options.

     <br><dt><code>-mno-toc</code><dt><code>-mtoc</code><dd><a name="index-mno_002dtoc-1885"></a><a name="index-mtoc-1886"></a>On System V.4 and embedded PowerPC systems do not (do) assume that
register 2 contains a pointer to a global area pointing to the addresses
used in the program.

     <br><dt><code>-mlittle</code><dt><code>-mlittle-endian</code><dd><a name="index-mlittle-1887"></a><a name="index-mlittle_002dendian-1888"></a>On System V.4 and embedded PowerPC systems compile code for the
processor in little endian mode.  The <samp><span class="option">-mlittle-endian</span></samp> option is
the same as <samp><span class="option">-mlittle</span></samp>.

     <br><dt><code>-mbig</code><dt><code>-mbig-endian</code><dd><a name="index-mbig-1889"></a><a name="index-mbig_002dendian-1890"></a>On System V.4 and embedded PowerPC systems compile code for the
processor in big endian mode.  The <samp><span class="option">-mbig-endian</span></samp> option is
the same as <samp><span class="option">-mbig</span></samp>.

     <br><dt><code>-mdynamic-no-pic</code><dd><a name="index-mdynamic_002dno_002dpic-1891"></a>On Darwin and Mac OS X systems, compile code so that it is not
relocatable, but that its external references are relocatable.  The
resulting code is suitable for applications, but not shared
libraries.

     <br><dt><code>-msingle-pic-base</code><dd><a name="index-msingle_002dpic_002dbase-1892"></a>Treat the register used for PIC addressing as read-only, rather than
loading it in the prologue for each function.  The run-time system is
responsible for initializing this register with an appropriate value
before execution begins.

     <br><dt><code>-mprioritize-restricted-insns=</code><var>priority</var><dd><a name="index-mprioritize_002drestricted_002dinsns-1893"></a>This option controls the priority that is assigned to
dispatch-slot restricted instructions during the second scheduling
pass.  The argument <var>priority</var> takes the value <var>0/1/2</var> to assign
<var>no/highest/second-highest</var> priority to dispatch slot restricted
instructions.

     <br><dt><code>-msched-costly-dep=</code><var>dependence_type</var><dd><a name="index-msched_002dcostly_002ddep-1894"></a>This option controls which dependences are considered costly
by the target during instruction scheduling.  The argument
<var>dependence_type</var> takes one of the following values:
<var>no</var>: no dependence is costly,
<var>all</var>: all dependences are costly,
<var>true_store_to_load</var>: a true dependence from store to load is costly,
<var>store_to_load</var>: any dependence from store to load is costly,
<var>number</var>: any dependence which latency &gt;= <var>number</var> is costly.

     <br><dt><code>-minsert-sched-nops=</code><var>scheme</var><dd><a name="index-minsert_002dsched_002dnops-1895"></a>This option controls which nop insertion scheme will be used during
the second scheduling pass.  The argument <var>scheme</var> takes one of the
following values:
<var>no</var>: Don't insert nops. 
<var>pad</var>: Pad with nops any dispatch group which has vacant issue slots,
according to the scheduler's grouping. 
<var>regroup_exact</var>: Insert nops to force costly dependent insns into
separate groups.  Insert exactly as many nops as needed to force an insn
to a new group, according to the estimated processor grouping. 
<var>number</var>: Insert nops to force costly dependent insns into
separate groups.  Insert <var>number</var> nops to force an insn to a new group.

     <br><dt><code>-mcall-sysv</code><dd><a name="index-mcall_002dsysv-1896"></a>On System V.4 and embedded PowerPC systems compile code using calling
conventions that adheres to the March 1995 draft of the System V
Application Binary Interface, PowerPC processor supplement.  This is the
default unless you configured GCC using &lsquo;<samp><span class="samp">powerpc-*-eabiaix</span></samp>&rsquo;.

     <br><dt><code>-mcall-sysv-eabi</code><dt><code>-mcall-eabi</code><dd><a name="index-mcall_002dsysv_002deabi-1897"></a><a name="index-mcall_002deabi-1898"></a>Specify both <samp><span class="option">-mcall-sysv</span></samp> and <samp><span class="option">-meabi</span></samp> options.

     <br><dt><code>-mcall-sysv-noeabi</code><dd><a name="index-mcall_002dsysv_002dnoeabi-1899"></a>Specify both <samp><span class="option">-mcall-sysv</span></samp> and <samp><span class="option">-mno-eabi</span></samp> options.

     <br><dt><code>-mcall-aixdesc</code><dd><a name="index-m-1900"></a>On System V.4 and embedded PowerPC systems compile code for the AIX
operating system.

     <br><dt><code>-mcall-linux</code><dd><a name="index-mcall_002dlinux-1901"></a>On System V.4 and embedded PowerPC systems compile code for the
Linux-based GNU system.

     <br><dt><code>-mcall-gnu</code><dd><a name="index-mcall_002dgnu-1902"></a>On System V.4 and embedded PowerPC systems compile code for the
Hurd-based GNU system.

     <br><dt><code>-mcall-freebsd</code><dd><a name="index-mcall_002dfreebsd-1903"></a>On System V.4 and embedded PowerPC systems compile code for the
FreeBSD operating system.

     <br><dt><code>-mcall-netbsd</code><dd><a name="index-mcall_002dnetbsd-1904"></a>On System V.4 and embedded PowerPC systems compile code for the
NetBSD operating system.

     <br><dt><code>-mcall-openbsd</code><dd><a name="index-mcall_002dnetbsd-1905"></a>On System V.4 and embedded PowerPC systems compile code for the
OpenBSD operating system.

     <br><dt><code>-maix-struct-return</code><dd><a name="index-maix_002dstruct_002dreturn-1906"></a>Return all structures in memory (as specified by the AIX ABI).

     <br><dt><code>-msvr4-struct-return</code><dd><a name="index-msvr4_002dstruct_002dreturn-1907"></a>Return structures smaller than 8 bytes in registers (as specified by the
SVR4 ABI).

     <br><dt><code>-mabi=</code><var>abi-type</var><dd><a name="index-mabi-1908"></a>Extend the current ABI with a particular extension, or remove such extension. 
Valid values are <var>altivec</var>, <var>no-altivec</var>, <var>spe</var>,
<var>no-spe</var>, <var>ibmlongdouble</var>, <var>ieeelongdouble</var>.

     <br><dt><code>-mabi=spe</code><dd><a name="index-mabi_003dspe-1909"></a>Extend the current ABI with SPE ABI extensions.  This does not change
the default ABI, instead it adds the SPE ABI extensions to the current
ABI.

     <br><dt><code>-mabi=no-spe</code><dd><a name="index-mabi_003dno_002dspe-1910"></a>Disable Booke SPE ABI extensions for the current ABI.

     <br><dt><code>-mabi=ibmlongdouble</code><dd><a name="index-mabi_003dibmlongdouble-1911"></a>Change the current ABI to use IBM extended precision long double. 
This is a PowerPC 32-bit SYSV ABI option.

     <br><dt><code>-mabi=ieeelongdouble</code><dd><a name="index-mabi_003dieeelongdouble-1912"></a>Change the current ABI to use IEEE extended precision long double. 
This is a PowerPC 32-bit Linux ABI option.

     <br><dt><code>-mprototype</code><dt><code>-mno-prototype</code><dd><a name="index-mprototype-1913"></a><a name="index-mno_002dprototype-1914"></a>On System V.4 and embedded PowerPC systems assume that all calls to
variable argument functions are properly prototyped.  Otherwise, the
compiler must insert an instruction before every non prototyped call to
set or clear bit 6 of the condition code register (<var>CR</var>) to
indicate whether floating point values were passed in the floating point
registers in case the function takes a variable arguments.  With
<samp><span class="option">-mprototype</span></samp>, only calls to prototyped variable argument functions
will set or clear the bit.

     <br><dt><code>-msim</code><dd><a name="index-msim-1915"></a>On embedded PowerPC systems, assume that the startup module is called
<samp><span class="file">sim-crt0.o</span></samp> and that the standard C libraries are <samp><span class="file">libsim.a</span></samp> and
<samp><span class="file">libc.a</span></samp>.  This is the default for &lsquo;<samp><span class="samp">powerpc-*-eabisim</span></samp>&rsquo;
configurations.

     <br><dt><code>-mmvme</code><dd><a name="index-mmvme-1916"></a>On embedded PowerPC systems, assume that the startup module is called
<samp><span class="file">crt0.o</span></samp> and the standard C libraries are <samp><span class="file">libmvme.a</span></samp> and
<samp><span class="file">libc.a</span></samp>.

     <br><dt><code>-mads</code><dd><a name="index-mads-1917"></a>On embedded PowerPC systems, assume that the startup module is called
<samp><span class="file">crt0.o</span></samp> and the standard C libraries are <samp><span class="file">libads.a</span></samp> and
<samp><span class="file">libc.a</span></samp>.

     <br><dt><code>-myellowknife</code><dd><a name="index-myellowknife-1918"></a>On embedded PowerPC systems, assume that the startup module is called
<samp><span class="file">crt0.o</span></samp> and the standard C libraries are <samp><span class="file">libyk.a</span></samp> and
<samp><span class="file">libc.a</span></samp>.

     <br><dt><code>-mvxworks</code><dd><a name="index-mvxworks-1919"></a>On System V.4 and embedded PowerPC systems, specify that you are
compiling for a VxWorks system.

     <br><dt><code>-memb</code><dd><a name="index-memb-1920"></a>On embedded PowerPC systems, set the <var>PPC_EMB</var> bit in the ELF flags
header to indicate that &lsquo;<samp><span class="samp">eabi</span></samp>&rsquo; extended relocations are used.

     <br><dt><code>-meabi</code><dt><code>-mno-eabi</code><dd><a name="index-meabi-1921"></a><a name="index-mno_002deabi-1922"></a>On System V.4 and embedded PowerPC systems do (do not) adhere to the
Embedded Applications Binary Interface (eabi) which is a set of
modifications to the System V.4 specifications.  Selecting <samp><span class="option">-meabi</span></samp>
means that the stack is aligned to an 8 byte boundary, a function
<code>__eabi</code> is called to from <code>main</code> to set up the eabi
environment, and the <samp><span class="option">-msdata</span></samp> option can use both <code>r2</code> and
<code>r13</code> to point to two separate small data areas.  Selecting
<samp><span class="option">-mno-eabi</span></samp> means that the stack is aligned to a 16 byte boundary,
do not call an initialization function from <code>main</code>, and the
<samp><span class="option">-msdata</span></samp> option will only use <code>r13</code> to point to a single
small data area.  The <samp><span class="option">-meabi</span></samp> option is on by default if you
configured GCC using one of the &lsquo;<samp><span class="samp">powerpc*-*-eabi*</span></samp>&rsquo; options.

     <br><dt><code>-msdata=eabi</code><dd><a name="index-msdata_003deabi-1923"></a>On System V.4 and embedded PowerPC systems, put small initialized
<code>const</code> global and static data in the &lsquo;<samp><span class="samp">.sdata2</span></samp>&rsquo; section, which
is pointed to by register <code>r2</code>.  Put small initialized
non-<code>const</code> global and static data in the &lsquo;<samp><span class="samp">.sdata</span></samp>&rsquo; section,
which is pointed to by register <code>r13</code>.  Put small uninitialized
global and static data in the &lsquo;<samp><span class="samp">.sbss</span></samp>&rsquo; section, which is adjacent to
the &lsquo;<samp><span class="samp">.sdata</span></samp>&rsquo; section.  The <samp><span class="option">-msdata=eabi</span></samp> option is
incompatible with the <samp><span class="option">-mrelocatable</span></samp> option.  The
<samp><span class="option">-msdata=eabi</span></samp> option also sets the <samp><span class="option">-memb</span></samp> option.

     <br><dt><code>-msdata=sysv</code><dd><a name="index-msdata_003dsysv-1924"></a>On System V.4 and embedded PowerPC systems, put small global and static
data in the &lsquo;<samp><span class="samp">.sdata</span></samp>&rsquo; section, which is pointed to by register
<code>r13</code>.  Put small uninitialized global and static data in the
&lsquo;<samp><span class="samp">.sbss</span></samp>&rsquo; section, which is adjacent to the &lsquo;<samp><span class="samp">.sdata</span></samp>&rsquo; section. 
The <samp><span class="option">-msdata=sysv</span></samp> option is incompatible with the
<samp><span class="option">-mrelocatable</span></samp> option.

     <br><dt><code>-msdata=default</code><dt><code>-msdata</code><dd><a name="index-msdata_003ddefault-1925"></a><a name="index-msdata-1926"></a>On System V.4 and embedded PowerPC systems, if <samp><span class="option">-meabi</span></samp> is used,
compile code the same as <samp><span class="option">-msdata=eabi</span></samp>, otherwise compile code the
same as <samp><span class="option">-msdata=sysv</span></samp>.

     <br><dt><code>-msdata=data</code><dd><a name="index-msdata_003ddata-1927"></a>On System V.4 and embedded PowerPC systems, put small global
data in the &lsquo;<samp><span class="samp">.sdata</span></samp>&rsquo; section.  Put small uninitialized global
data in the &lsquo;<samp><span class="samp">.sbss</span></samp>&rsquo; section.  Do not use register <code>r13</code>
to address small data however.  This is the default behavior unless
other <samp><span class="option">-msdata</span></samp> options are used.

     <br><dt><code>-msdata=none</code><dt><code>-mno-sdata</code><dd><a name="index-msdata_003dnone-1928"></a><a name="index-mno_002dsdata-1929"></a>On embedded PowerPC systems, put all initialized global and static data
in the &lsquo;<samp><span class="samp">.data</span></samp>&rsquo; section, and all uninitialized data in the
&lsquo;<samp><span class="samp">.bss</span></samp>&rsquo; section.

     <br><dt><code>-mblock-move-inline-limit=</code><var>num</var><dd><a name="index-mblock_002dmove_002dinline_002dlimit-1930"></a>Inline all block moves (such as calls to <code>memcpy</code> or structure
copies) less than or equal to <var>num</var> bytes.  The minimum value for
<var>num</var> is 32 bytes on 32-bit targets and 64 bytes on 64-bit
targets.  The default value is target-specific.

     <br><dt><code>-G </code><var>num</var><dd><a name="index-G-1931"></a><a name="index-smaller-data-references-_0028PowerPC_0029-1932"></a><a name="index-g_t_002esdata_002f_002esdata2-references-_0028PowerPC_0029-1933"></a>On embedded PowerPC systems, put global and static items less than or
equal to <var>num</var> bytes into the small data or bss sections instead of
the normal data or bss section.  By default, <var>num</var> is 8.  The
<samp><span class="option">-G </span><var>num</var></samp> switch is also passed to the linker. 
All modules should be compiled with the same <samp><span class="option">-G </span><var>num</var></samp> value.

     <br><dt><code>-mregnames</code><dt><code>-mno-regnames</code><dd><a name="index-mregnames-1934"></a><a name="index-mno_002dregnames-1935"></a>On System V.4 and embedded PowerPC systems do (do not) emit register
names in the assembly language output using symbolic forms.

     <br><dt><code>-mlongcall</code><dt><code>-mno-longcall</code><dd><a name="index-mlongcall-1936"></a><a name="index-mno_002dlongcall-1937"></a>By default assume that all calls are far away so that a longer more
expensive calling sequence is required.  This is required for calls
further than 32 megabytes (33,554,432 bytes) from the current location. 
A short call will be generated if the compiler knows
the call cannot be that far away.  This setting can be overridden by
the <code>shortcall</code> function attribute, or by <code>#pragma
longcall(0)</code>.

     <p>Some linkers are capable of detecting out-of-range calls and generating
glue code on the fly.  On these systems, long calls are unnecessary and
generate slower code.  As of this writing, the AIX linker can do this,
as can the GNU linker for PowerPC/64.  It is planned to add this feature
to the GNU linker for 32-bit PowerPC systems as well.

     <p>On Darwin/PPC systems, <code>#pragma longcall</code> will generate &ldquo;jbsr
callee, L42&rdquo;, plus a &ldquo;branch island&rdquo; (glue code).  The two target
addresses represent the callee and the &ldquo;branch island&rdquo;.  The
Darwin/PPC linker will prefer the first address and generate a &ldquo;bl
callee&rdquo; if the PPC &ldquo;bl&rdquo; instruction will reach the callee directly;
otherwise, the linker will generate &ldquo;bl L42&rdquo; to call the &ldquo;branch
island&rdquo;.  The &ldquo;branch island&rdquo; is appended to the body of the
calling function; it computes the full 32-bit address of the callee
and jumps to it.

     <p>On Mach-O (Darwin) systems, this option directs the compiler emit to
the glue for every direct call, and the Darwin linker decides whether
to use or discard it.

     <p>In the future, we may cause GCC to ignore all longcall specifications
when the linker is known to generate glue.

     <br><dt><code>-mtls-markers</code><dt><code>-mno-tls-markers</code><dd><a name="index-mtls_002dmarkers-1938"></a><a name="index-mno_002dtls_002dmarkers-1939"></a>Mark (do not mark) calls to <code>__tls_get_addr</code> with a relocation
specifying the function argument.  The relocation allows ld to
reliably associate function call with argument setup instructions for
TLS optimization, which in turn allows gcc to better schedule the
sequence.

     <br><dt><code>-pthread</code><dd><a name="index-pthread-1940"></a>Adds support for multithreading with the <dfn>pthreads</dfn> library. 
This option sets flags for both the preprocessor and linker.

     <br><dt><code>-mrecip</code><dt><code>-mno-recip</code><dd><a name="index-mrecip-1941"></a>This option will enable GCC to use the reciprocal estimate and
reciprocal square root estimate instructions with additional
Newton-Raphson steps to increase precision instead of doing a divide or
square root and divide for floating point arguments.  You should use
the <samp><span class="option">-ffast-math</span></samp> option when using <samp><span class="option">-mrecip</span></samp> (or at
least <samp><span class="option">-funsafe-math-optimizations</span></samp>,
<samp><span class="option">-finite-math-only</span></samp>, <samp><span class="option">-freciprocal-math</span></samp> and
<samp><span class="option">-fno-trapping-math</span></samp>).  Note that while the throughput of the
sequence is generally higher than the throughput of the non-reciprocal
instruction, the precision of the sequence can be decreased by up to 2
ulp (i.e. the inverse of 1.0 equals 0.99999994) for reciprocal square
roots.

     <br><dt><code>-mrecip=</code><var>opt</var><dd><a name="index-mrecip_003dopt-1942"></a>This option allows to control which reciprocal estimate instructions
may be used.  <var>opt</var> is a comma separated list of options, that may
be preceded by a <code>!</code> to invert the option:
<code>all</code>: enable all estimate instructions,
<code>default</code>: enable the default instructions, equivalent to <samp><span class="option">-mrecip</span></samp>,
<code>none</code>: disable all estimate instructions, equivalent to <samp><span class="option">-mno-recip</span></samp>;
<code>div</code>: enable the reciprocal approximation instructions for both single and double precision;
<code>divf</code>: enable the single precision reciprocal approximation instructions;
<code>divd</code>: enable the double precision reciprocal approximation instructions;
<code>rsqrt</code>: enable the reciprocal square root approximation instructions for both single and double precision;
<code>rsqrtf</code>: enable the single precision reciprocal square root approximation instructions;
<code>rsqrtd</code>: enable the double precision reciprocal square root approximation instructions;

     <p>So for example, <samp><span class="option">-mrecip=all,!rsqrtd</span></samp> would enable the
all of the reciprocal estimate instructions, except for the
<code>FRSQRTE</code>, <code>XSRSQRTEDP</code>, and <code>XVRSQRTEDP</code> instructions
which handle the double precision reciprocal square root calculations.

     <br><dt><code>-mrecip-precision</code><dt><code>-mno-recip-precision</code><dd><a name="index-mrecip_002dprecision-1943"></a>Assume (do not assume) that the reciprocal estimate instructions
provide higher precision estimates than is mandated by the powerpc
ABI.  Selecting <samp><span class="option">-mcpu=power6</span></samp> or <samp><span class="option">-mcpu=power7</span></samp>
automatically selects <samp><span class="option">-mrecip-precision</span></samp>.  The double
precision square root estimate instructions are not generated by
default on low precision machines, since they do not provide an
estimate that converges after three steps.

     <br><dt><code>-mveclibabi=</code><var>type</var><dd><a name="index-mveclibabi-1944"></a>Specifies the ABI type to use for vectorizing intrinsics using an
external library.  The only type supported at present is <code>mass</code>,
which specifies to use IBM's Mathematical Acceleration Subsystem
(MASS) libraries for vectorizing intrinsics using external libraries. 
GCC will currently emit calls to <code>acosd2</code>, <code>acosf4</code>,
<code>acoshd2</code>, <code>acoshf4</code>, <code>asind2</code>, <code>asinf4</code>,
<code>asinhd2</code>, <code>asinhf4</code>, <code>atan2d2</code>, <code>atan2f4</code>,
<code>atand2</code>, <code>atanf4</code>, <code>atanhd2</code>, <code>atanhf4</code>,
<code>cbrtd2</code>, <code>cbrtf4</code>, <code>cosd2</code>, <code>cosf4</code>,
<code>coshd2</code>, <code>coshf4</code>, <code>erfcd2</code>, <code>erfcf4</code>,
<code>erfd2</code>, <code>erff4</code>, <code>exp2d2</code>, <code>exp2f4</code>,
<code>expd2</code>, <code>expf4</code>, <code>expm1d2</code>, <code>expm1f4</code>,
<code>hypotd2</code>, <code>hypotf4</code>, <code>lgammad2</code>, <code>lgammaf4</code>,
<code>log10d2</code>, <code>log10f4</code>, <code>log1pd2</code>, <code>log1pf4</code>,
<code>log2d2</code>, <code>log2f4</code>, <code>logd2</code>, <code>logf4</code>,
<code>powd2</code>, <code>powf4</code>, <code>sind2</code>, <code>sinf4</code>, <code>sinhd2</code>,
<code>sinhf4</code>, <code>sqrtd2</code>, <code>sqrtf4</code>, <code>tand2</code>,
<code>tanf4</code>, <code>tanhd2</code>, and <code>tanhf4</code> when generating code
for power7.  Both <samp><span class="option">-ftree-vectorize</span></samp> and
<samp><span class="option">-funsafe-math-optimizations</span></samp> have to be enabled.  The MASS
libraries will have to be specified at link time.

     <br><dt><code>-mfriz</code><dt><code>-mno-friz</code><dd><a name="index-mfriz-1945"></a>Generate (do not generate) the <code>friz</code> instruction when the
<samp><span class="option">-funsafe-math-optimizations</span></samp> option is used to optimize
rounding a floating point value to 64-bit integer and back to floating
point.  The <code>friz</code> instruction does not return the same value if
the floating point number is too large to fit in an integer. 
</dl>

<div class="node">
<a name="RX-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.34 RX Options</h4>

<p><a name="index-RX-Options-1946"></a>
These command line options are defined for RX targets:

     <dl>
<dt><code>-m64bit-doubles</code><dt><code>-m32bit-doubles</code><dd><a name="index-m64bit_002ddoubles-1947"></a><a name="index-m32bit_002ddoubles-1948"></a>Make the <code>double</code> data type be 64-bits (<samp><span class="option">-m64bit-doubles</span></samp>)
or 32-bits (<samp><span class="option">-m32bit-doubles</span></samp>) in size.  The default is
<samp><span class="option">-m32bit-doubles</span></samp>.  <em>Note</em> RX floating point hardware only
works on 32-bit values, which is why the default is
<samp><span class="option">-m32bit-doubles</span></samp>.

     <br><dt><code>-fpu</code><dt><code>-nofpu</code><dd><a name="index-fpu-1949"></a><a name="index-nofpu-1950"></a>Enables (<samp><span class="option">-fpu</span></samp>) or disables (<samp><span class="option">-nofpu</span></samp>) the use of RX
floating point hardware.  The default is enabled for the <var>RX600</var>
series and disabled for the <var>RX200</var> series.

     <p>Floating point instructions will only be generated for 32-bit floating
point values however, so if the <samp><span class="option">-m64bit-doubles</span></samp> option is in
use then the FPU hardware will not be used for doubles.

     <p><em>Note</em> If the <samp><span class="option">-fpu</span></samp> option is enabled then
<samp><span class="option">-funsafe-math-optimizations</span></samp> is also enabled automatically. 
This is because the RX FPU instructions are themselves unsafe.

     <br><dt><code>-mcpu=</code><var>name</var><dd><a name="index-g_t_002dmcpu-1951"></a>Selects the type of RX CPU to be targeted.  Currently three types are
supported, the generic <var>RX600</var> and <var>RX200</var> series hardware and
the specific <var>RX610</var> CPU.  The default is <var>RX600</var>.

     <p>The only difference between <var>RX600</var> and <var>RX610</var> is that the
<var>RX610</var> does not support the <code>MVTIPL</code> instruction.

     <p>The <var>RX200</var> series does not have a hardware floating point unit
and so <samp><span class="option">-nofpu</span></samp> is enabled by default when this type is
selected.

     <br><dt><code>-mbig-endian-data</code><dt><code>-mlittle-endian-data</code><dd><a name="index-mbig_002dendian_002ddata-1952"></a><a name="index-mlittle_002dendian_002ddata-1953"></a>Store data (but not code) in the big-endian format.  The default is
<samp><span class="option">-mlittle-endian-data</span></samp>, i.e. to store data in the little endian
format.

     <br><dt><code>-msmall-data-limit=</code><var>N</var><dd><a name="index-msmall_002ddata_002dlimit-1954"></a>Specifies the maximum size in bytes of global and static variables
which can be placed into the small data area.  Using the small data
area can lead to smaller and faster code, but the size of area is
limited and it is up to the programmer to ensure that the area does
not overflow.  Also when the small data area is used one of the RX's
registers (<code>r13</code>) is reserved for use pointing to this area, so
it is no longer available for use by the compiler.  This could result
in slower and/or larger code if variables which once could have been
held in <code>r13</code> are now pushed onto the stack.

     <p>Note, common variables (variables which have not been initialised) and
constants are not placed into the small data area as they are assigned
to other sections in the output executable.

     <p>The default value is zero, which disables this feature.  Note, this
feature is not enabled by default with higher optimization levels
(<samp><span class="option">-O2</span></samp> etc) because of the potentially detrimental effects of
reserving register <code>r13</code>.  It is up to the programmer to
experiment and discover whether this feature is of benefit to their
program.

     <br><dt><code>-msim</code><dt><code>-mno-sim</code><dd><a name="index-msim-1955"></a><a name="index-mno_002dsim-1956"></a>Use the simulator runtime.  The default is to use the libgloss board
specific runtime.

     <br><dt><code>-mas100-syntax</code><dt><code>-mno-as100-syntax</code><dd><a name="index-mas100_002dsyntax-1957"></a><a name="index-mno_002das100_002dsyntax-1958"></a>When generating assembler output use a syntax that is compatible with
Renesas's AS100 assembler.  This syntax can also be handled by the GAS
assembler but it has some restrictions so generating it is not the
default option.

     <br><dt><code>-mmax-constant-size=</code><var>N</var><dd><a name="index-mmax_002dconstant_002dsize-1959"></a>Specifies the maximum size, in bytes, of a constant that can be used as
an operand in a RX instruction.  Although the RX instruction set does
allow constants of up to 4 bytes in length to be used in instructions,
a longer value equates to a longer instruction.  Thus in some
circumstances it can be beneficial to restrict the size of constants
that are used in instructions.  Constants that are too big are instead
placed into a constant pool and referenced via register indirection.

     <p>The value <var>N</var> can be between 0 and 4.  A value of 0 (the default)
or 4 means that constants of any size are allowed.

     <br><dt><code>-mrelax</code><dd><a name="index-mrelax-1960"></a>Enable linker relaxation.  Linker relaxation is a process whereby the
linker will attempt to reduce the size of a program by finding shorter
versions of various instructions.  Disabled by default.

     <br><dt><code>-mint-register=</code><var>N</var><dd><a name="index-mint_002dregister-1961"></a>Specify the number of registers to reserve for fast interrupt handler
functions.  The value <var>N</var> can be between 0 and 4.  A value of 1
means that register <code>r13</code> will be reserved for the exclusive use
of fast interrupt handlers.  A value of 2 reserves <code>r13</code> and
<code>r12</code>.  A value of 3 reserves <code>r13</code>, <code>r12</code> and
<code>r11</code>, and a value of 4 reserves <code>r13</code> through <code>r10</code>. 
A value of 0, the default, does not reserve any registers.

     <br><dt><code>-msave-acc-in-interrupts</code><dd><a name="index-msave_002dacc_002din_002dinterrupts-1962"></a>Specifies that interrupt handler functions should preserve the
accumulator register.  This is only necessary if normal code might use
the accumulator register, for example because it performs 64-bit
multiplications.  The default is to ignore the accumulator as this
makes the interrupt handlers faster.

 </dl>

 <p><em>Note:</em> The generic GCC command line <samp><span class="option">-ffixed-</span><var>reg</var></samp>
has special significance to the RX port when used with the
<code>interrupt</code> function attribute.  This attribute indicates a
function intended to process fast interrupts.  GCC will will ensure
that it only uses the registers <code>r10</code>, <code>r11</code>, <code>r12</code>
and/or <code>r13</code> and only provided that the normal use of the
corresponding registers have been restricted via the
<samp><span class="option">-ffixed-</span><var>reg</var></samp> or <samp><span class="option">-mint-register</span></samp> command line
options.

<div class="node">
<a name="S%2f390-and-zSeries-Options"></a>
<a name="S_002f390-and-zSeries-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Score-Options">Score Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#RX-Options">RX Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.35 S/390 and zSeries Options</h4>

<p><a name="index-S_002f390-and-zSeries-Options-1963"></a>
These are the &lsquo;<samp><span class="samp">-m</span></samp>&rsquo; options defined for the S/390 and zSeries architecture.

     <dl>
<dt><code>-mhard-float</code><dt><code>-msoft-float</code><dd><a name="index-mhard_002dfloat-1964"></a><a name="index-msoft_002dfloat-1965"></a>Use (do not use) the hardware floating-point instructions and registers
for floating-point operations.  When <samp><span class="option">-msoft-float</span></samp> is specified,
functions in <samp><span class="file">libgcc.a</span></samp> will be used to perform floating-point
operations.  When <samp><span class="option">-mhard-float</span></samp> is specified, the compiler
generates IEEE floating-point instructions.  This is the default.

     <br><dt><code>-mhard-dfp</code><dt><code>-mno-hard-dfp</code><dd><a name="index-mhard_002ddfp-1966"></a><a name="index-mno_002dhard_002ddfp-1967"></a>Use (do not use) the hardware decimal-floating-point instructions for
decimal-floating-point operations.  When <samp><span class="option">-mno-hard-dfp</span></samp> is
specified, functions in <samp><span class="file">libgcc.a</span></samp> will be used to perform
decimal-floating-point operations.  When <samp><span class="option">-mhard-dfp</span></samp> is
specified, the compiler generates decimal-floating-point hardware
instructions.  This is the default for <samp><span class="option">-march=z9-ec</span></samp> or higher.

     <br><dt><code>-mlong-double-64</code><dt><code>-mlong-double-128</code><dd><a name="index-mlong_002ddouble_002d64-1968"></a><a name="index-mlong_002ddouble_002d128-1969"></a>These switches control the size of <code>long double</code> type. A size
of 64bit makes the <code>long double</code> type equivalent to the <code>double</code>
type. This is the default.

     <br><dt><code>-mbackchain</code><dt><code>-mno-backchain</code><dd><a name="index-mbackchain-1970"></a><a name="index-mno_002dbackchain-1971"></a>Store (do not store) the address of the caller's frame as backchain pointer
into the callee's stack frame. 
A backchain may be needed to allow debugging using tools that do not understand
DWARF-2 call frame information. 
When <samp><span class="option">-mno-packed-stack</span></samp> is in effect, the backchain pointer is stored
at the bottom of the stack frame; when <samp><span class="option">-mpacked-stack</span></samp> is in effect,
the backchain is placed into the topmost word of the 96/160 byte register
save area.

     <p>In general, code compiled with <samp><span class="option">-mbackchain</span></samp> is call-compatible with
code compiled with <samp><span class="option">-mmo-backchain</span></samp>; however, use of the backchain
for debugging purposes usually requires that the whole binary is built with
<samp><span class="option">-mbackchain</span></samp>.  Note that the combination of <samp><span class="option">-mbackchain</span></samp>,
<samp><span class="option">-mpacked-stack</span></samp> and <samp><span class="option">-mhard-float</span></samp> is not supported.  In order
to build a linux kernel use <samp><span class="option">-msoft-float</span></samp>.

     <p>The default is to not maintain the backchain.

     <br><dt><code>-mpacked-stack</code><dt><code>-mno-packed-stack</code><dd><a name="index-mpacked_002dstack-1972"></a><a name="index-mno_002dpacked_002dstack-1973"></a>Use (do not use) the packed stack layout.  When <samp><span class="option">-mno-packed-stack</span></samp> is
specified, the compiler uses the all fields of the 96/160 byte register save
area only for their default purpose; unused fields still take up stack space. 
When <samp><span class="option">-mpacked-stack</span></samp> is specified, register save slots are densely
packed at the top of the register save area; unused space is reused for other
purposes, allowing for more efficient use of the available stack space. 
However, when <samp><span class="option">-mbackchain</span></samp> is also in effect, the topmost word of
the save area is always used to store the backchain, and the return address
register is always saved two words below the backchain.

     <p>As long as the stack frame backchain is not used, code generated with
<samp><span class="option">-mpacked-stack</span></samp> is call-compatible with code generated with
<samp><span class="option">-mno-packed-stack</span></samp>.  Note that some non-FSF releases of GCC 2.95 for
S/390 or zSeries generated code that uses the stack frame backchain at run
time, not just for debugging purposes.  Such code is not call-compatible
with code compiled with <samp><span class="option">-mpacked-stack</span></samp>.  Also, note that the
combination of <samp><span class="option">-mbackchain</span></samp>,
<samp><span class="option">-mpacked-stack</span></samp> and <samp><span class="option">-mhard-float</span></samp> is not supported.  In order
to build a linux kernel use <samp><span class="option">-msoft-float</span></samp>.

     <p>The default is to not use the packed stack layout.

     <br><dt><code>-msmall-exec</code><dt><code>-mno-small-exec</code><dd><a name="index-msmall_002dexec-1974"></a><a name="index-mno_002dsmall_002dexec-1975"></a>Generate (or do not generate) code using the <code>bras</code> instruction
to do subroutine calls. 
This only works reliably if the total executable size does not
exceed 64k.  The default is to use the <code>basr</code> instruction instead,
which does not have this limitation.

     <br><dt><code>-m64</code><dt><code>-m31</code><dd><a name="index-m64-1976"></a><a name="index-m31-1977"></a>When <samp><span class="option">-m31</span></samp> is specified, generate code compliant to the
GNU/Linux for S/390 ABI.  When <samp><span class="option">-m64</span></samp> is specified, generate
code compliant to the GNU/Linux for zSeries ABI.  This allows GCC in
particular to generate 64-bit instructions.  For the &lsquo;<samp><span class="samp">s390</span></samp>&rsquo;
targets, the default is <samp><span class="option">-m31</span></samp>, while the &lsquo;<samp><span class="samp">s390x</span></samp>&rsquo;
targets default to <samp><span class="option">-m64</span></samp>.

     <br><dt><code>-mzarch</code><dt><code>-mesa</code><dd><a name="index-mzarch-1978"></a><a name="index-mesa-1979"></a>When <samp><span class="option">-mzarch</span></samp> is specified, generate code using the
instructions available on z/Architecture. 
When <samp><span class="option">-mesa</span></samp> is specified, generate code using the
instructions available on ESA/390.  Note that <samp><span class="option">-mesa</span></samp> is
not possible with <samp><span class="option">-m64</span></samp>. 
When generating code compliant to the GNU/Linux for S/390 ABI,
the default is <samp><span class="option">-mesa</span></samp>.  When generating code compliant
to the GNU/Linux for zSeries ABI, the default is <samp><span class="option">-mzarch</span></samp>.

     <br><dt><code>-mmvcle</code><dt><code>-mno-mvcle</code><dd><a name="index-mmvcle-1980"></a><a name="index-mno_002dmvcle-1981"></a>Generate (or do not generate) code using the <code>mvcle</code> instruction
to perform block moves.  When <samp><span class="option">-mno-mvcle</span></samp> is specified,
use a <code>mvc</code> loop instead.  This is the default unless optimizing for
size.

     <br><dt><code>-mdebug</code><dt><code>-mno-debug</code><dd><a name="index-mdebug-1982"></a><a name="index-mno_002ddebug-1983"></a>Print (or do not print) additional debug information when compiling. 
The default is to not print debug information.

     <br><dt><code>-march=</code><var>cpu-type</var><dd><a name="index-march-1984"></a>Generate code that will run on <var>cpu-type</var>, which is the name of a system
representing a certain processor type.  Possible values for
<var>cpu-type</var> are &lsquo;<samp><span class="samp">g5</span></samp>&rsquo;, &lsquo;<samp><span class="samp">g6</span></samp>&rsquo;, &lsquo;<samp><span class="samp">z900</span></samp>&rsquo;, &lsquo;<samp><span class="samp">z990</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">z9-109</span></samp>&rsquo;, &lsquo;<samp><span class="samp">z9-ec</span></samp>&rsquo; and &lsquo;<samp><span class="samp">z10</span></samp>&rsquo;. 
When generating code using the instructions available on z/Architecture,
the default is <samp><span class="option">-march=z900</span></samp>.  Otherwise, the default is
<samp><span class="option">-march=g5</span></samp>.

     <br><dt><code>-mtune=</code><var>cpu-type</var><dd><a name="index-mtune-1985"></a>Tune to <var>cpu-type</var> everything applicable about the generated code,
except for the ABI and the set of available instructions. 
The list of <var>cpu-type</var> values is the same as for <samp><span class="option">-march</span></samp>. 
The default is the value used for <samp><span class="option">-march</span></samp>.

     <br><dt><code>-mtpf-trace</code><dt><code>-mno-tpf-trace</code><dd><a name="index-mtpf_002dtrace-1986"></a><a name="index-mno_002dtpf_002dtrace-1987"></a>Generate code that adds (does not add) in TPF OS specific branches to trace
routines in the operating system.  This option is off by default, even
when compiling for the TPF OS.

     <br><dt><code>-mfused-madd</code><dt><code>-mno-fused-madd</code><dd><a name="index-mfused_002dmadd-1988"></a><a name="index-mno_002dfused_002dmadd-1989"></a>Generate code that uses (does not use) the floating point multiply and
accumulate instructions.  These instructions are generated by default if
hardware floating point is used.

     <br><dt><code>-mwarn-framesize=</code><var>framesize</var><dd><a name="index-mwarn_002dframesize-1990"></a>Emit a warning if the current function exceeds the given frame size.  Because
this is a compile time check it doesn't need to be a real problem when the program
runs.  It is intended to identify functions which most probably cause
a stack overflow.  It is useful to be used in an environment with limited stack
size e.g. the linux kernel.

     <br><dt><code>-mwarn-dynamicstack</code><dd><a name="index-mwarn_002ddynamicstack-1991"></a>Emit a warning if the function calls alloca or uses dynamically
sized arrays.  This is generally a bad idea with a limited stack size.

     <br><dt><code>-mstack-guard=</code><var>stack-guard</var><dt><code>-mstack-size=</code><var>stack-size</var><dd><a name="index-mstack_002dguard-1992"></a><a name="index-mstack_002dsize-1993"></a>If these options are provided the s390 back end emits additional instructions in
the function prologue which trigger a trap if the stack size is <var>stack-guard</var>
bytes above the <var>stack-size</var> (remember that the stack on s390 grows downward). 
If the <var>stack-guard</var> option is omitted the smallest power of 2 larger than
the frame size of the compiled function is chosen. 
These options are intended to be used to help debugging stack overflow problems. 
The additionally emitted code causes only little overhead and hence can also be
used in production like systems without greater performance degradation.  The given
values have to be exact powers of 2 and <var>stack-size</var> has to be greater than
<var>stack-guard</var> without exceeding 64k. 
In order to be efficient the extra code makes the assumption that the stack starts
at an address aligned to the value given by <var>stack-size</var>. 
The <var>stack-guard</var> option can only be used in conjunction with <var>stack-size</var>. 
</dl>

<div class="node">
<a name="Score-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#SH-Options">SH Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.36 Score Options</h4>

<p><a name="index-Score-Options-1994"></a>
These options are defined for Score implementations:

     <dl>
<dt><code>-meb</code><dd><a name="index-meb-1995"></a>Compile code for big endian mode.  This is the default.

     <br><dt><code>-mel</code><dd><a name="index-mel-1996"></a>Compile code for little endian mode.

     <br><dt><code>-mnhwloop</code><dd><a name="index-mnhwloop-1997"></a>Disable generate bcnz instruction.

     <br><dt><code>-muls</code><dd><a name="index-muls-1998"></a>Enable generate unaligned load and store instruction.

     <br><dt><code>-mmac</code><dd><a name="index-mmac-1999"></a>Enable the use of multiply-accumulate instructions. Disabled by default.

     <br><dt><code>-mscore5</code><dd><a name="index-mscore5-2000"></a>Specify the SCORE5 as the target architecture.

     <br><dt><code>-mscore5u</code><dd><a name="index-mscore5u-2001"></a>Specify the SCORE5U of the target architecture.

     <br><dt><code>-mscore7</code><dd><a name="index-mscore7-2002"></a>Specify the SCORE7 as the target architecture. This is the default.

     <br><dt><code>-mscore7d</code><dd><a name="index-mscore7d-2003"></a>Specify the SCORE7D as the target architecture. 
</dl>

<div class="node">
<a name="SH-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Solaris-2-Options">Solaris 2 Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Score-Options">Score Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.37 SH Options</h4>

<p>These &lsquo;<samp><span class="samp">-m</span></samp>&rsquo; options are defined for the SH implementations:

     <dl>
<dt><code>-m1</code><dd><a name="index-m1-2004"></a>Generate code for the SH1.

     <br><dt><code>-m2</code><dd><a name="index-m2-2005"></a>Generate code for the SH2.

     <br><dt><code>-m2e</code><dd>Generate code for the SH2e.

     <br><dt><code>-m2a-nofpu</code><dd><a name="index-m2a_002dnofpu-2006"></a>Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
that the floating-point unit is not used.

     <br><dt><code>-m2a-single-only</code><dd><a name="index-m2a_002dsingle_002donly-2007"></a>Generate code for the SH2a-FPU, in such a way that no double-precision
floating point operations are used.

     <br><dt><code>-m2a-single</code><dd><a name="index-m2a_002dsingle-2008"></a>Generate code for the SH2a-FPU assuming the floating-point unit is in
single-precision mode by default.

     <br><dt><code>-m2a</code><dd><a name="index-m2a-2009"></a>Generate code for the SH2a-FPU assuming the floating-point unit is in
double-precision mode by default.

     <br><dt><code>-m3</code><dd><a name="index-m3-2010"></a>Generate code for the SH3.

     <br><dt><code>-m3e</code><dd><a name="index-m3e-2011"></a>Generate code for the SH3e.

     <br><dt><code>-m4-nofpu</code><dd><a name="index-m4_002dnofpu-2012"></a>Generate code for the SH4 without a floating-point unit.

     <br><dt><code>-m4-single-only</code><dd><a name="index-m4_002dsingle_002donly-2013"></a>Generate code for the SH4 with a floating-point unit that only
supports single-precision arithmetic.

     <br><dt><code>-m4-single</code><dd><a name="index-m4_002dsingle-2014"></a>Generate code for the SH4 assuming the floating-point unit is in
single-precision mode by default.

     <br><dt><code>-m4</code><dd><a name="index-m4-2015"></a>Generate code for the SH4.

     <br><dt><code>-m4a-nofpu</code><dd><a name="index-m4a_002dnofpu-2016"></a>Generate code for the SH4al-dsp, or for a SH4a in such a way that the
floating-point unit is not used.

     <br><dt><code>-m4a-single-only</code><dd><a name="index-m4a_002dsingle_002donly-2017"></a>Generate code for the SH4a, in such a way that no double-precision
floating point operations are used.

     <br><dt><code>-m4a-single</code><dd><a name="index-m4a_002dsingle-2018"></a>Generate code for the SH4a assuming the floating-point unit is in
single-precision mode by default.

     <br><dt><code>-m4a</code><dd><a name="index-m4a-2019"></a>Generate code for the SH4a.

     <br><dt><code>-m4al</code><dd><a name="index-m4al-2020"></a>Same as <samp><span class="option">-m4a-nofpu</span></samp>, except that it implicitly passes
<samp><span class="option">-dsp</span></samp> to the assembler.  GCC doesn't generate any DSP
instructions at the moment.

     <br><dt><code>-mb</code><dd><a name="index-mb-2021"></a>Compile code for the processor in big endian mode.

     <br><dt><code>-ml</code><dd><a name="index-ml-2022"></a>Compile code for the processor in little endian mode.

     <br><dt><code>-mdalign</code><dd><a name="index-mdalign-2023"></a>Align doubles at 64-bit boundaries.  Note that this changes the calling
conventions, and thus some functions from the standard C library will
not work unless you recompile it first with <samp><span class="option">-mdalign</span></samp>.

     <br><dt><code>-mrelax</code><dd><a name="index-mrelax-2024"></a>Shorten some address references at link time, when possible; uses the
linker option <samp><span class="option">-relax</span></samp>.

     <br><dt><code>-mbigtable</code><dd><a name="index-mbigtable-2025"></a>Use 32-bit offsets in <code>switch</code> tables.  The default is to use
16-bit offsets.

     <br><dt><code>-mbitops</code><dd><a name="index-mbitops-2026"></a>Enable the use of bit manipulation instructions on SH2A.

     <br><dt><code>-mfmovd</code><dd><a name="index-mfmovd-2027"></a>Enable the use of the instruction <code>fmovd</code>.  Check <samp><span class="option">-mdalign</span></samp> for
alignment constraints.

     <br><dt><code>-mhitachi</code><dd><a name="index-mhitachi-2028"></a>Comply with the calling conventions defined by Renesas.

     <br><dt><code>-mrenesas</code><dd><a name="index-mhitachi-2029"></a>Comply with the calling conventions defined by Renesas.

     <br><dt><code>-mno-renesas</code><dd><a name="index-mhitachi-2030"></a>Comply with the calling conventions defined for GCC before the Renesas
conventions were available.  This option is the default for all
targets of the SH toolchain except for &lsquo;<samp><span class="samp">sh-symbianelf</span></samp>&rsquo;.

     <br><dt><code>-mnomacsave</code><dd><a name="index-mnomacsave-2031"></a>Mark the <code>MAC</code> register as call-clobbered, even if
<samp><span class="option">-mhitachi</span></samp> is given.

     <br><dt><code>-mieee</code><dd><a name="index-mieee-2032"></a>Increase IEEE-compliance of floating-point code. 
At the moment, this is equivalent to <samp><span class="option">-fno-finite-math-only</span></samp>. 
When generating 16 bit SH opcodes, getting IEEE-conforming results for
comparisons of NANs / infinities incurs extra overhead in every
floating point comparison, therefore the default is set to
<samp><span class="option">-ffinite-math-only</span></samp>.

     <br><dt><code>-minline-ic_invalidate</code><dd><a name="index-minline_002dic_005finvalidate-2033"></a>Inline code to invalidate instruction cache entries after setting up
nested function trampolines. 
This option has no effect if -musermode is in effect and the selected
code generation option (e.g. -m4) does not allow the use of the icbi
instruction. 
If the selected code generation option does not allow the use of the icbi
instruction, and -musermode is not in effect, the inlined code will
manipulate the instruction cache address array directly with an associative
write.  This not only requires privileged mode, but it will also
fail if the cache line had been mapped via the TLB and has become unmapped.

     <br><dt><code>-misize</code><dd><a name="index-misize-2034"></a>Dump instruction size and location in the assembly code.

     <br><dt><code>-mpadstruct</code><dd><a name="index-mpadstruct-2035"></a>This option is deprecated.  It pads structures to multiple of 4 bytes,
which is incompatible with the SH ABI.

     <br><dt><code>-mspace</code><dd><a name="index-mspace-2036"></a>Optimize for space instead of speed.  Implied by <samp><span class="option">-Os</span></samp>.

     <br><dt><code>-mprefergot</code><dd><a name="index-mprefergot-2037"></a>When generating position-independent code, emit function calls using
the Global Offset Table instead of the Procedure Linkage Table.

     <br><dt><code>-musermode</code><dd><a name="index-musermode-2038"></a>Don't generate privileged mode only code; implies -mno-inline-ic_invalidate
if the inlined code would not work in user mode. 
This is the default when the target is <code>sh-*-linux*</code>.

     <br><dt><code>-multcost=</code><var>number</var><dd><a name="index-multcost_003d_0040var_007bnumber_007d-2039"></a>Set the cost to assume for a multiply insn.

     <br><dt><code>-mdiv=</code><var>strategy</var><dd><a name="index-mdiv_003d_0040var_007bstrategy_007d-2040"></a>Set the division strategy to use for SHmedia code.  <var>strategy</var> must be
one of: call, call2, fp, inv, inv:minlat, inv20u, inv20l, inv:call,
inv:call2, inv:fp . 
"fp" performs the operation in floating point.  This has a very high latency,
but needs only a few instructions, so it might be a good choice if
your code has enough easily exploitable ILP to allow the compiler to
schedule the floating point instructions together with other instructions. 
Division by zero causes a floating point exception. 
"inv" uses integer operations to calculate the inverse of the divisor,
and then multiplies the dividend with the inverse.  This strategy allows
cse and hoisting of the inverse calculation.  Division by zero calculates
an unspecified result, but does not trap. 
"inv:minlat" is a variant of "inv" where if no cse / hoisting opportunities
have been found, or if the entire operation has been hoisted to the same
place, the last stages of the inverse calculation are intertwined with the
final multiply to reduce the overall latency, at the expense of using a few
more instructions, and thus offering fewer scheduling opportunities with
other code. 
"call" calls a library function that usually implements the inv:minlat
strategy. 
This gives high code density for m5-*media-nofpu compilations. 
"call2" uses a different entry point of the same library function, where it
assumes that a pointer to a lookup table has already been set up, which
exposes the pointer load to cse / code hoisting optimizations. 
"inv:call", "inv:call2" and "inv:fp" all use the "inv" algorithm for initial
code generation, but if the code stays unoptimized, revert to the "call",
"call2", or "fp" strategies, respectively.  Note that the
potentially-trapping side effect of division by zero is carried by a
separate instruction, so it is possible that all the integer instructions
are hoisted out, but the marker for the side effect stays where it is. 
A recombination to fp operations or a call is not possible in that case. 
"inv20u" and "inv20l" are variants of the "inv:minlat" strategy.  In the case
that the inverse calculation was nor separated from the multiply, they speed
up division where the dividend fits into 20 bits (plus sign where applicable),
by inserting a test to skip a number of operations in this case; this test
slows down the case of larger dividends.  inv20u assumes the case of a such
a small dividend to be unlikely, and inv20l assumes it to be likely.

     <br><dt><code>-maccumulate-outgoing-args</code><dd><a name="index-maccumulate_002doutgoing_002dargs-2041"></a>Reserve space once for outgoing arguments in the function prologue rather
than around each call.  Generally beneficial for performance and size.  Also
needed for unwinding to avoid changing the stack frame around conditional code.

     <br><dt><code>-mdivsi3_libfunc=</code><var>name</var><dd><a name="index-mdivsi3_005flibfunc_003d_0040var_007bname_007d-2042"></a>Set the name of the library function used for 32 bit signed division to
<var>name</var>.  This only affect the name used in the call and inv:call
division strategies, and the compiler will still expect the same
sets of input/output/clobbered registers as if this option was not present.

     <br><dt><code>-mfixed-range=</code><var>register-range</var><dd><a name="index-mfixed_002drange-2043"></a>Generate code treating the given register range as fixed registers. 
A fixed register is one that the register allocator can not use.  This is
useful when compiling kernel code.  A register range is specified as
two registers separated by a dash.  Multiple register ranges can be
specified separated by a comma.

     <br><dt><code>-madjust-unroll</code><dd><a name="index-madjust_002dunroll-2044"></a>Throttle unrolling to avoid thrashing target registers. 
This option only has an effect if the gcc code base supports the
TARGET_ADJUST_UNROLL_MAX target hook.

     <br><dt><code>-mindexed-addressing</code><dd><a name="index-mindexed_002daddressing-2045"></a>Enable the use of the indexed addressing mode for SHmedia32/SHcompact. 
This is only safe if the hardware and/or OS implement 32 bit wrap-around
semantics for the indexed addressing mode.  The architecture allows the
implementation of processors with 64 bit MMU, which the OS could use to
get 32 bit addressing, but since no current hardware implementation supports
this or any other way to make the indexed addressing mode safe to use in
the 32 bit ABI, the default is -mno-indexed-addressing.

     <br><dt><code>-mgettrcost=</code><var>number</var><dd><a name="index-mgettrcost_003d_0040var_007bnumber_007d-2046"></a>Set the cost assumed for the gettr instruction to <var>number</var>. 
The default is 2 if <samp><span class="option">-mpt-fixed</span></samp> is in effect, 100 otherwise.

     <br><dt><code>-mpt-fixed</code><dd><a name="index-mpt_002dfixed-2047"></a>Assume pt* instructions won't trap.  This will generally generate better
scheduled code, but is unsafe on current hardware.  The current architecture
definition says that ptabs and ptrel trap when the target anded with 3 is 3. 
This has the unintentional effect of making it unsafe to schedule ptabs /
ptrel before a branch, or hoist it out of a loop.  For example,
__do_global_ctors, a part of libgcc that runs constructors at program
startup, calls functions in a list which is delimited by &minus;1.  With the
-mpt-fixed option, the ptabs will be done before testing against &minus;1. 
That means that all the constructors will be run a bit quicker, but when
the loop comes to the end of the list, the program crashes because ptabs
loads &minus;1 into a target register.  Since this option is unsafe for any
hardware implementing the current architecture specification, the default
is -mno-pt-fixed.  Unless the user specifies a specific cost with
<samp><span class="option">-mgettrcost</span></samp>, -mno-pt-fixed also implies <samp><span class="option">-mgettrcost=100</span></samp>;
this deters register allocation using target registers for storing
ordinary integers.

     <br><dt><code>-minvalid-symbols</code><dd><a name="index-minvalid_002dsymbols-2048"></a>Assume symbols might be invalid.  Ordinary function symbols generated by
the compiler will always be valid to load with movi/shori/ptabs or
movi/shori/ptrel, but with assembler and/or linker tricks it is possible
to generate symbols that will cause ptabs / ptrel to trap. 
This option is only meaningful when <samp><span class="option">-mno-pt-fixed</span></samp> is in effect. 
It will then prevent cross-basic-block cse, hoisting and most scheduling
of symbol loads.  The default is <samp><span class="option">-mno-invalid-symbols</span></samp>. 
</dl>

<div class="node">
<a name="Solaris-2-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#SPARC-Options">SPARC Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#SH-Options">SH Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.38 Solaris 2 Options</h4>

<p><a name="index-Solaris-2-options-2049"></a>
These &lsquo;<samp><span class="samp">-m</span></samp>&rsquo; options are supported on Solaris 2:

     <dl>
<dt><code>-mimpure-text</code><dd><a name="index-mimpure_002dtext-2050"></a><samp><span class="option">-mimpure-text</span></samp>, used in addition to <samp><span class="option">-shared</span></samp>, tells
the compiler to not pass <samp><span class="option">-z text</span></samp> to the linker when linking a
shared object.  Using this option, you can link position-dependent
code into a shared object.

     <p><samp><span class="option">-mimpure-text</span></samp> suppresses the &ldquo;relocations remain against
allocatable but non-writable sections&rdquo; linker error message. 
However, the necessary relocations will trigger copy-on-write, and the
shared object is not actually shared across processes.  Instead of
using <samp><span class="option">-mimpure-text</span></samp>, you should compile all source code with
<samp><span class="option">-fpic</span></samp> or <samp><span class="option">-fPIC</span></samp>.

 </dl>

 <p>These switches are supported in addition to the above on Solaris 2:

     <dl>
<dt><code>-threads</code><dd><a name="index-threads-2051"></a>Add support for multithreading using the Solaris threads library.  This
option sets flags for both the preprocessor and linker.  This option does
not affect the thread safety of object code produced by the compiler or
that of libraries supplied with it.

     <br><dt><code>-pthreads</code><dd><a name="index-pthreads-2052"></a>Add support for multithreading using the POSIX threads library.  This
option sets flags for both the preprocessor and linker.  This option does
not affect the thread safety of object code produced  by the compiler or
that of libraries supplied with it.

     <br><dt><code>-pthread</code><dd><a name="index-pthread-2053"></a>This is a synonym for <samp><span class="option">-pthreads</span></samp>. 
</dl>

<div class="node">
<a name="SPARC-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#SPU-Options">SPU Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Solaris-2-Options">Solaris 2 Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.39 SPARC Options</h4>

<p><a name="index-SPARC-options-2054"></a>
These &lsquo;<samp><span class="samp">-m</span></samp>&rsquo; options are supported on the SPARC:

     <dl>
<dt><code>-mno-app-regs</code><dt><code>-mapp-regs</code><dd><a name="index-mno_002dapp_002dregs-2055"></a><a name="index-mapp_002dregs-2056"></a>Specify <samp><span class="option">-mapp-regs</span></samp> to generate output using the global registers
2 through 4, which the SPARC SVR4 ABI reserves for applications.  This
is the default.

     <p>To be fully SVR4 ABI compliant at the cost of some performance loss,
specify <samp><span class="option">-mno-app-regs</span></samp>.  You should compile libraries and system
software with this option.

     <br><dt><code>-mfpu</code><dt><code>-mhard-float</code><dd><a name="index-mfpu-2057"></a><a name="index-mhard_002dfloat-2058"></a>Generate output containing floating point instructions.  This is the
default.

     <br><dt><code>-mno-fpu</code><dt><code>-msoft-float</code><dd><a name="index-mno_002dfpu-2059"></a><a name="index-msoft_002dfloat-2060"></a>Generate output containing library calls for floating point. 
<strong>Warning:</strong> the requisite libraries are not available for all SPARC
targets.  Normally the facilities of the machine's usual C compiler are
used, but this cannot be done directly in cross-compilation.  You must make
your own arrangements to provide suitable library functions for
cross-compilation.  The embedded targets &lsquo;<samp><span class="samp">sparc-*-aout</span></samp>&rsquo; and
&lsquo;<samp><span class="samp">sparclite-*-*</span></samp>&rsquo; do provide software floating point support.

     <p><samp><span class="option">-msoft-float</span></samp> changes the calling convention in the output file;
therefore, it is only useful if you compile <em>all</em> of a program with
this option.  In particular, you need to compile <samp><span class="file">libgcc.a</span></samp>, the
library that comes with GCC, with <samp><span class="option">-msoft-float</span></samp> in order for
this to work.

     <br><dt><code>-mhard-quad-float</code><dd><a name="index-mhard_002dquad_002dfloat-2061"></a>Generate output containing quad-word (long double) floating point
instructions.

     <br><dt><code>-msoft-quad-float</code><dd><a name="index-msoft_002dquad_002dfloat-2062"></a>Generate output containing library calls for quad-word (long double)
floating point instructions.  The functions called are those specified
in the SPARC ABI.  This is the default.

     <p>As of this writing, there are no SPARC implementations that have hardware
support for the quad-word floating point instructions.  They all invoke
a trap handler for one of these instructions, and then the trap handler
emulates the effect of the instruction.  Because of the trap handler overhead,
this is much slower than calling the ABI library routines.  Thus the
<samp><span class="option">-msoft-quad-float</span></samp> option is the default.

     <br><dt><code>-mno-unaligned-doubles</code><dt><code>-munaligned-doubles</code><dd><a name="index-mno_002dunaligned_002ddoubles-2063"></a><a name="index-munaligned_002ddoubles-2064"></a>Assume that doubles have 8 byte alignment.  This is the default.

     <p>With <samp><span class="option">-munaligned-doubles</span></samp>, GCC assumes that doubles have 8 byte
alignment only if they are contained in another type, or if they have an
absolute address.  Otherwise, it assumes they have 4 byte alignment. 
Specifying this option avoids some rare compatibility problems with code
generated by other compilers.  It is not the default because it results
in a performance loss, especially for floating point code.

     <br><dt><code>-mno-faster-structs</code><dt><code>-mfaster-structs</code><dd><a name="index-mno_002dfaster_002dstructs-2065"></a><a name="index-mfaster_002dstructs-2066"></a>With <samp><span class="option">-mfaster-structs</span></samp>, the compiler assumes that structures
should have 8 byte alignment.  This enables the use of pairs of
<code>ldd</code> and <code>std</code> instructions for copies in structure
assignment, in place of twice as many <code>ld</code> and <code>st</code> pairs. 
However, the use of this changed alignment directly violates the SPARC
ABI.  Thus, it's intended only for use on targets where the developer
acknowledges that their resulting code will not be directly in line with
the rules of the ABI.

     <br><dt><code>-mcpu=</code><var>cpu_type</var><dd><a name="index-mcpu-2067"></a>Set the instruction set, register set, and instruction scheduling parameters
for machine type <var>cpu_type</var>.  Supported values for <var>cpu_type</var> are
&lsquo;<samp><span class="samp">v7</span></samp>&rsquo;, &lsquo;<samp><span class="samp">cypress</span></samp>&rsquo;, &lsquo;<samp><span class="samp">v8</span></samp>&rsquo;, &lsquo;<samp><span class="samp">supersparc</span></samp>&rsquo;, &lsquo;<samp><span class="samp">hypersparc</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">leon</span></samp>&rsquo;, &lsquo;<samp><span class="samp">sparclite</span></samp>&rsquo;, &lsquo;<samp><span class="samp">f930</span></samp>&rsquo;, &lsquo;<samp><span class="samp">f934</span></samp>&rsquo;, &lsquo;<samp><span class="samp">sparclite86x</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">sparclet</span></samp>&rsquo;, &lsquo;<samp><span class="samp">tsc701</span></samp>&rsquo;, &lsquo;<samp><span class="samp">v9</span></samp>&rsquo;, &lsquo;<samp><span class="samp">ultrasparc</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">ultrasparc3</span></samp>&rsquo;, &lsquo;<samp><span class="samp">niagara</span></samp>&rsquo; and &lsquo;<samp><span class="samp">niagara2</span></samp>&rsquo;.

     <p>Default instruction scheduling parameters are used for values that select
an architecture and not an implementation.  These are &lsquo;<samp><span class="samp">v7</span></samp>&rsquo;, &lsquo;<samp><span class="samp">v8</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">sparclite</span></samp>&rsquo;, &lsquo;<samp><span class="samp">sparclet</span></samp>&rsquo;, &lsquo;<samp><span class="samp">v9</span></samp>&rsquo;.

     <p>Here is a list of each supported architecture and their supported
implementations.

     <pre class="smallexample">              v7:             cypress
              v8:             supersparc, hypersparc, leon
              sparclite:      f930, f934, sparclite86x
              sparclet:       tsc701
              v9:             ultrasparc, ultrasparc3, niagara, niagara2
</pre>
     <p>By default (unless configured otherwise), GCC generates code for the V7
variant of the SPARC architecture.  With <samp><span class="option">-mcpu=cypress</span></samp>, the compiler
additionally optimizes it for the Cypress CY7C602 chip, as used in the
SPARCStation/SPARCServer 3xx series.  This is also appropriate for the older
SPARCStation 1, 2, IPX etc.

     <p>With <samp><span class="option">-mcpu=v8</span></samp>, GCC generates code for the V8 variant of the SPARC
architecture.  The only difference from V7 code is that the compiler emits
the integer multiply and integer divide instructions which exist in SPARC-V8
but not in SPARC-V7.  With <samp><span class="option">-mcpu=supersparc</span></samp>, the compiler additionally
optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
2000 series.

     <p>With <samp><span class="option">-mcpu=sparclite</span></samp>, GCC generates code for the SPARClite variant of
the SPARC architecture.  This adds the integer multiply, integer divide step
and scan (<code>ffs</code>) instructions which exist in SPARClite but not in SPARC-V7. 
With <samp><span class="option">-mcpu=f930</span></samp>, the compiler additionally optimizes it for the
Fujitsu MB86930 chip, which is the original SPARClite, with no FPU.  With
<samp><span class="option">-mcpu=f934</span></samp>, the compiler additionally optimizes it for the Fujitsu
MB86934 chip, which is the more recent SPARClite with FPU.

     <p>With <samp><span class="option">-mcpu=sparclet</span></samp>, GCC generates code for the SPARClet variant of
the SPARC architecture.  This adds the integer multiply, multiply/accumulate,
integer divide step and scan (<code>ffs</code>) instructions which exist in SPARClet
but not in SPARC-V7.  With <samp><span class="option">-mcpu=tsc701</span></samp>, the compiler additionally
optimizes it for the TEMIC SPARClet chip.

     <p>With <samp><span class="option">-mcpu=v9</span></samp>, GCC generates code for the V9 variant of the SPARC
architecture.  This adds 64-bit integer and floating-point move instructions,
3 additional floating-point condition code registers and conditional move
instructions.  With <samp><span class="option">-mcpu=ultrasparc</span></samp>, the compiler additionally
optimizes it for the Sun UltraSPARC I/II/IIi chips.  With
<samp><span class="option">-mcpu=ultrasparc3</span></samp>, the compiler additionally optimizes it for the
Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips.  With
<samp><span class="option">-mcpu=niagara</span></samp>, the compiler additionally optimizes it for
Sun UltraSPARC T1 chips.  With <samp><span class="option">-mcpu=niagara2</span></samp>, the compiler
additionally optimizes it for Sun UltraSPARC T2 chips.

     <br><dt><code>-mtune=</code><var>cpu_type</var><dd><a name="index-mtune-2068"></a>Set the instruction scheduling parameters for machine type
<var>cpu_type</var>, but do not set the instruction set or register set that the
option <samp><span class="option">-mcpu=</span><var>cpu_type</var></samp> would.

     <p>The same values for <samp><span class="option">-mcpu=</span><var>cpu_type</var></samp> can be used for
<samp><span class="option">-mtune=</span><var>cpu_type</var></samp>, but the only useful values are those
that select a particular CPU implementation.  Those are &lsquo;<samp><span class="samp">cypress</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">supersparc</span></samp>&rsquo;, &lsquo;<samp><span class="samp">hypersparc</span></samp>&rsquo;, &lsquo;<samp><span class="samp">leon</span></samp>&rsquo;, &lsquo;<samp><span class="samp">f930</span></samp>&rsquo;, &lsquo;<samp><span class="samp">f934</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">sparclite86x</span></samp>&rsquo;, &lsquo;<samp><span class="samp">tsc701</span></samp>&rsquo;, &lsquo;<samp><span class="samp">ultrasparc</span></samp>&rsquo;, &lsquo;<samp><span class="samp">ultrasparc3</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">niagara</span></samp>&rsquo;, and &lsquo;<samp><span class="samp">niagara2</span></samp>&rsquo;.

     <br><dt><code>-mv8plus</code><dt><code>-mno-v8plus</code><dd><a name="index-mv8plus-2069"></a><a name="index-mno_002dv8plus-2070"></a>With <samp><span class="option">-mv8plus</span></samp>, GCC generates code for the SPARC-V8+ ABI.  The
difference from the V8 ABI is that the global and out registers are
considered 64-bit wide.  This is enabled by default on Solaris in 32-bit
mode for all SPARC-V9 processors.

     <br><dt><code>-mvis</code><dt><code>-mno-vis</code><dd><a name="index-mvis-2071"></a><a name="index-mno_002dvis-2072"></a>With <samp><span class="option">-mvis</span></samp>, GCC generates code that takes advantage of the UltraSPARC
Visual Instruction Set extensions.  The default is <samp><span class="option">-mno-vis</span></samp>.

     <br><dt><code>-mfix-at697f</code><dd><a name="index-mfix_002dat697f-2073"></a>Enable the documented workaround for the single erratum of the Atmel AT697F
processor (which corresponds to erratum #13 of the AT697E processor). 
</dl>

 <p>These &lsquo;<samp><span class="samp">-m</span></samp>&rsquo; options are supported in addition to the above
on SPARC-V9 processors in 64-bit environments:

     <dl>
<dt><code>-mlittle-endian</code><dd><a name="index-mlittle_002dendian-2074"></a>Generate code for a processor running in little-endian mode.  It is only
available for a few configurations and most notably not on Solaris and Linux.

     <br><dt><code>-m32</code><dt><code>-m64</code><dd><a name="index-m32-2075"></a><a name="index-m64-2076"></a>Generate code for a 32-bit or 64-bit environment. 
The 32-bit environment sets int, long and pointer to 32 bits. 
The 64-bit environment sets int to 32 bits and long and pointer
to 64 bits.

     <br><dt><code>-mcmodel=medlow</code><dd><a name="index-mcmodel_003dmedlow-2077"></a>Generate code for the Medium/Low code model: 64-bit addresses, programs
must be linked in the low 32 bits of memory.  Programs can be statically
or dynamically linked.

     <br><dt><code>-mcmodel=medmid</code><dd><a name="index-mcmodel_003dmedmid-2078"></a>Generate code for the Medium/Middle code model: 64-bit addresses, programs
must be linked in the low 44 bits of memory, the text and data segments must
be less than 2GB in size and the data segment must be located within 2GB of
the text segment.

     <br><dt><code>-mcmodel=medany</code><dd><a name="index-mcmodel_003dmedany-2079"></a>Generate code for the Medium/Anywhere code model: 64-bit addresses, programs
may be linked anywhere in memory, the text and data segments must be less
than 2GB in size and the data segment must be located within 2GB of the
text segment.

     <br><dt><code>-mcmodel=embmedany</code><dd><a name="index-mcmodel_003dembmedany-2080"></a>Generate code for the Medium/Anywhere code model for embedded systems:
64-bit addresses, the text and data segments must be less than 2GB in
size, both starting anywhere in memory (determined at link time).  The
global register %g4 points to the base of the data segment.  Programs
are statically linked and PIC is not supported.

     <br><dt><code>-mstack-bias</code><dt><code>-mno-stack-bias</code><dd><a name="index-mstack_002dbias-2081"></a><a name="index-mno_002dstack_002dbias-2082"></a>With <samp><span class="option">-mstack-bias</span></samp>, GCC assumes that the stack pointer, and
frame pointer if present, are offset by &minus;2047 which must be added back
when making stack frame references.  This is the default in 64-bit mode. 
Otherwise, assume no such offset is present. 
</dl>

<div class="node">
<a name="SPU-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#System-V-Options">System V Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#SPARC-Options">SPARC Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.40 SPU Options</h4>

<p><a name="index-SPU-options-2083"></a>
These &lsquo;<samp><span class="samp">-m</span></samp>&rsquo; options are supported on the SPU:

     <dl>
<dt><code>-mwarn-reloc</code><dt><code>-merror-reloc</code><dd><a name="index-mwarn_002dreloc-2084"></a><a name="index-merror_002dreloc-2085"></a>
The loader for SPU does not handle dynamic relocations.  By default, GCC
will give an error when it generates code that requires a dynamic
relocation.  <samp><span class="option">-mno-error-reloc</span></samp> disables the error,
<samp><span class="option">-mwarn-reloc</span></samp> will generate a warning instead.

     <br><dt><code>-msafe-dma</code><dt><code>-munsafe-dma</code><dd><a name="index-msafe_002ddma-2086"></a><a name="index-munsafe_002ddma-2087"></a>
Instructions which initiate or test completion of DMA must not be
reordered with respect to loads and stores of the memory which is being
accessed.  Users typically address this problem using the volatile
keyword, but that can lead to inefficient code in places where the
memory is known to not change.  Rather than mark the memory as volatile
we treat the DMA instructions as potentially effecting all memory.  With
<samp><span class="option">-munsafe-dma</span></samp> users must use the volatile keyword to protect
memory accesses.

     <br><dt><code>-mbranch-hints</code><dd><a name="index-mbranch_002dhints-2088"></a>
By default, GCC will generate a branch hint instruction to avoid
pipeline stalls for always taken or probably taken branches.  A hint
will not be generated closer than 8 instructions away from its branch. 
There is little reason to disable them, except for debugging purposes,
or to make an object a little bit smaller.

     <br><dt><code>-msmall-mem</code><dt><code>-mlarge-mem</code><dd><a name="index-msmall_002dmem-2089"></a><a name="index-mlarge_002dmem-2090"></a>
By default, GCC generates code assuming that addresses are never larger
than 18 bits.  With <samp><span class="option">-mlarge-mem</span></samp> code is generated that assumes
a full 32 bit address.

     <br><dt><code>-mstdmain</code><dd><a name="index-mstdmain-2091"></a>
By default, GCC links against startup code that assumes the SPU-style
main function interface (which has an unconventional parameter list). 
With <samp><span class="option">-mstdmain</span></samp>, GCC will link your program against startup
code that assumes a C99-style interface to <code>main</code>, including a
local copy of <code>argv</code> strings.

     <br><dt><code>-mfixed-range=</code><var>register-range</var><dd><a name="index-mfixed_002drange-2092"></a>Generate code treating the given register range as fixed registers. 
A fixed register is one that the register allocator can not use.  This is
useful when compiling kernel code.  A register range is specified as
two registers separated by a dash.  Multiple register ranges can be
specified separated by a comma.

     <br><dt><code>-mea32</code><dt><code>-mea64</code><dd><a name="index-mea32-2093"></a><a name="index-mea64-2094"></a>Compile code assuming that pointers to the PPU address space accessed
via the <code>__ea</code> named address space qualifier are either 32 or 64
bits wide.  The default is 32 bits.  As this is an ABI changing option,
all object code in an executable must be compiled with the same setting.

     <br><dt><code>-maddress-space-conversion</code><dt><code>-mno-address-space-conversion</code><dd><a name="index-maddress_002dspace_002dconversion-2095"></a><a name="index-mno_002daddress_002dspace_002dconversion-2096"></a>Allow/disallow treating the <code>__ea</code> address space as superset
of the generic address space.  This enables explicit type casts
between <code>__ea</code> and generic pointer as well as implicit
conversions of generic pointers to <code>__ea</code> pointers.  The
default is to allow address space pointer conversions.

     <br><dt><code>-mcache-size=</code><var>cache-size</var><dd><a name="index-mcache_002dsize-2097"></a>This option controls the version of libgcc that the compiler links to an
executable and selects a software-managed cache for accessing variables
in the <code>__ea</code> address space with a particular cache size.  Possible
options for <var>cache-size</var> are &lsquo;<samp><span class="samp">8</span></samp>&rsquo;, &lsquo;<samp><span class="samp">16</span></samp>&rsquo;, &lsquo;<samp><span class="samp">32</span></samp>&rsquo;, &lsquo;<samp><span class="samp">64</span></samp>&rsquo;
and &lsquo;<samp><span class="samp">128</span></samp>&rsquo;.  The default cache size is 64KB.

     <br><dt><code>-matomic-updates</code><dt><code>-mno-atomic-updates</code><dd><a name="index-matomic_002dupdates-2098"></a><a name="index-mno_002datomic_002dupdates-2099"></a>This option controls the version of libgcc that the compiler links to an
executable and selects whether atomic updates to the software-managed
cache of PPU-side variables are used.  If you use atomic updates, changes
to a PPU variable from SPU code using the <code>__ea</code> named address space
qualifier will not interfere with changes to other PPU variables residing
in the same cache line from PPU code.  If you do not use atomic updates,
such interference may occur; however, writing back cache lines will be
more efficient.  The default behavior is to use atomic updates.

     <br><dt><code>-mdual-nops</code><dt><code>-mdual-nops=</code><var>n</var><dd><a name="index-mdual_002dnops-2100"></a>By default, GCC will insert nops to increase dual issue when it expects
it to increase performance.  <var>n</var> can be a value from 0 to 10.  A
smaller <var>n</var> will insert fewer nops.  10 is the default, 0 is the
same as <samp><span class="option">-mno-dual-nops</span></samp>.  Disabled with <samp><span class="option">-Os</span></samp>.

     <br><dt><code>-mhint-max-nops=</code><var>n</var><dd><a name="index-mhint_002dmax_002dnops-2101"></a>Maximum number of nops to insert for a branch hint.  A branch hint must
be at least 8 instructions away from the branch it is effecting.  GCC
will insert up to <var>n</var> nops to enforce this, otherwise it will not
generate the branch hint.

     <br><dt><code>-mhint-max-distance=</code><var>n</var><dd><a name="index-mhint_002dmax_002ddistance-2102"></a>The encoding of the branch hint instruction limits the hint to be within
256 instructions of the branch it is effecting.  By default, GCC makes
sure it is within 125.

     <br><dt><code>-msafe-hints</code><dd><a name="index-msafe_002dhints-2103"></a>Work around a hardware bug which causes the SPU to stall indefinitely. 
By default, GCC will insert the <code>hbrp</code> instruction to make sure
this stall won't happen.

 </dl>

<div class="node">
<a name="System-V-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#V850-Options">V850 Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#SPU-Options">SPU Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.41 Options for System V</h4>

<p>These additional options are available on System V Release 4 for
compatibility with other compilers on those systems:

     <dl>
<dt><code>-G</code><dd><a name="index-G-2104"></a>Create a shared object. 
It is recommended that <samp><span class="option">-symbolic</span></samp> or <samp><span class="option">-shared</span></samp> be used instead.

     <br><dt><code>-Qy</code><dd><a name="index-Qy-2105"></a>Identify the versions of each tool used by the compiler, in a
<code>.ident</code> assembler directive in the output.

     <br><dt><code>-Qn</code><dd><a name="index-Qn-2106"></a>Refrain from adding <code>.ident</code> directives to the output file (this is
the default).

     <br><dt><code>-YP,</code><var>dirs</var><dd><a name="index-YP-2107"></a>Search the directories <var>dirs</var>, and no others, for libraries
specified with <samp><span class="option">-l</span></samp>.

     <br><dt><code>-Ym,</code><var>dir</var><dd><a name="index-Ym-2108"></a>Look in the directory <var>dir</var> to find the M4 preprocessor. 
The assembler uses this option. 
<!-- This is supposed to go with a -Yd for predefined M4 macro files, but -->
<!-- the generic assembler that comes with Solaris takes just -Ym. -->
</dl>

<div class="node">
<a name="V850-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#VAX-Options">VAX Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#System-V-Options">System V Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.42 V850 Options</h4>

<p><a name="index-V850-Options-2109"></a>
These &lsquo;<samp><span class="samp">-m</span></samp>&rsquo; options are defined for V850 implementations:

     <dl>
<dt><code>-mlong-calls</code><dt><code>-mno-long-calls</code><dd><a name="index-mlong_002dcalls-2110"></a><a name="index-mno_002dlong_002dcalls-2111"></a>Treat all calls as being far away (near).  If calls are assumed to be
far away, the compiler will always load the functions address up into a
register, and call indirect through the pointer.

     <br><dt><code>-mno-ep</code><dt><code>-mep</code><dd><a name="index-mno_002dep-2112"></a><a name="index-mep-2113"></a>Do not optimize (do optimize) basic blocks that use the same index
pointer 4 or more times to copy pointer into the <code>ep</code> register, and
use the shorter <code>sld</code> and <code>sst</code> instructions.  The <samp><span class="option">-mep</span></samp>
option is on by default if you optimize.

     <br><dt><code>-mno-prolog-function</code><dt><code>-mprolog-function</code><dd><a name="index-mno_002dprolog_002dfunction-2114"></a><a name="index-mprolog_002dfunction-2115"></a>Do not use (do use) external functions to save and restore registers
at the prologue and epilogue of a function.  The external functions
are slower, but use less code space if more than one function saves
the same number of registers.  The <samp><span class="option">-mprolog-function</span></samp> option
is on by default if you optimize.

     <br><dt><code>-mspace</code><dd><a name="index-mspace-2116"></a>Try to make the code as small as possible.  At present, this just turns
on the <samp><span class="option">-mep</span></samp> and <samp><span class="option">-mprolog-function</span></samp> options.

     <br><dt><code>-mtda=</code><var>n</var><dd><a name="index-mtda-2117"></a>Put static or global variables whose size is <var>n</var> bytes or less into
the tiny data area that register <code>ep</code> points to.  The tiny data
area can hold up to 256 bytes in total (128 bytes for byte references).

     <br><dt><code>-msda=</code><var>n</var><dd><a name="index-msda-2118"></a>Put static or global variables whose size is <var>n</var> bytes or less into
the small data area that register <code>gp</code> points to.  The small data
area can hold up to 64 kilobytes.

     <br><dt><code>-mzda=</code><var>n</var><dd><a name="index-mzda-2119"></a>Put static or global variables whose size is <var>n</var> bytes or less into
the first 32 kilobytes of memory.

     <br><dt><code>-mv850</code><dd><a name="index-mv850-2120"></a>Specify that the target processor is the V850.

     <br><dt><code>-mbig-switch</code><dd><a name="index-mbig_002dswitch-2121"></a>Generate code suitable for big switch tables.  Use this option only if
the assembler/linker complain about out of range branches within a switch
table.

     <br><dt><code>-mapp-regs</code><dd><a name="index-mapp_002dregs-2122"></a>This option will cause r2 and r5 to be used in the code generated by
the compiler.  This setting is the default.

     <br><dt><code>-mno-app-regs</code><dd><a name="index-mno_002dapp_002dregs-2123"></a>This option will cause r2 and r5 to be treated as fixed registers.

     <br><dt><code>-mv850e2v3</code><dd><a name="index-mv850e2v3-2124"></a>Specify that the target processor is the V850E2V3.  The preprocessor
constants &lsquo;<samp><span class="samp">__v850e2v3__</span></samp>&rsquo; will be defined if
this option is used.

     <br><dt><code>-mv850e2</code><dd><a name="index-mv850e2-2125"></a>Specify that the target processor is the V850E2.  The preprocessor
constants &lsquo;<samp><span class="samp">__v850e2__</span></samp>&rsquo; will be defined if

     <br><dt><code>-mv850e1</code><dd><a name="index-mv850e1-2126"></a>Specify that the target processor is the V850E1.  The preprocessor
constants &lsquo;<samp><span class="samp">__v850e1__</span></samp>&rsquo; and &lsquo;<samp><span class="samp">__v850e__</span></samp>&rsquo; will be defined if

     <br><dt><code>-mv850es</code><dd><a name="index-mv850es-2127"></a>Specify that the target processor is the V850ES.  This is an alias for
the <samp><span class="option">-mv850e1</span></samp> option.

     <br><dt><code>-mv850e</code><dd><a name="index-mv850e-2128"></a>Specify that the target processor is the V850E.  The preprocessor
constant &lsquo;<samp><span class="samp">__v850e__</span></samp>&rsquo; will be defined if this option is used.

     <p>If neither <samp><span class="option">-mv850</span></samp> nor <samp><span class="option">-mv850e</span></samp> nor <samp><span class="option">-mv850e1</span></samp>
nor <samp><span class="option">-mv850e2</span></samp> nor <samp><span class="option">-mv850e2v3</span></samp>
are defined then a default target processor will be chosen and the
relevant &lsquo;<samp><span class="samp">__v850*__</span></samp>&rsquo; preprocessor constant will be defined.

     <p>The preprocessor constants &lsquo;<samp><span class="samp">__v850</span></samp>&rsquo; and &lsquo;<samp><span class="samp">__v851__</span></samp>&rsquo; are always
defined, regardless of which processor variant is the target.

     <br><dt><code>-mdisable-callt</code><dd><a name="index-mdisable_002dcallt-2129"></a>This option will suppress generation of the CALLT instruction for the
v850e, v850e1, v850e2 and v850e2v3 flavors of the v850 architecture.  The default is
<samp><span class="option">-mno-disable-callt</span></samp> which allows the CALLT instruction to be used.

 </dl>

<div class="node">
<a name="VAX-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#VxWorks-Options">VxWorks Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#V850-Options">V850 Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.43 VAX Options</h4>

<p><a name="index-VAX-options-2130"></a>
These &lsquo;<samp><span class="samp">-m</span></samp>&rsquo; options are defined for the VAX:

     <dl>
<dt><code>-munix</code><dd><a name="index-munix-2131"></a>Do not output certain jump instructions (<code>aobleq</code> and so on)
that the Unix assembler for the VAX cannot handle across long
ranges.

     <br><dt><code>-mgnu</code><dd><a name="index-mgnu-2132"></a>Do output those jump instructions, on the assumption that you
will assemble with the GNU assembler.

     <br><dt><code>-mg</code><dd><a name="index-mg-2133"></a>Output code for g-format floating point numbers instead of d-format. 
</dl>

<div class="node">
<a name="VxWorks-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#x86_002d64-Options">x86-64 Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#VAX-Options">VAX Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.44 VxWorks Options</h4>

<p><a name="index-VxWorks-Options-2134"></a>
The options in this section are defined for all VxWorks targets. 
Options specific to the target hardware are listed with the other
options for that target.

     <dl>
<dt><code>-mrtp</code><dd><a name="index-mrtp-2135"></a>GCC can generate code for both VxWorks kernels and real time processes
(RTPs).  This option switches from the former to the latter.  It also
defines the preprocessor macro <code>__RTP__</code>.

     <br><dt><code>-non-static</code><dd><a name="index-non_002dstatic-2136"></a>Link an RTP executable against shared libraries rather than static
libraries.  The options <samp><span class="option">-static</span></samp> and <samp><span class="option">-shared</span></samp> can
also be used for RTPs (see <a href="#Link-Options">Link Options</a>); <samp><span class="option">-static</span></samp>
is the default.

     <br><dt><code>-Bstatic</code><dt><code>-Bdynamic</code><dd><a name="index-Bstatic-2137"></a><a name="index-Bdynamic-2138"></a>These options are passed down to the linker.  They are defined for
compatibility with Diab.

     <br><dt><code>-Xbind-lazy</code><dd><a name="index-Xbind_002dlazy-2139"></a>Enable lazy binding of function calls.  This option is equivalent to
<samp><span class="option">-Wl,-z,now</span></samp> and is defined for compatibility with Diab.

     <br><dt><code>-Xbind-now</code><dd><a name="index-Xbind_002dnow-2140"></a>Disable lazy binding of function calls.  This option is the default and
is defined for compatibility with Diab. 
</dl>

<div class="node">
<a name="x86-64-Options"></a>
<a name="x86_002d64-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Xstormy16-Options">Xstormy16 Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#VxWorks-Options">VxWorks Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.45 x86-64 Options</h4>

<p><a name="index-x86_002d64-options-2141"></a>
These are listed under See <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a>.

<div class="node">
<a name="Xstormy16-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Xtensa-Options">Xtensa Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#x86_002d64-Options">x86-64 Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.46 Xstormy16 Options</h4>

<p><a name="index-Xstormy16-Options-2142"></a>
These options are defined for Xstormy16:

     <dl>
<dt><code>-msim</code><dd><a name="index-msim-2143"></a>Choose startup files and linker script suitable for the simulator. 
</dl>

<div class="node">
<a name="Xtensa-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#zSeries-Options">zSeries Options</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Xstormy16-Options">Xstormy16 Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.47 Xtensa Options</h4>

<p><a name="index-Xtensa-Options-2144"></a>
These options are supported for Xtensa targets:

     <dl>
<dt><code>-mconst16</code><dt><code>-mno-const16</code><dd><a name="index-mconst16-2145"></a><a name="index-mno_002dconst16-2146"></a>Enable or disable use of <code>CONST16</code> instructions for loading
constant values.  The <code>CONST16</code> instruction is currently not a
standard option from Tensilica.  When enabled, <code>CONST16</code>
instructions are always used in place of the standard <code>L32R</code>
instructions.  The use of <code>CONST16</code> is enabled by default only if
the <code>L32R</code> instruction is not available.

     <br><dt><code>-mfused-madd</code><dt><code>-mno-fused-madd</code><dd><a name="index-mfused_002dmadd-2147"></a><a name="index-mno_002dfused_002dmadd-2148"></a>Enable or disable use of fused multiply/add and multiply/subtract
instructions in the floating-point option.  This has no effect if the
floating-point option is not also enabled.  Disabling fused multiply/add
and multiply/subtract instructions forces the compiler to use separate
instructions for the multiply and add/subtract operations.  This may be
desirable in some cases where strict IEEE 754-compliant results are
required: the fused multiply add/subtract instructions do not round the
intermediate result, thereby producing results with <em>more</em> bits of
precision than specified by the IEEE standard.  Disabling fused multiply
add/subtract instructions also ensures that the program output is not
sensitive to the compiler's ability to combine multiply and add/subtract
operations.

     <br><dt><code>-mserialize-volatile</code><dt><code>-mno-serialize-volatile</code><dd><a name="index-mserialize_002dvolatile-2149"></a><a name="index-mno_002dserialize_002dvolatile-2150"></a>When this option is enabled, GCC inserts <code>MEMW</code> instructions before
<code>volatile</code> memory references to guarantee sequential consistency. 
The default is <samp><span class="option">-mserialize-volatile</span></samp>.  Use
<samp><span class="option">-mno-serialize-volatile</span></samp> to omit the <code>MEMW</code> instructions.

     <br><dt><code>-mforce-no-pic</code><dd><a name="index-mforce_002dno_002dpic-2151"></a>For targets, like GNU/Linux, where all user-mode Xtensa code must be
position-independent code (PIC), this option disables PIC for compiling
kernel code.

     <br><dt><code>-mtext-section-literals</code><dt><code>-mno-text-section-literals</code><dd><a name="index-mtext_002dsection_002dliterals-2152"></a><a name="index-mno_002dtext_002dsection_002dliterals-2153"></a>Control the treatment of literal pools.  The default is
<samp><span class="option">-mno-text-section-literals</span></samp>, which places literals in a separate
section in the output file.  This allows the literal pool to be placed
in a data RAM/ROM, and it also allows the linker to combine literal
pools from separate object files to remove redundant literals and
improve code size.  With <samp><span class="option">-mtext-section-literals</span></samp>, the literals
are interspersed in the text section in order to keep them as close as
possible to their references.  This may be necessary for large assembly
files.

     <br><dt><code>-mtarget-align</code><dt><code>-mno-target-align</code><dd><a name="index-mtarget_002dalign-2154"></a><a name="index-mno_002dtarget_002dalign-2155"></a>When this option is enabled, GCC instructs the assembler to
automatically align instructions to reduce branch penalties at the
expense of some code density.  The assembler attempts to widen density
instructions to align branch targets and the instructions following call
instructions.  If there are not enough preceding safe density
instructions to align a target, no widening will be performed.  The
default is <samp><span class="option">-mtarget-align</span></samp>.  These options do not affect the
treatment of auto-aligned instructions like <code>LOOP</code>, which the
assembler will always align, either by widening density instructions or
by inserting no-op instructions.

     <br><dt><code>-mlongcalls</code><dt><code>-mno-longcalls</code><dd><a name="index-mlongcalls-2156"></a><a name="index-mno_002dlongcalls-2157"></a>When this option is enabled, GCC instructs the assembler to translate
direct calls to indirect calls unless it can determine that the target
of a direct call is in the range allowed by the call instruction.  This
translation typically occurs for calls to functions in other source
files.  Specifically, the assembler translates a direct <code>CALL</code>
instruction into an <code>L32R</code> followed by a <code>CALLX</code> instruction. 
The default is <samp><span class="option">-mno-longcalls</span></samp>.  This option should be used in
programs where the call target can potentially be out of range.  This
option is implemented in the assembler, not the compiler, so the
assembly code generated by GCC will still show direct call
instructions&mdash;look at the disassembled object code to see the actual
instructions.  Note that the assembler will use an indirect call for
every cross-file call, not just those that really will be out of range. 
</dl>

<div class="node">
<a name="zSeries-Options"></a>
<p><hr>
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Xtensa-Options">Xtensa Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Submodel-Options">Submodel Options</a>

</div>

<h4 class="subsection">3.17.48 zSeries Options</h4>

<p><a name="index-zSeries-options-2158"></a>
These are listed under See <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a>.

<div class="node">
<a name="Code-Gen-Options"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Environment-Variables">Environment Variables</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Submodel-Options">Submodel Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>

</div>

<h3 class="section">3.18 Options for Code Generation Conventions</h3>

<p><a name="index-code-generation-conventions-2159"></a><a name="index-options_002c-code-generation-2160"></a><a name="index-run_002dtime-options-2161"></a>
These machine-independent options control the interface conventions
used in code generation.

 <p>Most of them have both positive and negative forms; the negative form
of <samp><span class="option">-ffoo</span></samp> would be <samp><span class="option">-fno-foo</span></samp>.  In the table below, only
one of the forms is listed&mdash;the one which is not the default.  You
can figure out the other form by either removing &lsquo;<samp><span class="samp">no-</span></samp>&rsquo; or adding
it.

     <dl>
<dt><code>-fbounds-check</code><dd><a name="index-fbounds_002dcheck-2162"></a>For front-ends that support it, generate additional code to check that
indices used to access arrays are within the declared range.  This is
currently only supported by the Java and Fortran front-ends, where
this option defaults to true and false respectively.

     <br><dt><code>-ftrapv</code><dd><a name="index-ftrapv-2163"></a>This option generates traps for signed overflow on addition, subtraction,
multiplication operations.

     <br><dt><code>-fwrapv</code><dd><a name="index-fwrapv-2164"></a>This option instructs the compiler to assume that signed arithmetic
overflow of addition, subtraction and multiplication wraps around
using twos-complement representation.  This flag enables some optimizations
and disables others.  This option is enabled by default for the Java
front-end, as required by the Java language specification.

     <br><dt><code>-fexceptions</code><dd><a name="index-fexceptions-2165"></a>Enable exception handling.  Generates extra code needed to propagate
exceptions.  For some targets, this implies GCC will generate frame
unwind information for all functions, which can produce significant data
size overhead, although it does not affect execution.  If you do not
specify this option, GCC will enable it by default for languages like
C++ which normally require exception handling, and disable it for
languages like C that do not normally require it.  However, you may need
to enable this option when compiling C code that needs to interoperate
properly with exception handlers written in C++.  You may also wish to
disable this option if you are compiling older C++ programs that don't
use exception handling.

     <br><dt><code>-fnon-call-exceptions</code><dd><a name="index-fnon_002dcall_002dexceptions-2166"></a>Generate code that allows trapping instructions to throw exceptions. 
Note that this requires platform-specific runtime support that does
not exist everywhere.  Moreover, it only allows <em>trapping</em>
instructions to throw exceptions, i.e. memory references or floating
point instructions.  It does not allow exceptions to be thrown from
arbitrary signal handlers such as <code>SIGALRM</code>.

     <br><dt><code>-funwind-tables</code><dd><a name="index-funwind_002dtables-2167"></a>Similar to <samp><span class="option">-fexceptions</span></samp>, except that it will just generate any needed
static data, but will not affect the generated code in any other way. 
You will normally not enable this option; instead, a language processor
that needs this handling would enable it on your behalf.

     <br><dt><code>-fasynchronous-unwind-tables</code><dd><a name="index-fasynchronous_002dunwind_002dtables-2168"></a>Generate unwind table in dwarf2 format, if supported by target machine.  The
table is exact at each instruction boundary, so it can be used for stack
unwinding from asynchronous events (such as debugger or garbage collector).

     <br><dt><code>-fpcc-struct-return</code><dd><a name="index-fpcc_002dstruct_002dreturn-2169"></a>Return &ldquo;short&rdquo; <code>struct</code> and <code>union</code> values in memory like
longer ones, rather than in registers.  This convention is less
efficient, but it has the advantage of allowing intercallability between
GCC-compiled files and files compiled with other compilers, particularly
the Portable C Compiler (pcc).

     <p>The precise convention for returning structures in memory depends
on the target configuration macros.

     <p>Short structures and unions are those whose size and alignment match
that of some integer type.

     <p><strong>Warning:</strong> code compiled with the <samp><span class="option">-fpcc-struct-return</span></samp>
switch is not binary compatible with code compiled with the
<samp><span class="option">-freg-struct-return</span></samp> switch. 
Use it to conform to a non-default application binary interface.

     <br><dt><code>-freg-struct-return</code><dd><a name="index-freg_002dstruct_002dreturn-2170"></a>Return <code>struct</code> and <code>union</code> values in registers when possible. 
This is more efficient for small structures than
<samp><span class="option">-fpcc-struct-return</span></samp>.

     <p>If you specify neither <samp><span class="option">-fpcc-struct-return</span></samp> nor
<samp><span class="option">-freg-struct-return</span></samp>, GCC defaults to whichever convention is
standard for the target.  If there is no standard convention, GCC
defaults to <samp><span class="option">-fpcc-struct-return</span></samp>, except on targets where GCC is
the principal compiler.  In those cases, we can choose the standard, and
we chose the more efficient register return alternative.

     <p><strong>Warning:</strong> code compiled with the <samp><span class="option">-freg-struct-return</span></samp>
switch is not binary compatible with code compiled with the
<samp><span class="option">-fpcc-struct-return</span></samp> switch. 
Use it to conform to a non-default application binary interface.

     <br><dt><code>-fshort-enums</code><dd><a name="index-fshort_002denums-2171"></a>Allocate to an <code>enum</code> type only as many bytes as it needs for the
declared range of possible values.  Specifically, the <code>enum</code> type
will be equivalent to the smallest integer type which has enough room.

     <p><strong>Warning:</strong> the <samp><span class="option">-fshort-enums</span></samp> switch causes GCC to generate
code that is not binary compatible with code generated without that switch. 
Use it to conform to a non-default application binary interface.

     <br><dt><code>-fshort-double</code><dd><a name="index-fshort_002ddouble-2172"></a>Use the same size for <code>double</code> as for <code>float</code>.

     <p><strong>Warning:</strong> the <samp><span class="option">-fshort-double</span></samp> switch causes GCC to generate
code that is not binary compatible with code generated without that switch. 
Use it to conform to a non-default application binary interface.

     <br><dt><code>-fshort-wchar</code><dd><a name="index-fshort_002dwchar-2173"></a>Override the underlying type for &lsquo;<samp><span class="samp">wchar_t</span></samp>&rsquo; to be &lsquo;<samp><span class="samp">short
unsigned int</span></samp>&rsquo; instead of the default for the target.  This option is
useful for building programs to run under WINE.

     <p><strong>Warning:</strong> the <samp><span class="option">-fshort-wchar</span></samp> switch causes GCC to generate
code that is not binary compatible with code generated without that switch. 
Use it to conform to a non-default application binary interface.

     <br><dt><code>-fno-common</code><dd><a name="index-fno_002dcommon-2174"></a>In C code, controls the placement of uninitialized global variables. 
Unix C compilers have traditionally permitted multiple definitions of
such variables in different compilation units by placing the variables
in a common block. 
This is the behavior specified by <samp><span class="option">-fcommon</span></samp>, and is the default
for GCC on most targets. 
On the other hand, this behavior is not required by ISO C, and on some
targets may carry a speed or code size penalty on variable references. 
The <samp><span class="option">-fno-common</span></samp> option specifies that the compiler should place
uninitialized global variables in the data section of the object file,
rather than generating them as common blocks. 
This has the effect that if the same variable is declared
(without <code>extern</code>) in two different compilations,
you will get a multiple-definition error when you link them. 
In this case, you must compile with <samp><span class="option">-fcommon</span></samp> instead. 
Compiling with <samp><span class="option">-fno-common</span></samp> is useful on targets for which
it provides better performance, or if you wish to verify that the
program will work on other systems which always treat uninitialized
variable declarations this way.

     <br><dt><code>-fno-ident</code><dd><a name="index-fno_002dident-2175"></a>Ignore the &lsquo;<samp><span class="samp">#ident</span></samp>&rsquo; directive.

     <br><dt><code>-finhibit-size-directive</code><dd><a name="index-finhibit_002dsize_002ddirective-2176"></a>Don't output a <code>.size</code> assembler directive, or anything else that
would cause trouble if the function is split in the middle, and the
two halves are placed at locations far apart in memory.  This option is
used when compiling <samp><span class="file">crtstuff.c</span></samp>; you should not need to use it
for anything else.

     <br><dt><code>-fverbose-asm</code><dd><a name="index-fverbose_002dasm-2177"></a>Put extra commentary information in the generated assembly code to
make it more readable.  This option is generally only of use to those
who actually need to read the generated assembly code (perhaps while
debugging the compiler itself).

     <p><samp><span class="option">-fno-verbose-asm</span></samp>, the default, causes the
extra information to be omitted and is useful when comparing two assembler
files.

     <br><dt><code>-frecord-gcc-switches</code><dd><a name="index-frecord_002dgcc_002dswitches-2178"></a>This switch causes the command line that was used to invoke the
compiler to be recorded into the object file that is being created. 
This switch is only implemented on some targets and the exact format
of the recording is target and binary file format dependent, but it
usually takes the form of a section containing ASCII text.  This
switch is related to the <samp><span class="option">-fverbose-asm</span></samp> switch, but that
switch only records information in the assembler output file as
comments, so it never reaches the object file.

     <br><dt><code>-fpic</code><dd><a name="index-fpic-2179"></a><a name="index-global-offset-table-2180"></a><a name="index-PIC-2181"></a>Generate position-independent code (PIC) suitable for use in a shared
library, if supported for the target machine.  Such code accesses all
constant addresses through a global offset table (GOT).  The dynamic
loader resolves the GOT entries when the program starts (the dynamic
loader is not part of GCC; it is part of the operating system).  If
the GOT size for the linked executable exceeds a machine-specific
maximum size, you get an error message from the linker indicating that
<samp><span class="option">-fpic</span></samp> does not work; in that case, recompile with <samp><span class="option">-fPIC</span></samp>
instead.  (These maximums are 8k on the SPARC and 32k
on the m68k and RS/6000.  The 386 has no such limit.)

     <p>Position-independent code requires special support, and therefore works
only on certain machines.  For the 386, GCC supports PIC for System V
but not for the Sun 386i.  Code generated for the IBM RS/6000 is always
position-independent.

     <p>When this flag is set, the macros <code>__pic__</code> and <code>__PIC__</code>
are defined to 1.

     <br><dt><code>-fPIC</code><dd><a name="index-fPIC-2182"></a>If supported for the target machine, emit position-independent code,
suitable for dynamic linking and avoiding any limit on the size of the
global offset table.  This option makes a difference on the m68k,
PowerPC and SPARC.

     <p>Position-independent code requires special support, and therefore works
only on certain machines.

     <p>When this flag is set, the macros <code>__pic__</code> and <code>__PIC__</code>
are defined to 2.

     <br><dt><code>-fpie</code><dt><code>-fPIE</code><dd><a name="index-fpie-2183"></a><a name="index-fPIE-2184"></a>These options are similar to <samp><span class="option">-fpic</span></samp> and <samp><span class="option">-fPIC</span></samp>, but
generated position independent code can be only linked into executables. 
Usually these options are used when <samp><span class="option">-pie</span></samp> GCC option will be
used during linking.

     <p><samp><span class="option">-fpie</span></samp> and <samp><span class="option">-fPIE</span></samp> both define the macros
<code>__pie__</code> and <code>__PIE__</code>.  The macros have the value 1
for <samp><span class="option">-fpie</span></samp> and 2 for <samp><span class="option">-fPIE</span></samp>.

     <br><dt><code>-fno-jump-tables</code><dd><a name="index-fno_002djump_002dtables-2185"></a>Do not use jump tables for switch statements even where it would be
more efficient than other code generation strategies.  This option is
of use in conjunction with <samp><span class="option">-fpic</span></samp> or <samp><span class="option">-fPIC</span></samp> for
building code which forms part of a dynamic linker and cannot
reference the address of a jump table.  On some targets, jump tables
do not require a GOT and this option is not needed.

     <br><dt><code>-ffixed-</code><var>reg</var><dd><a name="index-ffixed-2186"></a>Treat the register named <var>reg</var> as a fixed register; generated code
should never refer to it (except perhaps as a stack pointer, frame
pointer or in some other fixed role).

     <p><var>reg</var> must be the name of a register.  The register names accepted
are machine-specific and are defined in the <code>REGISTER_NAMES</code>
macro in the machine description macro file.

     <p>This flag does not have a negative form, because it specifies a
three-way choice.

     <br><dt><code>-fcall-used-</code><var>reg</var><dd><a name="index-fcall_002dused-2187"></a>Treat the register named <var>reg</var> as an allocable register that is
clobbered by function calls.  It may be allocated for temporaries or
variables that do not live across a call.  Functions compiled this way
will not save and restore the register <var>reg</var>.

     <p>It is an error to used this flag with the frame pointer or stack pointer. 
Use of this flag for other registers that have fixed pervasive roles in
the machine's execution model will produce disastrous results.

     <p>This flag does not have a negative form, because it specifies a
three-way choice.

     <br><dt><code>-fcall-saved-</code><var>reg</var><dd><a name="index-fcall_002dsaved-2188"></a>Treat the register named <var>reg</var> as an allocable register saved by
functions.  It may be allocated even for temporaries or variables that
live across a call.  Functions compiled this way will save and restore
the register <var>reg</var> if they use it.

     <p>It is an error to used this flag with the frame pointer or stack pointer. 
Use of this flag for other registers that have fixed pervasive roles in
the machine's execution model will produce disastrous results.

     <p>A different sort of disaster will result from the use of this flag for
a register in which function values may be returned.

     <p>This flag does not have a negative form, because it specifies a
three-way choice.

     <br><dt><code>-fpack-struct[=</code><var>n</var><code>]</code><dd><a name="index-fpack_002dstruct-2189"></a>Without a value specified, pack all structure members together without
holes.  When a value is specified (which must be a small power of two), pack
structure members according to this value, representing the maximum
alignment (that is, objects with default alignment requirements larger than
this will be output potentially unaligned at the next fitting location.

     <p><strong>Warning:</strong> the <samp><span class="option">-fpack-struct</span></samp> switch causes GCC to generate
code that is not binary compatible with code generated without that switch. 
Additionally, it makes the code suboptimal. 
Use it to conform to a non-default application binary interface.

     <br><dt><code>-finstrument-functions</code><dd><a name="index-finstrument_002dfunctions-2190"></a>Generate instrumentation calls for entry and exit to functions.  Just
after function entry and just before function exit, the following
profiling functions will be called with the address of the current
function and its call site.  (On some platforms,
<code>__builtin_return_address</code> does not work beyond the current
function, so the call site information may not be available to the
profiling functions otherwise.)

     <pre class="smallexample">          void __cyg_profile_func_enter (void *this_fn,
                                         void *call_site);
          void __cyg_profile_func_exit  (void *this_fn,
                                         void *call_site);
</pre>
     <p>The first argument is the address of the start of the current function,
which may be looked up exactly in the symbol table.

     <p>This instrumentation is also done for functions expanded inline in other
functions.  The profiling calls will indicate where, conceptually, the
inline function is entered and exited.  This means that addressable
versions of such functions must be available.  If all your uses of a
function are expanded inline, this may mean an additional expansion of
code size.  If you use &lsquo;<samp><span class="samp">extern inline</span></samp>&rsquo; in your C code, an
addressable version of such functions must be provided.  (This is
normally the case anyways, but if you get lucky and the optimizer always
expands the functions inline, you might have gotten away without
providing static copies.)

     <p>A function may be given the attribute <code>no_instrument_function</code>, in
which case this instrumentation will not be done.  This can be used, for
example, for the profiling functions listed above, high-priority
interrupt routines, and any functions from which the profiling functions
cannot safely be called (perhaps signal handlers, if the profiling
routines generate output or allocate memory).

     <br><dt><code>-finstrument-functions-exclude-file-list=</code><var>file</var><code>,</code><var>file</var><code>,...</code><dd><a name="index-finstrument_002dfunctions_002dexclude_002dfile_002dlist-2191"></a>
Set the list of functions that are excluded from instrumentation (see
the description of <code>-finstrument-functions</code>).  If the file that
contains a function definition matches with one of <var>file</var>, then
that function is not instrumented.  The match is done on substrings:
if the <var>file</var> parameter is a substring of the file name, it is
considered to be a match.

     <p>For example:

     <pre class="smallexample">          -finstrument-functions-exclude-file-list=/bits/stl,include/sys
</pre>
     <p class="noindent">will exclude any inline function defined in files whose pathnames
contain <code>/bits/stl</code> or <code>include/sys</code>.

     <p>If, for some reason, you want to include letter <code>','</code> in one of
<var>sym</var>, write <code>'\,'</code>. For example,
<code>-finstrument-functions-exclude-file-list='\,\,tmp'</code>
(note the single quote surrounding the option).

     <br><dt><code>-finstrument-functions-exclude-function-list=</code><var>sym</var><code>,</code><var>sym</var><code>,...</code><dd><a name="index-finstrument_002dfunctions_002dexclude_002dfunction_002dlist-2192"></a>
This is similar to <code>-finstrument-functions-exclude-file-list</code>,
but this option sets the list of function names to be excluded from
instrumentation.  The function name to be matched is its user-visible
name, such as <code>vector&lt;int&gt; blah(const vector&lt;int&gt; &amp;)</code>, not the
internal mangled name (e.g., <code>_Z4blahRSt6vectorIiSaIiEE</code>).  The
match is done on substrings: if the <var>sym</var> parameter is a substring
of the function name, it is considered to be a match.  For C99 and C++
extended identifiers, the function name must be given in UTF-8, not
using universal character names.

     <br><dt><code>-fstack-check</code><dd><a name="index-fstack_002dcheck-2193"></a>Generate code to verify that you do not go beyond the boundary of the
stack.  You should specify this flag if you are running in an
environment with multiple threads, but only rarely need to specify it in
a single-threaded environment since stack overflow is automatically
detected on nearly all systems if there is only one stack.

     <p>Note that this switch does not actually cause checking to be done; the
operating system or the language runtime must do that.  The switch causes
generation of code to ensure that they see the stack being extended.

     <p>You can additionally specify a string parameter: <code>no</code> means no
checking, <code>generic</code> means force the use of old-style checking,
<code>specific</code> means use the best checking method and is equivalent
to bare <samp><span class="option">-fstack-check</span></samp>.

     <p>Old-style checking is a generic mechanism that requires no specific
target support in the compiler but comes with the following drawbacks:

          <ol type=1 start=1>
<li>Modified allocation strategy for large objects: they will always be
allocated dynamically if their size exceeds a fixed threshold.

          <li>Fixed limit on the size of the static frame of functions: when it is
topped by a particular function, stack checking is not reliable and
a warning is issued by the compiler.

          <li>Inefficiency: because of both the modified allocation strategy and the
generic implementation, the performances of the code are hampered.
          </ol>

     <p>Note that old-style stack checking is also the fallback method for
<code>specific</code> if no target support has been added in the compiler.

     <br><dt><code>-fstack-limit-register=</code><var>reg</var><dt><code>-fstack-limit-symbol=</code><var>sym</var><dt><code>-fno-stack-limit</code><dd><a name="index-fstack_002dlimit_002dregister-2194"></a><a name="index-fstack_002dlimit_002dsymbol-2195"></a><a name="index-fno_002dstack_002dlimit-2196"></a>Generate code to ensure that the stack does not grow beyond a certain value,
either the value of a register or the address of a symbol.  If the stack
would grow beyond the value, a signal is raised.  For most targets,
the signal is raised before the stack overruns the boundary, so
it is possible to catch the signal without taking special precautions.

     <p>For instance, if the stack starts at absolute address &lsquo;<samp><span class="samp">0x80000000</span></samp>&rsquo;
and grows downwards, you can use the flags
<samp><span class="option">-fstack-limit-symbol=__stack_limit</span></samp> and
<samp><span class="option">-Wl,--defsym,__stack_limit=0x7ffe0000</span></samp> to enforce a stack limit
of 128KB.  Note that this may only work with the GNU linker.

     <br><dt><code>-fsplit-stack</code><dd><a name="index-fsplit_002dstack-2197"></a>Generate code to automatically split the stack before it overflows. 
The resulting program has a discontiguous stack which can only
overflow if the program is unable to allocate any more memory.  This
is most useful when running threaded programs, as it is no longer
necessary to calculate a good stack size to use for each thread.  This
is currently only implemented for the i386 and x86_64 backends running
GNU/Linux.

     <p>When code compiled with <samp><span class="option">-fsplit-stack</span></samp> calls code compiled
without <samp><span class="option">-fsplit-stack</span></samp>, there may not be much stack space
available for the latter code to run.  If compiling all code,
including library code, with <samp><span class="option">-fsplit-stack</span></samp> is not an option,
then the linker can fix up these calls so that the code compiled
without <samp><span class="option">-fsplit-stack</span></samp> always has a large stack.  Support for
this is implemented in the gold linker in GNU binutils release 2.21
and later.

     <br><dt><code>-fleading-underscore</code><dd><a name="index-fleading_002dunderscore-2198"></a>This option and its counterpart, <samp><span class="option">-fno-leading-underscore</span></samp>, forcibly
change the way C symbols are represented in the object file.  One use
is to help link with legacy assembly code.

     <p><strong>Warning:</strong> the <samp><span class="option">-fleading-underscore</span></samp> switch causes GCC to
generate code that is not binary compatible with code generated without that
switch.  Use it to conform to a non-default application binary interface. 
Not all targets provide complete support for this switch.

     <br><dt><code>-ftls-model=</code><var>model</var><dd><a name="index-ftls_002dmodel-2199"></a>Alter the thread-local storage model to be used (see <a href="#Thread_002dLocal">Thread-Local</a>). 
The <var>model</var> argument should be one of <code>global-dynamic</code>,
<code>local-dynamic</code>, <code>initial-exec</code> or <code>local-exec</code>.

     <p>The default without <samp><span class="option">-fpic</span></samp> is <code>initial-exec</code>; with
<samp><span class="option">-fpic</span></samp> the default is <code>global-dynamic</code>.

     <br><dt><code>-fvisibility=</code><var>default|internal|hidden|protected</var><dd><a name="index-fvisibility-2200"></a>Set the default ELF image symbol visibility to the specified option&mdash;all
symbols will be marked with this unless overridden within the code. 
Using this feature can very substantially improve linking and
load times of shared object libraries, produce more optimized
code, provide near-perfect API export and prevent symbol clashes. 
It is <strong>strongly</strong> recommended that you use this in any shared objects
you distribute.

     <p>Despite the nomenclature, <code>default</code> always means public; i.e.,
available to be linked against from outside the shared object. 
<code>protected</code> and <code>internal</code> are pretty useless in real-world
usage so the only other commonly used option will be <code>hidden</code>. 
The default if <samp><span class="option">-fvisibility</span></samp> isn't specified is
<code>default</code>, i.e., make every
symbol public&mdash;this causes the same behavior as previous versions of
GCC.

     <p>A good explanation of the benefits offered by ensuring ELF
symbols have the correct visibility is given by &ldquo;How To Write
Shared Libraries&rdquo; by Ulrich Drepper (which can be found at
<a href="http://people.redhat.com/~drepper/">http://people.redhat.com/~drepper/</a><!-- /@w -->)&mdash;however a superior
solution made possible by this option to marking things hidden when
the default is public is to make the default hidden and mark things
public.  This is the norm with DLL's on Windows and with <samp><span class="option">-fvisibility=hidden</span></samp>
and <code>__attribute__ ((visibility("default")))</code> instead of
<code>__declspec(dllexport)</code> you get almost identical semantics with
identical syntax.  This is a great boon to those working with
cross-platform projects.

     <p>For those adding visibility support to existing code, you may find
&lsquo;<samp><span class="samp">#pragma GCC visibility</span></samp>&rsquo; of use.  This works by you enclosing
the declarations you wish to set visibility for with (for example)
&lsquo;<samp><span class="samp">#pragma GCC visibility push(hidden)</span></samp>&rsquo; and
&lsquo;<samp><span class="samp">#pragma GCC visibility pop</span></samp>&rsquo;. 
Bear in mind that symbol visibility should be viewed <strong>as
part of the API interface contract</strong> and thus all new code should
always specify visibility when it is not the default; i.e., declarations
only for use within the local DSO should <strong>always</strong> be marked explicitly
as hidden as so to avoid PLT indirection overheads&mdash;making this
abundantly clear also aids readability and self-documentation of the code. 
Note that due to ISO C++ specification requirements, operator new and
operator delete must always be of default visibility.

     <p>Be aware that headers from outside your project, in particular system
headers and headers from any other library you use, may not be
expecting to be compiled with visibility other than the default.  You
may need to explicitly say &lsquo;<samp><span class="samp">#pragma GCC visibility push(default)</span></samp>&rsquo;
before including any such headers.

     <p>&lsquo;<samp><span class="samp">extern</span></samp>&rsquo; declarations are not affected by &lsquo;<samp><span class="samp">-fvisibility</span></samp>&rsquo;, so
a lot of code can be recompiled with &lsquo;<samp><span class="samp">-fvisibility=hidden</span></samp>&rsquo; with
no modifications.  However, this means that calls to &lsquo;<samp><span class="samp">extern</span></samp>&rsquo;
functions with no explicit visibility will use the PLT, so it is more
effective to use &lsquo;<samp><span class="samp">__attribute ((visibility))</span></samp>&rsquo; and/or
&lsquo;<samp><span class="samp">#pragma GCC visibility</span></samp>&rsquo; to tell the compiler which &lsquo;<samp><span class="samp">extern</span></samp>&rsquo;
declarations should be treated as hidden.

     <p>Note that &lsquo;<samp><span class="samp">-fvisibility</span></samp>&rsquo; does affect C++ vague linkage
entities. This means that, for instance, an exception class that will
be thrown between DSOs must be explicitly marked with default
visibility so that the &lsquo;<samp><span class="samp">type_info</span></samp>&rsquo; nodes will be unified between
the DSOs.

     <p>An overview of these techniques, their benefits and how to use them
is at <a href="http://gcc.gnu.org/wiki/Visibility">http://gcc.gnu.org/wiki/Visibility</a>.

     <br><dt><code>-fstrict-volatile-bitfields</code><dd><a name="index-fstrict_002dvolatile_002dbitfields-2201"></a>This option should be used if accesses to volatile bitfields (or other
structure fields, although the compiler usually honors those types
anyway) should use a single access of the width of the
field's type, aligned to a natural alignment if possible.  For
example, targets with memory-mapped peripheral registers might require
all such accesses to be 16 bits wide; with this flag the user could
declare all peripheral bitfields as &ldquo;unsigned short&rdquo; (assuming short
is 16 bits on these targets) to force GCC to use 16 bit accesses
instead of, perhaps, a more efficient 32 bit access.

     <p>If this option is disabled, the compiler will use the most efficient
instruction.  In the previous example, that might be a 32-bit load
instruction, even though that will access bytes that do not contain
any portion of the bitfield, or memory-mapped registers unrelated to
the one being updated.

     <p>If the target requires strict alignment, and honoring the field
type would require violating this alignment, a warning is issued. 
If the field has <code>packed</code> attribute, the access is done without
honoring the field type.  If the field doesn't have <code>packed</code>
attribute, the access is done honoring the field type.  In both cases,
GCC assumes that the user knows something about the target hardware
that it is unaware of.

     <p>The default value of this option is determined by the application binary
interface for the target processor.

 </dl>

<!-- man end -->
<div class="node">
<a name="Environment-Variables"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Precompiled-Headers">Precompiled Headers</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Code-Gen-Options">Code Gen Options</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>

</div>

<h3 class="section">3.19 Environment Variables Affecting GCC</h3>

<p><a name="index-environment-variables-2202"></a>
<!-- man begin ENVIRONMENT -->
This section describes several environment variables that affect how GCC
operates.  Some of them work by specifying directories or prefixes to use
when searching for various kinds of files.  Some are used to specify other
aspects of the compilation environment.

 <p>Note that you can also specify places to search using options such as
<samp><span class="option">-B</span></samp>, <samp><span class="option">-I</span></samp> and <samp><span class="option">-L</span></samp> (see <a href="#Directory-Options">Directory Options</a>).  These
take precedence over places specified using environment variables, which
in turn take precedence over those specified by the configuration of GCC. 
See <a href="{No value for `fngccint'}.html#Driver">Controlling the Compilation Driver <samp><span class="file">gcc</span></samp></a>.

     <dl>
<dt><samp><span class="env">LANG</span></samp><dt><samp><span class="env">LC_CTYPE</span></samp><dd><!-- @itemx LC_COLLATE -->
<dt><samp><span class="env">LC_MESSAGES</span></samp><dd><!-- @itemx LC_MONETARY -->
<!-- @itemx LC_NUMERIC -->
<!-- @itemx LC_TIME -->
<dt><samp><span class="env">LC_ALL</span></samp><dd><a name="index-LANG-2203"></a><a name="index-LC_005fCTYPE-2204"></a><!-- @findex LC_COLLATE -->
<a name="index-LC_005fMESSAGES-2205"></a><!-- @findex LC_MONETARY -->
<!-- @findex LC_NUMERIC -->
<!-- @findex LC_TIME -->
<a name="index-LC_005fALL-2206"></a><a name="index-locale-2207"></a>These environment variables control the way that GCC uses
localization information that allow GCC to work with different
national conventions.  GCC inspects the locale categories
<samp><span class="env">LC_CTYPE</span></samp> and <samp><span class="env">LC_MESSAGES</span></samp> if it has been configured to do
so.  These locale categories can be set to any value supported by your
installation.  A typical value is &lsquo;<samp><span class="samp">en_GB.UTF-8</span></samp>&rsquo; for English in the United
Kingdom encoded in UTF-8.

     <p>The <samp><span class="env">LC_CTYPE</span></samp> environment variable specifies character
classification.  GCC uses it to determine the character boundaries in
a string; this is needed for some multibyte encodings that contain quote
and escape characters that would otherwise be interpreted as a string
end or escape.

     <p>The <samp><span class="env">LC_MESSAGES</span></samp> environment variable specifies the language to
use in diagnostic messages.

     <p>If the <samp><span class="env">LC_ALL</span></samp> environment variable is set, it overrides the value
of <samp><span class="env">LC_CTYPE</span></samp> and <samp><span class="env">LC_MESSAGES</span></samp>; otherwise, <samp><span class="env">LC_CTYPE</span></samp>
and <samp><span class="env">LC_MESSAGES</span></samp> default to the value of the <samp><span class="env">LANG</span></samp>
environment variable.  If none of these variables are set, GCC
defaults to traditional C English behavior.

     <br><dt><samp><span class="env">TMPDIR</span></samp><dd><a name="index-TMPDIR-2208"></a>If <samp><span class="env">TMPDIR</span></samp> is set, it specifies the directory to use for temporary
files.  GCC uses temporary files to hold the output of one stage of
compilation which is to be used as input to the next stage: for example,
the output of the preprocessor, which is the input to the compiler
proper.

     <br><dt><samp><span class="env">GCC_EXEC_PREFIX</span></samp><dd><a name="index-GCC_005fEXEC_005fPREFIX-2209"></a>If <samp><span class="env">GCC_EXEC_PREFIX</span></samp> is set, it specifies a prefix to use in the
names of the subprograms executed by the compiler.  No slash is added
when this prefix is combined with the name of a subprogram, but you can
specify a prefix that ends with a slash if you wish.

     <p>If <samp><span class="env">GCC_EXEC_PREFIX</span></samp> is not set, GCC will attempt to figure out
an appropriate prefix to use based on the pathname it was invoked with.

     <p>If GCC cannot find the subprogram using the specified prefix, it
tries looking in the usual places for the subprogram.

     <p>The default value of <samp><span class="env">GCC_EXEC_PREFIX</span></samp> is
<samp><var>prefix</var><span class="file">/lib/gcc/</span></samp> where <var>prefix</var> is the prefix to
the installed compiler. In many cases <var>prefix</var> is the value
of <code>prefix</code> when you ran the <samp><span class="file">configure</span></samp> script.

     <p>Other prefixes specified with <samp><span class="option">-B</span></samp> take precedence over this prefix.

     <p>This prefix is also used for finding files such as <samp><span class="file">crt0.o</span></samp> that are
used for linking.

     <p>In addition, the prefix is used in an unusual way in finding the
directories to search for header files.  For each of the standard
directories whose name normally begins with &lsquo;<samp><span class="samp">/usr/local/lib/gcc</span></samp>&rsquo;
(more precisely, with the value of <samp><span class="env">GCC_INCLUDE_DIR</span></samp>), GCC tries
replacing that beginning with the specified prefix to produce an
alternate directory name.  Thus, with <samp><span class="option">-Bfoo/</span></samp>, GCC will search
<samp><span class="file">foo/bar</span></samp> where it would normally search <samp><span class="file">/usr/local/lib/bar</span></samp>. 
These alternate directories are searched first; the standard directories
come next. If a standard directory begins with the configured
<var>prefix</var> then the value of <var>prefix</var> is replaced by
<samp><span class="env">GCC_EXEC_PREFIX</span></samp> when looking for header files.

     <br><dt><samp><span class="env">COMPILER_PATH</span></samp><dd><a name="index-COMPILER_005fPATH-2210"></a>The value of <samp><span class="env">COMPILER_PATH</span></samp> is a colon-separated list of
directories, much like <samp><span class="env">PATH</span></samp>.  GCC tries the directories thus
specified when searching for subprograms, if it can't find the
subprograms using <samp><span class="env">GCC_EXEC_PREFIX</span></samp>.

     <br><dt><samp><span class="env">LIBRARY_PATH</span></samp><dd><a name="index-LIBRARY_005fPATH-2211"></a>The value of <samp><span class="env">LIBRARY_PATH</span></samp> is a colon-separated list of
directories, much like <samp><span class="env">PATH</span></samp>.  When configured as a native compiler,
GCC tries the directories thus specified when searching for special
linker files, if it can't find them using <samp><span class="env">GCC_EXEC_PREFIX</span></samp>.  Linking
using GCC also uses these directories when searching for ordinary
libraries for the <samp><span class="option">-l</span></samp> option (but directories specified with
<samp><span class="option">-L</span></samp> come first).

     <br><dt><samp><span class="env">LANG</span></samp><dd><a name="index-LANG-2212"></a><a name="index-locale-definition-2213"></a>This variable is used to pass locale information to the compiler.  One way in
which this information is used is to determine the character set to be used
when character literals, string literals and comments are parsed in C and C++. 
When the compiler is configured to allow multibyte characters,
the following values for <samp><span class="env">LANG</span></samp> are recognized:

          <dl>
<dt>&lsquo;<samp><span class="samp">C-JIS</span></samp>&rsquo;<dd>Recognize JIS characters. 
<br><dt>&lsquo;<samp><span class="samp">C-SJIS</span></samp>&rsquo;<dd>Recognize SJIS characters. 
<br><dt>&lsquo;<samp><span class="samp">C-EUCJP</span></samp>&rsquo;<dd>Recognize EUCJP characters. 
</dl>

     <p>If <samp><span class="env">LANG</span></samp> is not defined, or if it has some other value, then the
compiler will use mblen and mbtowc as defined by the default locale to
recognize and translate multibyte characters. 
</dl>

<p class="noindent">Some additional environments variables affect the behavior of the
preprocessor.

<!-- Copyright (c) 1999, 2000, 2001, 2002, 2004 -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the CPP and GCC manuals. -->
<!-- For copying conditions, see the file gcc.texi. -->
<!--  -->
<!-- Environment variables affecting the preprocessor -->
<!--  -->
<!-- If this file is included with the flag ``cppmanual'' set, it is -->
<!-- formatted for inclusion in the CPP manual; otherwise the main GCC manual. -->
     <dl>
<dt><samp><span class="env">CPATH</span></samp><a name="index-CPATH-2214"></a><dt><samp><span class="env">C_INCLUDE_PATH</span></samp><a name="index-C_005fINCLUDE_005fPATH-2215"></a><dt><samp><span class="env">CPLUS_INCLUDE_PATH</span></samp><a name="index-CPLUS_005fINCLUDE_005fPATH-2216"></a><dt><samp><span class="env">OBJC_INCLUDE_PATH</span></samp><a name="index-OBJC_005fINCLUDE_005fPATH-2217"></a><dd><!-- Commented out until ObjC++ is part of GCC: -->
<!-- @itemx OBJCPLUS_INCLUDE_PATH -->
Each variable's value is a list of directories separated by a special
character, much like <samp><span class="env">PATH</span></samp>, in which to look for header files. 
The special character, <code>PATH_SEPARATOR</code>, is target-dependent and
determined at GCC build time.  For Microsoft Windows-based targets it is a
semicolon, and for almost all other targets it is a colon.

     <p><samp><span class="env">CPATH</span></samp> specifies a list of directories to be searched as if
specified with <samp><span class="option">-I</span></samp>, but after any paths given with <samp><span class="option">-I</span></samp>
options on the command line.  This environment variable is used
regardless of which language is being preprocessed.

     <p>The remaining environment variables apply only when preprocessing the
particular language indicated.  Each specifies a list of directories
to be searched as if specified with <samp><span class="option">-isystem</span></samp>, but after any
paths given with <samp><span class="option">-isystem</span></samp> options on the command line.

     <p>In all these variables, an empty element instructs the compiler to
search its current working directory.  Empty elements can appear at the
beginning or end of a path.  For instance, if the value of
<samp><span class="env">CPATH</span></samp> is <code>:/special/include</code>, that has the same
effect as &lsquo;<samp><span class="samp">-I.&nbsp;-I/special/include<!-- /@w --></span></samp>&rsquo;.

     <!-- man end -->
     <!-- man begin ENVIRONMENT -->
     <br><dt><samp><span class="env">DEPENDENCIES_OUTPUT</span></samp><a name="index-DEPENDENCIES_005fOUTPUT-2218"></a><dd><a name="index-dependencies-for-make-as-output-2219"></a>If this variable is set, its value specifies how to output
dependencies for Make based on the non-system header files processed
by the compiler.  System header files are ignored in the dependency
output.

     <p>The value of <samp><span class="env">DEPENDENCIES_OUTPUT</span></samp> can be just a file name, in
which case the Make rules are written to that file, guessing the target
name from the source file name.  Or the value can have the form
&lsquo;<samp><var>file</var> <var>target</var></samp>&rsquo;, in which case the rules are written to
file <var>file</var> using <var>target</var> as the target name.

     <p>In other words, this environment variable is equivalent to combining
the options <samp><span class="option">-MM</span></samp> and <samp><span class="option">-MF</span></samp>
(see <a href="#Preprocessor-Options">Preprocessor Options</a>),
with an optional <samp><span class="option">-MT</span></samp> switch too.

     <br><dt><samp><span class="env">SUNPRO_DEPENDENCIES</span></samp><a name="index-SUNPRO_005fDEPENDENCIES-2220"></a><dd><a name="index-dependencies-for-make-as-output-2221"></a>This variable is the same as <samp><span class="env">DEPENDENCIES_OUTPUT</span></samp> (see above),
except that system header files are not ignored, so it implies
<samp><span class="option">-M</span></samp> rather than <samp><span class="option">-MM</span></samp>.  However, the dependence on the
main input file is omitted. 
See <a href="#Preprocessor-Options">Preprocessor Options</a>. 
</dl>

<!-- man end -->
<div class="node">
<a name="Precompiled-Headers"></a>
<p><hr>
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Environment-Variables">Environment Variables</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Invoking-GCC">Invoking GCC</a>

</div>

<h3 class="section">3.20 Using Precompiled Headers</h3>

<p><a name="index-precompiled-headers-2222"></a><a name="index-speed-of-compilation-2223"></a>
Often large projects have many header files that are included in every
source file.  The time the compiler takes to process these header files
over and over again can account for nearly all of the time required to
build the project.  To make builds faster, GCC allows users to
`precompile' a header file; then, if builds can use the precompiled
header file they will be much faster.

 <p>To create a precompiled header file, simply compile it as you would any
other file, if necessary using the <samp><span class="option">-x</span></samp> option to make the driver
treat it as a C or C++ header file.  You will probably want to use a
tool like <samp><span class="command">make</span></samp> to keep the precompiled header up-to-date when
the headers it contains change.

 <p>A precompiled header file will be searched for when <code>#include</code> is
seen in the compilation.  As it searches for the included file
(see <a href="{No value for `fncpp'}.html#Search-Path">Search Path</a>) the
compiler looks for a precompiled header in each directory just before it
looks for the include file in that directory.  The name searched for is
the name specified in the <code>#include</code> with &lsquo;<samp><span class="samp">.gch</span></samp>&rsquo; appended.  If
the precompiled header file can't be used, it is ignored.

 <p>For instance, if you have <code>#include "all.h"</code>, and you have
<samp><span class="file">all.h.gch</span></samp> in the same directory as <samp><span class="file">all.h</span></samp>, then the
precompiled header file will be used if possible, and the original
header will be used otherwise.

 <p>Alternatively, you might decide to put the precompiled header file in a
directory and use <samp><span class="option">-I</span></samp> to ensure that directory is searched
before (or instead of) the directory containing the original header. 
Then, if you want to check that the precompiled header file is always
used, you can put a file of the same name as the original header in this
directory containing an <code>#error</code> command.

 <p>This also works with <samp><span class="option">-include</span></samp>.  So yet another way to use
precompiled headers, good for projects not designed with precompiled
header files in mind, is to simply take most of the header files used by
a project, include them from another header file, precompile that header
file, and <samp><span class="option">-include</span></samp> the precompiled header.  If the header files
have guards against multiple inclusion, they will be skipped because
they've already been included (in the precompiled header).

 <p>If you need to precompile the same header file for different
languages, targets, or compiler options, you can instead make a
<em>directory</em> named like <samp><span class="file">all.h.gch</span></samp>, and put each precompiled
header in the directory, perhaps using <samp><span class="option">-o</span></samp>.  It doesn't matter
what you call the files in the directory, every precompiled header in
the directory will be considered.  The first precompiled header
encountered in the directory that is valid for this compilation will
be used; they're searched in no particular order.

 <p>There are many other possibilities, limited only by your imagination,
good sense, and the constraints of your build system.

 <p>A precompiled header file can be used only when these conditions apply:

     <ul>
<li>Only one precompiled header can be used in a particular compilation.

     <li>A precompiled header can't be used once the first C token is seen.  You
can have preprocessor directives before a precompiled header; you can
even include a precompiled header from inside another header, so long as
there are no C tokens before the <code>#include</code>.

     <li>The precompiled header file must be produced for the same language as
the current compilation.  You can't use a C precompiled header for a C++
compilation.

     <li>The precompiled header file must have been produced by the same compiler
binary as the current compilation is using.

     <li>Any macros defined before the precompiled header is included must
either be defined in the same way as when the precompiled header was
generated, or must not affect the precompiled header, which usually
means that they don't appear in the precompiled header at all.

     <p>The <samp><span class="option">-D</span></samp> option is one way to define a macro before a
precompiled header is included; using a <code>#define</code> can also do it. 
There are also some options that define macros implicitly, like
<samp><span class="option">-O</span></samp> and <samp><span class="option">-Wdeprecated</span></samp>; the same rule applies to macros
defined this way.

     <li>If debugging information is output when using the precompiled
header, using <samp><span class="option">-g</span></samp> or similar, the same kind of debugging information
must have been output when building the precompiled header.  However,
a precompiled header built using <samp><span class="option">-g</span></samp> can be used in a compilation
when no debugging information is being output.

     <li>The same <samp><span class="option">-m</span></samp> options must generally be used when building
and using the precompiled header.  See <a href="#Submodel-Options">Submodel Options</a>,
for any cases where this rule is relaxed.

     <li>Each of the following options must be the same when building and using
the precompiled header:

     <pre class="smallexample">          -fexceptions
</pre>
     <li>Some other command-line options starting with <samp><span class="option">-f</span></samp>,
<samp><span class="option">-p</span></samp>, or <samp><span class="option">-O</span></samp> must be defined in the same way as when
the precompiled header was generated.  At present, it's not clear
which options are safe to change and which are not; the safest choice
is to use exactly the same options when generating and using the
precompiled header.  The following are known to be safe:

     <pre class="smallexample">          -fmessage-length=  -fpreprocessed  -fsched-interblock 
          -fsched-spec  -fsched-spec-load  -fsched-spec-load-dangerous 
          -fsched-verbose=<var>number</var>  -fschedule-insns  -fvisibility= 
          -pedantic-errors
</pre>
     </ul>

 <p>For all of these except the last, the compiler will automatically
ignore the precompiled header if the conditions aren't met.  If you
find an option combination that doesn't work and doesn't cause the
precompiled header to be ignored, please consider filing a bug report,
see <a href="#Bugs">Bugs</a>.

 <p>If you do use differing options when generating and using the
precompiled header, the actual behavior will be a mixture of the
behavior for the options.  For instance, if you use <samp><span class="option">-g</span></samp> to
generate the precompiled header but not when using it, you may or may
not get debugging information for routines in the precompiled header.

<!-- Copyright (C) 2001, 2002, 2003, 2004, 2006, 2008 -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="C-Implementation"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#C-Extensions">C Extensions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Invoking-GCC">Invoking GCC</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Top">Top</a>

</div>

<h2 class="chapter">4 C Implementation-defined behavior</h2>

<p><a name="index-implementation_002ddefined-behavior_002c-C-language-2224"></a>
A conforming implementation of ISO C is required to document its
choice of behavior in each of the areas that are designated
&ldquo;implementation defined&rdquo;.  The following lists all such areas,
along with the section numbers from the ISO/IEC 9899:1990 and ISO/IEC
9899:1999 standards.  Some areas are only implementation-defined in
one version of the standard.

 <p>Some choices depend on the externally determined ABI for the platform
(including standard character encodings) which GCC follows; these are
listed as &ldquo;determined by ABI&rdquo; below.  See <a href="#Compatibility">Binary Compatibility</a>, and <a href="http://gcc.gnu.org/readings.html">http://gcc.gnu.org/readings.html</a>.  Some
choices are documented in the preprocessor manual. 
See <a href="cpp.html#Implementation_002ddefined-behavior">Implementation-defined behavior</a>.  Some choices are made by the
library and operating system (or other environment when compiling for
a freestanding environment); refer to their documentation for details.

<ul class="menu">
<li><a accesskey="1" href="#Translation-implementation">Translation implementation</a>
<li><a accesskey="2" href="#Environment-implementation">Environment implementation</a>
<li><a accesskey="3" href="#Identifiers-implementation">Identifiers implementation</a>
<li><a accesskey="4" href="#Characters-implementation">Characters implementation</a>
<li><a accesskey="5" href="#Integers-implementation">Integers implementation</a>
<li><a accesskey="6" href="#Floating-point-implementation">Floating point implementation</a>
<li><a accesskey="7" href="#Arrays-and-pointers-implementation">Arrays and pointers implementation</a>
<li><a accesskey="8" href="#Hints-implementation">Hints implementation</a>
<li><a accesskey="9" href="#Structures-unions-enumerations-and-bit_002dfields-implementation">Structures unions enumerations and bit-fields implementation</a>
<li><a href="#Qualifiers-implementation">Qualifiers implementation</a>
<li><a href="#Declarators-implementation">Declarators implementation</a>
<li><a href="#Statements-implementation">Statements implementation</a>
<li><a href="#Preprocessing-directives-implementation">Preprocessing directives implementation</a>
<li><a href="#Library-functions-implementation">Library functions implementation</a>
<li><a href="#Architecture-implementation">Architecture implementation</a>
<li><a href="#Locale_002dspecific-behavior-implementation">Locale-specific behavior implementation</a>
</ul>

<div class="node">
<a name="Translation-implementation"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Environment-implementation">Environment implementation</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Implementation">C Implementation</a>

</div>

<h3 class="section">4.1 Translation</h3>

     <ul>
<li><cite>How a diagnostic is identified (C90 3.7, C99 3.10, C90 and C99 5.1.1.3).</cite>

     <p>Diagnostics consist of all the output sent to stderr by GCC.

     <li><cite>Whether each nonempty sequence of white-space characters other than
new-line is retained or replaced by one space character in translation
phase 3 (C90 and C99 5.1.1.2).</cite>

     <p>See <a href="cpp.html#Implementation_002ddefined-behavior">Implementation-defined behavior</a>.

</ul>

<div class="node">
<a name="Environment-implementation"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Identifiers-implementation">Identifiers implementation</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Translation-implementation">Translation implementation</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Implementation">C Implementation</a>

</div>

<h3 class="section">4.2 Environment</h3>

<p>The behavior of most of these points are dependent on the implementation
of the C library, and are not defined by GCC itself.

     <ul>
<li><cite>The mapping between physical source file multibyte characters
and the source character set in translation phase 1 (C90 and C99 5.1.1.2).</cite>

     <p>See <a href="cpp.html#Implementation_002ddefined-behavior">Implementation-defined behavior</a>.

 </ul>

<div class="node">
<a name="Identifiers-implementation"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Characters-implementation">Characters implementation</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Environment-implementation">Environment implementation</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Implementation">C Implementation</a>

</div>

<h3 class="section">4.3 Identifiers</h3>

     <ul>
<li><cite>Which additional multibyte characters may appear in identifiers
and their correspondence to universal character names (C99 6.4.2).</cite>

     <p>See <a href="cpp.html#Implementation_002ddefined-behavior">Implementation-defined behavior</a>.

     <li><cite>The number of significant initial characters in an identifier
(C90 6.1.2, C90 and C99 5.2.4.1, C99 6.4.2).</cite>

     <p>For internal names, all characters are significant.  For external names,
the number of significant characters are defined by the linker; for
almost all targets, all characters are significant.

     <li><cite>Whether case distinctions are significant in an identifier with
external linkage (C90 6.1.2).</cite>

     <p>This is a property of the linker.  C99 requires that case distinctions
are always significant in identifiers with external linkage and
systems without this property are not supported by GCC.

</ul>

<div class="node">
<a name="Characters-implementation"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Integers-implementation">Integers implementation</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Identifiers-implementation">Identifiers implementation</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Implementation">C Implementation</a>

</div>

<h3 class="section">4.4 Characters</h3>

     <ul>
<li><cite>The number of bits in a byte (C90 3.4, C99 3.6).</cite>

     <p>Determined by ABI.

     <li><cite>The values of the members of the execution character set (C90
and C99 5.2.1).</cite>

     <p>Determined by ABI.

     <li><cite>The unique value of the member of the execution character set produced
for each of the standard alphabetic escape sequences (C90 and C99 5.2.2).</cite>

     <p>Determined by ABI.

     <li><cite>The value of a </cite><code>char</code><cite> object into which has been stored any
character other than a member of the basic execution character set
(C90 6.1.2.5, C99 6.2.5).</cite>

     <p>Determined by ABI.

     <li><cite>Which of </cite><code>signed char</code><cite> or </cite><code>unsigned char</code><cite> has the same
range, representation, and behavior as &ldquo;plain&rdquo; </cite><code>char</code><cite> (C90
6.1.2.5, C90 6.2.1.1, C99 6.2.5, C99 6.3.1.1).</cite>

     <p><a name="index-fsigned_002dchar-2225"></a><a name="index-funsigned_002dchar-2226"></a>Determined by ABI.  The options <samp><span class="option">-funsigned-char</span></samp> and
<samp><span class="option">-fsigned-char</span></samp> change the default.  See <a href="#C-Dialect-Options">Options Controlling C Dialect</a>.

     <li><cite>The mapping of members of the source character set (in character
constants and string literals) to members of the execution character
set (C90 6.1.3.4, C99 6.4.4.4, C90 and C99 5.1.1.2).</cite>

     <p>Determined by ABI.

     <li><cite>The value of an integer character constant containing more than one
character or containing a character or escape sequence that does not map
to a single-byte execution character (C90 6.1.3.4, C99 6.4.4.4).</cite>

     <p>See <a href="cpp.html#Implementation_002ddefined-behavior">Implementation-defined behavior</a>.

     <li><cite>The value of a wide character constant containing more than one
multibyte character, or containing a multibyte character or escape
sequence not represented in the extended execution character set (C90
6.1.3.4, C99 6.4.4.4).</cite>

     <p>See <a href="cpp.html#Implementation_002ddefined-behavior">Implementation-defined behavior</a>.

     <li><cite>The current locale used to convert a wide character constant consisting
of a single multibyte character that maps to a member of the extended
execution character set into a corresponding wide character code (C90
6.1.3.4, C99 6.4.4.4).</cite>

     <p>See <a href="cpp.html#Implementation_002ddefined-behavior">Implementation-defined behavior</a>.

     <li><cite>The current locale used to convert a wide string literal into
corresponding wide character codes (C90 6.1.4, C99 6.4.5).</cite>

     <p>See <a href="cpp.html#Implementation_002ddefined-behavior">Implementation-defined behavior</a>.

     <li><cite>The value of a string literal containing a multibyte character or escape
sequence not represented in the execution character set (C90 6.1.4, C99 6.4.5).</cite>

     <p>See <a href="cpp.html#Implementation_002ddefined-behavior">Implementation-defined behavior</a>. 
</ul>

<div class="node">
<a name="Integers-implementation"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Floating-point-implementation">Floating point implementation</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Characters-implementation">Characters implementation</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Implementation">C Implementation</a>

</div>

<h3 class="section">4.5 Integers</h3>

     <ul>
<li><cite>Any extended integer types that exist in the implementation (C99 6.2.5).</cite>

     <p>GCC does not support any extended integer types. 
<!-- The __mode__ attribute might create types of precisions not -->
<!-- otherwise supported, but the syntax isn't right for use everywhere -->
<!-- the standard type names might be used.  Predefined typedefs should -->
<!-- be used if any extended integer types are to be defined.  The -->
<!-- __int128_t and __uint128_t typedefs are not extended integer types -->
<!-- as they are generally longer than the ABI-specified intmax_t. -->

     <li><cite>Whether signed integer types are represented using sign and magnitude,
two's complement, or one's complement, and whether the extraordinary value
is a trap representation or an ordinary value (C99 6.2.6.2).</cite>

     <p>GCC supports only two's complement integer types, and all bit patterns
are ordinary values.

     <li><cite>The rank of any extended integer type relative to another extended
integer type with the same precision (C99 6.3.1.1).</cite>

     <p>GCC does not support any extended integer types. 
<!-- If it did, there would only be one of each precision and signedness. -->

     <li><cite>The result of, or the signal raised by, converting an integer to a
signed integer type when the value cannot be represented in an object of
that type (C90 6.2.1.2, C99 6.3.1.3).</cite>

     <p>For conversion to a type of width N, the value is reduced
modulo 2^N to be within range of the type; no signal is raised.

     <li><cite>The results of some bitwise operations on signed integers (C90
6.3, C99 6.5).</cite>

     <p>Bitwise operators act on the representation of the value including
both the sign and value bits, where the sign bit is considered
immediately above the highest-value value bit.  Signed &lsquo;<samp><span class="samp">&gt;&gt;</span></samp>&rsquo; acts
on negative numbers by sign extension.

     <p>GCC does not use the latitude given in C99 only to treat certain
aspects of signed &lsquo;<samp><span class="samp">&lt;&lt;</span></samp>&rsquo; as undefined, but this is subject to
change.

     <li><cite>The sign of the remainder on integer division (C90 6.3.5).</cite>

     <p>GCC always follows the C99 requirement that the result of division is
truncated towards zero.

</ul>

<div class="node">
<a name="Floating-point-implementation"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Arrays-and-pointers-implementation">Arrays and pointers implementation</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Integers-implementation">Integers implementation</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Implementation">C Implementation</a>

</div>

<h3 class="section">4.6 Floating point</h3>

     <ul>
<li><cite>The accuracy of the floating-point operations and of the library
functions in </cite><code>&lt;math.h&gt;</code><cite> and </cite><code>&lt;complex.h&gt;</code><cite> that return floating-point
results (C90 and C99 5.2.4.2.2).</cite>

     <p>The accuracy is unknown.

     <li><cite>The rounding behaviors characterized by non-standard values
of </cite><code>FLT_ROUNDS</code><cite> 
(C90 and C99 5.2.4.2.2).</cite>

     <p>GCC does not use such values.

     <li><cite>The evaluation methods characterized by non-standard negative
values of </cite><code>FLT_EVAL_METHOD</code><cite> (C99 5.2.4.2.2).</cite>

     <p>GCC does not use such values.

     <li><cite>The direction of rounding when an integer is converted to a
floating-point number that cannot exactly represent the original
value (C90 6.2.1.3, C99 6.3.1.4).</cite>

     <p>C99 Annex F is followed.

     <li><cite>The direction of rounding when a floating-point number is
converted to a narrower floating-point number (C90 6.2.1.4, C99
6.3.1.5).</cite>

     <p>C99 Annex F is followed.

     <li><cite>How the nearest representable value or the larger or smaller
representable value immediately adjacent to the nearest representable
value is chosen for certain floating constants (C90 6.1.3.1, C99
6.4.4.2).</cite>

     <p>C99 Annex F is followed.

     <li><cite>Whether and how floating expressions are contracted when not
disallowed by the </cite><code>FP_CONTRACT</code><cite> pragma (C99 6.5).</cite>

     <p>Expressions are currently only contracted if
<samp><span class="option">-funsafe-math-optimizations</span></samp> or <samp><span class="option">-ffast-math</span></samp> are used. 
This is subject to change.

     <li><cite>The default state for the </cite><code>FENV_ACCESS</code><cite> pragma (C99 7.6.1).</cite>

     <p>This pragma is not implemented, but the default is to &ldquo;off&rdquo; unless
<samp><span class="option">-frounding-math</span></samp> is used in which case it is &ldquo;on&rdquo;.

     <li><cite>Additional floating-point exceptions, rounding modes, environments,
and classifications, and their macro names (C99 7.6, C99 7.12).</cite>

     <p>This is dependent on the implementation of the C library, and is not
defined by GCC itself.

     <li><cite>The default state for the </cite><code>FP_CONTRACT</code><cite> pragma (C99 7.12.2).</cite>

     <p>This pragma is not implemented.  Expressions are currently only
contracted if <samp><span class="option">-funsafe-math-optimizations</span></samp> or
<samp><span class="option">-ffast-math</span></samp> are used.  This is subject to change.

     <li><cite>Whether the &ldquo;inexact&rdquo; floating-point exception can be raised
when the rounded result actually does equal the mathematical result
in an IEC 60559 conformant implementation (C99 F.9).</cite>

     <p>This is dependent on the implementation of the C library, and is not
defined by GCC itself.

     <li><cite>Whether the &ldquo;underflow&rdquo; (and &ldquo;inexact&rdquo;) floating-point
exception can be raised when a result is tiny but not inexact in an
IEC 60559 conformant implementation (C99 F.9).</cite>

     <p>This is dependent on the implementation of the C library, and is not
defined by GCC itself.

</ul>

<div class="node">
<a name="Arrays-and-pointers-implementation"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Hints-implementation">Hints implementation</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Floating-point-implementation">Floating point implementation</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Implementation">C Implementation</a>

</div>

<h3 class="section">4.7 Arrays and pointers</h3>

     <ul>
<li><cite>The result of converting a pointer to an integer or
vice versa (C90 6.3.4, C99 6.3.2.3).</cite>

     <p>A cast from pointer to integer discards most-significant bits if the
pointer representation is larger than the integer type,
sign-extends<a rel="footnote" href="#fn-2" name="fnd-2"><sup>2</sup></a>
if the pointer representation is smaller than the integer type, otherwise
the bits are unchanged. 
<!-- ??? We've always claimed that pointers were unsigned entities. -->
<!-- Shouldn't we therefore be doing zero-extension?  If so, the bug -->
<!-- is in convert_to_integer, where we call type_for_size and request -->
<!-- a signed integral type.  On the other hand, it might be most useful -->
<!-- for the target if we extend according to POINTERS_EXTEND_UNSIGNED. -->

     <p>A cast from integer to pointer discards most-significant bits if the
pointer representation is smaller than the integer type, extends according
to the signedness of the integer type if the pointer representation
is larger than the integer type, otherwise the bits are unchanged.

     <p>When casting from pointer to integer and back again, the resulting
pointer must reference the same object as the original pointer, otherwise
the behavior is undefined.  That is, one may not use integer arithmetic to
avoid the undefined behavior of pointer arithmetic as proscribed in
C99 6.5.6/8.

     <li><cite>The size of the result of subtracting two pointers to elements
of the same array (C90 6.3.6, C99 6.5.6).</cite>

     <p>The value is as specified in the standard and the type is determined
by the ABI.

</ul>

<div class="node">
<a name="Hints-implementation"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Structures-unions-enumerations-and-bit_002dfields-implementation">Structures unions enumerations and bit-fields implementation</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Arrays-and-pointers-implementation">Arrays and pointers implementation</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Implementation">C Implementation</a>

</div>

<h3 class="section">4.8 Hints</h3>

     <ul>
<li><cite>The extent to which suggestions made by using the </cite><code>register</code><cite>
storage-class specifier are effective (C90 6.5.1, C99 6.7.1).</cite>

     <p>The <code>register</code> specifier affects code generation only in these ways:

          <ul>
<li>When used as part of the register variable extension, see
<a href="#Explicit-Reg-Vars">Explicit Reg Vars</a>.

          <li>When <samp><span class="option">-O0</span></samp> is in use, the compiler allocates distinct stack
memory for all variables that do not have the <code>register</code>
storage-class specifier; if <code>register</code> is specified, the variable
may have a shorter lifespan than the code would indicate and may never
be placed in memory.

          <li>On some rare x86 targets, <code>setjmp</code> doesn't save the registers in
all circumstances.  In those cases, GCC doesn't allocate any variables
in registers unless they are marked <code>register</code>.

     </ul>

     <li><cite>The extent to which suggestions made by using the inline function
specifier are effective (C99 6.7.4).</cite>

     <p>GCC will not inline any functions if the <samp><span class="option">-fno-inline</span></samp> option is
used or if <samp><span class="option">-O0</span></samp> is used.  Otherwise, GCC may still be unable to
inline a function for many reasons; the <samp><span class="option">-Winline</span></samp> option may be
used to determine if a function has not been inlined and why not.

</ul>

<div class="node">
<a name="Structures-unions-enumerations-and-bit-fields-implementation"></a>
<a name="Structures-unions-enumerations-and-bit_002dfields-implementation"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Qualifiers-implementation">Qualifiers implementation</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Hints-implementation">Hints implementation</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Implementation">C Implementation</a>

</div>

<h3 class="section">4.9 Structures, unions, enumerations, and bit-fields</h3>

     <ul>
<li><cite>A member of a union object is accessed using a member of a
different type (C90 6.3.2.3).</cite>

     <p>The relevant bytes of the representation of the object are treated as
an object of the type used for the access.  See <a href="#Type_002dpunning">Type-punning</a>.  This
may be a trap representation.

     <li><cite>Whether a &ldquo;plain&rdquo; </cite><code>int</code><cite> bit-field is treated as a
</cite><code>signed int</code><cite> bit-field or as an </cite><code>unsigned int</code><cite> bit-field
(C90 6.5.2, C90 6.5.2.1, C99 6.7.2, C99 6.7.2.1).</cite>

     <p><a name="index-funsigned_002dbitfields-2227"></a>By default it is treated as <code>signed int</code> but this may be changed
by the <samp><span class="option">-funsigned-bitfields</span></samp> option.

     <li><cite>Allowable bit-field types other than </cite><code>_Bool</code><cite>, </cite><code>signed int</code><cite>,
and </cite><code>unsigned int</code><cite> (C99 6.7.2.1).</cite>

     <p>No other types are permitted in strictly conforming mode. 
<!-- Would it be better to restrict the pedwarn for other types to C90 -->
<!-- mode and document the other types for C99 mode? -->

     <li><cite>Whether a bit-field can straddle a storage-unit boundary (C90
6.5.2.1, C99 6.7.2.1).</cite>

     <p>Determined by ABI.

     <li><cite>The order of allocation of bit-fields within a unit (C90
6.5.2.1, C99 6.7.2.1).</cite>

     <p>Determined by ABI.

     <li><cite>The alignment of non-bit-field members of structures (C90
6.5.2.1, C99 6.7.2.1).</cite>

     <p>Determined by ABI.

     <li><cite>The integer type compatible with each enumerated type (C90
6.5.2.2, C99 6.7.2.2).</cite>

     <p><a name="index-fshort_002denums-2228"></a>Normally, the type is <code>unsigned int</code> if there are no negative
values in the enumeration, otherwise <code>int</code>.  If
<samp><span class="option">-fshort-enums</span></samp> is specified, then if there are negative values
it is the first of <code>signed char</code>, <code>short</code> and <code>int</code>
that can represent all the values, otherwise it is the first of
<code>unsigned char</code>, <code>unsigned short</code> and <code>unsigned int</code>
that can represent all the values. 
<!-- On a few unusual targets with 64-bit int, this doesn't agree with -->
<!-- the code and one of the types accessed via mode attributes (which -->
<!-- are not currently considered extended integer types) may be used. -->
<!-- If these types are made extended integer types, it would still be -->
<!-- the case that -fshort-enums stops the implementation from -->
<!-- conforming to C90 on those targets. -->

     <p>On some targets, <samp><span class="option">-fshort-enums</span></samp> is the default; this is
determined by the ABI.

</ul>

<div class="node">
<a name="Qualifiers-implementation"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Declarators-implementation">Declarators implementation</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Structures-unions-enumerations-and-bit_002dfields-implementation">Structures unions enumerations and bit-fields implementation</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Implementation">C Implementation</a>

</div>

<h3 class="section">4.10 Qualifiers</h3>

     <ul>
<li><cite>What constitutes an access to an object that has volatile-qualified
type (C90 6.5.3, C99 6.7.3).</cite>

     <p>Such an object is normally accessed by pointers and used for accessing
hardware.  In most expressions, it is intuitively obvious what is a read
and what is a write.  For example

     <pre class="smallexample">          volatile int *dst = <var>somevalue</var>;
          volatile int *src = <var>someothervalue</var>;
          *dst = *src;
</pre>
     <p class="noindent">will cause a read of the volatile object pointed to by <var>src</var> and store the
value into the volatile object pointed to by <var>dst</var>.  There is no
guarantee that these reads and writes are atomic, especially for objects
larger than <code>int</code>.

     <p>However, if the volatile storage is not being modified, and the value of
the volatile storage is not used, then the situation is less obvious. 
For example

     <pre class="smallexample">          volatile int *src = <var>somevalue</var>;
          *src;
</pre>
     <p>According to the C standard, such an expression is an rvalue whose type
is the unqualified version of its original type, i.e. <code>int</code>.  Whether
GCC interprets this as a read of the volatile object being pointed to or
only as a request to evaluate the expression for its side-effects depends
on this type.

     <p>If it is a scalar type, or on most targets an aggregate type whose only
member object is of a scalar type, or a union type whose member objects
are of scalar types, the expression is interpreted by GCC as a read of
the volatile object; in the other cases, the expression is only evaluated
for its side-effects.

</ul>

<div class="node">
<a name="Declarators-implementation"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Statements-implementation">Statements implementation</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Qualifiers-implementation">Qualifiers implementation</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Implementation">C Implementation</a>

</div>

<h3 class="section">4.11 Declarators</h3>

     <ul>
<li><cite>The maximum number of declarators that may modify an arithmetic,
structure or union type (C90 6.5.4).</cite>

     <p>GCC is only limited by available memory.

</ul>

<div class="node">
<a name="Statements-implementation"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Preprocessing-directives-implementation">Preprocessing directives implementation</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Declarators-implementation">Declarators implementation</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Implementation">C Implementation</a>

</div>

<h3 class="section">4.12 Statements</h3>

     <ul>
<li><cite>The maximum number of </cite><code>case</code><cite> values in a </cite><code>switch</code><cite>
statement (C90 6.6.4.2).</cite>

     <p>GCC is only limited by available memory.

</ul>

<div class="node">
<a name="Preprocessing-directives-implementation"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Library-functions-implementation">Library functions implementation</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Statements-implementation">Statements implementation</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Implementation">C Implementation</a>

</div>

<h3 class="section">4.13 Preprocessing directives</h3>

<p>See <a href="cpp.html#Implementation_002ddefined-behavior">Implementation-defined behavior</a>, for details of these aspects of
implementation-defined behavior.

     <ul>
<li><cite>How sequences in both forms of header names are mapped to headers
or external source file names (C90 6.1.7, C99 6.4.7).</cite>

     <li><cite>Whether the value of a character constant in a constant expression
that controls conditional inclusion matches the value of the same character
constant in the execution character set (C90 6.8.1, C99 6.10.1).</cite>

     <li><cite>Whether the value of a single-character character constant in a
constant expression that controls conditional inclusion may have a
negative value (C90 6.8.1, C99 6.10.1).</cite>

     <li><cite>The places that are searched for an included &lsquo;</cite><samp><span class="samp">&lt;&gt;</span></samp><cite>&rsquo; delimited
header, and how the places are specified or the header is
identified (C90 6.8.2, C99 6.10.2).</cite>

     <li><cite>How the named source file is searched for in an included &lsquo;</cite><samp><span class="samp">""</span></samp><cite>&rsquo;
delimited header (C90 6.8.2, C99 6.10.2).</cite>

     <li><cite>The method by which preprocessing tokens (possibly resulting from
macro expansion) in a </cite><code>#include</code><cite> directive are combined into a header
name (C90 6.8.2, C99 6.10.2).</cite>

     <li><cite>The nesting limit for </cite><code>#include</code><cite> processing (C90 6.8.2, C99
6.10.2).</cite>

     <li><cite>Whether the &lsquo;</cite><samp><span class="samp">#</span></samp><cite>&rsquo; operator inserts a &lsquo;</cite><samp><span class="samp">\</span></samp><cite>&rsquo; character before
the &lsquo;</cite><samp><span class="samp">\</span></samp><cite>&rsquo; character that begins a universal character name in a
character constant or string literal (C99 6.10.3.2).</cite>

     <li><cite>The behavior on each recognized non-</cite><code>STDC #pragma</code><cite>
directive (C90 6.8.6, C99 6.10.6).</cite>

     <p>See <a href="cpp.html#Pragmas">Pragmas</a>, for details of
pragmas accepted by GCC on all targets.  See <a href="#Pragmas">Pragmas Accepted by GCC</a>, for details of target-specific pragmas.

     <li><cite>The definitions for </cite><code>__DATE__</code><cite> and </cite><code>__TIME__</code><cite> when
respectively, the date and time of translation are not available (C90
6.8.8, C99 6.10.8).</cite>

 </ul>

<div class="node">
<a name="Library-functions-implementation"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Architecture-implementation">Architecture implementation</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Preprocessing-directives-implementation">Preprocessing directives implementation</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Implementation">C Implementation</a>

</div>

<h3 class="section">4.14 Library functions</h3>

<p>The behavior of most of these points are dependent on the implementation
of the C library, and are not defined by GCC itself.

     <ul>
<li><cite>The null pointer constant to which the macro </cite><code>NULL</code><cite> expands
(C90 7.1.6, C99 7.17).</cite>

     <p>In <code>&lt;stddef.h&gt;</code>, <code>NULL</code> expands to <code>((void *)0)</code>.  GCC
does not provide the other headers which define <code>NULL</code> and some
library implementations may use other definitions in those headers.

 </ul>

<div class="node">
<a name="Architecture-implementation"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Locale_002dspecific-behavior-implementation">Locale-specific behavior implementation</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Library-functions-implementation">Library functions implementation</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Implementation">C Implementation</a>

</div>

<h3 class="section">4.15 Architecture</h3>

     <ul>
<li><cite>The values or expressions assigned to the macros specified in the
headers </cite><code>&lt;float.h&gt;</code><cite>, </cite><code>&lt;limits.h&gt;</code><cite>, and </cite><code>&lt;stdint.h&gt;</code><cite>
(C90 and C99 5.2.4.2, C99 7.18.2, C99 7.18.3).</cite>

     <p>Determined by ABI.

     <li><cite>The number, order, and encoding of bytes in any object
(when not explicitly specified in this International Standard) (C99 6.2.6.1).</cite>

     <p>Determined by ABI.

     <li><cite>The value of the result of the </cite><code>sizeof</code><cite> operator (C90
6.3.3.4, C99 6.5.3.4).</cite>

     <p>Determined by ABI.

</ul>

<div class="node">
<a name="Locale-specific-behavior-implementation"></a>
<a name="Locale_002dspecific-behavior-implementation"></a>
<p><hr>
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Architecture-implementation">Architecture implementation</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Implementation">C Implementation</a>

</div>

<h3 class="section">4.16 Locale-specific behavior</h3>

<p>The behavior of these points are dependent on the implementation
of the C library, and are not defined by GCC itself.

<!-- Copyright (C) 2009, 2010 -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="C++-Implementation"></a>
<a name="C_002b_002b-Implementation"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#C_002b_002b-Extensions">C++ Extensions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#C-Extensions">C Extensions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Top">Top</a>

</div>

<h2 class="chapter">5 C++ Implementation-defined behavior</h2>

<p><a name="index-implementation_002ddefined-behavior_002c-C_002b_002b-language-2229"></a>
A conforming implementation of ISO C++ is required to document its
choice of behavior in each of the areas that are designated
&ldquo;implementation defined&rdquo;.  The following lists all such areas,
along with the section numbers from the ISO/IEC 14822:1998 and ISO/IEC
14822:2003 standards.  Some areas are only implementation-defined in
one version of the standard.

 <p>Some choices depend on the externally determined ABI for the platform
(including standard character encodings) which GCC follows; these are
listed as &ldquo;determined by ABI&rdquo; below.  See <a href="#Compatibility">Binary Compatibility</a>, and <a href="http://gcc.gnu.org/readings.html">http://gcc.gnu.org/readings.html</a>.  Some
choices are documented in the preprocessor manual. 
See <a href="cpp.html#Implementation_002ddefined-behavior">Implementation-defined behavior</a>.  Some choices are documented in
the corresponding document for the C language.  See <a href="#C-Implementation">C Implementation</a>.  Some choices are made by the library and operating
system (or other environment when compiling for a freestanding
environment); refer to their documentation for details.

<ul class="menu">
<li><a accesskey="1" href="#Conditionally_002dsupported-behavior">Conditionally-supported behavior</a>
<li><a accesskey="2" href="#Exception-handling">Exception handling</a>
</ul>

<div class="node">
<a name="Conditionally-supported-behavior"></a>
<a name="Conditionally_002dsupported-behavior"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Exception-handling">Exception handling</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C_002b_002b-Implementation">C++ Implementation</a>

</div>

<h3 class="section">5.1 Conditionally-supported behavior</h3>

<p><cite>Each implementation shall include documentation that identifies
all conditionally-supported constructs that it does not support (C++0x
1.4).</cite>

     <ul>
<li><cite>Whether an argument of class type with a non-trivial copy
constructor or destructor can be passed to ... (C++0x 5.2.2).</cite>

     <p>Such argument passing is not supported.

 </ul>

<div class="node">
<a name="Exception-handling"></a>
<p><hr>
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Conditionally_002dsupported-behavior">Conditionally-supported behavior</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C_002b_002b-Implementation">C++ Implementation</a>

</div>

<h3 class="section">5.2 Exception handling</h3>

     <ul>
<li><cite>In the situation where no matching handler is found, it is
implementation-defined whether or not the stack is unwound before
std::terminate() is called (C++98 15.5.1).</cite>

     <p>The stack is not unwound before std::terminate is called.

</ul>

<!-- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1996, 1998, 1999, 2000, 2001, -->
<!-- 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="C-Extensions"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#C_002b_002b-Implementation">C++ Implementation</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#C-Implementation">C Implementation</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Top">Top</a>

</div>

<h2 class="chapter">6 Extensions to the C Language Family</h2>

<p><a name="index-extensions_002c-C-language-2230"></a><a name="index-C-language-extensions-2231"></a>
<a name="index-pedantic-2232"></a>GNU C provides several language features not found in ISO standard C. 
(The <samp><span class="option">-pedantic</span></samp> option directs GCC to print a warning message if
any of these features is used.)  To test for the availability of these
features in conditional compilation, check for a predefined macro
<code>__GNUC__</code>, which is always defined under GCC.

 <p>These extensions are available in C and Objective-C.  Most of them are
also available in C++.  See <a href="#C_002b_002b-Extensions">Extensions to the C++ Language</a>, for extensions that apply <em>only</em> to C++.

 <p>Some features that are in ISO C99 but not C90 or C++ are also, as
extensions, accepted by GCC in C90 mode and in C++.

<ul class="menu">
<li><a accesskey="1" href="#Statement-Exprs">Statement Exprs</a>:      Putting statements and declarations inside expressions. 
<li><a accesskey="2" href="#Local-Labels">Local Labels</a>:         Labels local to a block. 
<li><a accesskey="3" href="#Labels-as-Values">Labels as Values</a>:     Getting pointers to labels, and computed gotos. 
<li><a accesskey="4" href="#Nested-Functions">Nested Functions</a>:     As in Algol and Pascal, lexical scoping of functions. 
<li><a accesskey="5" href="#Constructing-Calls">Constructing Calls</a>:   Dispatching a call to another function. 
<li><a accesskey="6" href="#Typeof">Typeof</a>:               <code>typeof</code>: referring to the type of an expression. 
<li><a accesskey="7" href="#Conditionals">Conditionals</a>:         Omitting the middle operand of a &lsquo;<samp><span class="samp">?:</span></samp>&rsquo; expression. 
<li><a accesskey="8" href="#Long-Long">Long Long</a>:            Double-word integers---<code>long long int</code>. 
<li><a accesskey="9" href="#g_t_005f_005fint128">__int128</a>: 			128-bit integers---<code>__int128</code>. 
<li><a href="#Complex">Complex</a>:              Data types for complex numbers. 
<li><a href="#Floating-Types">Floating Types</a>:       Additional Floating Types. 
<li><a href="#Half_002dPrecision">Half-Precision</a>:       Half-Precision Floating Point. 
<li><a href="#Decimal-Float">Decimal Float</a>:        Decimal Floating Types. 
<li><a href="#Hex-Floats">Hex Floats</a>:           Hexadecimal floating-point constants. 
<li><a href="#Fixed_002dPoint">Fixed-Point</a>:          Fixed-Point Types. 
<li><a href="#Named-Address-Spaces">Named Address Spaces</a>: Named address spaces. 
<li><a href="#Zero-Length">Zero Length</a>:          Zero-length arrays. 
<li><a href="#Variable-Length">Variable Length</a>:      Arrays whose length is computed at run time. 
<li><a href="#Empty-Structures">Empty Structures</a>:     Structures with no members. 
<li><a href="#Variadic-Macros">Variadic Macros</a>:      Macros with a variable number of arguments. 
<li><a href="#Escaped-Newlines">Escaped Newlines</a>:     Slightly looser rules for escaped newlines. 
<li><a href="#Subscripting">Subscripting</a>:         Any array can be subscripted, even if not an lvalue. 
<li><a href="#Pointer-Arith">Pointer Arith</a>:        Arithmetic on <code>void</code>-pointers and function pointers. 
<li><a href="#Initializers">Initializers</a>:         Non-constant initializers. 
<li><a href="#Compound-Literals">Compound Literals</a>:    Compound literals give structures, unions
                        or arrays as values. 
<li><a href="#Designated-Inits">Designated Inits</a>:     Labeling elements of initializers. 
<li><a href="#Cast-to-Union">Cast to Union</a>:        Casting to union type from any member of the union. 
<li><a href="#Case-Ranges">Case Ranges</a>:          `case 1 ... 9' and such. 
<li><a href="#Mixed-Declarations">Mixed Declarations</a>:   Mixing declarations and code. 
<li><a href="#Function-Attributes">Function Attributes</a>:  Declaring that functions have no side effects,
                        or that they can never return. 
<li><a href="#Attribute-Syntax">Attribute Syntax</a>:     Formal syntax for attributes. 
<li><a href="#Function-Prototypes">Function Prototypes</a>:  Prototype declarations and old-style definitions. 
<li><a href="#C_002b_002b-Comments">C++ Comments</a>:         C++ comments are recognized. 
<li><a href="#Dollar-Signs">Dollar Signs</a>:         Dollar sign is allowed in identifiers. 
<li><a href="#Character-Escapes">Character Escapes</a>:    &lsquo;<samp><span class="samp">\e</span></samp>&rsquo; stands for the character &lt;ESC&gt;. 
<li><a href="#Variable-Attributes">Variable Attributes</a>:  Specifying attributes of variables. 
<li><a href="#Type-Attributes">Type Attributes</a>:      Specifying attributes of types. 
<li><a href="#Alignment">Alignment</a>:            Inquiring about the alignment of a type or variable. 
<li><a href="#Inline">Inline</a>:               Defining inline functions (as fast as macros). 
<li><a href="#Volatiles">Volatiles</a>:            What constitutes an access to a volatile object. 
<li><a href="#Extended-Asm">Extended Asm</a>:         Assembler instructions with C expressions as operands. 
                        (With them you can define ``built-in'' functions.) 
<li><a href="#Constraints">Constraints</a>:          Constraints for asm operands
<li><a href="#Asm-Labels">Asm Labels</a>:           Specifying the assembler name to use for a C symbol. 
<li><a href="#Explicit-Reg-Vars">Explicit Reg Vars</a>:    Defining variables residing in specified registers. 
<li><a href="#Alternate-Keywords">Alternate Keywords</a>:   <code>__const__</code>, <code>__asm__</code>, etc., for header files. 
<li><a href="#Incomplete-Enums">Incomplete Enums</a>:     <code>enum foo;</code>, with details to follow. 
<li><a href="#Function-Names">Function Names</a>:       Printable strings which are the name of the current
                        function. 
<li><a href="#Return-Address">Return Address</a>:       Getting the return or frame address of a function. 
<li><a href="#Vector-Extensions">Vector Extensions</a>:    Using vector instructions through built-in functions. 
<li><a href="#Offsetof">Offsetof</a>:             Special syntax for implementing <code>offsetof</code>. 
<li><a href="#Atomic-Builtins">Atomic Builtins</a>:      Built-in functions for atomic memory access. 
<li><a href="#Object-Size-Checking">Object Size Checking</a>:  Built-in functions for limited buffer overflow
                        checking. 
<li><a href="#Other-Builtins">Other Builtins</a>:       Other built-in functions. 
<li><a href="#Target-Builtins">Target Builtins</a>:      Built-in functions specific to particular targets. 
<li><a href="#Target-Format-Checks">Target Format Checks</a>:  Format checks specific to particular targets. 
<li><a href="#Pragmas">Pragmas</a>:              Pragmas accepted by GCC. 
<li><a href="#Unnamed-Fields">Unnamed Fields</a>:       Unnamed struct/union fields within structs/unions. 
<li><a href="#Thread_002dLocal">Thread-Local</a>:         Per-thread variables. 
<li><a href="#Binary-constants">Binary constants</a>:     Binary constants using the &lsquo;<samp><span class="samp">0b</span></samp>&rsquo; prefix. 
</ul>

<div class="node">
<a name="Statement-Exprs"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Local-Labels">Local Labels</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.1 Statements and Declarations in Expressions</h3>

<p><a name="index-statements-inside-expressions-2233"></a><a name="index-declarations-inside-expressions-2234"></a><a name="index-expressions-containing-statements-2235"></a><a name="index-macros_002c-statements-in-expressions-2236"></a>
<!-- the above section title wrapped and causes an underfull hbox.. i -->
<!-- changed it from "within" to "in". -mew 4feb93 -->
A compound statement enclosed in parentheses may appear as an expression
in GNU C.  This allows you to use loops, switches, and local variables
within an expression.

 <p>Recall that a compound statement is a sequence of statements surrounded
by braces; in this construct, parentheses go around the braces.  For
example:

<pre class="smallexample">     ({ int y = foo (); int z;
        if (y &gt; 0) z = y;
        else z = - y;
        z; })
</pre>
 <p class="noindent">is a valid (though slightly more complex than necessary) expression
for the absolute value of <code>foo ()</code>.

 <p>The last thing in the compound statement should be an expression
followed by a semicolon; the value of this subexpression serves as the
value of the entire construct.  (If you use some other kind of statement
last within the braces, the construct has type <code>void</code>, and thus
effectively no value.)

 <p>This feature is especially useful in making macro definitions &ldquo;safe&rdquo; (so
that they evaluate each operand exactly once).  For example, the
&ldquo;maximum&rdquo; function is commonly defined as a macro in standard C as
follows:

<pre class="smallexample">     #define max(a,b) ((a) &gt; (b) ? (a) : (b))
</pre>
 <p class="noindent"><a name="index-side-effects_002c-macro-argument-2237"></a>But this definition computes either <var>a</var> or <var>b</var> twice, with bad
results if the operand has side effects.  In GNU C, if you know the
type of the operands (here taken as <code>int</code>), you can define
the macro safely as follows:

<pre class="smallexample">     #define maxint(a,b) \
       ({int _a = (a), _b = (b); _a &gt; _b ? _a : _b; })
</pre>
 <p>Embedded statements are not allowed in constant expressions, such as
the value of an enumeration constant, the width of a bit-field, or
the initial value of a static variable.

 <p>If you don't know the type of the operand, you can still do this, but you
must use <code>typeof</code> (see <a href="#Typeof">Typeof</a>).

 <p>In G++, the result value of a statement expression undergoes array and
function pointer decay, and is returned by value to the enclosing
expression.  For instance, if <code>A</code> is a class, then

<pre class="smallexample">             A a;
     
             ({a;}).Foo ()
</pre>
 <p class="noindent">will construct a temporary <code>A</code> object to hold the result of the
statement expression, and that will be used to invoke <code>Foo</code>. 
Therefore the <code>this</code> pointer observed by <code>Foo</code> will not be the
address of <code>a</code>.

 <p>Any temporaries created within a statement within a statement expression
will be destroyed at the statement's end.  This makes statement
expressions inside macros slightly different from function calls.  In
the latter case temporaries introduced during argument evaluation will
be destroyed at the end of the statement that includes the function
call.  In the statement expression case they will be destroyed during
the statement expression.  For instance,

<pre class="smallexample">     #define macro(a)  ({__typeof__(a) b = (a); b + 3; })
     template&lt;typename T&gt; T function(T a) { T b = a; return b + 3; }
     
     void foo ()
     {
       macro (X ());
       function (X ());
     }
</pre>
 <p class="noindent">will have different places where temporaries are destroyed.  For the
<code>macro</code> case, the temporary <code>X</code> will be destroyed just after
the initialization of <code>b</code>.  In the <code>function</code> case that
temporary will be destroyed when the function returns.

 <p>These considerations mean that it is probably a bad idea to use
statement-expressions of this form in header files that are designed to
work with C++.  (Note that some versions of the GNU C Library contained
header files using statement-expression that lead to precisely this
bug.)

 <p>Jumping into a statement expression with <code>goto</code> or using a
<code>switch</code> statement outside the statement expression with a
<code>case</code> or <code>default</code> label inside the statement expression is
not permitted.  Jumping into a statement expression with a computed
<code>goto</code> (see <a href="#Labels-as-Values">Labels as Values</a>) yields undefined behavior. 
Jumping out of a statement expression is permitted, but if the
statement expression is part of a larger expression then it is
unspecified which other subexpressions of that expression have been
evaluated except where the language definition requires certain
subexpressions to be evaluated before or after the statement
expression.  In any case, as with a function call the evaluation of a
statement expression is not interleaved with the evaluation of other
parts of the containing expression.  For example,

<pre class="smallexample">       foo (), (({ bar1 (); goto a; 0; }) + bar2 ()), baz();
</pre>
 <p class="noindent">will call <code>foo</code> and <code>bar1</code> and will not call <code>baz</code> but
may or may not call <code>bar2</code>.  If <code>bar2</code> is called, it will be
called after <code>foo</code> and before <code>bar1</code>

<div class="node">
<a name="Local-Labels"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Labels-as-Values">Labels as Values</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Statement-Exprs">Statement Exprs</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.2 Locally Declared Labels</h3>

<p><a name="index-local-labels-2238"></a><a name="index-macros_002c-local-labels-2239"></a>
GCC allows you to declare <dfn>local labels</dfn> in any nested block
scope.  A local label is just like an ordinary label, but you can
only reference it (with a <code>goto</code> statement, or by taking its
address) within the block in which it was declared.

 <p>A local label declaration looks like this:

<pre class="smallexample">     __label__ <var>label</var>;
</pre>
 <p class="noindent">or

<pre class="smallexample">     __label__ <var>label1</var>, <var>label2</var>, /* <span class="roman">...</span> */;
</pre>
 <p>Local label declarations must come at the beginning of the block,
before any ordinary declarations or statements.

 <p>The label declaration defines the label <em>name</em>, but does not define
the label itself.  You must do this in the usual way, with
<var>label</var><code>:</code>, within the statements of the statement expression.

 <p>The local label feature is useful for complex macros.  If a macro
contains nested loops, a <code>goto</code> can be useful for breaking out of
them.  However, an ordinary label whose scope is the whole function
cannot be used: if the macro can be expanded several times in one
function, the label will be multiply defined in that function.  A
local label avoids this problem.  For example:

<pre class="smallexample">     #define SEARCH(value, array, target)              \
     do {                                              \
       __label__ found;                                \
       typeof (target) _SEARCH_target = (target);      \
       typeof (*(array)) *_SEARCH_array = (array);     \
       int i, j;                                       \
       int value;                                      \
       for (i = 0; i &lt; max; i++)                       \
         for (j = 0; j &lt; max; j++)                     \
           if (_SEARCH_array[i][j] == _SEARCH_target)  \
             { (value) = i; goto found; }              \
       (value) = -1;                                   \
      found:;                                          \
     } while (0)
</pre>
 <p>This could also be written using a statement-expression:

<pre class="smallexample">     #define SEARCH(array, target)                     \
     ({                                                \
       __label__ found;                                \
       typeof (target) _SEARCH_target = (target);      \
       typeof (*(array)) *_SEARCH_array = (array);     \
       int i, j;                                       \
       int value;                                      \
       for (i = 0; i &lt; max; i++)                       \
         for (j = 0; j &lt; max; j++)                     \
           if (_SEARCH_array[i][j] == _SEARCH_target)  \
             { value = i; goto found; }                \
       value = -1;                                     \
      found:                                           \
       value;                                          \
     })
</pre>
 <p>Local label declarations also make the labels they declare visible to
nested functions, if there are any.  See <a href="#Nested-Functions">Nested Functions</a>, for details.

<div class="node">
<a name="Labels-as-Values"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Nested-Functions">Nested Functions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Local-Labels">Local Labels</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.3 Labels as Values</h3>

<p><a name="index-labels-as-values-2240"></a><a name="index-computed-gotos-2241"></a><a name="index-goto-with-computed-label-2242"></a><a name="index-address-of-a-label-2243"></a>
You can get the address of a label defined in the current function
(or a containing function) with the unary operator &lsquo;<samp><span class="samp">&amp;&amp;</span></samp>&rsquo;.  The
value has type <code>void *</code>.  This value is a constant and can be used
wherever a constant of that type is valid.  For example:

<pre class="smallexample">     void *ptr;
     /* <span class="roman">...</span> */
     ptr = &amp;&amp;foo;
</pre>
 <p>To use these values, you need to be able to jump to one.  This is done
with the computed goto statement<a rel="footnote" href="#fn-3" name="fnd-3"><sup>3</sup></a>, <code>goto *</code><var>exp</var><code>;</code>.  For example,

<pre class="smallexample">     goto *ptr;
</pre>
 <p class="noindent">Any expression of type <code>void *</code> is allowed.

 <p>One way of using these constants is in initializing a static array that
will serve as a jump table:

<pre class="smallexample">     static void *array[] = { &amp;&amp;foo, &amp;&amp;bar, &amp;&amp;hack };
</pre>
 <p>Then you can select a label with indexing, like this:

<pre class="smallexample">     goto *array[i];
</pre>
 <p class="noindent">Note that this does not check whether the subscript is in bounds&mdash;array
indexing in C never does that.

 <p>Such an array of label values serves a purpose much like that of the
<code>switch</code> statement.  The <code>switch</code> statement is cleaner, so
use that rather than an array unless the problem does not fit a
<code>switch</code> statement very well.

 <p>Another use of label values is in an interpreter for threaded code. 
The labels within the interpreter function can be stored in the
threaded code for super-fast dispatching.

 <p>You may not use this mechanism to jump to code in a different function. 
If you do that, totally unpredictable things will happen.  The best way to
avoid this is to store the label address only in automatic variables and
never pass it as an argument.

 <p>An alternate way to write the above example is

<pre class="smallexample">     static const int array[] = { &amp;&amp;foo - &amp;&amp;foo, &amp;&amp;bar - &amp;&amp;foo,
                                  &amp;&amp;hack - &amp;&amp;foo };
     goto *(&amp;&amp;foo + array[i]);
</pre>
 <p class="noindent">This is more friendly to code living in shared libraries, as it reduces
the number of dynamic relocations that are needed, and by consequence,
allows the data to be read-only.

 <p>The <code>&amp;&amp;foo</code> expressions for the same label might have different
values if the containing function is inlined or cloned.  If a program
relies on them being always the same,
<code>__attribute__((__noinline__,__noclone__))</code> should be used to
prevent inlining and cloning.  If <code>&amp;&amp;foo</code> is used in a static
variable initializer, inlining and cloning is forbidden.

<div class="node">
<a name="Nested-Functions"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Constructing-Calls">Constructing Calls</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Labels-as-Values">Labels as Values</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.4 Nested Functions</h3>

<p><a name="index-nested-functions-2244"></a><a name="index-downward-funargs-2245"></a><a name="index-thunks-2246"></a>
A <dfn>nested function</dfn> is a function defined inside another function. 
(Nested functions are not supported for GNU C++.)  The nested function's
name is local to the block where it is defined.  For example, here we
define a nested function named <code>square</code>, and call it twice:

<pre class="smallexample">     foo (double a, double b)
     {
       double square (double z) { return z * z; }
     
       return square (a) + square (b);
     }
</pre>
 <p>The nested function can access all the variables of the containing
function that are visible at the point of its definition.  This is
called <dfn>lexical scoping</dfn>.  For example, here we show a nested
function which uses an inherited variable named <code>offset</code>:

<pre class="smallexample">     bar (int *array, int offset, int size)
     {
       int access (int *array, int index)
         { return array[index + offset]; }
       int i;
       /* <span class="roman">...</span> */
       for (i = 0; i &lt; size; i++)
         /* <span class="roman">...</span> */ access (array, i) /* <span class="roman">...</span> */
     }
</pre>
 <p>Nested function definitions are permitted within functions in the places
where variable definitions are allowed; that is, in any block, mixed
with the other declarations and statements in the block.

 <p>It is possible to call the nested function from outside the scope of its
name by storing its address or passing the address to another function:

<pre class="smallexample">     hack (int *array, int size)
     {
       void store (int index, int value)
         { array[index] = value; }
     
       intermediate (store, size);
     }
</pre>
 <p>Here, the function <code>intermediate</code> receives the address of
<code>store</code> as an argument.  If <code>intermediate</code> calls <code>store</code>,
the arguments given to <code>store</code> are used to store into <code>array</code>. 
But this technique works only so long as the containing function
(<code>hack</code>, in this example) does not exit.

 <p>If you try to call the nested function through its address after the
containing function has exited, all hell will break loose.  If you try
to call it after a containing scope level has exited, and if it refers
to some of the variables that are no longer in scope, you may be lucky,
but it's not wise to take the risk.  If, however, the nested function
does not refer to anything that has gone out of scope, you should be
safe.

 <p>GCC implements taking the address of a nested function using a technique
called <dfn>trampolines</dfn>.  This technique was described in
<cite>Lexical Closures for C++</cite> (Thomas M. Breuel, USENIX
C++ Conference Proceedings, October 17-21, 1988).

 <p>A nested function can jump to a label inherited from a containing
function, provided the label was explicitly declared in the containing
function (see <a href="#Local-Labels">Local Labels</a>).  Such a jump returns instantly to the
containing function, exiting the nested function which did the
<code>goto</code> and any intermediate functions as well.  Here is an example:

<pre class="smallexample">     bar (int *array, int offset, int size)
     {
       __label__ failure;
       int access (int *array, int index)
         {
           if (index &gt; size)
             goto failure;
           return array[index + offset];
         }
       int i;
       /* <span class="roman">...</span> */
       for (i = 0; i &lt; size; i++)
         /* <span class="roman">...</span> */ access (array, i) /* <span class="roman">...</span> */
       /* <span class="roman">...</span> */
       return 0;
     
      /* <span class="roman">Control comes here from </span><code>access</code><span class="roman">
         if it detects an error.</span>  */
      failure:
       return -1;
     }
</pre>
 <p>A nested function always has no linkage.  Declaring one with
<code>extern</code> or <code>static</code> is erroneous.  If you need to declare the nested function
before its definition, use <code>auto</code> (which is otherwise meaningless
for function declarations).

<pre class="smallexample">     bar (int *array, int offset, int size)
     {
       __label__ failure;
       auto int access (int *, int);
       /* <span class="roman">...</span> */
       int access (int *array, int index)
         {
           if (index &gt; size)
             goto failure;
           return array[index + offset];
         }
       /* <span class="roman">...</span> */
     }
</pre>
 <div class="node">
<a name="Constructing-Calls"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Typeof">Typeof</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Nested-Functions">Nested Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.5 Constructing Function Calls</h3>

<p><a name="index-constructing-calls-2247"></a><a name="index-forwarding-calls-2248"></a>
Using the built-in functions described below, you can record
the arguments a function received, and call another function
with the same arguments, without knowing the number or types
of the arguments.

 <p>You can also record the return value of that function call,
and later return that value, without knowing what data type
the function tried to return (as long as your caller expects
that data type).

 <p>However, these built-in functions may interact badly with some
sophisticated features or other extensions of the language.  It
is, therefore, not recommended to use them outside very simple
functions acting as mere forwarders for their arguments.

<div class="defun">
&mdash; Built-in Function: void * <b>__builtin_apply_args</b> ()<var><a name="index-g_t_005f_005fbuiltin_005fapply_005fargs-2249"></a></var><br>
<blockquote><p>This built-in function returns a pointer to data
describing how to perform a call with the same arguments as were passed
to the current function.

      <p>The function saves the arg pointer register, structure value address,
and all registers that might be used to pass arguments to a function
into a block of memory allocated on the stack.  Then it returns the
address of that block. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: void * <b>__builtin_apply</b> (<var>void </var>(<var>*function</var>)()<var>, void *arguments, size_t size</var>)<var><a name="index-g_t_005f_005fbuiltin_005fapply-2250"></a></var><br>
<blockquote><p>This built-in function invokes <var>function</var>
with a copy of the parameters described by <var>arguments</var>
and <var>size</var>.

      <p>The value of <var>arguments</var> should be the value returned by
<code>__builtin_apply_args</code>.  The argument <var>size</var> specifies the size
of the stack argument data, in bytes.

      <p>This function returns a pointer to data describing
how to return whatever value was returned by <var>function</var>.  The data
is saved in a block of memory allocated on the stack.

      <p>It is not always simple to compute the proper value for <var>size</var>.  The
value is used by <code>__builtin_apply</code> to compute the amount of data
that should be pushed on the stack and copied from the incoming argument
area. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: void <b>__builtin_return</b> (<var>void *result</var>)<var><a name="index-g_t_005f_005fbuiltin_005freturn-2251"></a></var><br>
<blockquote><p>This built-in function returns the value described by <var>result</var> from
the containing function.  You should specify, for <var>result</var>, a value
returned by <code>__builtin_apply</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function:  <b>__builtin_va_arg_pack</b> ()<var><a name="index-g_t_005f_005fbuiltin_005fva_005farg_005fpack-2252"></a></var><br>
<blockquote><p>This built-in function represents all anonymous arguments of an inline
function.  It can be used only in inline functions which will be always
inlined, never compiled as a separate function, such as those using
<code>__attribute__ ((__always_inline__))</code> or
<code>__attribute__ ((__gnu_inline__))</code> extern inline functions. 
It must be only passed as last argument to some other function
with variable arguments.  This is useful for writing small wrapper
inlines for variable argument functions, when using preprocessor
macros is undesirable.  For example:
     <pre class="smallexample">          extern int myprintf (FILE *f, const char *format, ...);
          extern inline __attribute__ ((__gnu_inline__)) int
          myprintf (FILE *f, const char *format, ...)
          {
            int r = fprintf (f, "myprintf: ");
            if (r &lt; 0)
              return r;
            int s = fprintf (f, format, __builtin_va_arg_pack ());
            if (s &lt; 0)
              return s;
            return r + s;
          }
</pre>
      </blockquote></div>

<div class="defun">
&mdash; Built-in Function: size_t <b>__builtin_va_arg_pack_len</b> ()<var><a name="index-g_t_005f_005fbuiltin_005fva_005farg_005fpack_005flen-2253"></a></var><br>
<blockquote><p>This built-in function returns the number of anonymous arguments of
an inline function.  It can be used only in inline functions which
will be always inlined, never compiled as a separate function, such
as those using <code>__attribute__ ((__always_inline__))</code> or
<code>__attribute__ ((__gnu_inline__))</code> extern inline functions. 
For example following will do link or runtime checking of open
arguments for optimized code:
     <pre class="smallexample">          #ifdef __OPTIMIZE__
          extern inline __attribute__((__gnu_inline__)) int
          myopen (const char *path, int oflag, ...)
          {
            if (__builtin_va_arg_pack_len () &gt; 1)
              warn_open_too_many_arguments ();
          
            if (__builtin_constant_p (oflag))
              {
                if ((oflag &amp; O_CREAT) != 0 &amp;&amp; __builtin_va_arg_pack_len () &lt; 1)
                  {
                    warn_open_missing_mode ();
                    return __open_2 (path, oflag);
                  }
                return open (path, oflag, __builtin_va_arg_pack ());
              }
          
            if (__builtin_va_arg_pack_len () &lt; 1)
              return __open_2 (path, oflag);
          
            return open (path, oflag, __builtin_va_arg_pack ());
          }
          #endif
</pre>
      </blockquote></div>

<div class="node">
<a name="Typeof"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Conditionals">Conditionals</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Constructing-Calls">Constructing Calls</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.6 Referring to a Type with <code>typeof</code></h3>

<p><a name="index-typeof-2254"></a><a name="index-sizeof-2255"></a><a name="index-macros_002c-types-of-arguments-2256"></a>
Another way to refer to the type of an expression is with <code>typeof</code>. 
The syntax of using of this keyword looks like <code>sizeof</code>, but the
construct acts semantically like a type name defined with <code>typedef</code>.

 <p>There are two ways of writing the argument to <code>typeof</code>: with an
expression or with a type.  Here is an example with an expression:

<pre class="smallexample">     typeof (x[0](1))
</pre>
 <p class="noindent">This assumes that <code>x</code> is an array of pointers to functions;
the type described is that of the values of the functions.

 <p>Here is an example with a typename as the argument:

<pre class="smallexample">     typeof (int *)
</pre>
 <p class="noindent">Here the type described is that of pointers to <code>int</code>.

 <p>If you are writing a header file that must work when included in ISO C
programs, write <code>__typeof__</code> instead of <code>typeof</code>. 
See <a href="#Alternate-Keywords">Alternate Keywords</a>.

 <p>A <code>typeof</code>-construct can be used anywhere a typedef name could be
used.  For example, you can use it in a declaration, in a cast, or inside
of <code>sizeof</code> or <code>typeof</code>.

 <p>The operand of <code>typeof</code> is evaluated for its side effects if and
only if it is an expression of variably modified type or the name of
such a type.

 <p><code>typeof</code> is often useful in conjunction with the
statements-within-expressions feature.  Here is how the two together can
be used to define a safe &ldquo;maximum&rdquo; macro that operates on any
arithmetic type and evaluates each of its arguments exactly once:

<pre class="smallexample">     #define max(a,b) \
       ({ typeof (a) _a = (a); \
           typeof (b) _b = (b); \
         _a &gt; _b ? _a : _b; })
</pre>
 <p><a name="index-underscores-in-variables-in-macros-2257"></a><a name="index-g_t_0040samp_007b_005f_007d-in-variables-in-macros-2258"></a><a name="index-local-variables-in-macros-2259"></a><a name="index-variables_002c-local_002c-in-macros-2260"></a><a name="index-macros_002c-local-variables-in-2261"></a>
The reason for using names that start with underscores for the local
variables is to avoid conflicts with variable names that occur within the
expressions that are substituted for <code>a</code> and <code>b</code>.  Eventually we
hope to design a new form of declaration syntax that allows you to declare
variables whose scopes start only after their initializers; this will be a
more reliable way to prevent such conflicts.

<p class="noindent">Some more examples of the use of <code>typeof</code>:

     <ul>
<li>This declares <code>y</code> with the type of what <code>x</code> points to.

     <pre class="smallexample">          typeof (*x) y;
</pre>
     <li>This declares <code>y</code> as an array of such values.

     <pre class="smallexample">          typeof (*x) y[4];
</pre>
     <li>This declares <code>y</code> as an array of pointers to characters:

     <pre class="smallexample">          typeof (typeof (char *)[4]) y;
</pre>
     <p class="noindent">It is equivalent to the following traditional C declaration:

     <pre class="smallexample">          char *y[4];
</pre>
     <p>To see the meaning of the declaration using <code>typeof</code>, and why it
might be a useful way to write, rewrite it with these macros:

     <pre class="smallexample">          #define pointer(T)  typeof(T *)
          #define array(T, N) typeof(T [N])
</pre>
     <p class="noindent">Now the declaration can be rewritten this way:

     <pre class="smallexample">          array (pointer (char), 4) y;
</pre>
     <p class="noindent">Thus, <code>array (pointer (char), 4)</code> is the type of arrays of 4
pointers to <code>char</code>. 
</ul>

 <p><em>Compatibility Note:</em> In addition to <code>typeof</code>, GCC 2 supported
a more limited extension which permitted one to write

<pre class="smallexample">     typedef <var>T</var> = <var>expr</var>;
</pre>
 <p class="noindent">with the effect of declaring <var>T</var> to have the type of the expression
<var>expr</var>.  This extension does not work with GCC 3 (versions between
3.0 and 3.2 will crash; 3.2.1 and later give an error).  Code which
relies on it should be rewritten to use <code>typeof</code>:

<pre class="smallexample">     typedef typeof(<var>expr</var>) <var>T</var>;
</pre>
 <p class="noindent">This will work with all versions of GCC.

<div class="node">
<a name="Conditionals"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Long-Long">Long Long</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Typeof">Typeof</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.7 Conditionals with Omitted Operands</h3>

<p><a name="index-conditional-expressions_002c-extensions-2262"></a><a name="index-omitted-middle_002doperands-2263"></a><a name="index-middle_002doperands_002c-omitted-2264"></a><a name="index-extensions_002c-_0040code_007b_003f_003a_007d-2265"></a><a name="index-g_t_0040code_007b_003f_003a_007d-extensions-2266"></a>
The middle operand in a conditional expression may be omitted.  Then
if the first operand is nonzero, its value is the value of the conditional
expression.

 <p>Therefore, the expression

<pre class="smallexample">     x ? : y
</pre>
 <p class="noindent">has the value of <code>x</code> if that is nonzero; otherwise, the value of
<code>y</code>.

 <p>This example is perfectly equivalent to

<pre class="smallexample">     x ? x : y
</pre>
 <p><a name="index-side-effect-in-_0040code_007b_003f_003a_007d-2267"></a><a name="index-g_t_0040code_007b_003f_003a_007d-side-effect-2268"></a>In this simple case, the ability to omit the middle operand is not
especially useful.  When it becomes useful is when the first operand does,
or may (if it is a macro argument), contain a side effect.  Then repeating
the operand in the middle would perform the side effect twice.  Omitting
the middle operand uses the value already computed without the undesirable
effects of recomputing it.

<div class="node">
<a name="__int128"></a>
<a name="g_t_005f_005fint128"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Complex">Complex</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Long-Long">Long Long</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.8 128-bits integers</h3>

<p><a name="index-g_t_0040code_007b_005f_005fint128_007d-data-types-2269"></a>
As an extension the integer scalar type <code>__int128</code> is supported for
targets having an integer mode wide enough to hold 128-bit. 
Simply write <code>__int128</code> for a signed 128-bit integer, or
<code>unsigned __int128</code> for an unsigned 128-bit integer.  There is no
support in GCC to express an integer constant of type <code>__int128</code>
for targets having <code>long long</code> integer with less then 128 bit width.

<div class="node">
<a name="Long-Long"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#g_t_005f_005fint128">__int128</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Conditionals">Conditionals</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.9 Double-Word Integers</h3>

<p><a name="index-g_t_0040code_007blong-long_007d-data-types-2270"></a><a name="index-double_002dword-arithmetic-2271"></a><a name="index-multiprecision-arithmetic-2272"></a><a name="index-g_t_0040code_007bLL_007d-integer-suffix-2273"></a><a name="index-g_t_0040code_007bULL_007d-integer-suffix-2274"></a>
ISO C99 supports data types for integers that are at least 64 bits wide,
and as an extension GCC supports them in C90 mode and in C++. 
Simply write <code>long long int</code> for a signed integer, or
<code>unsigned long long int</code> for an unsigned integer.  To make an
integer constant of type <code>long long int</code>, add the suffix &lsquo;<samp><span class="samp">LL</span></samp>&rsquo;
to the integer.  To make an integer constant of type <code>unsigned long
long int</code>, add the suffix &lsquo;<samp><span class="samp">ULL</span></samp>&rsquo; to the integer.

 <p>You can use these types in arithmetic like any other integer types. 
Addition, subtraction, and bitwise boolean operations on these types
are open-coded on all types of machines.  Multiplication is open-coded
if the machine supports fullword-to-doubleword a widening multiply
instruction.  Division and shifts are open-coded only on machines that
provide special support.  The operations that are not open-coded use
special library routines that come with GCC.

 <p>There may be pitfalls when you use <code>long long</code> types for function
arguments, unless you declare function prototypes.  If a function
expects type <code>int</code> for its argument, and you pass a value of type
<code>long long int</code>, confusion will result because the caller and the
subroutine will disagree about the number of bytes for the argument. 
Likewise, if the function expects <code>long long int</code> and you pass
<code>int</code>.  The best way to avoid such problems is to use prototypes.

<div class="node">
<a name="Complex"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Floating-Types">Floating Types</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#g_t_005f_005fint128">__int128</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.10 Complex Numbers</h3>

<p><a name="index-complex-numbers-2275"></a><a name="index-g_t_0040code_007b_005fComplex_007d-keyword-2276"></a><a name="index-g_t_0040code_007b_005f_005fcomplex_005f_005f_007d-keyword-2277"></a>
ISO C99 supports complex floating data types, and as an extension GCC
supports them in C90 mode and in C++, and supports complex integer data
types which are not part of ISO C99.  You can declare complex types
using the keyword <code>_Complex</code>.  As an extension, the older GNU
keyword <code>__complex__</code> is also supported.

 <p>For example, &lsquo;<samp><span class="samp">_Complex double x;</span></samp>&rsquo; declares <code>x</code> as a
variable whose real part and imaginary part are both of type
<code>double</code>.  &lsquo;<samp><span class="samp">_Complex short int y;</span></samp>&rsquo; declares <code>y</code> to
have real and imaginary parts of type <code>short int</code>; this is not
likely to be useful, but it shows that the set of complex types is
complete.

 <p>To write a constant with a complex data type, use the suffix &lsquo;<samp><span class="samp">i</span></samp>&rsquo; or
&lsquo;<samp><span class="samp">j</span></samp>&rsquo; (either one; they are equivalent).  For example, <code>2.5fi</code>
has type <code>_Complex float</code> and <code>3i</code> has type
<code>_Complex int</code>.  Such a constant always has a pure imaginary
value, but you can form any complex value you like by adding one to a
real constant.  This is a GNU extension; if you have an ISO C99
conforming C library (such as GNU libc), and want to construct complex
constants of floating type, you should include <code>&lt;complex.h&gt;</code> and
use the macros <code>I</code> or <code>_Complex_I</code> instead.

 <p><a name="index-g_t_0040code_007b_005f_005freal_005f_005f_007d-keyword-2278"></a><a name="index-g_t_0040code_007b_005f_005fimag_005f_005f_007d-keyword-2279"></a>To extract the real part of a complex-valued expression <var>exp</var>, write
<code>__real__ </code><var>exp</var>.  Likewise, use <code>__imag__</code> to
extract the imaginary part.  This is a GNU extension; for values of
floating type, you should use the ISO C99 functions <code>crealf</code>,
<code>creal</code>, <code>creall</code>, <code>cimagf</code>, <code>cimag</code> and
<code>cimagl</code>, declared in <code>&lt;complex.h&gt;</code> and also provided as
built-in functions by GCC.

 <p><a name="index-complex-conjugation-2280"></a>The operator &lsquo;<samp><span class="samp">~</span></samp>&rsquo; performs complex conjugation when used on a value
with a complex type.  This is a GNU extension; for values of
floating type, you should use the ISO C99 functions <code>conjf</code>,
<code>conj</code> and <code>conjl</code>, declared in <code>&lt;complex.h&gt;</code> and also
provided as built-in functions by GCC.

 <p>GCC can allocate complex automatic variables in a noncontiguous
fashion; it's even possible for the real part to be in a register while
the imaginary part is on the stack (or vice-versa).  Only the DWARF2
debug info format can represent this, so use of DWARF2 is recommended. 
If you are using the stabs debug info format, GCC describes a noncontiguous
complex variable as if it were two separate variables of noncomplex type. 
If the variable's actual name is <code>foo</code>, the two fictitious
variables are named <code>foo$real</code> and <code>foo$imag</code>.  You can
examine and set these two fictitious variables with your debugger.

<div class="node">
<a name="Floating-Types"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Half_002dPrecision">Half-Precision</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Complex">Complex</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.11 Additional Floating Types</h3>

<p><a name="index-additional-floating-types-2281"></a><a name="index-g_t_0040code_007b_005f_005ffloat80_007d-data-type-2282"></a><a name="index-g_t_0040code_007b_005f_005ffloat128_007d-data-type-2283"></a><a name="index-g_t_0040code_007bw_007d-floating-point-suffix-2284"></a><a name="index-g_t_0040code_007bq_007d-floating-point-suffix-2285"></a><a name="index-g_t_0040code_007bW_007d-floating-point-suffix-2286"></a><a name="index-g_t_0040code_007bQ_007d-floating-point-suffix-2287"></a>
As an extension, the GNU C compiler supports additional floating
types, <code>__float80</code> and <code>__float128</code> to support 80bit
(<code>XFmode</code>) and 128 bit (<code>TFmode</code>) floating types. 
Support for additional types includes the arithmetic operators:
add, subtract, multiply, divide; unary arithmetic operators;
relational operators; equality operators; and conversions to and from
integer and other floating types.  Use a suffix &lsquo;<samp><span class="samp">w</span></samp>&rsquo; or &lsquo;<samp><span class="samp">W</span></samp>&rsquo;
in a literal constant of type <code>__float80</code> and &lsquo;<samp><span class="samp">q</span></samp>&rsquo; or &lsquo;<samp><span class="samp">Q</span></samp>&rsquo;
for <code>_float128</code>.  You can declare complex types using the
corresponding internal complex type, <code>XCmode</code> for <code>__float80</code>
type and <code>TCmode</code> for <code>__float128</code> type:

<pre class="smallexample">     typedef _Complex float __attribute__((mode(TC))) _Complex128;
     typedef _Complex float __attribute__((mode(XC))) _Complex80;
</pre>
 <p>Not all targets support additional floating point types.  <code>__float80</code>
and <code>__float128</code> types are supported on i386, x86_64 and ia64 targets. 
The <code>__float128</code> type is supported on hppa HP-UX targets.

<div class="node">
<a name="Half-Precision"></a>
<a name="Half_002dPrecision"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Decimal-Float">Decimal Float</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Floating-Types">Floating Types</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.12 Half-Precision Floating Point</h3>

<p><a name="index-half_002dprecision-floating-point-2288"></a><a name="index-g_t_0040code_007b_005f_005ffp16_007d-data-type-2289"></a>
On ARM targets, GCC supports half-precision (16-bit) floating point via
the <code>__fp16</code> type.  You must enable this type explicitly
with the <samp><span class="option">-mfp16-format</span></samp> command-line option in order to use it.

 <p>ARM supports two incompatible representations for half-precision
floating-point values.  You must choose one of the representations and
use it consistently in your program.

 <p>Specifying <samp><span class="option">-mfp16-format=ieee</span></samp> selects the IEEE 754-2008 format. 
This format can represent normalized values in the range of 2^-14 to 65504. 
There are 11 bits of significand precision, approximately 3
decimal digits.

 <p>Specifying <samp><span class="option">-mfp16-format=alternative</span></samp> selects the ARM
alternative format.  This representation is similar to the IEEE
format, but does not support infinities or NaNs.  Instead, the range
of exponents is extended, so that this format can represent normalized
values in the range of 2^-14 to 131008.

 <p>The <code>__fp16</code> type is a storage format only.  For purposes
of arithmetic and other operations, <code>__fp16</code> values in C or C++
expressions are automatically promoted to <code>float</code>.  In addition,
you cannot declare a function with a return value or parameters
of type <code>__fp16</code>.

 <p>Note that conversions from <code>double</code> to <code>__fp16</code>
involve an intermediate conversion to <code>float</code>.  Because
of rounding, this can sometimes produce a different result than a
direct conversion.

 <p>ARM provides hardware support for conversions between
<code>__fp16</code> and <code>float</code> values
as an extension to VFP and NEON (Advanced SIMD).  GCC generates
code using these hardware instructions if you compile with
options to select an FPU that provides them;
for example, <samp><span class="option">-mfpu=neon-fp16 -mfloat-abi=softfp</span></samp>,
in addition to the <samp><span class="option">-mfp16-format</span></samp> option to select
a half-precision format.

 <p>Language-level support for the <code>__fp16</code> data type is
independent of whether GCC generates code using hardware floating-point
instructions.  In cases where hardware support is not specified, GCC
implements conversions between <code>__fp16</code> and <code>float</code> values
as library calls.

<div class="node">
<a name="Decimal-Float"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Hex-Floats">Hex Floats</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Half_002dPrecision">Half-Precision</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.13 Decimal Floating Types</h3>

<p><a name="index-decimal-floating-types-2290"></a><a name="index-g_t_0040code_007b_005fDecimal32_007d-data-type-2291"></a><a name="index-g_t_0040code_007b_005fDecimal64_007d-data-type-2292"></a><a name="index-g_t_0040code_007b_005fDecimal128_007d-data-type-2293"></a><a name="index-g_t_0040code_007bdf_007d-integer-suffix-2294"></a><a name="index-g_t_0040code_007bdd_007d-integer-suffix-2295"></a><a name="index-g_t_0040code_007bdl_007d-integer-suffix-2296"></a><a name="index-g_t_0040code_007bDF_007d-integer-suffix-2297"></a><a name="index-g_t_0040code_007bDD_007d-integer-suffix-2298"></a><a name="index-g_t_0040code_007bDL_007d-integer-suffix-2299"></a>
As an extension, the GNU C compiler supports decimal floating types as
defined in the N1312 draft of ISO/IEC WDTR24732.  Support for decimal
floating types in GCC will evolve as the draft technical report changes. 
Calling conventions for any target might also change.  Not all targets
support decimal floating types.

 <p>The decimal floating types are <code>_Decimal32</code>, <code>_Decimal64</code>, and
<code>_Decimal128</code>.  They use a radix of ten, unlike the floating types
<code>float</code>, <code>double</code>, and <code>long double</code> whose radix is not
specified by the C standard but is usually two.

 <p>Support for decimal floating types includes the arithmetic operators
add, subtract, multiply, divide; unary arithmetic operators;
relational operators; equality operators; and conversions to and from
integer and other floating types.  Use a suffix &lsquo;<samp><span class="samp">df</span></samp>&rsquo; or
&lsquo;<samp><span class="samp">DF</span></samp>&rsquo; in a literal constant of type <code>_Decimal32</code>, &lsquo;<samp><span class="samp">dd</span></samp>&rsquo;
or &lsquo;<samp><span class="samp">DD</span></samp>&rsquo; for <code>_Decimal64</code>, and &lsquo;<samp><span class="samp">dl</span></samp>&rsquo; or &lsquo;<samp><span class="samp">DL</span></samp>&rsquo; for
<code>_Decimal128</code>.

 <p>GCC support of decimal float as specified by the draft technical report
is incomplete:

     <ul>
<li>When the value of a decimal floating type cannot be represented in the
integer type to which it is being converted, the result is undefined
rather than the result value specified by the draft technical report.

     <li>GCC does not provide the C library functionality associated with
<samp><span class="file">math.h</span></samp>, <samp><span class="file">fenv.h</span></samp>, <samp><span class="file">stdio.h</span></samp>, <samp><span class="file">stdlib.h</span></samp>, and
<samp><span class="file">wchar.h</span></samp>, which must come from a separate C library implementation. 
Because of this the GNU C compiler does not define macro
<code>__STDC_DEC_FP__</code> to indicate that the implementation conforms to
the technical report. 
</ul>

 <p>Types <code>_Decimal32</code>, <code>_Decimal64</code>, and <code>_Decimal128</code>
are supported by the DWARF2 debug information format.

<div class="node">
<a name="Hex-Floats"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Fixed_002dPoint">Fixed-Point</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Decimal-Float">Decimal Float</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.14 Hex Floats</h3>

<p><a name="index-hex-floats-2300"></a>
ISO C99 supports floating-point numbers written not only in the usual
decimal notation, such as <code>1.55e1</code>, but also numbers such as
<code>0x1.fp3</code> written in hexadecimal format.  As a GNU extension, GCC
supports this in C90 mode (except in some cases when strictly
conforming) and in C++.  In that format the
&lsquo;<samp><span class="samp">0x</span></samp>&rsquo; hex introducer and the &lsquo;<samp><span class="samp">p</span></samp>&rsquo; or &lsquo;<samp><span class="samp">P</span></samp>&rsquo; exponent field are
mandatory.  The exponent is a decimal number that indicates the power of
2 by which the significant part will be multiplied.  Thus &lsquo;<samp><span class="samp">0x1.f</span></samp>&rsquo; is
1 15/16,
&lsquo;<samp><span class="samp">p3</span></samp>&rsquo; multiplies it by 8, and the value of <code>0x1.fp3</code>
is the same as <code>1.55e1</code>.

 <p>Unlike for floating-point numbers in the decimal notation the exponent
is always required in the hexadecimal notation.  Otherwise the compiler
would not be able to resolve the ambiguity of, e.g., <code>0x1.f</code>.  This
could mean <code>1.0f</code> or <code>1.9375</code> since &lsquo;<samp><span class="samp">f</span></samp>&rsquo; is also the
extension for floating-point constants of type <code>float</code>.

<div class="node">
<a name="Fixed-Point"></a>
<a name="Fixed_002dPoint"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Named-Address-Spaces">Named Address Spaces</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Hex-Floats">Hex Floats</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.15 Fixed-Point Types</h3>

<p><a name="index-fixed_002dpoint-types-2301"></a><a name="index-g_t_0040code_007b_005fFract_007d-data-type-2302"></a><a name="index-g_t_0040code_007b_005fAccum_007d-data-type-2303"></a><a name="index-g_t_0040code_007b_005fSat_007d-data-type-2304"></a><a name="index-g_t_0040code_007bhr_007d-fixed_002dsuffix-2305"></a><a name="index-g_t_0040code_007br_007d-fixed_002dsuffix-2306"></a><a name="index-g_t_0040code_007blr_007d-fixed_002dsuffix-2307"></a><a name="index-g_t_0040code_007bllr_007d-fixed_002dsuffix-2308"></a><a name="index-g_t_0040code_007buhr_007d-fixed_002dsuffix-2309"></a><a name="index-g_t_0040code_007bur_007d-fixed_002dsuffix-2310"></a><a name="index-g_t_0040code_007bulr_007d-fixed_002dsuffix-2311"></a><a name="index-g_t_0040code_007bullr_007d-fixed_002dsuffix-2312"></a><a name="index-g_t_0040code_007bhk_007d-fixed_002dsuffix-2313"></a><a name="index-g_t_0040code_007bk_007d-fixed_002dsuffix-2314"></a><a name="index-g_t_0040code_007blk_007d-fixed_002dsuffix-2315"></a><a name="index-g_t_0040code_007bllk_007d-fixed_002dsuffix-2316"></a><a name="index-g_t_0040code_007buhk_007d-fixed_002dsuffix-2317"></a><a name="index-g_t_0040code_007buk_007d-fixed_002dsuffix-2318"></a><a name="index-g_t_0040code_007bulk_007d-fixed_002dsuffix-2319"></a><a name="index-g_t_0040code_007bullk_007d-fixed_002dsuffix-2320"></a><a name="index-g_t_0040code_007bHR_007d-fixed_002dsuffix-2321"></a><a name="index-g_t_0040code_007bR_007d-fixed_002dsuffix-2322"></a><a name="index-g_t_0040code_007bLR_007d-fixed_002dsuffix-2323"></a><a name="index-g_t_0040code_007bLLR_007d-fixed_002dsuffix-2324"></a><a name="index-g_t_0040code_007bUHR_007d-fixed_002dsuffix-2325"></a><a name="index-g_t_0040code_007bUR_007d-fixed_002dsuffix-2326"></a><a name="index-g_t_0040code_007bULR_007d-fixed_002dsuffix-2327"></a><a name="index-g_t_0040code_007bULLR_007d-fixed_002dsuffix-2328"></a><a name="index-g_t_0040code_007bHK_007d-fixed_002dsuffix-2329"></a><a name="index-g_t_0040code_007bK_007d-fixed_002dsuffix-2330"></a><a name="index-g_t_0040code_007bLK_007d-fixed_002dsuffix-2331"></a><a name="index-g_t_0040code_007bLLK_007d-fixed_002dsuffix-2332"></a><a name="index-g_t_0040code_007bUHK_007d-fixed_002dsuffix-2333"></a><a name="index-g_t_0040code_007bUK_007d-fixed_002dsuffix-2334"></a><a name="index-g_t_0040code_007bULK_007d-fixed_002dsuffix-2335"></a><a name="index-g_t_0040code_007bULLK_007d-fixed_002dsuffix-2336"></a>
As an extension, the GNU C compiler supports fixed-point types as
defined in the N1169 draft of ISO/IEC DTR 18037.  Support for fixed-point
types in GCC will evolve as the draft technical report changes. 
Calling conventions for any target might also change.  Not all targets
support fixed-point types.

 <p>The fixed-point types are
<code>short _Fract</code>,
<code>_Fract</code>,
<code>long _Fract</code>,
<code>long long _Fract</code>,
<code>unsigned short _Fract</code>,
<code>unsigned _Fract</code>,
<code>unsigned long _Fract</code>,
<code>unsigned long long _Fract</code>,
<code>_Sat short _Fract</code>,
<code>_Sat _Fract</code>,
<code>_Sat long _Fract</code>,
<code>_Sat long long _Fract</code>,
<code>_Sat unsigned short _Fract</code>,
<code>_Sat unsigned _Fract</code>,
<code>_Sat unsigned long _Fract</code>,
<code>_Sat unsigned long long _Fract</code>,
<code>short _Accum</code>,
<code>_Accum</code>,
<code>long _Accum</code>,
<code>long long _Accum</code>,
<code>unsigned short _Accum</code>,
<code>unsigned _Accum</code>,
<code>unsigned long _Accum</code>,
<code>unsigned long long _Accum</code>,
<code>_Sat short _Accum</code>,
<code>_Sat _Accum</code>,
<code>_Sat long _Accum</code>,
<code>_Sat long long _Accum</code>,
<code>_Sat unsigned short _Accum</code>,
<code>_Sat unsigned _Accum</code>,
<code>_Sat unsigned long _Accum</code>,
<code>_Sat unsigned long long _Accum</code>.

 <p>Fixed-point data values contain fractional and optional integral parts. 
The format of fixed-point data varies and depends on the target machine.

 <p>Support for fixed-point types includes:
     <ul>
<li>prefix and postfix increment and decrement operators (<code>++</code>, <code>--</code>)
<li>unary arithmetic operators (<code>+</code>, <code>-</code>, <code>!</code>)
<li>binary arithmetic operators (<code>+</code>, <code>-</code>, <code>*</code>, <code>/</code>)
<li>binary shift operators (<code>&lt;&lt;</code>, <code>&gt;&gt;</code>)
<li>relational operators (<code>&lt;</code>, <code>&lt;=</code>, <code>&gt;=</code>, <code>&gt;</code>)
<li>equality operators (<code>==</code>, <code>!=</code>)
<li>assignment operators (<code>+=</code>, <code>-=</code>, <code>*=</code>, <code>/=</code>,
<code>&lt;&lt;=</code>, <code>&gt;&gt;=</code>)
<li>conversions to and from integer, floating-point, or fixed-point types
</ul>

 <p>Use a suffix in a fixed-point literal constant:
     <ul>
<li>&lsquo;<samp><span class="samp">hr</span></samp>&rsquo; or &lsquo;<samp><span class="samp">HR</span></samp>&rsquo; for <code>short _Fract</code> and
<code>_Sat short _Fract</code>
<li>&lsquo;<samp><span class="samp">r</span></samp>&rsquo; or &lsquo;<samp><span class="samp">R</span></samp>&rsquo; for <code>_Fract</code> and <code>_Sat _Fract</code>
<li>&lsquo;<samp><span class="samp">lr</span></samp>&rsquo; or &lsquo;<samp><span class="samp">LR</span></samp>&rsquo; for <code>long _Fract</code> and
<code>_Sat long _Fract</code>
<li>&lsquo;<samp><span class="samp">llr</span></samp>&rsquo; or &lsquo;<samp><span class="samp">LLR</span></samp>&rsquo; for <code>long long _Fract</code> and
<code>_Sat long long _Fract</code>
<li>&lsquo;<samp><span class="samp">uhr</span></samp>&rsquo; or &lsquo;<samp><span class="samp">UHR</span></samp>&rsquo; for <code>unsigned short _Fract</code> and
<code>_Sat unsigned short _Fract</code>
<li>&lsquo;<samp><span class="samp">ur</span></samp>&rsquo; or &lsquo;<samp><span class="samp">UR</span></samp>&rsquo; for <code>unsigned _Fract</code> and
<code>_Sat unsigned _Fract</code>
<li>&lsquo;<samp><span class="samp">ulr</span></samp>&rsquo; or &lsquo;<samp><span class="samp">ULR</span></samp>&rsquo; for <code>unsigned long _Fract</code> and
<code>_Sat unsigned long _Fract</code>
<li>&lsquo;<samp><span class="samp">ullr</span></samp>&rsquo; or &lsquo;<samp><span class="samp">ULLR</span></samp>&rsquo; for <code>unsigned long long _Fract</code>
and <code>_Sat unsigned long long _Fract</code>
<li>&lsquo;<samp><span class="samp">hk</span></samp>&rsquo; or &lsquo;<samp><span class="samp">HK</span></samp>&rsquo; for <code>short _Accum</code> and
<code>_Sat short _Accum</code>
<li>&lsquo;<samp><span class="samp">k</span></samp>&rsquo; or &lsquo;<samp><span class="samp">K</span></samp>&rsquo; for <code>_Accum</code> and <code>_Sat _Accum</code>
<li>&lsquo;<samp><span class="samp">lk</span></samp>&rsquo; or &lsquo;<samp><span class="samp">LK</span></samp>&rsquo; for <code>long _Accum</code> and
<code>_Sat long _Accum</code>
<li>&lsquo;<samp><span class="samp">llk</span></samp>&rsquo; or &lsquo;<samp><span class="samp">LLK</span></samp>&rsquo; for <code>long long _Accum</code> and
<code>_Sat long long _Accum</code>
<li>&lsquo;<samp><span class="samp">uhk</span></samp>&rsquo; or &lsquo;<samp><span class="samp">UHK</span></samp>&rsquo; for <code>unsigned short _Accum</code> and
<code>_Sat unsigned short _Accum</code>
<li>&lsquo;<samp><span class="samp">uk</span></samp>&rsquo; or &lsquo;<samp><span class="samp">UK</span></samp>&rsquo; for <code>unsigned _Accum</code> and
<code>_Sat unsigned _Accum</code>
<li>&lsquo;<samp><span class="samp">ulk</span></samp>&rsquo; or &lsquo;<samp><span class="samp">ULK</span></samp>&rsquo; for <code>unsigned long _Accum</code> and
<code>_Sat unsigned long _Accum</code>
<li>&lsquo;<samp><span class="samp">ullk</span></samp>&rsquo; or &lsquo;<samp><span class="samp">ULLK</span></samp>&rsquo; for <code>unsigned long long _Accum</code>
and <code>_Sat unsigned long long _Accum</code>
</ul>

 <p>GCC support of fixed-point types as specified by the draft technical report
is incomplete:

     <ul>
<li>Pragmas to control overflow and rounding behaviors are not implemented. 
</ul>

 <p>Fixed-point types are supported by the DWARF2 debug information format.

<div class="node">
<a name="Named-Address-Spaces"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Zero-Length">Zero Length</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Fixed_002dPoint">Fixed-Point</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.16 Named address spaces</h3>

<p><a name="index-named-address-spaces-2337"></a>
As an extension, the GNU C compiler supports named address spaces as
defined in the N1275 draft of ISO/IEC DTR 18037.  Support for named
address spaces in GCC will evolve as the draft technical report changes. 
Calling conventions for any target might also change.  At present, only
the SPU and M32C targets support other address spaces.  On the SPU target, for
example, variables may be declared as belonging to another address space
by qualifying the type with the <code>__ea</code> address space identifier:

<pre class="smallexample">     extern int __ea i;
</pre>
 <p>When the variable <code>i</code> is accessed, the compiler will generate
special code to access this variable.  It may use runtime library
support, or generate special machine instructions to access that address
space.

 <p>The <code>__ea</code> identifier may be used exactly like any other C type
qualifier (e.g., <code>const</code> or <code>volatile</code>).  See the N1275
document for more details.

 <p>On the M32C target, with the R8C and M16C cpu variants, variables
qualified with <code>__far</code> are accessed using 32-bit addresses in
order to access memory beyond the first 64k bytes.  If <code>__far</code> is
used with the M32CM or M32C cpu variants, it has no effect.

<div class="node">
<a name="Zero-Length"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Variable-Length">Variable Length</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Named-Address-Spaces">Named Address Spaces</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.17 Arrays of Length Zero</h3>

<p><a name="index-arrays-of-length-zero-2338"></a><a name="index-zero_002dlength-arrays-2339"></a><a name="index-length_002dzero-arrays-2340"></a><a name="index-flexible-array-members-2341"></a>
Zero-length arrays are allowed in GNU C.  They are very useful as the
last element of a structure which is really a header for a variable-length
object:

<pre class="smallexample">     struct line {
       int length;
       char contents[0];
     };
     
     struct line *thisline = (struct line *)
       malloc (sizeof (struct line) + this_length);
     thisline-&gt;length = this_length;
</pre>
 <p>In ISO C90, you would have to give <code>contents</code> a length of 1, which
means either you waste space or complicate the argument to <code>malloc</code>.

 <p>In ISO C99, you would use a <dfn>flexible array member</dfn>, which is
slightly different in syntax and semantics:

     <ul>
<li>Flexible array members are written as <code>contents[]</code> without
the <code>0</code>.

     <li>Flexible array members have incomplete type, and so the <code>sizeof</code>
operator may not be applied.  As a quirk of the original implementation
of zero-length arrays, <code>sizeof</code> evaluates to zero.

     <li>Flexible array members may only appear as the last member of a
<code>struct</code> that is otherwise non-empty.

     <li>A structure containing a flexible array member, or a union containing
such a structure (possibly recursively), may not be a member of a
structure or an element of an array.  (However, these uses are
permitted by GCC as extensions.) 
</ul>

 <p>GCC versions before 3.0 allowed zero-length arrays to be statically
initialized, as if they were flexible arrays.  In addition to those
cases that were useful, it also allowed initializations in situations
that would corrupt later data.  Non-empty initialization of zero-length
arrays is now treated like any case where there are more initializer
elements than the array holds, in that a suitable warning about "excess
elements in array" is given, and the excess elements (all of them, in
this case) are ignored.

 <p>Instead GCC allows static initialization of flexible array members. 
This is equivalent to defining a new structure containing the original
structure followed by an array of sufficient size to contain the data. 
I.e. in the following, <code>f1</code> is constructed as if it were declared
like <code>f2</code>.

<pre class="smallexample">     struct f1 {
       int x; int y[];
     } f1 = { 1, { 2, 3, 4 } };
     
     struct f2 {
       struct f1 f1; int data[3];
     } f2 = { { 1 }, { 2, 3, 4 } };
</pre>
 <p class="noindent">The convenience of this extension is that <code>f1</code> has the desired
type, eliminating the need to consistently refer to <code>f2.f1</code>.

 <p>This has symmetry with normal static arrays, in that an array of
unknown size is also written with <code>[]</code>.

 <p>Of course, this extension only makes sense if the extra data comes at
the end of a top-level object, as otherwise we would be overwriting
data at subsequent offsets.  To avoid undue complication and confusion
with initialization of deeply nested arrays, we simply disallow any
non-empty initialization except when the structure is the top-level
object.  For example:

<pre class="smallexample">     struct foo { int x; int y[]; };
     struct bar { struct foo z; };
     
     struct foo a = { 1, { 2, 3, 4 } };        // <span class="roman">Valid.</span>
     struct bar b = { { 1, { 2, 3, 4 } } };    // <span class="roman">Invalid.</span>
     struct bar c = { { 1, { } } };            // <span class="roman">Valid.</span>
     struct foo d[1] = { { 1 { 2, 3, 4 } } };  // <span class="roman">Invalid.</span>
</pre>
 <div class="node">
<a name="Empty-Structures"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Variadic-Macros">Variadic Macros</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Variable-Length">Variable Length</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.18 Structures With No Members</h3>

<p><a name="index-empty-structures-2342"></a><a name="index-zero_002dsize-structures-2343"></a>
GCC permits a C structure to have no members:

<pre class="smallexample">     struct empty {
     };
</pre>
 <p>The structure will have size zero.  In C++, empty structures are part
of the language.  G++ treats empty structures as if they had a single
member of type <code>char</code>.

<div class="node">
<a name="Variable-Length"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Empty-Structures">Empty Structures</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Zero-Length">Zero Length</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.19 Arrays of Variable Length</h3>

<p><a name="index-variable_002dlength-arrays-2344"></a><a name="index-arrays-of-variable-length-2345"></a><a name="index-VLAs-2346"></a>
Variable-length automatic arrays are allowed in ISO C99, and as an
extension GCC accepts them in C90 mode and in C++.  These arrays are
declared like any other automatic arrays, but with a length that is not
a constant expression.  The storage is allocated at the point of
declaration and deallocated when the brace-level is exited.  For
example:

<pre class="smallexample">     FILE *
     concat_fopen (char *s1, char *s2, char *mode)
     {
       char str[strlen (s1) + strlen (s2) + 1];
       strcpy (str, s1);
       strcat (str, s2);
       return fopen (str, mode);
     }
</pre>
 <p><a name="index-scope-of-a-variable-length-array-2347"></a><a name="index-variable_002dlength-array-scope-2348"></a><a name="index-deallocating-variable-length-arrays-2349"></a>Jumping or breaking out of the scope of the array name deallocates the
storage.  Jumping into the scope is not allowed; you get an error
message for it.

 <p><a name="index-g_t_0040code_007balloca_007d-vs-variable_002dlength-arrays-2350"></a>You can use the function <code>alloca</code> to get an effect much like
variable-length arrays.  The function <code>alloca</code> is available in
many other C implementations (but not in all).  On the other hand,
variable-length arrays are more elegant.

 <p>There are other differences between these two methods.  Space allocated
with <code>alloca</code> exists until the containing <em>function</em> returns. 
The space for a variable-length array is deallocated as soon as the array
name's scope ends.  (If you use both variable-length arrays and
<code>alloca</code> in the same function, deallocation of a variable-length array
will also deallocate anything more recently allocated with <code>alloca</code>.)

 <p>You can also use variable-length arrays as arguments to functions:

<pre class="smallexample">     struct entry
     tester (int len, char data[len][len])
     {
       /* <span class="roman">...</span> */
     }
</pre>
 <p>The length of an array is computed once when the storage is allocated
and is remembered for the scope of the array in case you access it with
<code>sizeof</code>.

 <p>If you want to pass the array first and the length afterward, you can
use a forward declaration in the parameter list&mdash;another GNU extension.

<pre class="smallexample">     struct entry
     tester (int len; char data[len][len], int len)
     {
       /* <span class="roman">...</span> */
     }
</pre>
 <p><a name="index-parameter-forward-declaration-2351"></a>The &lsquo;<samp><span class="samp">int len</span></samp>&rsquo; before the semicolon is a <dfn>parameter forward
declaration</dfn>, and it serves the purpose of making the name <code>len</code>
known when the declaration of <code>data</code> is parsed.

 <p>You can write any number of such parameter forward declarations in the
parameter list.  They can be separated by commas or semicolons, but the
last one must end with a semicolon, which is followed by the &ldquo;real&rdquo;
parameter declarations.  Each forward declaration must match a &ldquo;real&rdquo;
declaration in parameter name and data type.  ISO C99 does not support
parameter forward declarations.

<div class="node">
<a name="Variadic-Macros"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Escaped-Newlines">Escaped Newlines</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Empty-Structures">Empty Structures</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.20 Macros with a Variable Number of Arguments.</h3>

<p><a name="index-variable-number-of-arguments-2352"></a><a name="index-macro-with-variable-arguments-2353"></a><a name="index-rest-argument-_0028in-macro_0029-2354"></a><a name="index-variadic-macros-2355"></a>
In the ISO C standard of 1999, a macro can be declared to accept a
variable number of arguments much as a function can.  The syntax for
defining the macro is similar to that of a function.  Here is an
example:

<pre class="smallexample">     #define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)
</pre>
 <p>Here &lsquo;<samp><span class="samp">...</span></samp>&rsquo; is a <dfn>variable argument</dfn>.  In the invocation of
such a macro, it represents the zero or more tokens until the closing
parenthesis that ends the invocation, including any commas.  This set of
tokens replaces the identifier <code>__VA_ARGS__</code> in the macro body
wherever it appears.  See the CPP manual for more information.

 <p>GCC has long supported variadic macros, and used a different syntax that
allowed you to give a name to the variable arguments just like any other
argument.  Here is an example:

<pre class="smallexample">     #define debug(format, args...) fprintf (stderr, format, args)
</pre>
 <p>This is in all ways equivalent to the ISO C example above, but arguably
more readable and descriptive.

 <p>GNU CPP has two further variadic macro extensions, and permits them to
be used with either of the above forms of macro definition.

 <p>In standard C, you are not allowed to leave the variable argument out
entirely; but you are allowed to pass an empty argument.  For example,
this invocation is invalid in ISO C, because there is no comma after
the string:

<pre class="smallexample">     debug ("A message")
</pre>
 <p>GNU CPP permits you to completely omit the variable arguments in this
way.  In the above examples, the compiler would complain, though since
the expansion of the macro still has the extra comma after the format
string.

 <p>To help solve this problem, CPP behaves specially for variable arguments
used with the token paste operator, &lsquo;<samp><span class="samp">##</span></samp>&rsquo;.  If instead you write

<pre class="smallexample">     #define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)
</pre>
 <p>and if the variable arguments are omitted or empty, the &lsquo;<samp><span class="samp">##</span></samp>&rsquo;
operator causes the preprocessor to remove the comma before it.  If you
do provide some variable arguments in your macro invocation, GNU CPP
does not complain about the paste operation and instead places the
variable arguments after the comma.  Just like any other pasted macro
argument, these arguments are not macro expanded.

<div class="node">
<a name="Escaped-Newlines"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Subscripting">Subscripting</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Variadic-Macros">Variadic Macros</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.21 Slightly Looser Rules for Escaped Newlines</h3>

<p><a name="index-escaped-newlines-2356"></a><a name="index-newlines-_0028escaped_0029-2357"></a>
Recently, the preprocessor has relaxed its treatment of escaped
newlines.  Previously, the newline had to immediately follow a
backslash.  The current implementation allows whitespace in the form
of spaces, horizontal and vertical tabs, and form feeds between the
backslash and the subsequent newline.  The preprocessor issues a
warning, but treats it as a valid escaped newline and combines the two
lines to form a single logical line.  This works within comments and
tokens, as well as between tokens.  Comments are <em>not</em> treated as
whitespace for the purposes of this relaxation, since they have not
yet been replaced with spaces.

<div class="node">
<a name="Subscripting"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Pointer-Arith">Pointer Arith</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Escaped-Newlines">Escaped Newlines</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.22 Non-Lvalue Arrays May Have Subscripts</h3>

<p><a name="index-subscripting-2358"></a><a name="index-arrays_002c-non_002dlvalue-2359"></a>
<a name="index-subscripting-and-function-values-2360"></a>In ISO C99, arrays that are not lvalues still decay to pointers, and
may be subscripted, although they may not be modified or used after
the next sequence point and the unary &lsquo;<samp><span class="samp">&amp;</span></samp>&rsquo; operator may not be
applied to them.  As an extension, GCC allows such arrays to be
subscripted in C90 mode, though otherwise they do not decay to
pointers outside C99 mode.  For example,
this is valid in GNU C though not valid in C90:

<pre class="smallexample">     struct foo {int a[4];};
     
     struct foo f();
     
     bar (int index)
     {
       return f().a[index];
     }
</pre>
 <div class="node">
<a name="Pointer-Arith"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Initializers">Initializers</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Subscripting">Subscripting</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.23 Arithmetic on <code>void</code>- and Function-Pointers</h3>

<p><a name="index-void-pointers_002c-arithmetic-2361"></a><a name="index-void_002c-size-of-pointer-to-2362"></a><a name="index-function-pointers_002c-arithmetic-2363"></a><a name="index-function_002c-size-of-pointer-to-2364"></a>
In GNU C, addition and subtraction operations are supported on pointers to
<code>void</code> and on pointers to functions.  This is done by treating the
size of a <code>void</code> or of a function as 1.

 <p>A consequence of this is that <code>sizeof</code> is also allowed on <code>void</code>
and on function types, and returns 1.

 <p><a name="index-Wpointer_002darith-2365"></a>The option <samp><span class="option">-Wpointer-arith</span></samp> requests a warning if these extensions
are used.

<div class="node">
<a name="Initializers"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Compound-Literals">Compound Literals</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Pointer-Arith">Pointer Arith</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.24 Non-Constant Initializers</h3>

<p><a name="index-initializers_002c-non_002dconstant-2366"></a><a name="index-non_002dconstant-initializers-2367"></a>
As in standard C++ and ISO C99, the elements of an aggregate initializer for an
automatic variable are not required to be constant expressions in GNU C. 
Here is an example of an initializer with run-time varying elements:

<pre class="smallexample">     foo (float f, float g)
     {
       float beat_freqs[2] = { f-g, f+g };
       /* <span class="roman">...</span> */
     }
</pre>
 <div class="node">
<a name="Compound-Literals"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Designated-Inits">Designated Inits</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Initializers">Initializers</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.25 Compound Literals</h3>

<p><a name="index-constructor-expressions-2368"></a><a name="index-initializations-in-expressions-2369"></a><a name="index-structures_002c-constructor-expression-2370"></a><a name="index-expressions_002c-constructor-2371"></a><a name="index-compound-literals-2372"></a><!-- The GNU C name for what C99 calls compound literals was "constructor expressions". -->

 <p>ISO C99 supports compound literals.  A compound literal looks like
a cast containing an initializer.  Its value is an object of the
type specified in the cast, containing the elements specified in
the initializer; it is an lvalue.  As an extension, GCC supports
compound literals in C90 mode and in C++.

 <p>Usually, the specified type is a structure.  Assume that
<code>struct foo</code> and <code>structure</code> are declared as shown:

<pre class="smallexample">     struct foo {int a; char b[2];} structure;
</pre>
 <p class="noindent">Here is an example of constructing a <code>struct foo</code> with a compound literal:

<pre class="smallexample">     structure = ((struct foo) {x + y, 'a', 0});
</pre>
 <p class="noindent">This is equivalent to writing the following:

<pre class="smallexample">     {
       struct foo temp = {x + y, 'a', 0};
       structure = temp;
     }
</pre>
 <p>You can also construct an array.  If all the elements of the compound literal
are (made up of) simple constant expressions, suitable for use in
initializers of objects of static storage duration, then the compound
literal can be coerced to a pointer to its first element and used in
such an initializer, as shown here:

<pre class="smallexample">     char **foo = (char *[]) { "x", "y", "z" };
</pre>
 <p>Compound literals for scalar types and union types are is
also allowed, but then the compound literal is equivalent
to a cast.

 <p>As a GNU extension, GCC allows initialization of objects with static storage
duration by compound literals (which is not possible in ISO C99, because
the initializer is not a constant). 
It is handled as if the object was initialized only with the bracket
enclosed list if the types of the compound literal and the object match. 
The initializer list of the compound literal must be constant. 
If the object being initialized has array type of unknown size, the size is
determined by compound literal size.

<pre class="smallexample">     static struct foo x = (struct foo) {1, 'a', 'b'};
     static int y[] = (int []) {1, 2, 3};
     static int z[] = (int [3]) {1};
</pre>
 <p class="noindent">The above lines are equivalent to the following:
<pre class="smallexample">     static struct foo x = {1, 'a', 'b'};
     static int y[] = {1, 2, 3};
     static int z[] = {1, 0, 0};
</pre>
 <div class="node">
<a name="Designated-Inits"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Cast-to-Union">Cast to Union</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Compound-Literals">Compound Literals</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.26 Designated Initializers</h3>

<p><a name="index-initializers-with-labeled-elements-2373"></a><a name="index-labeled-elements-in-initializers-2374"></a><a name="index-case-labels-in-initializers-2375"></a><a name="index-designated-initializers-2376"></a>
Standard C90 requires the elements of an initializer to appear in a fixed
order, the same as the order of the elements in the array or structure
being initialized.

 <p>In ISO C99 you can give the elements in any order, specifying the array
indices or structure field names they apply to, and GNU C allows this as
an extension in C90 mode as well.  This extension is not
implemented in GNU C++.

 <p>To specify an array index, write
&lsquo;<samp><span class="samp">[</span><var>index</var><span class="samp">] =</span></samp>&rsquo; before the element value.  For example,

<pre class="smallexample">     int a[6] = { [4] = 29, [2] = 15 };
</pre>
 <p class="noindent">is equivalent to

<pre class="smallexample">     int a[6] = { 0, 0, 15, 0, 29, 0 };
</pre>
 <p class="noindent">The index values must be constant expressions, even if the array being
initialized is automatic.

 <p>An alternative syntax for this which has been obsolete since GCC 2.5 but
GCC still accepts is to write &lsquo;<samp><span class="samp">[</span><var>index</var><span class="samp">]</span></samp>&rsquo; before the element
value, with no &lsquo;<samp><span class="samp">=</span></samp>&rsquo;.

 <p>To initialize a range of elements to the same value, write
&lsquo;<samp><span class="samp">[</span><var>first</var><span class="samp"> ... </span><var>last</var><span class="samp">] = </span><var>value</var></samp>&rsquo;.  This is a GNU
extension.  For example,

<pre class="smallexample">     int widths[] = { [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 };
</pre>
 <p class="noindent">If the value in it has side-effects, the side-effects will happen only once,
not for each initialized field by the range initializer.

<p class="noindent">Note that the length of the array is the highest value specified
plus one.

 <p>In a structure initializer, specify the name of a field to initialize
with &lsquo;<samp><span class="samp">.</span><var>fieldname</var><span class="samp"> =</span></samp>&rsquo; before the element value.  For example,
given the following structure,

<pre class="smallexample">     struct point { int x, y; };
</pre>
 <p class="noindent">the following initialization

<pre class="smallexample">     struct point p = { .y = yvalue, .x = xvalue };
</pre>
 <p class="noindent">is equivalent to

<pre class="smallexample">     struct point p = { xvalue, yvalue };
</pre>
 <p>Another syntax which has the same meaning, obsolete since GCC 2.5, is
&lsquo;<samp><var>fieldname</var><span class="samp">:</span></samp>&rsquo;, as shown here:

<pre class="smallexample">     struct point p = { y: yvalue, x: xvalue };
</pre>
 <p><a name="index-designators-2377"></a>The &lsquo;<samp><span class="samp">[</span><var>index</var><span class="samp">]</span></samp>&rsquo; or &lsquo;<samp><span class="samp">.</span><var>fieldname</var></samp>&rsquo; is known as a
<dfn>designator</dfn>.  You can also use a designator (or the obsolete colon
syntax) when initializing a union, to specify which element of the union
should be used.  For example,

<pre class="smallexample">     union foo { int i; double d; };
     
     union foo f = { .d = 4 };
</pre>
 <p class="noindent">will convert 4 to a <code>double</code> to store it in the union using
the second element.  By contrast, casting 4 to type <code>union foo</code>
would store it into the union as the integer <code>i</code>, since it is
an integer.  (See <a href="#Cast-to-Union">Cast to Union</a>.)

 <p>You can combine this technique of naming elements with ordinary C
initialization of successive elements.  Each initializer element that
does not have a designator applies to the next consecutive element of the
array or structure.  For example,

<pre class="smallexample">     int a[6] = { [1] = v1, v2, [4] = v4 };
</pre>
 <p class="noindent">is equivalent to

<pre class="smallexample">     int a[6] = { 0, v1, v2, 0, v4, 0 };
</pre>
 <p>Labeling the elements of an array initializer is especially useful
when the indices are characters or belong to an <code>enum</code> type. 
For example:

<pre class="smallexample">     int whitespace[256]
       = { [' '] = 1, ['\t'] = 1, ['\h'] = 1,
           ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 };
</pre>
 <p><a name="index-designator-lists-2378"></a>You can also write a series of &lsquo;<samp><span class="samp">.</span><var>fieldname</var></samp>&rsquo; and
&lsquo;<samp><span class="samp">[</span><var>index</var><span class="samp">]</span></samp>&rsquo; designators before an &lsquo;<samp><span class="samp">=</span></samp>&rsquo; to specify a
nested subobject to initialize; the list is taken relative to the
subobject corresponding to the closest surrounding brace pair.  For
example, with the &lsquo;<samp><span class="samp">struct point</span></samp>&rsquo; declaration above:

<pre class="smallexample">     struct point ptarray[10] = { [2].y = yv2, [2].x = xv2, [0].x = xv0 };
</pre>
 <p class="noindent">If the same field is initialized multiple times, it will have value from
the last initialization.  If any such overridden initialization has
side-effect, it is unspecified whether the side-effect happens or not. 
Currently, GCC will discard them and issue a warning.

<div class="node">
<a name="Case-Ranges"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Mixed-Declarations">Mixed Declarations</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Cast-to-Union">Cast to Union</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.27 Case Ranges</h3>

<p><a name="index-case-ranges-2379"></a><a name="index-ranges-in-case-statements-2380"></a>
You can specify a range of consecutive values in a single <code>case</code> label,
like this:

<pre class="smallexample">     case <var>low</var> ... <var>high</var>:
</pre>
 <p class="noindent">This has the same effect as the proper number of individual <code>case</code>
labels, one for each integer value from <var>low</var> to <var>high</var>, inclusive.

 <p>This feature is especially useful for ranges of ASCII character codes:

<pre class="smallexample">     case 'A' ... 'Z':
</pre>
 <p><strong>Be careful:</strong> Write spaces around the <code>...</code>, for otherwise
it may be parsed wrong when you use it with integer values.  For example,
write this:

<pre class="smallexample">     case 1 ... 5:
</pre>
 <p class="noindent">rather than this:

<pre class="smallexample">     case 1...5:
</pre>
 <div class="node">
<a name="Cast-to-Union"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Case-Ranges">Case Ranges</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Designated-Inits">Designated Inits</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.28 Cast to a Union Type</h3>

<p><a name="index-cast-to-a-union-2381"></a><a name="index-union_002c-casting-to-a-2382"></a>
A cast to union type is similar to other casts, except that the type
specified is a union type.  You can specify the type either with
<code>union </code><var>tag</var> or with a typedef name.  A cast to union is actually
a constructor though, not a cast, and hence does not yield an lvalue like
normal casts.  (See <a href="#Compound-Literals">Compound Literals</a>.)

 <p>The types that may be cast to the union type are those of the members
of the union.  Thus, given the following union and variables:

<pre class="smallexample">     union foo { int i; double d; };
     int x;
     double y;
</pre>
 <p class="noindent">both <code>x</code> and <code>y</code> can be cast to type <code>union foo</code>.

 <p>Using the cast as the right-hand side of an assignment to a variable of
union type is equivalent to storing in a member of the union:

<pre class="smallexample">     union foo u;
     /* <span class="roman">...</span> */
     u = (union foo) x  ==  u.i = x
     u = (union foo) y  ==  u.d = y
</pre>
 <p>You can also use the union cast as a function argument:

<pre class="smallexample">     void hack (union foo);
     /* <span class="roman">...</span> */
     hack ((union foo) x);
</pre>
 <div class="node">
<a name="Mixed-Declarations"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Function-Attributes">Function Attributes</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Case-Ranges">Case Ranges</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.29 Mixed Declarations and Code</h3>

<p><a name="index-mixed-declarations-and-code-2383"></a><a name="index-declarations_002c-mixed-with-code-2384"></a><a name="index-code_002c-mixed-with-declarations-2385"></a>
ISO C99 and ISO C++ allow declarations and code to be freely mixed
within compound statements.  As an extension, GCC also allows this in
C90 mode.  For example, you could do:

<pre class="smallexample">     int i;
     /* <span class="roman">...</span> */
     i++;
     int j = i + 2;
</pre>
 <p>Each identifier is visible from where it is declared until the end of
the enclosing block.

<div class="node">
<a name="Function-Attributes"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Attribute-Syntax">Attribute Syntax</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Mixed-Declarations">Mixed Declarations</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.30 Declaring Attributes of Functions</h3>

<p><a name="index-function-attributes-2386"></a><a name="index-declaring-attributes-of-functions-2387"></a><a name="index-functions-that-never-return-2388"></a><a name="index-functions-that-return-more-than-once-2389"></a><a name="index-functions-that-have-no-side-effects-2390"></a><a name="index-functions-in-arbitrary-sections-2391"></a><a name="index-functions-that-behave-like-malloc-2392"></a><a name="index-g_t_0040code_007bvolatile_007d-applied-to-function-2393"></a><a name="index-g_t_0040code_007bconst_007d-applied-to-function-2394"></a><a name="index-functions-with-_0040code_007bprintf_007d_002c-_0040code_007bscanf_007d_002c-_0040code_007bstrftime_007d-or-_0040code_007bstrfmon_007d-style-arguments-2395"></a><a name="index-functions-with-non_002dnull-pointer-arguments-2396"></a><a name="index-functions-that-are-passed-arguments-in-registers-on-the-386-2397"></a><a name="index-functions-that-pop-the-argument-stack-on-the-386-2398"></a><a name="index-functions-that-do-not-pop-the-argument-stack-on-the-386-2399"></a><a name="index-functions-that-have-different-compilation-options-on-the-386-2400"></a><a name="index-functions-that-have-different-optimization-options-2401"></a><a name="index-functions-that-are-dynamically-resolved-2402"></a>
In GNU C, you declare certain things about functions called in your program
which help the compiler optimize function calls and check your code more
carefully.

 <p>The keyword <code>__attribute__</code> allows you to specify special
attributes when making a declaration.  This keyword is followed by an
attribute specification inside double parentheses.  The following
attributes are currently defined for functions on all targets:
<code>aligned</code>, <code>alloc_size</code>, <code>noreturn</code>,
<code>returns_twice</code>, <code>noinline</code>, <code>noclone</code>,
<code>always_inline</code>, <code>flatten</code>, <code>pure</code>, <code>const</code>,
<code>nothrow</code>, <code>sentinel</code>, <code>format</code>, <code>format_arg</code>,
<code>no_instrument_function</code>, <code>no_split_stack</code>,
<code>section</code>, <code>constructor</code>,
<code>destructor</code>, <code>used</code>, <code>unused</code>, <code>deprecated</code>,
<code>weak</code>, <code>malloc</code>, <code>alias</code>, <code>ifunc</code>,
<code>warn_unused_result</code>, <code>nonnull</code>, <code>gnu_inline</code>,
<code>externally_visible</code>, <code>hot</code>, <code>cold</code>, <code>artificial</code>,
<code>error</code> and <code>warning</code>.  Several other attributes are defined
for functions on particular target systems.  Other attributes,
including <code>section</code> are supported for variables declarations
(see <a href="#Variable-Attributes">Variable Attributes</a>) and for types (see <a href="#Type-Attributes">Type Attributes</a>).

 <p>GCC plugins may provide their own attributes.

 <p>You may also specify attributes with &lsquo;<samp><span class="samp">__</span></samp>&rsquo; preceding and following
each keyword.  This allows you to use them in header files without
being concerned about a possible macro of the same name.  For example,
you may use <code>__noreturn__</code> instead of <code>noreturn</code>.

 <p>See <a href="#Attribute-Syntax">Attribute Syntax</a>, for details of the exact syntax for using
attributes.

     <dl>
<!-- Keep this table alphabetized by attribute name.  Treat _ as space. -->

     <dt><code>alias ("</code><var>target</var><code>")</code><dd><a name="index-g_t_0040code_007balias_007d-attribute-2403"></a>The <code>alias</code> attribute causes the declaration to be emitted as an
alias for another symbol, which must be specified.  For instance,

     <pre class="smallexample">          void __f () { /* <span class="roman">Do something.</span> */; }
          void f () __attribute__ ((weak, alias ("__f")));
</pre>
     <p>defines &lsquo;<samp><span class="samp">f</span></samp>&rsquo; to be a weak alias for &lsquo;<samp><span class="samp">__f</span></samp>&rsquo;.  In C++, the
mangled name for the target must be used.  It is an error if &lsquo;<samp><span class="samp">__f</span></samp>&rsquo;
is not defined in the same translation unit.

     <p>Not all target machines support this attribute.

     <br><dt><code>aligned (</code><var>alignment</var><code>)</code><dd><a name="index-g_t_0040code_007baligned_007d-attribute-2404"></a>This attribute specifies a minimum alignment for the function,
measured in bytes.

     <p>You cannot use this attribute to decrease the alignment of a function,
only to increase it.  However, when you explicitly specify a function
alignment this will override the effect of the
<samp><span class="option">-falign-functions</span></samp> (see <a href="#Optimize-Options">Optimize Options</a>) option for this
function.

     <p>Note that the effectiveness of <code>aligned</code> attributes may be
limited by inherent limitations in your linker.  On many systems, the
linker is only able to arrange for functions to be aligned up to a
certain maximum alignment.  (For some linkers, the maximum supported
alignment may be very very small.)  See your linker documentation for
further information.

     <p>The <code>aligned</code> attribute can also be used for variables and fields
(see <a href="#Variable-Attributes">Variable Attributes</a>.)

     <br><dt><code>alloc_size</code><dd><a name="index-g_t_0040code_007balloc_005fsize_007d-attribute-2405"></a>The <code>alloc_size</code> attribute is used to tell the compiler that the
function return value points to memory, where the size is given by
one or two of the functions parameters.  GCC uses this
information to improve the correctness of <code>__builtin_object_size</code>.

     <p>The function parameter(s) denoting the allocated size are specified by
one or two integer arguments supplied to the attribute.  The allocated size
is either the value of the single function argument specified or the product
of the two function arguments specified.  Argument numbering starts at
one.

     <p>For instance,

     <pre class="smallexample">          void* my_calloc(size_t, size_t) __attribute__((alloc_size(1,2)))
          void my_realloc(void*, size_t) __attribute__((alloc_size(2)))
</pre>
     <p>declares that my_calloc will return memory of the size given by
the product of parameter 1 and 2 and that my_realloc will return memory
of the size given by parameter 2.

     <br><dt><code>always_inline</code><dd><a name="index-g_t_0040code_007balways_005finline_007d-function-attribute-2406"></a>Generally, functions are not inlined unless optimization is specified. 
For functions declared inline, this attribute inlines the function even
if no optimization level was specified.

     <br><dt><code>gnu_inline</code><dd><a name="index-g_t_0040code_007bgnu_005finline_007d-function-attribute-2407"></a>This attribute should be used with a function which is also declared
with the <code>inline</code> keyword.  It directs GCC to treat the function
as if it were defined in gnu90 mode even when compiling in C99 or
gnu99 mode.

     <p>If the function is declared <code>extern</code>, then this definition of the
function is used only for inlining.  In no case is the function
compiled as a standalone function, not even if you take its address
explicitly.  Such an address becomes an external reference, as if you
had only declared the function, and had not defined it.  This has
almost the effect of a macro.  The way to use this is to put a
function definition in a header file with this attribute, and put
another copy of the function, without <code>extern</code>, in a library
file.  The definition in the header file will cause most calls to the
function to be inlined.  If any uses of the function remain, they will
refer to the single copy in the library.  Note that the two
definitions of the functions need not be precisely the same, although
if they do not have the same effect your program may behave oddly.

     <p>In C, if the function is neither <code>extern</code> nor <code>static</code>, then
the function is compiled as a standalone function, as well as being
inlined where possible.

     <p>This is how GCC traditionally handled functions declared
<code>inline</code>.  Since ISO C99 specifies a different semantics for
<code>inline</code>, this function attribute is provided as a transition
measure and as a useful feature in its own right.  This attribute is
available in GCC 4.1.3 and later.  It is available if either of the
preprocessor macros <code>__GNUC_GNU_INLINE__</code> or
<code>__GNUC_STDC_INLINE__</code> are defined.  See <a href="#Inline">An Inline Function is As Fast As a Macro</a>.

     <p>In C++, this attribute does not depend on <code>extern</code> in any way,
but it still requires the <code>inline</code> keyword to enable its special
behavior.

     <br><dt><code>artificial</code><dd><a name="index-g_t_0040code_007bartificial_007d-function-attribute-2408"></a>This attribute is useful for small inline wrappers which if possible
should appear during debugging as a unit, depending on the debug
info format it will either mean marking the function as artificial
or using the caller location for all instructions within the inlined
body.

     <br><dt><code>bank_switch</code><dd><a name="index-interrupt-handler-functions-2409"></a>When added to an interrupt handler with the M32C port, causes the
prologue and epilogue to use bank switching to preserve the registers
rather than saving them on the stack.

     <br><dt><code>flatten</code><dd><a name="index-g_t_0040code_007bflatten_007d-function-attribute-2410"></a>Generally, inlining into a function is limited.  For a function marked with
this attribute, every call inside this function will be inlined, if possible. 
Whether the function itself is considered for inlining depends on its size and
the current inlining parameters.

     <br><dt><code>error ("</code><var>message</var><code>")</code><dd><a name="index-g_t_0040code_007berror_007d-function-attribute-2411"></a>If this attribute is used on a function declaration and a call to such a function
is not eliminated through dead code elimination or other optimizations, an error
which will include <var>message</var> will be diagnosed.  This is useful
for compile time checking, especially together with <code>__builtin_constant_p</code>
and inline functions where checking the inline function arguments is not
possible through <code>extern char [(condition) ? 1 : -1];</code> tricks. 
While it is possible to leave the function undefined and thus invoke
a link failure, when using this attribute the problem will be diagnosed
earlier and with exact location of the call even in presence of inline
functions or when not emitting debugging information.

     <br><dt><code>warning ("</code><var>message</var><code>")</code><dd><a name="index-g_t_0040code_007bwarning_007d-function-attribute-2412"></a>If this attribute is used on a function declaration and a call to such a function
is not eliminated through dead code elimination or other optimizations, a warning
which will include <var>message</var> will be diagnosed.  This is useful
for compile time checking, especially together with <code>__builtin_constant_p</code>
and inline functions.  While it is possible to define the function with
a message in <code>.gnu.warning*</code> section, when using this attribute the problem
will be diagnosed earlier and with exact location of the call even in presence
of inline functions or when not emitting debugging information.

     <br><dt><code>cdecl</code><dd><a name="index-functions-that-do-pop-the-argument-stack-on-the-386-2413"></a><a name="index-mrtd-2414"></a>On the Intel 386, the <code>cdecl</code> attribute causes the compiler to
assume that the calling function will pop off the stack space used to
pass arguments.  This is
useful to override the effects of the <samp><span class="option">-mrtd</span></samp> switch.

     <br><dt><code>const</code><dd><a name="index-g_t_0040code_007bconst_007d-function-attribute-2415"></a>Many functions do not examine any values except their arguments, and
have no effects except the return value.  Basically this is just slightly
more strict class than the <code>pure</code> attribute below, since function is not
allowed to read global memory.

     <p><a name="index-pointer-arguments-2416"></a>Note that a function that has pointer arguments and examines the data
pointed to must <em>not</em> be declared <code>const</code>.  Likewise, a
function that calls a non-<code>const</code> function usually must not be
<code>const</code>.  It does not make sense for a <code>const</code> function to
return <code>void</code>.

     <p>The attribute <code>const</code> is not implemented in GCC versions earlier
than 2.5.  An alternative way to declare that a function has no side
effects, which works in the current version and in some older versions,
is as follows:

     <pre class="smallexample">          typedef int intfn ();
          
          extern const intfn square;
</pre>
     <p>This approach does not work in GNU C++ from 2.6.0 on, since the language
specifies that the &lsquo;<samp><span class="samp">const</span></samp>&rsquo; must be attached to the return value.

     <br><dt><code>constructor</code><dt><code>destructor</code><dt><code>constructor (</code><var>priority</var><code>)</code><dt><code>destructor (</code><var>priority</var><code>)</code><dd><a name="index-g_t_0040code_007bconstructor_007d-function-attribute-2417"></a><a name="index-g_t_0040code_007bdestructor_007d-function-attribute-2418"></a>The <code>constructor</code> attribute causes the function to be called
automatically before execution enters <code>main ()</code>.  Similarly, the
<code>destructor</code> attribute causes the function to be called
automatically after <code>main ()</code> has completed or <code>exit ()</code> has
been called.  Functions with these attributes are useful for
initializing data that will be used implicitly during the execution of
the program.

     <p>You may provide an optional integer priority to control the order in
which constructor and destructor functions are run.  A constructor
with a smaller priority number runs before a constructor with a larger
priority number; the opposite relationship holds for destructors.  So,
if you have a constructor that allocates a resource and a destructor
that deallocates the same resource, both functions typically have the
same priority.  The priorities for constructor and destructor
functions are the same as those specified for namespace-scope C++
objects (see <a href="#C_002b_002b-Attributes">C++ Attributes</a>).

     <p>These attributes are not currently implemented for Objective-C.

     <br><dt><code>deprecated</code><dt><code>deprecated (</code><var>msg</var><code>)</code><dd><a name="index-g_t_0040code_007bdeprecated_007d-attribute_002e-2419"></a>The <code>deprecated</code> attribute results in a warning if the function
is used anywhere in the source file.  This is useful when identifying
functions that are expected to be removed in a future version of a
program.  The warning also includes the location of the declaration
of the deprecated function, to enable users to easily find further
information about why the function is deprecated, or what they should
do instead.  Note that the warnings only occurs for uses:

     <pre class="smallexample">          int old_fn () __attribute__ ((deprecated));
          int old_fn ();
          int (*fn_ptr)() = old_fn;
</pre>
     <p>results in a warning on line 3 but not line 2.  The optional msg
argument, which must be a string, will be printed in the warning if
present.

     <p>The <code>deprecated</code> attribute can also be used for variables and
types (see <a href="#Variable-Attributes">Variable Attributes</a>, see <a href="#Type-Attributes">Type Attributes</a>.)

     <br><dt><code>disinterrupt</code><dd><a name="index-g_t_0040code_007bdisinterrupt_007d-attribute-2420"></a>On MeP targets, this attribute causes the compiler to emit
instructions to disable interrupts for the duration of the given
function.

     <br><dt><code>dllexport</code><dd><a name="index-g_t_0040code_007b_005f_005fdeclspec_0028dllexport_0029_007d-2421"></a>On Microsoft Windows targets and Symbian OS targets the
<code>dllexport</code> attribute causes the compiler to provide a global
pointer to a pointer in a DLL, so that it can be referenced with the
<code>dllimport</code> attribute.  On Microsoft Windows targets, the pointer
name is formed by combining <code>_imp__</code> and the function or variable
name.

     <p>You can use <code>__declspec(dllexport)</code> as a synonym for
<code>__attribute__ ((dllexport))</code> for compatibility with other
compilers.

     <p>On systems that support the <code>visibility</code> attribute, this
attribute also implies &ldquo;default&rdquo; visibility.  It is an error to
explicitly specify any other visibility.

     <p>In previous versions of GCC, the <code>dllexport</code> attribute was ignored
for inlined functions, unless the <samp><span class="option">-fkeep-inline-functions</span></samp> flag
had been used.  The default behaviour now is to emit all dllexported
inline functions; however, this can cause object file-size bloat, in
which case the old behaviour can be restored by using
<samp><span class="option">-fno-keep-inline-dllexport</span></samp>.

     <p>The attribute is also ignored for undefined symbols.

     <p>When applied to C++ classes, the attribute marks defined non-inlined
member functions and static data members as exports.  Static consts
initialized in-class are not marked unless they are also defined
out-of-class.

     <p>For Microsoft Windows targets there are alternative methods for
including the symbol in the DLL's export table such as using a
<samp><span class="file">.def</span></samp> file with an <code>EXPORTS</code> section or, with GNU ld, using
the <samp><span class="option">--export-all</span></samp> linker flag.

     <br><dt><code>dllimport</code><dd><a name="index-g_t_0040code_007b_005f_005fdeclspec_0028dllimport_0029_007d-2422"></a>On Microsoft Windows and Symbian OS targets, the <code>dllimport</code>
attribute causes the compiler to reference a function or variable via
a global pointer to a pointer that is set up by the DLL exporting the
symbol.  The attribute implies <code>extern</code>.  On Microsoft Windows
targets, the pointer name is formed by combining <code>_imp__</code> and the
function or variable name.

     <p>You can use <code>__declspec(dllimport)</code> as a synonym for
<code>__attribute__ ((dllimport))</code> for compatibility with other
compilers.

     <p>On systems that support the <code>visibility</code> attribute, this
attribute also implies &ldquo;default&rdquo; visibility.  It is an error to
explicitly specify any other visibility.

     <p>Currently, the attribute is ignored for inlined functions.  If the
attribute is applied to a symbol <em>definition</em>, an error is reported. 
If a symbol previously declared <code>dllimport</code> is later defined, the
attribute is ignored in subsequent references, and a warning is emitted. 
The attribute is also overridden by a subsequent declaration as
<code>dllexport</code>.

     <p>When applied to C++ classes, the attribute marks non-inlined
member functions and static data members as imports.  However, the
attribute is ignored for virtual methods to allow creation of vtables
using thunks.

     <p>On the SH Symbian OS target the <code>dllimport</code> attribute also has
another affect&mdash;it can cause the vtable and run-time type information
for a class to be exported.  This happens when the class has a
dllimport'ed constructor or a non-inline, non-pure virtual function
and, for either of those two conditions, the class also has an inline
constructor or destructor and has a key function that is defined in
the current translation unit.

     <p>For Microsoft Windows based targets the use of the <code>dllimport</code>
attribute on functions is not necessary, but provides a small
performance benefit by eliminating a thunk in the DLL.  The use of the
<code>dllimport</code> attribute on imported variables was required on older
versions of the GNU linker, but can now be avoided by passing the
<samp><span class="option">--enable-auto-import</span></samp> switch to the GNU linker.  As with
functions, using the attribute for a variable eliminates a thunk in
the DLL.

     <p>One drawback to using this attribute is that a pointer to a
<em>variable</em> marked as <code>dllimport</code> cannot be used as a constant
address. However, a pointer to a <em>function</em> with the
<code>dllimport</code> attribute can be used as a constant initializer; in
this case, the address of a stub function in the import lib is
referenced.  On Microsoft Windows targets, the attribute can be disabled
for functions by setting the <samp><span class="option">-mnop-fun-dllimport</span></samp> flag.

     <br><dt><code>eightbit_data</code><dd><a name="index-eight-bit-data-on-the-H8_002f300_002c-H8_002f300H_002c-and-H8S-2423"></a>Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
variable should be placed into the eight bit data section. 
The compiler will generate more efficient code for certain operations
on data in the eight bit data area.  Note the eight bit data area is limited to
256 bytes of data.

     <p>You must use GAS and GLD from GNU binutils version 2.7 or later for
this attribute to work correctly.

     <br><dt><code>exception_handler</code><dd><a name="index-exception-handler-functions-on-the-Blackfin-processor-2424"></a>Use this attribute on the Blackfin to indicate that the specified function
is an exception handler.  The compiler will generate function entry and
exit sequences suitable for use in an exception handler when this
attribute is present.

     <br><dt><code>externally_visible</code><dd><a name="index-g_t_0040code_007bexternally_005fvisible_007d-attribute_002e-2425"></a>This attribute, attached to a global variable or function, nullifies
the effect of the <samp><span class="option">-fwhole-program</span></samp> command-line option, so the
object remains visible outside the current compilation unit. If <samp><span class="option">-fwhole-program</span></samp> is used together with <samp><span class="option">-flto</span></samp> and <samp><span class="command">gold</span></samp> is used as the linker plugin, <code>externally_visible</code> attributes are automatically added to functions (not variable yet due to a current <samp><span class="command">gold</span></samp> issue) that are accessed outside of LTO objects according to resolution file produced by <samp><span class="command">gold</span></samp>.  For other linkers that cannot generate resolution file, explicit <code>externally_visible</code> attributes are still necessary.

     <br><dt><code>far</code><dd><a name="index-functions-which-handle-memory-bank-switching-2426"></a>On 68HC11 and 68HC12 the <code>far</code> attribute causes the compiler to
use a calling convention that takes care of switching memory banks when
entering and leaving a function.  This calling convention is also the
default when using the <samp><span class="option">-mlong-calls</span></samp> option.

     <p>On 68HC12 the compiler will use the <code>call</code> and <code>rtc</code> instructions
to call and return from a function.

     <p>On 68HC11 the compiler will generate a sequence of instructions
to invoke a board-specific routine to switch the memory bank and call the
real function.  The board-specific routine simulates a <code>call</code>. 
At the end of a function, it will jump to a board-specific routine
instead of using <code>rts</code>.  The board-specific return routine simulates
the <code>rtc</code>.

     <p>On MeP targets this causes the compiler to use a calling convention
which assumes the called function is too far away for the built-in
addressing modes.

     <br><dt><code>fast_interrupt</code><dd><a name="index-interrupt-handler-functions-2427"></a>Use this attribute on the M32C and RX ports to indicate that the specified
function is a fast interrupt handler.  This is just like the
<code>interrupt</code> attribute, except that <code>freit</code> is used to return
instead of <code>reit</code>.

     <br><dt><code>fastcall</code><dd><a name="index-functions-that-pop-the-argument-stack-on-the-386-2428"></a>On the Intel 386, the <code>fastcall</code> attribute causes the compiler to
pass the first argument (if of integral type) in the register ECX and
the second argument (if of integral type) in the register EDX.  Subsequent
and other typed arguments are passed on the stack.  The called function will
pop the arguments off the stack.  If the number of arguments is variable all
arguments are pushed on the stack.

     <br><dt><code>thiscall</code><dd><a name="index-functions-that-pop-the-argument-stack-on-the-386-2429"></a>On the Intel 386, the <code>thiscall</code> attribute causes the compiler to
pass the first argument (if of integral type) in the register ECX. 
Subsequent and other typed arguments are passed on the stack. The called
function will pop the arguments off the stack. 
If the number of arguments is variable all arguments are pushed on the
stack. 
The <code>thiscall</code> attribute is intended for C++ non-static member functions. 
As gcc extension this calling convention can be used for C-functions
and for static member methods.

     <br><dt><code>format (</code><var>archetype</var><code>, </code><var>string-index</var><code>, </code><var>first-to-check</var><code>)</code><dd><a name="index-g_t_0040code_007bformat_007d-function-attribute-2430"></a><a name="index-Wformat-2431"></a>The <code>format</code> attribute specifies that a function takes <code>printf</code>,
<code>scanf</code>, <code>strftime</code> or <code>strfmon</code> style arguments which
should be type-checked against a format string.  For example, the
declaration:

     <pre class="smallexample">          extern int
          my_printf (void *my_object, const char *my_format, ...)
                __attribute__ ((format (printf, 2, 3)));
</pre>
     <p class="noindent">causes the compiler to check the arguments in calls to <code>my_printf</code>
for consistency with the <code>printf</code> style format string argument
<code>my_format</code>.

     <p>The parameter <var>archetype</var> determines how the format string is
interpreted, and should be <code>printf</code>, <code>scanf</code>, <code>strftime</code>,
<code>gnu_printf</code>, <code>gnu_scanf</code>, <code>gnu_strftime</code> or
<code>strfmon</code>.  (You can also use <code>__printf__</code>,
<code>__scanf__</code>, <code>__strftime__</code> or <code>__strfmon__</code>.)  On
MinGW targets, <code>ms_printf</code>, <code>ms_scanf</code>, and
<code>ms_strftime</code> are also present. 
<var>archtype</var> values such as <code>printf</code> refer to the formats accepted
by the system's C run-time library, while <code>gnu_</code> values always refer
to the formats accepted by the GNU C Library.  On Microsoft Windows
targets, <code>ms_</code> values refer to the formats accepted by the
<samp><span class="file">msvcrt.dll</span></samp> library. 
The parameter <var>string-index</var>
specifies which argument is the format string argument (starting
from 1), while <var>first-to-check</var> is the number of the first
argument to check against the format string.  For functions
where the arguments are not available to be checked (such as
<code>vprintf</code>), specify the third parameter as zero.  In this case the
compiler only checks the format string for consistency.  For
<code>strftime</code> formats, the third parameter is required to be zero. 
Since non-static C++ methods have an implicit <code>this</code> argument, the
arguments of such methods should be counted from two, not one, when
giving values for <var>string-index</var> and <var>first-to-check</var>.

     <p>In the example above, the format string (<code>my_format</code>) is the second
argument of the function <code>my_print</code>, and the arguments to check
start with the third argument, so the correct parameters for the format
attribute are 2 and 3.

     <p><a name="index-ffreestanding-2432"></a><a name="index-fno_002dbuiltin-2433"></a>The <code>format</code> attribute allows you to identify your own functions
which take format strings as arguments, so that GCC can check the
calls to these functions for errors.  The compiler always (unless
<samp><span class="option">-ffreestanding</span></samp> or <samp><span class="option">-fno-builtin</span></samp> is used) checks formats
for the standard library functions <code>printf</code>, <code>fprintf</code>,
<code>sprintf</code>, <code>scanf</code>, <code>fscanf</code>, <code>sscanf</code>, <code>strftime</code>,
<code>vprintf</code>, <code>vfprintf</code> and <code>vsprintf</code> whenever such
warnings are requested (using <samp><span class="option">-Wformat</span></samp>), so there is no need to
modify the header file <samp><span class="file">stdio.h</span></samp>.  In C99 mode, the functions
<code>snprintf</code>, <code>vsnprintf</code>, <code>vscanf</code>, <code>vfscanf</code> and
<code>vsscanf</code> are also checked.  Except in strictly conforming C
standard modes, the X/Open function <code>strfmon</code> is also checked as
are <code>printf_unlocked</code> and <code>fprintf_unlocked</code>. 
See <a href="#C-Dialect-Options">Options Controlling C Dialect</a>.

     <p>For Objective-C dialects, <code>NSString</code> (or <code>__NSString__</code>) is
recognized in the same context.  Declarations including these format attributes
will be parsed for correct syntax, however the result of checking of such format
strings is not yet defined, and will not be carried out by this version of the
compiler.

     <p>The target may also provide additional types of format checks. 
See <a href="#Target-Format-Checks">Format Checks Specific to Particular Target Machines</a>.

     <br><dt><code>format_arg (</code><var>string-index</var><code>)</code><dd><a name="index-g_t_0040code_007bformat_005farg_007d-function-attribute-2434"></a><a name="index-Wformat_002dnonliteral-2435"></a>The <code>format_arg</code> attribute specifies that a function takes a format
string for a <code>printf</code>, <code>scanf</code>, <code>strftime</code> or
<code>strfmon</code> style function and modifies it (for example, to translate
it into another language), so the result can be passed to a
<code>printf</code>, <code>scanf</code>, <code>strftime</code> or <code>strfmon</code> style
function (with the remaining arguments to the format function the same
as they would have been for the unmodified string).  For example, the
declaration:

     <pre class="smallexample">          extern char *
          my_dgettext (char *my_domain, const char *my_format)
                __attribute__ ((format_arg (2)));
</pre>
     <p class="noindent">causes the compiler to check the arguments in calls to a <code>printf</code>,
<code>scanf</code>, <code>strftime</code> or <code>strfmon</code> type function, whose
format string argument is a call to the <code>my_dgettext</code> function, for
consistency with the format string argument <code>my_format</code>.  If the
<code>format_arg</code> attribute had not been specified, all the compiler
could tell in such calls to format functions would be that the format
string argument is not constant; this would generate a warning when
<samp><span class="option">-Wformat-nonliteral</span></samp> is used, but the calls could not be checked
without the attribute.

     <p>The parameter <var>string-index</var> specifies which argument is the format
string argument (starting from one).  Since non-static C++ methods have
an implicit <code>this</code> argument, the arguments of such methods should
be counted from two.

     <p>The <code>format-arg</code> attribute allows you to identify your own
functions which modify format strings, so that GCC can check the
calls to <code>printf</code>, <code>scanf</code>, <code>strftime</code> or <code>strfmon</code>
type function whose operands are a call to one of your own function. 
The compiler always treats <code>gettext</code>, <code>dgettext</code>, and
<code>dcgettext</code> in this manner except when strict ISO C support is
requested by <samp><span class="option">-ansi</span></samp> or an appropriate <samp><span class="option">-std</span></samp> option, or
<samp><span class="option">-ffreestanding</span></samp> or <samp><span class="option">-fno-builtin</span></samp>
is used.  See <a href="#C-Dialect-Options">Options Controlling C Dialect</a>.

     <p>For Objective-C dialects, the <code>format-arg</code> attribute may refer to an
<code>NSString</code> reference for compatibility with the <code>format</code> attribute
above.

     <p>The target may also allow additional types in <code>format-arg</code> attributes. 
See <a href="#Target-Format-Checks">Format Checks Specific to Particular Target Machines</a>.

     <br><dt><code>function_vector</code><dd><a name="index-calling-functions-through-the-function-vector-on-H8_002f300_002c-M16C_002c-M32C-and-SH2A-processors-2436"></a>Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
function should be called through the function vector.  Calling a
function through the function vector will reduce code size, however;
the function vector has a limited size (maximum 128 entries on the H8/300
and 64 entries on the H8/300H and H8S) and shares space with the interrupt vector.

     <p>In SH2A target, this attribute declares a function to be called using the
TBR relative addressing mode.  The argument to this attribute is the entry
number of the same function in a vector table containing all the TBR
relative addressable functions.  For the successful jump, register TBR
should contain the start address of this TBR relative vector table. 
In the startup routine of the user application, user needs to care of this
TBR register initialization.  The TBR relative vector table can have at
max 256 function entries.  The jumps to these functions will be generated
using a SH2A specific, non delayed branch instruction JSR/N @(disp8,TBR). 
You must use GAS and GLD from GNU binutils version 2.7 or later for
this attribute to work correctly.

     <p>Please refer the example of M16C target, to see the use of this
attribute while declaring a function,

     <p>In an application, for a function being called once, this attribute will
save at least 8 bytes of code; and if other successive calls are being
made to the same function, it will save 2 bytes of code per each of these
calls.

     <p>On M16C/M32C targets, the <code>function_vector</code> attribute declares a
special page subroutine call function. Use of this attribute reduces
the code size by 2 bytes for each call generated to the
subroutine. The argument to the attribute is the vector number entry
from the special page vector table which contains the 16 low-order
bits of the subroutine's entry address. Each vector table has special
page number (18 to 255) which are used in <code>jsrs</code> instruction. 
Jump addresses of the routines are generated by adding 0x0F0000 (in
case of M16C targets) or 0xFF0000 (in case of M32C targets), to the 2
byte addresses set in the vector table. Therefore you need to ensure
that all the special page vector routines should get mapped within the
address range 0x0F0000 to 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF
(for M32C).

     <p>In the following example 2 bytes will be saved for each call to
function <code>foo</code>.

     <pre class="smallexample">          void foo (void) __attribute__((function_vector(0x18)));
          void foo (void)
          {
          }
          
          void bar (void)
          {
              foo();
          }
</pre>
     <p>If functions are defined in one file and are called in another file,
then be sure to write this declaration in both files.

     <p>This attribute is ignored for R8C target.

     <br><dt><code>interrupt</code><dd><a name="index-interrupt-handler-functions-2437"></a>Use this attribute on the ARM, AVR, CRX, M32C, M32R/D, m68k, MeP, MIPS,
RX and Xstormy16 ports to indicate that the specified function is an
interrupt handler.  The compiler will generate function entry and exit
sequences suitable for use in an interrupt handler when this attribute
is present.

     <p>Note, interrupt handlers for the Blackfin, H8/300, H8/300H, H8S, MicroBlaze,
and SH processors can be specified via the <code>interrupt_handler</code> attribute.

     <p>Note, on the AVR, interrupts will be enabled inside the function.

     <p>Note, for the ARM, you can specify the kind of interrupt to be handled by
adding an optional parameter to the interrupt attribute like this:

     <pre class="smallexample">          void f () __attribute__ ((interrupt ("IRQ")));
</pre>
     <p>Permissible values for this parameter are: IRQ, FIQ, SWI, ABORT and UNDEF.

     <p>On ARMv7-M the interrupt type is ignored, and the attribute means the function
may be called with a word aligned stack pointer.

     <p>On MIPS targets, you can use the following attributes to modify the behavior
of an interrupt handler:
          <dl>
<dt><code>use_shadow_register_set</code><dd><a name="index-g_t_0040code_007buse_005fshadow_005fregister_005fset_007d-attribute-2438"></a>Assume that the handler uses a shadow register set, instead of
the main general-purpose registers.

          <br><dt><code>keep_interrupts_masked</code><dd><a name="index-g_t_0040code_007bkeep_005finterrupts_005fmasked_007d-attribute-2439"></a>Keep interrupts masked for the whole function.  Without this attribute,
GCC tries to reenable interrupts for as much of the function as it can.

          <br><dt><code>use_debug_exception_return</code><dd><a name="index-g_t_0040code_007buse_005fdebug_005fexception_005freturn_007d-attribute-2440"></a>Return using the <code>deret</code> instruction.  Interrupt handlers that don't
have this attribute return using <code>eret</code> instead. 
</dl>

     <p>You can use any combination of these attributes, as shown below:
     <pre class="smallexample">          void __attribute__ ((interrupt)) v0 ();
          void __attribute__ ((interrupt, use_shadow_register_set)) v1 ();
          void __attribute__ ((interrupt, keep_interrupts_masked)) v2 ();
          void __attribute__ ((interrupt, use_debug_exception_return)) v3 ();
          void __attribute__ ((interrupt, use_shadow_register_set,
                               keep_interrupts_masked)) v4 ();
          void __attribute__ ((interrupt, use_shadow_register_set,
                               use_debug_exception_return)) v5 ();
          void __attribute__ ((interrupt, keep_interrupts_masked,
                               use_debug_exception_return)) v6 ();
          void __attribute__ ((interrupt, use_shadow_register_set,
                               keep_interrupts_masked,
                               use_debug_exception_return)) v7 ();
</pre>
     <br><dt><code>ifunc ("</code><var>resolver</var><code>")</code><dd><a name="index-g_t_0040code_007bifunc_007d-attribute-2441"></a>The <code>ifunc</code> attribute is used to mark a function as an indirect
function using the STT_GNU_IFUNC symbol type extension to the ELF
standard.  This allows the resolution of the symbol value to be
determined dynamically at load time, and an optimized version of the
routine can be selected for the particular processor or other system
characteristics determined then.  To use this attribute, first define
the implementation functions available, and a resolver function that
returns a pointer to the selected implementation function.  The
implementation functions' declarations must match the API of the
function being implemented, the resolver's declaration is be a
function returning pointer to void function returning void:

     <pre class="smallexample">          void *my_memcpy (void *dst, const void *src, size_t len)
          {
            ...
          }
          
          static void (*resolve_memcpy (void)) (void)
          {
            return my_memcpy; // we'll just always select this routine
          }
</pre>
     <p>The exported header file declaring the function the user calls would
contain:

     <pre class="smallexample">          extern void *memcpy (void *, const void *, size_t);
</pre>
     <p>allowing the user to call this as a regular function, unaware of the
implementation.  Finally, the indirect function needs to be defined in
the same translation unit as the resolver function:

     <pre class="smallexample">          void *memcpy (void *, const void *, size_t)
               __attribute__ ((ifunc ("resolve_memcpy")));
</pre>
     <p>Indirect functions cannot be weak, and require a recent binutils (at
least version 2.20.1), and GNU C library (at least version 2.11.1).

     <br><dt><code>interrupt_handler</code><dd><a name="index-interrupt-handler-functions-on-the-Blackfin_002c-m68k_002c-H8_002f300-and-SH-processors-2442"></a>Use this attribute on the Blackfin, m68k, H8/300, H8/300H, H8S, and SH to
indicate that the specified function is an interrupt handler.  The compiler
will generate function entry and exit sequences suitable for use in an
interrupt handler when this attribute is present.

     <br><dt><code>interrupt_thread</code><dd><a name="index-interrupt-thread-functions-on-fido-2443"></a>Use this attribute on fido, a subarchitecture of the m68k, to indicate
that the specified function is an interrupt handler that is designed
to run as a thread.  The compiler omits generate prologue/epilogue
sequences and replaces the return instruction with a <code>sleep</code>
instruction.  This attribute is available only on fido.

     <br><dt><code>isr</code><dd><a name="index-interrupt-service-routines-on-ARM-2444"></a>Use this attribute on ARM to write Interrupt Service Routines. This is an
alias to the <code>interrupt</code> attribute above.

     <br><dt><code>kspisusp</code><dd><a name="index-User-stack-pointer-in-interrupts-on-the-Blackfin-2445"></a>When used together with <code>interrupt_handler</code>, <code>exception_handler</code>
or <code>nmi_handler</code>, code will be generated to load the stack pointer
from the USP register in the function prologue.

     <br><dt><code>l1_text</code><dd><a name="index-g_t_0040code_007bl1_005ftext_007d-function-attribute-2446"></a>This attribute specifies a function to be placed into L1 Instruction
SRAM. The function will be put into a specific section named <code>.l1.text</code>. 
With <samp><span class="option">-mfdpic</span></samp>, function calls with a such function as the callee
or caller will use inlined PLT.

     <br><dt><code>l2</code><dd><a name="index-g_t_0040code_007bl2_007d-function-attribute-2447"></a>On the Blackfin, this attribute specifies a function to be placed into L2
SRAM. The function will be put into a specific section named
<code>.l1.text</code>. With <samp><span class="option">-mfdpic</span></samp>, callers of such functions will use
an inlined PLT.

     <br><dt><code>leaf</code><dd><a name="index-g_t_0040code_007bleaf_007d-function-attribute-2448"></a>Calls to external functions with this attribute must return to the current
compilation unit only by return or by exception handling.  In particular, leaf
functions are not allowed to call callback function passed to it from the current
compilation unit or directly call functions exported by the unit or longjmp
into the unit.  Leaf function might still call functions from other compilation
units and thus they are not necessarily leaf in the sense that they contain no
function calls at all.

     <p>The attribute is intended for library functions to improve dataflow analysis. 
The compiler takes the hint that any data not escaping the current compilation unit can
not be used or modified by the leaf function.  For example, the <code>sin</code> function
is a leaf function, but <code>qsort</code> is not.

     <p>Note that leaf functions might invoke signals and signal handlers might be
defined in the current compilation unit and use static variables.  The only
compliant way to write such a signal handler is to declare such variables
<code>volatile</code>.

     <p>The attribute has no effect on functions defined within the current compilation
unit.  This is to allow easy merging of multiple compilation units into one,
for example, by using the link time optimization.  For this reason the
attribute is not allowed on types to annotate indirect calls.

     <br><dt><code>long_call/short_call</code><dd><a name="index-indirect-calls-on-ARM-2449"></a>This attribute specifies how a particular function is called on
ARM.  Both attributes override the <samp><span class="option">-mlong-calls</span></samp> (see <a href="#ARM-Options">ARM Options</a>)
command-line switch and <code>#pragma long_calls</code> settings.  The
<code>long_call</code> attribute indicates that the function might be far
away from the call site and require a different (more expensive)
calling sequence.   The <code>short_call</code> attribute always places
the offset to the function from the call site into the &lsquo;<samp><span class="samp">BL</span></samp>&rsquo;
instruction directly.

     <br><dt><code>longcall/shortcall</code><dd><a name="index-functions-called-via-pointer-on-the-RS_002f6000-and-PowerPC-2450"></a>On the Blackfin, RS/6000 and PowerPC, the <code>longcall</code> attribute
indicates that the function might be far away from the call site and
require a different (more expensive) calling sequence.  The
<code>shortcall</code> attribute indicates that the function is always close
enough for the shorter calling sequence to be used.  These attributes
override both the <samp><span class="option">-mlongcall</span></samp> switch and, on the RS/6000 and
PowerPC, the <code>#pragma longcall</code> setting.

     <p>See <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a>, for more information on whether long
calls are necessary.

     <br><dt><code>long_call/near/far</code><dd><a name="index-indirect-calls-on-MIPS-2451"></a>These attributes specify how a particular function is called on MIPS. 
The attributes override the <samp><span class="option">-mlong-calls</span></samp> (see <a href="#MIPS-Options">MIPS Options</a>)
command-line switch.  The <code>long_call</code> and <code>far</code> attributes are
synonyms, and cause the compiler to always call
the function by first loading its address into a register, and then using
the contents of that register.  The <code>near</code> attribute has the opposite
effect; it specifies that non-PIC calls should be made using the more
efficient <code>jal</code> instruction.

     <br><dt><code>malloc</code><dd><a name="index-g_t_0040code_007bmalloc_007d-attribute-2452"></a>The <code>malloc</code> attribute is used to tell the compiler that a function
may be treated as if any non-<code>NULL</code> pointer it returns cannot
alias any other pointer valid when the function returns. 
This will often improve optimization. 
Standard functions with this property include <code>malloc</code> and
<code>calloc</code>.  <code>realloc</code>-like functions have this property as
long as the old pointer is never referred to (including comparing it
to the new pointer) after the function returns a non-<code>NULL</code>
value.

     <br><dt><code>mips16/nomips16</code><dd><a name="index-g_t_0040code_007bmips16_007d-attribute-2453"></a><a name="index-g_t_0040code_007bnomips16_007d-attribute-2454"></a>
On MIPS targets, you can use the <code>mips16</code> and <code>nomips16</code>
function attributes to locally select or turn off MIPS16 code generation. 
A function with the <code>mips16</code> attribute is emitted as MIPS16 code,
while MIPS16 code generation is disabled for functions with the
<code>nomips16</code> attribute.  These attributes override the
<samp><span class="option">-mips16</span></samp> and <samp><span class="option">-mno-mips16</span></samp> options on the command line
(see <a href="#MIPS-Options">MIPS Options</a>).

     <p>When compiling files containing mixed MIPS16 and non-MIPS16 code, the
preprocessor symbol <code>__mips16</code> reflects the setting on the command line,
not that within individual functions.  Mixed MIPS16 and non-MIPS16 code
may interact badly with some GCC extensions such as <code>__builtin_apply</code>
(see <a href="#Constructing-Calls">Constructing Calls</a>).

     <br><dt><code>model (</code><var>model-name</var><code>)</code><dd><a name="index-function-addressability-on-the-M32R_002fD-2455"></a><a name="index-variable-addressability-on-the-IA_002d64-2456"></a>
On the M32R/D, use this attribute to set the addressability of an
object, and of the code generated for a function.  The identifier
<var>model-name</var> is one of <code>small</code>, <code>medium</code>, or
<code>large</code>, representing each of the code models.

     <p>Small model objects live in the lower 16MB of memory (so that their
addresses can be loaded with the <code>ld24</code> instruction), and are
callable with the <code>bl</code> instruction.

     <p>Medium model objects may live anywhere in the 32-bit address space (the
compiler will generate <code>seth/add3</code> instructions to load their addresses),
and are callable with the <code>bl</code> instruction.

     <p>Large model objects may live anywhere in the 32-bit address space (the
compiler will generate <code>seth/add3</code> instructions to load their addresses),
and may not be reachable with the <code>bl</code> instruction (the compiler will
generate the much slower <code>seth/add3/jl</code> instruction sequence).

     <p>On IA-64, use this attribute to set the addressability of an object. 
At present, the only supported identifier for <var>model-name</var> is
<code>small</code>, indicating addressability via &ldquo;small&rdquo; (22-bit)
addresses (so that their addresses can be loaded with the <code>addl</code>
instruction).  Caveat: such addressing is by definition not position
independent and hence this attribute must not be used for objects
defined by shared libraries.

     <br><dt><code>ms_abi/sysv_abi</code><dd><a name="index-g_t_0040code_007bms_005fabi_007d-attribute-2457"></a><a name="index-g_t_0040code_007bsysv_005fabi_007d-attribute-2458"></a>
On 64-bit x86_64-*-* targets, you can use an ABI attribute to indicate
which calling convention should be used for a function.  The <code>ms_abi</code>
attribute tells the compiler to use the Microsoft ABI, while the
<code>sysv_abi</code> attribute tells the compiler to use the ABI used on
GNU/Linux and other systems.  The default is to use the Microsoft ABI
when targeting Windows.  On all other systems, the default is the AMD ABI.

     <p>Note, the <code>ms_abi</code> attribute for Windows targets currently requires
the <samp><span class="option">-maccumulate-outgoing-args</span></samp> option.

     <br><dt><code>callee_pop_aggregate_return (</code><var>number</var><code>)</code><dd><a name="index-g_t_0040code_007bcallee_005fpop_005faggregate_005freturn_007d-attribute-2459"></a>
On 32-bit i?86-*-* targets, you can control by those attribute for
aggregate return in memory, if the caller is responsible to pop the hidden
pointer together with the rest of the arguments - <var>number</var> equal to
zero -, or if the callee is responsible to pop hidden pointer - <var>number</var>
equal to one.

     <p>For i?86-netware, the caller pops the stack for the hidden arguments pointing
to aggregate return value.  This differs from the default i386 ABI which assumes
that the callee pops the stack for hidden pointer.

     <br><dt><code>ms_hook_prologue</code><dd><a name="index-g_t_0040code_007bms_005fhook_005fprologue_007d-attribute-2460"></a>
On 32 bit i[34567]86-*-* targets and 64 bit x86_64-*-* targets, you can use
this function attribute to make gcc generate the "hot-patching" function
prologue used in Win32 API functions in Microsoft Windows XP Service Pack 2
and newer.

     <br><dt><code>naked</code><dd><a name="index-function-without-a-prologue_002fepilogue-code-2461"></a>Use this attribute on the ARM, AVR, MCORE, RX and SPU ports to indicate that
the specified function does not need prologue/epilogue sequences generated by
the compiler.  It is up to the programmer to provide these sequences. The
only statements that can be safely included in naked functions are
<code>asm</code> statements that do not have operands.  All other statements,
including declarations of local variables, <code>if</code> statements, and so
forth, should be avoided.  Naked functions should be used to implement the
body of an assembly function, while allowing the compiler to construct
the requisite function declaration for the assembler.

     <br><dt><code>near</code><dd><a name="index-functions-which-do-not-handle-memory-bank-switching-on-68HC11_002f68HC12-2462"></a>On 68HC11 and 68HC12 the <code>near</code> attribute causes the compiler to
use the normal calling convention based on <code>jsr</code> and <code>rts</code>. 
This attribute can be used to cancel the effect of the <samp><span class="option">-mlong-calls</span></samp>
option.

     <p>On MeP targets this attribute causes the compiler to assume the called
function is close enough to use the normal calling convention,
overriding the <code>-mtf</code> command line option.

     <br><dt><code>nesting</code><dd><a name="index-Allow-nesting-in-an-interrupt-handler-on-the-Blackfin-processor_002e-2463"></a>Use this attribute together with <code>interrupt_handler</code>,
<code>exception_handler</code> or <code>nmi_handler</code> to indicate that the function
entry code should enable nested interrupts or exceptions.

     <br><dt><code>nmi_handler</code><dd><a name="index-NMI-handler-functions-on-the-Blackfin-processor-2464"></a>Use this attribute on the Blackfin to indicate that the specified function
is an NMI handler.  The compiler will generate function entry and
exit sequences suitable for use in an NMI handler when this
attribute is present.

     <br><dt><code>no_instrument_function</code><dd><a name="index-g_t_0040code_007bno_005finstrument_005ffunction_007d-function-attribute-2465"></a><a name="index-finstrument_002dfunctions-2466"></a>If <samp><span class="option">-finstrument-functions</span></samp> is given, profiling function calls will
be generated at entry and exit of most user-compiled functions. 
Functions with this attribute will not be so instrumented.

     <br><dt><code>no_split_stack</code><dd><a name="index-g_t_0040code_007bno_005fsplit_005fstack_007d-function-attribute-2467"></a><a name="index-fsplit_002dstack-2468"></a>If <samp><span class="option">-fsplit-stack</span></samp> is given, functions will have a small
prologue which decides whether to split the stack.  Functions with the
<code>no_split_stack</code> attribute will not have that prologue, and thus
may run with only a small amount of stack space available.

     <br><dt><code>noinline</code><dd><a name="index-g_t_0040code_007bnoinline_007d-function-attribute-2469"></a>This function attribute prevents a function from being considered for
inlining. 
<!-- Don't enumerate the optimizations by name here; we try to be -->
<!-- future-compatible with this mechanism. -->
If the function does not have side-effects, there are optimizations
other than inlining that causes function calls to be optimized away,
although the function call is live.  To keep such calls from being
optimized away, put
     <pre class="smallexample">          asm ("");
</pre>
     <p>(see <a href="#Extended-Asm">Extended Asm</a>) in the called function, to serve as a special
side-effect.

     <br><dt><code>noclone</code><dd><a name="index-g_t_0040code_007bnoclone_007d-function-attribute-2470"></a>This function attribute prevents a function from being considered for
cloning - a mechanism which produces specialized copies of functions
and which is (currently) performed by interprocedural constant
propagation.

     <br><dt><code>nonnull (</code><var>arg-index</var><code>, ...)</code><dd><a name="index-g_t_0040code_007bnonnull_007d-function-attribute-2471"></a>The <code>nonnull</code> attribute specifies that some function parameters should
be non-null pointers.  For instance, the declaration:

     <pre class="smallexample">          extern void *
          my_memcpy (void *dest, const void *src, size_t len)
                  __attribute__((nonnull (1, 2)));
</pre>
     <p class="noindent">causes the compiler to check that, in calls to <code>my_memcpy</code>,
arguments <var>dest</var> and <var>src</var> are non-null.  If the compiler
determines that a null pointer is passed in an argument slot marked
as non-null, and the <samp><span class="option">-Wnonnull</span></samp> option is enabled, a warning
is issued.  The compiler may also choose to make optimizations based
on the knowledge that certain function arguments will not be null.

     <p>If no argument index list is given to the <code>nonnull</code> attribute,
all pointer arguments are marked as non-null.  To illustrate, the
following declaration is equivalent to the previous example:

     <pre class="smallexample">          extern void *
          my_memcpy (void *dest, const void *src, size_t len)
                  __attribute__((nonnull));
</pre>
     <br><dt><code>noreturn</code><dd><a name="index-g_t_0040code_007bnoreturn_007d-function-attribute-2472"></a>A few standard library functions, such as <code>abort</code> and <code>exit</code>,
cannot return.  GCC knows this automatically.  Some programs define
their own functions that never return.  You can declare them
<code>noreturn</code> to tell the compiler this fact.  For example,

     <pre class="smallexample">          void fatal () __attribute__ ((noreturn));
          
          void
          fatal (/* <span class="roman">...</span> */)
          {
            /* <span class="roman">...</span> */ /* <span class="roman">Print error message.</span> */ /* <span class="roman">...</span> */
            exit (1);
          }
</pre>
     <p>The <code>noreturn</code> keyword tells the compiler to assume that
<code>fatal</code> cannot return.  It can then optimize without regard to what
would happen if <code>fatal</code> ever did return.  This makes slightly
better code.  More importantly, it helps avoid spurious warnings of
uninitialized variables.

     <p>The <code>noreturn</code> keyword does not affect the exceptional path when that
applies: a <code>noreturn</code>-marked function may still return to the caller
by throwing an exception or calling <code>longjmp</code>.

     <p>Do not assume that registers saved by the calling function are
restored before calling the <code>noreturn</code> function.

     <p>It does not make sense for a <code>noreturn</code> function to have a return
type other than <code>void</code>.

     <p>The attribute <code>noreturn</code> is not implemented in GCC versions
earlier than 2.5.  An alternative way to declare that a function does
not return, which works in the current version and in some older
versions, is as follows:

     <pre class="smallexample">          typedef void voidfn ();
          
          volatile voidfn fatal;
</pre>
     <p>This approach does not work in GNU C++.

     <br><dt><code>nothrow</code><dd><a name="index-g_t_0040code_007bnothrow_007d-function-attribute-2473"></a>The <code>nothrow</code> attribute is used to inform the compiler that a
function cannot throw an exception.  For example, most functions in
the standard C library can be guaranteed not to throw an exception
with the notable exceptions of <code>qsort</code> and <code>bsearch</code> that
take function pointer arguments.  The <code>nothrow</code> attribute is not
implemented in GCC versions earlier than 3.3.

     <br><dt><code>optimize</code><dd><a name="index-g_t_0040code_007boptimize_007d-function-attribute-2474"></a>The <code>optimize</code> attribute is used to specify that a function is to
be compiled with different optimization options than specified on the
command line.  Arguments can either be numbers or strings.  Numbers
are assumed to be an optimization level.  Strings that begin with
<code>O</code> are assumed to be an optimization option, while other options
are assumed to be used with a <code>-f</code> prefix.  You can also use the
&lsquo;<samp><span class="samp">#pragma GCC optimize</span></samp>&rsquo; pragma to set the optimization options
that affect more than one function. 
See <a href="#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a>, for details about the
&lsquo;<samp><span class="samp">#pragma GCC optimize</span></samp>&rsquo; pragma.

     <p>This can be used for instance to have frequently executed functions
compiled with more aggressive optimization options that produce faster
and larger code, while other functions can be called with less
aggressive options.

     <br><dt><code>OS_main/OS_task</code><dd><a name="index-g_t_0040code_007bOS_005fmain_007d-AVR-function-attribute-2475"></a><a name="index-g_t_0040code_007bOS_005ftask_007d-AVR-function-attribute-2476"></a>On AVR, functions with the <code>OS_main</code> or <code>OS_task</code> attribute
do not save/restore any call-saved register in their prologue/epilogue.

     <p>The <code>OS_main</code> attribute can be used when there <em>is
guarantee</em> that interrupts are disabled at the time when the function
is entered.  This will save resources when the stack pointer has to be
changed to set up a frame for local variables.

     <p>The <code>OS_task</code> attribute can be used when there is <em>no
guarantee</em> that interrupts are disabled at that time when the function
is entered like for, e.g. task functions in a multi-threading operating
system. In that case, changing the stack pointer register will be
guarded by save/clear/restore of the global interrupt enable flag.

     <p>The differences to the <code>naked</code> function attrubute are:
          <ul>
<li><code>naked</code> functions do not have a return instruction whereas
<code>OS_main</code> and <code>OS_task</code> functions will have a <code>RET</code> or
<code>RETI</code> return instruction. 
<li><code>naked</code> functions do not set up a frame for local variables
or a frame pointer whereas <code>OS_main</code> and <code>OS_task</code> do this
as needed. 
</ul>

     <br><dt><code>pcs</code><dd><a name="index-g_t_0040code_007bpcs_007d-function-attribute-2477"></a>
The <code>pcs</code> attribute can be used to control the calling convention
used for a function on ARM.  The attribute takes an argument that specifies
the calling convention to use.

     <p>When compiling using the AAPCS ABI (or a variant of that) then valid
values for the argument are <code>"aapcs"</code> and <code>"aapcs-vfp"</code>.  In
order to use a variant other than <code>"aapcs"</code> then the compiler must
be permitted to use the appropriate co-processor registers (i.e., the
VFP registers must be available in order to use <code>"aapcs-vfp"</code>). 
For example,

     <pre class="smallexample">          /* Argument passed in r0, and result returned in r0+r1.  */
          double f2d (float) __attribute__((pcs("aapcs")));
</pre>
     <p>Variadic functions always use the <code>"aapcs"</code> calling convention and
the compiler will reject attempts to specify an alternative.

     <br><dt><code>pure</code><dd><a name="index-g_t_0040code_007bpure_007d-function-attribute-2478"></a>Many functions have no effects except the return value and their
return value depends only on the parameters and/or global variables. 
Such a function can be subject
to common subexpression elimination and loop optimization just as an
arithmetic operator would be.  These functions should be declared
with the attribute <code>pure</code>.  For example,

     <pre class="smallexample">          int square (int) __attribute__ ((pure));
</pre>
     <p class="noindent">says that the hypothetical function <code>square</code> is safe to call
fewer times than the program says.

     <p>Some of common examples of pure functions are <code>strlen</code> or <code>memcmp</code>. 
Interesting non-pure functions are functions with infinite loops or those
depending on volatile memory or other system resource, that may change between
two consecutive calls (such as <code>feof</code> in a multithreading environment).

     <p>The attribute <code>pure</code> is not implemented in GCC versions earlier
than 2.96.

     <br><dt><code>hot</code><dd><a name="index-g_t_0040code_007bhot_007d-function-attribute-2479"></a>The <code>hot</code> attribute is used to inform the compiler that a function is a
hot spot of the compiled program.  The function is optimized more aggressively
and on many target it is placed into special subsection of the text section so
all hot functions appears close together improving locality.

     <p>When profile feedback is available, via <samp><span class="option">-fprofile-use</span></samp>, hot functions
are automatically detected and this attribute is ignored.

     <p>The <code>hot</code> attribute is not implemented in GCC versions earlier
than 4.3.

     <br><dt><code>cold</code><dd><a name="index-g_t_0040code_007bcold_007d-function-attribute-2480"></a>The <code>cold</code> attribute is used to inform the compiler that a function is
unlikely executed.  The function is optimized for size rather than speed and on
many targets it is placed into special subsection of the text section so all
cold functions appears close together improving code locality of non-cold parts
of program.  The paths leading to call of cold functions within code are marked
as unlikely by the branch prediction mechanism. It is thus useful to mark
functions used to handle unlikely conditions, such as <code>perror</code>, as cold to
improve optimization of hot functions that do call marked functions in rare
occasions.

     <p>When profile feedback is available, via <samp><span class="option">-fprofile-use</span></samp>, hot functions
are automatically detected and this attribute is ignored.

     <p>The <code>cold</code> attribute is not implemented in GCC versions earlier than 4.3.

     <br><dt><code>regparm (</code><var>number</var><code>)</code><dd><a name="index-g_t_0040code_007bregparm_007d-attribute-2481"></a><a name="index-functions-that-are-passed-arguments-in-registers-on-the-386-2482"></a>On the Intel 386, the <code>regparm</code> attribute causes the compiler to
pass arguments number one to <var>number</var> if they are of integral type
in registers EAX, EDX, and ECX instead of on the stack.  Functions that
take a variable number of arguments will continue to be passed all of their
arguments on the stack.

     <p>Beware that on some ELF systems this attribute is unsuitable for
global functions in shared libraries with lazy binding (which is the
default).  Lazy binding will send the first call via resolving code in
the loader, which might assume EAX, EDX and ECX can be clobbered, as
per the standard calling conventions.  Solaris 8 is affected by this. 
GNU systems with GLIBC 2.1 or higher, and FreeBSD, are believed to be
safe since the loaders there save EAX, EDX and ECX.  (Lazy binding can be
disabled with the linker or the loader if desired, to avoid the
problem.)

     <br><dt><code>sseregparm</code><dd><a name="index-g_t_0040code_007bsseregparm_007d-attribute-2483"></a>On the Intel 386 with SSE support, the <code>sseregparm</code> attribute
causes the compiler to pass up to 3 floating point arguments in
SSE registers instead of on the stack.  Functions that take a
variable number of arguments will continue to pass all of their
floating point arguments on the stack.

     <br><dt><code>force_align_arg_pointer</code><dd><a name="index-g_t_0040code_007bforce_005falign_005farg_005fpointer_007d-attribute-2484"></a>On the Intel x86, the <code>force_align_arg_pointer</code> attribute may be
applied to individual function definitions, generating an alternate
prologue and epilogue that realigns the runtime stack if necessary. 
This supports mixing legacy codes that run with a 4-byte aligned stack
with modern codes that keep a 16-byte stack for SSE compatibility.

     <br><dt><code>resbank</code><dd><a name="index-g_t_0040code_007bresbank_007d-attribute-2485"></a>On the SH2A target, this attribute enables the high-speed register
saving and restoration using a register bank for <code>interrupt_handler</code>
routines.  Saving to the bank is performed automatically after the CPU
accepts an interrupt that uses a register bank.

     <p>The nineteen 32-bit registers comprising general register R0 to R14,
control register GBR, and system registers MACH, MACL, and PR and the
vector table address offset are saved into a register bank.  Register
banks are stacked in first-in last-out (FILO) sequence.  Restoration
from the bank is executed by issuing a RESBANK instruction.

     <br><dt><code>returns_twice</code><dd><a name="index-g_t_0040code_007breturns_005ftwice_007d-attribute-2486"></a>The <code>returns_twice</code> attribute tells the compiler that a function may
return more than one time.  The compiler will ensure that all registers
are dead before calling such a function and will emit a warning about
the variables that may be clobbered after the second return from the
function.  Examples of such functions are <code>setjmp</code> and <code>vfork</code>. 
The <code>longjmp</code>-like counterpart of such function, if any, might need
to be marked with the <code>noreturn</code> attribute.

     <br><dt><code>saveall</code><dd><a name="index-save-all-registers-on-the-Blackfin_002c-H8_002f300_002c-H8_002f300H_002c-and-H8S-2487"></a>Use this attribute on the Blackfin, H8/300, H8/300H, and H8S to indicate that
all registers except the stack pointer should be saved in the prologue
regardless of whether they are used or not.

     <br><dt><code>save_volatiles</code><dd><a name="index-save-volatile-registers-on-the-MicroBlaze-2488"></a>Use this attribute on the MicroBlaze to indicate that the function is
an interrupt handler.  All volatile registers (in addition to non-volatile
registers) will be saved in the function prologue.  If the function is a leaf
function, only volatiles used by the function are saved.  A normal function
return is generated instead of a return from interrupt.

     <br><dt><code>section ("</code><var>section-name</var><code>")</code><dd><a name="index-g_t_0040code_007bsection_007d-function-attribute-2489"></a>Normally, the compiler places the code it generates in the <code>text</code> section. 
Sometimes, however, you need additional sections, or you need certain
particular functions to appear in special sections.  The <code>section</code>
attribute specifies that a function lives in a particular section. 
For example, the declaration:

     <pre class="smallexample">          extern void foobar (void) __attribute__ ((section ("bar")));
</pre>
     <p class="noindent">puts the function <code>foobar</code> in the <code>bar</code> section.

     <p>Some file formats do not support arbitrary sections so the <code>section</code>
attribute is not available on all platforms. 
If you need to map the entire contents of a module to a particular
section, consider using the facilities of the linker instead.

     <br><dt><code>sentinel</code><dd><a name="index-g_t_0040code_007bsentinel_007d-function-attribute-2490"></a>This function attribute ensures that a parameter in a function call is
an explicit <code>NULL</code>.  The attribute is only valid on variadic
functions.  By default, the sentinel is located at position zero, the
last parameter of the function call.  If an optional integer position
argument P is supplied to the attribute, the sentinel must be located at
position P counting backwards from the end of the argument list.

     <pre class="smallexample">          __attribute__ ((sentinel))
          is equivalent to
          __attribute__ ((sentinel(0)))
</pre>
     <p>The attribute is automatically set with a position of 0 for the built-in
functions <code>execl</code> and <code>execlp</code>.  The built-in function
<code>execle</code> has the attribute set with a position of 1.

     <p>A valid <code>NULL</code> in this context is defined as zero with any pointer
type.  If your system defines the <code>NULL</code> macro with an integer type
then you need to add an explicit cast.  GCC replaces <code>stddef.h</code>
with a copy that redefines NULL appropriately.

     <p>The warnings for missing or incorrect sentinels are enabled with
<samp><span class="option">-Wformat</span></samp>.

     <br><dt><code>short_call</code><dd>See long_call/short_call.

     <br><dt><code>shortcall</code><dd>See longcall/shortcall.

     <br><dt><code>signal</code><dd><a name="index-signal-handler-functions-on-the-AVR-processors-2491"></a>Use this attribute on the AVR to indicate that the specified
function is a signal handler.  The compiler will generate function
entry and exit sequences suitable for use in a signal handler when this
attribute is present.  Interrupts will be disabled inside the function.

     <br><dt><code>sp_switch</code><dd>Use this attribute on the SH to indicate an <code>interrupt_handler</code>
function should switch to an alternate stack.  It expects a string
argument that names a global variable holding the address of the
alternate stack.

     <pre class="smallexample">          void *alt_stack;
          void f () __attribute__ ((interrupt_handler,
                                    sp_switch ("alt_stack")));
</pre>
     <br><dt><code>stdcall</code><dd><a name="index-functions-that-pop-the-argument-stack-on-the-386-2492"></a>On the Intel 386, the <code>stdcall</code> attribute causes the compiler to
assume that the called function will pop off the stack space used to
pass arguments, unless it takes a variable number of arguments.

     <br><dt><code>syscall_linkage</code><dd><a name="index-g_t_0040code_007bsyscall_005flinkage_007d-attribute-2493"></a>This attribute is used to modify the IA64 calling convention by marking
all input registers as live at all function exits.  This makes it possible
to restart a system call after an interrupt without having to save/restore
the input registers.  This also prevents kernel data from leaking into
application code.

     <br><dt><code>target</code><dd><a name="index-g_t_0040code_007btarget_007d-function-attribute-2494"></a>The <code>target</code> attribute is used to specify that a function is to
be compiled with different target options than specified on the
command line.  This can be used for instance to have functions
compiled with a different ISA (instruction set architecture) than the
default.  You can also use the &lsquo;<samp><span class="samp">#pragma GCC target</span></samp>&rsquo; pragma to set
more than one function to be compiled with specific target options. 
See <a href="#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a>, for details about the
&lsquo;<samp><span class="samp">#pragma GCC target</span></samp>&rsquo; pragma.

     <p>For instance on a 386, you could compile one function with
<code>target("sse4.1,arch=core2")</code> and another with
<code>target("sse4a,arch=amdfam10")</code> that would be equivalent to
compiling the first function with <samp><span class="option">-msse4.1</span></samp> and
<samp><span class="option">-march=core2</span></samp> options, and the second function with
<samp><span class="option">-msse4a</span></samp> and <samp><span class="option">-march=amdfam10</span></samp> options.  It is up to the
user to make sure that a function is only invoked on a machine that
supports the particular ISA it was compiled for (for example by using
<code>cpuid</code> on 386 to determine what feature bits and architecture
family are used).

     <pre class="smallexample">          int core2_func (void) __attribute__ ((__target__ ("arch=core2")));
          int sse3_func (void) __attribute__ ((__target__ ("sse3")));
</pre>
     <p>On the 386, the following options are allowed:

          <dl>
<dt>&lsquo;<samp><span class="samp">abm</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-abm</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022abm_0022_0029_007d-attribute-2495"></a>Enable/disable the generation of the advanced bit instructions.

          <br><dt>&lsquo;<samp><span class="samp">aes</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-aes</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022aes_0022_0029_007d-attribute-2496"></a>Enable/disable the generation of the AES instructions.

          <br><dt>&lsquo;<samp><span class="samp">mmx</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-mmx</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022mmx_0022_0029_007d-attribute-2497"></a>Enable/disable the generation of the MMX instructions.

          <br><dt>&lsquo;<samp><span class="samp">pclmul</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-pclmul</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022pclmul_0022_0029_007d-attribute-2498"></a>Enable/disable the generation of the PCLMUL instructions.

          <br><dt>&lsquo;<samp><span class="samp">popcnt</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-popcnt</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022popcnt_0022_0029_007d-attribute-2499"></a>Enable/disable the generation of the POPCNT instruction.

          <br><dt>&lsquo;<samp><span class="samp">sse</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-sse</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022sse_0022_0029_007d-attribute-2500"></a>Enable/disable the generation of the SSE instructions.

          <br><dt>&lsquo;<samp><span class="samp">sse2</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-sse2</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022sse2_0022_0029_007d-attribute-2501"></a>Enable/disable the generation of the SSE2 instructions.

          <br><dt>&lsquo;<samp><span class="samp">sse3</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-sse3</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022sse3_0022_0029_007d-attribute-2502"></a>Enable/disable the generation of the SSE3 instructions.

          <br><dt>&lsquo;<samp><span class="samp">sse4</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-sse4</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022sse4_0022_0029_007d-attribute-2503"></a>Enable/disable the generation of the SSE4 instructions (both SSE4.1
and SSE4.2).

          <br><dt>&lsquo;<samp><span class="samp">sse4.1</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-sse4.1</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022sse4_002e1_0022_0029_007d-attribute-2504"></a>Enable/disable the generation of the sse4.1 instructions.

          <br><dt>&lsquo;<samp><span class="samp">sse4.2</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-sse4.2</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022sse4_002e2_0022_0029_007d-attribute-2505"></a>Enable/disable the generation of the sse4.2 instructions.

          <br><dt>&lsquo;<samp><span class="samp">sse4a</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-sse4a</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022sse4a_0022_0029_007d-attribute-2506"></a>Enable/disable the generation of the SSE4A instructions.

          <br><dt>&lsquo;<samp><span class="samp">fma4</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-fma4</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022fma4_0022_0029_007d-attribute-2507"></a>Enable/disable the generation of the FMA4 instructions.

          <br><dt>&lsquo;<samp><span class="samp">xop</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-xop</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022xop_0022_0029_007d-attribute-2508"></a>Enable/disable the generation of the XOP instructions.

          <br><dt>&lsquo;<samp><span class="samp">lwp</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-lwp</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022lwp_0022_0029_007d-attribute-2509"></a>Enable/disable the generation of the LWP instructions.

          <br><dt>&lsquo;<samp><span class="samp">ssse3</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-ssse3</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022ssse3_0022_0029_007d-attribute-2510"></a>Enable/disable the generation of the SSSE3 instructions.

          <br><dt>&lsquo;<samp><span class="samp">cld</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-cld</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022cld_0022_0029_007d-attribute-2511"></a>Enable/disable the generation of the CLD before string moves.

          <br><dt>&lsquo;<samp><span class="samp">fancy-math-387</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-fancy-math-387</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022fancy_002dmath_002d387_0022_0029_007d-attribute-2512"></a>Enable/disable the generation of the <code>sin</code>, <code>cos</code>, and
<code>sqrt</code> instructions on the 387 floating point unit.

          <br><dt>&lsquo;<samp><span class="samp">fused-madd</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-fused-madd</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022fused_002dmadd_0022_0029_007d-attribute-2513"></a>Enable/disable the generation of the fused multiply/add instructions.

          <br><dt>&lsquo;<samp><span class="samp">ieee-fp</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-ieee-fp</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022ieee_002dfp_0022_0029_007d-attribute-2514"></a>Enable/disable the generation of floating point that depends on IEEE arithmetic.

          <br><dt>&lsquo;<samp><span class="samp">inline-all-stringops</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-inline-all-stringops</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022inline_002dall_002dstringops_0022_0029_007d-attribute-2515"></a>Enable/disable inlining of string operations.

          <br><dt>&lsquo;<samp><span class="samp">inline-stringops-dynamically</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-inline-stringops-dynamically</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022inline_002dstringops_002ddynamically_0022_0029_007d-attribute-2516"></a>Enable/disable the generation of the inline code to do small string
operations and calling the library routines for large operations.

          <br><dt>&lsquo;<samp><span class="samp">align-stringops</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-align-stringops</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022align_002dstringops_0022_0029_007d-attribute-2517"></a>Do/do not align destination of inlined string operations.

          <br><dt>&lsquo;<samp><span class="samp">recip</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-recip</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022recip_0022_0029_007d-attribute-2518"></a>Enable/disable the generation of RCPSS, RCPPS, RSQRTSS and RSQRTPS
instructions followed an additional Newton-Raphson step instead of
doing a floating point division.

          <br><dt>&lsquo;<samp><span class="samp">arch=</span><var>ARCH</var></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022arch_003d_0040var_007bARCH_007d_0022_0029_007d-attribute-2519"></a>Specify the architecture to generate code for in compiling the function.

          <br><dt>&lsquo;<samp><span class="samp">tune=</span><var>TUNE</var></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022tune_003d_0040var_007bTUNE_007d_0022_0029_007d-attribute-2520"></a>Specify the architecture to tune for in compiling the function.

          <br><dt>&lsquo;<samp><span class="samp">fpmath=</span><var>FPMATH</var></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022fpmath_003d_0040var_007bFPMATH_007d_0022_0029_007d-attribute-2521"></a>Specify which floating point unit to use.  The
<code>target("fpmath=sse,387")</code> option must be specified as
<code>target("fpmath=sse+387")</code> because the comma would separate
different options. 
</dl>

     <p>On the PowerPC, the following options are allowed:

          <dl>
<dt>&lsquo;<samp><span class="samp">altivec</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-altivec</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022altivec_0022_0029_007d-attribute-2522"></a>Generate code that uses (does not use) AltiVec instructions.  In
32-bit code, you cannot enable Altivec instructions unless
<samp><span class="option">-mabi=altivec</span></samp> was used on the command line.

          <br><dt>&lsquo;<samp><span class="samp">cmpb</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-cmpb</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022cmpb_0022_0029_007d-attribute-2523"></a>Generate code that uses (does not use) the compare bytes instruction
implemented on the POWER6 processor and other processors that support
the PowerPC V2.05 architecture.

          <br><dt>&lsquo;<samp><span class="samp">dlmzb</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-dlmzb</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022dlmzb_0022_0029_007d-attribute-2524"></a>Generate code that uses (does not use) the string-search &lsquo;<samp><span class="samp">dlmzb</span></samp>&rsquo;
instruction on the IBM 405, 440, 464 and 476 processors.  This instruction is
generated by default when targetting those processors.

          <br><dt>&lsquo;<samp><span class="samp">fprnd</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-fprnd</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022fprnd_0022_0029_007d-attribute-2525"></a>Generate code that uses (does not use) the FP round to integer
instructions implemented on the POWER5+ processor and other processors
that support the PowerPC V2.03 architecture.

          <br><dt>&lsquo;<samp><span class="samp">hard-dfp</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-hard-dfp</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022hard_002ddfp_0022_0029_007d-attribute-2526"></a>Generate code that uses (does not use) the decimal floating point
instructions implemented on some POWER processors.

          <br><dt>&lsquo;<samp><span class="samp">isel</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-isel</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022isel_0022_0029_007d-attribute-2527"></a>Generate code that uses (does not use) ISEL instruction.

          <br><dt>&lsquo;<samp><span class="samp">mfcrf</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-mfcrf</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022mfcrf_0022_0029_007d-attribute-2528"></a>Generate code that uses (does not use) the move from condition
register field instruction implemented on the POWER4 processor and
other processors that support the PowerPC V2.01 architecture.

          <br><dt>&lsquo;<samp><span class="samp">mfpgpr</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-mfpgpr</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022mfpgpr_0022_0029_007d-attribute-2529"></a>Generate code that uses (does not use) the FP move to/from general
purpose register instructions implemented on the POWER6X processor and
other processors that support the extended PowerPC V2.05 architecture.

          <br><dt>&lsquo;<samp><span class="samp">mulhw</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-mulhw</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022mulhw_0022_0029_007d-attribute-2530"></a>Generate code that uses (does not use) the half-word multiply and
multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors. 
These instructions are generated by default when targetting those
processors.

          <br><dt>&lsquo;<samp><span class="samp">multiple</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-multiple</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022multiple_0022_0029_007d-attribute-2531"></a>Generate code that uses (does not use) the load multiple word
instructions and the store multiple word instructions.

          <br><dt>&lsquo;<samp><span class="samp">update</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-update</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022update_0022_0029_007d-attribute-2532"></a>Generate code that uses (does not use) the load or store instructions
that update the base register to the address of the calculated memory
location.

          <br><dt>&lsquo;<samp><span class="samp">popcntb</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-popcntb</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022popcntb_0022_0029_007d-attribute-2533"></a>Generate code that uses (does not use) the popcount and double
precision FP reciprocal estimate instruction implemented on the POWER5
processor and other processors that support the PowerPC V2.02
architecture.

          <br><dt>&lsquo;<samp><span class="samp">popcntd</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-popcntd</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022popcntd_0022_0029_007d-attribute-2534"></a>Generate code that uses (does not use) the popcount instruction
implemented on the POWER7 processor and other processors that support
the PowerPC V2.06 architecture.

          <br><dt>&lsquo;<samp><span class="samp">powerpc-gfxopt</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-powerpc-gfxopt</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022powerpc_002dgfxopt_0022_0029_007d-attribute-2535"></a>Generate code that uses (does not use) the optional PowerPC
architecture instructions in the Graphics group, including
floating-point select.

          <br><dt>&lsquo;<samp><span class="samp">powerpc-gpopt</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-powerpc-gpopt</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022powerpc_002dgpopt_0022_0029_007d-attribute-2536"></a>Generate code that uses (does not use) the optional PowerPC
architecture instructions in the General Purpose group, including
floating-point square root.

          <br><dt>&lsquo;<samp><span class="samp">recip-precision</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-recip-precision</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022recip_002dprecision_0022_0029_007d-attribute-2537"></a>Assume (do not assume) that the reciprocal estimate instructions
provide higher precision estimates than is mandated by the powerpc
ABI.

          <br><dt>&lsquo;<samp><span class="samp">string</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-string</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022string_0022_0029_007d-attribute-2538"></a>Generate code that uses (does not use) the load string instructions
and the store string word instructions to save multiple registers and
do small block moves.

          <br><dt>&lsquo;<samp><span class="samp">vsx</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-vsx</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022vsx_0022_0029_007d-attribute-2539"></a>Generate code that uses (does not use) vector/scalar (VSX)
instructions, and also enable the use of built-in functions that allow
more direct access to the VSX instruction set.  In 32-bit code, you
cannot enable VSX or Altivec instructions unless
<samp><span class="option">-mabi=altivec</span></samp> was used on the command line.

          <br><dt>&lsquo;<samp><span class="samp">friz</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-friz</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022friz_0022_0029_007d-attribute-2540"></a>Generate (do not generate) the <code>friz</code> instruction when the
<samp><span class="option">-funsafe-math-optimizations</span></samp> option is used to optimize
rounding a floating point value to 64-bit integer and back to floating
point.  The <code>friz</code> instruction does not return the same value if
the floating point number is too large to fit in an integer.

          <br><dt>&lsquo;<samp><span class="samp">avoid-indexed-addresses</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-avoid-indexed-addresses</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022avoid_002dindexed_002daddresses_0022_0029_007d-attribute-2541"></a>Generate code that tries to avoid (not avoid) the use of indexed load
or store instructions.

          <br><dt>&lsquo;<samp><span class="samp">paired</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-paired</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022paired_0022_0029_007d-attribute-2542"></a>Generate code that uses (does not use) the generation of PAIRED simd
instructions.

          <br><dt>&lsquo;<samp><span class="samp">longcall</span></samp>&rsquo;<dt>&lsquo;<samp><span class="samp">no-longcall</span></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022longcall_0022_0029_007d-attribute-2543"></a>Generate code that assumes (does not assume) that all calls are far
away so that a longer more expensive calling sequence is required.

          <br><dt>&lsquo;<samp><span class="samp">cpu=</span><var>CPU</var></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022cpu_003d_0040var_007bCPU_007d_0022_0029_007d-attribute-2544"></a>Specify the architecture to generate code for when compiling the
function.  If you select the <code>"target("cpu=power7)"</code> attribute when
generating 32-bit code, VSX and Altivec instructions are not generated
unless you use the <samp><span class="option">-mabi=altivec</span></samp> option on the command line.

          <br><dt>&lsquo;<samp><span class="samp">tune=</span><var>TUNE</var></samp>&rsquo;<dd><a name="index-g_t_0040code_007btarget_0028_0022tune_003d_0040var_007bTUNE_007d_0022_0029_007d-attribute-2545"></a>Specify the architecture to tune for when compiling the function.  If
you do not specify the <code>target("tune=</code><var>TUNE</var><code>")</code> attribute and
you do specify the <code>target("cpu=</code><var>CPU</var><code>")</code> attribute,
compilation will tune for the <var>CPU</var> architecture, and not the
default tuning specified on the command line. 
</dl>

     <p>On the 386/x86_64 and PowerPC backends, you can use either multiple
strings to specify multiple options, or you can separate the option
with a comma (<code>,</code>).

     <p>On the 386/x86_64 and PowerPC backends, the inliner will not inline a
function that has different target options than the caller, unless the
callee has a subset of the target options of the caller.  For example
a function declared with <code>target("sse3")</code> can inline a function
with <code>target("sse2")</code>, since <code>-msse3</code> implies <code>-msse2</code>.

     <p>The <code>target</code> attribute is not implemented in GCC versions earlier
than 4.4 for the i386/x86_64 and 4.6 for the PowerPC backends.  It is
not currently implemented for other backends.

     <br><dt><code>tiny_data</code><dd><a name="index-tiny-data-section-on-the-H8_002f300H-and-H8S-2546"></a>Use this attribute on the H8/300H and H8S to indicate that the specified
variable should be placed into the tiny data section. 
The compiler will generate more efficient code for loads and stores
on data in the tiny data section.  Note the tiny data area is limited to
slightly under 32kbytes of data.

     <br><dt><code>trap_exit</code><dd>Use this attribute on the SH for an <code>interrupt_handler</code> to return using
<code>trapa</code> instead of <code>rte</code>.  This attribute expects an integer
argument specifying the trap number to be used.

     <br><dt><code>unused</code><dd><a name="index-g_t_0040code_007bunused_007d-attribute_002e-2547"></a>This attribute, attached to a function, means that the function is meant
to be possibly unused.  GCC will not produce a warning for this
function.

     <br><dt><code>used</code><dd><a name="index-g_t_0040code_007bused_007d-attribute_002e-2548"></a>This attribute, attached to a function, means that code must be emitted
for the function even if it appears that the function is not referenced. 
This is useful, for example, when the function is referenced only in
inline assembly.

     <br><dt><code>version_id</code><dd><a name="index-g_t_0040code_007bversion_005fid_007d-attribute-2549"></a>This IA64 HP-UX attribute, attached to a global variable or function, renames a
symbol to contain a version string, thus allowing for function level
versioning.  HP-UX system header files may use version level functioning
for some system calls.

     <pre class="smallexample">          extern int foo () __attribute__((version_id ("20040821")));
</pre>
     <p>Calls to <var>foo</var> will be mapped to calls to <var>foo{20040821}</var>.

     <br><dt><code>visibility ("</code><var>visibility_type</var><code>")</code><dd><a name="index-g_t_0040code_007bvisibility_007d-attribute-2550"></a>This attribute affects the linkage of the declaration to which it is attached. 
There are four supported <var>visibility_type</var> values: default,
hidden, protected or internal visibility.

     <pre class="smallexample">          void __attribute__ ((visibility ("protected")))
          f () { /* <span class="roman">Do something.</span> */; }
          int i __attribute__ ((visibility ("hidden")));
</pre>
     <p>The possible values of <var>visibility_type</var> correspond to the
visibility settings in the ELF gABI.

          <dl>
<!-- keep this list of visibilities in alphabetical order. -->

          <dt><dfn>default</dfn><dd>Default visibility is the normal case for the object file format. 
This value is available for the visibility attribute to override other
options that may change the assumed visibility of entities.

          <p>On ELF, default visibility means that the declaration is visible to other
modules and, in shared libraries, means that the declared entity may be
overridden.

          <p>On Darwin, default visibility means that the declaration is visible to
other modules.

          <p>Default visibility corresponds to &ldquo;external linkage&rdquo; in the language.

          <br><dt><dfn>hidden</dfn><dd>Hidden visibility indicates that the entity declared will have a new
form of linkage, which we'll call &ldquo;hidden linkage&rdquo;.  Two
declarations of an object with hidden linkage refer to the same object
if they are in the same shared object.

          <br><dt><dfn>internal</dfn><dd>Internal visibility is like hidden visibility, but with additional
processor specific semantics.  Unless otherwise specified by the
psABI, GCC defines internal visibility to mean that a function is
<em>never</em> called from another module.  Compare this with hidden
functions which, while they cannot be referenced directly by other
modules, can be referenced indirectly via function pointers.  By
indicating that a function cannot be called from outside the module,
GCC may for instance omit the load of a PIC register since it is known
that the calling function loaded the correct value.

          <br><dt><dfn>protected</dfn><dd>Protected visibility is like default visibility except that it
indicates that references within the defining module will bind to the
definition in that module.  That is, the declared entity cannot be
overridden by another module.

     </dl>

     <p>All visibilities are supported on many, but not all, ELF targets
(supported when the assembler supports the &lsquo;<samp><span class="samp">.visibility</span></samp>&rsquo;
pseudo-op).  Default visibility is supported everywhere.  Hidden
visibility is supported on Darwin targets.

     <p>The visibility attribute should be applied only to declarations which
would otherwise have external linkage.  The attribute should be applied
consistently, so that the same entity should not be declared with
different settings of the attribute.

     <p>In C++, the visibility attribute applies to types as well as functions
and objects, because in C++ types have linkage.  A class must not have
greater visibility than its non-static data member types and bases,
and class members default to the visibility of their class.  Also, a
declaration without explicit visibility is limited to the visibility
of its type.

     <p>In C++, you can mark member functions and static member variables of a
class with the visibility attribute.  This is useful if you know a
particular method or static member variable should only be used from
one shared object; then you can mark it hidden while the rest of the
class has default visibility.  Care must be taken to avoid breaking
the One Definition Rule; for example, it is usually not useful to mark
an inline method as hidden without marking the whole class as hidden.

     <p>A C++ namespace declaration can also have the visibility attribute. 
This attribute applies only to the particular namespace body, not to
other definitions of the same namespace; it is equivalent to using
&lsquo;<samp><span class="samp">#pragma GCC visibility</span></samp>&rsquo; before and after the namespace
definition (see <a href="#Visibility-Pragmas">Visibility Pragmas</a>).

     <p>In C++, if a template argument has limited visibility, this
restriction is implicitly propagated to the template instantiation. 
Otherwise, template instantiations and specializations default to the
visibility of their template.

     <p>If both the template and enclosing class have explicit visibility, the
visibility from the template is used.

     <br><dt><code>vliw</code><dd><a name="index-g_t_0040code_007bvliw_007d-attribute-2551"></a>On MeP, the <code>vliw</code> attribute tells the compiler to emit
instructions in VLIW mode instead of core mode.  Note that this
attribute is not allowed unless a VLIW coprocessor has been configured
and enabled through command line options.

     <br><dt><code>warn_unused_result</code><dd><a name="index-g_t_0040code_007bwarn_005funused_005fresult_007d-attribute-2552"></a>The <code>warn_unused_result</code> attribute causes a warning to be emitted
if a caller of the function with this attribute does not use its
return value.  This is useful for functions where not checking
the result is either a security problem or always a bug, such as
<code>realloc</code>.

     <pre class="smallexample">          int fn () __attribute__ ((warn_unused_result));
          int foo ()
          {
            if (fn () &lt; 0) return -1;
            fn ();
            return 0;
          }
</pre>
     <p>results in warning on line 5.

     <br><dt><code>weak</code><dd><a name="index-g_t_0040code_007bweak_007d-attribute-2553"></a>The <code>weak</code> attribute causes the declaration to be emitted as a weak
symbol rather than a global.  This is primarily useful in defining
library functions which can be overridden in user code, though it can
also be used with non-function declarations.  Weak symbols are supported
for ELF targets, and also for a.out targets when using the GNU assembler
and linker.

     <br><dt><code>weakref</code><dt><code>weakref ("</code><var>target</var><code>")</code><dd><a name="index-g_t_0040code_007bweakref_007d-attribute-2554"></a>The <code>weakref</code> attribute marks a declaration as a weak reference. 
Without arguments, it should be accompanied by an <code>alias</code> attribute
naming the target symbol.  Optionally, the <var>target</var> may be given as
an argument to <code>weakref</code> itself.  In either case, <code>weakref</code>
implicitly marks the declaration as <code>weak</code>.  Without a
<var>target</var>, given as an argument to <code>weakref</code> or to <code>alias</code>,
<code>weakref</code> is equivalent to <code>weak</code>.

     <pre class="smallexample">          static int x() __attribute__ ((weakref ("y")));
          /* is equivalent to... */
          static int x() __attribute__ ((weak, weakref, alias ("y")));
          /* and to... */
          static int x() __attribute__ ((weakref));
          static int x() __attribute__ ((alias ("y")));
</pre>
     <p>A weak reference is an alias that does not by itself require a
definition to be given for the target symbol.  If the target symbol is
only referenced through weak references, then it becomes a <code>weak</code>
undefined symbol.  If it is directly referenced, however, then such
strong references prevail, and a definition will be required for the
symbol, not necessarily in the same translation unit.

     <p>The effect is equivalent to moving all references to the alias to a
separate translation unit, renaming the alias to the aliased symbol,
declaring it as weak, compiling the two separate translation units and
performing a reloadable link on them.

     <p>At present, a declaration to which <code>weakref</code> is attached can
only be <code>static</code>.

 </dl>

 <p>You can specify multiple attributes in a declaration by separating them
by commas within the double parentheses or by immediately following an
attribute declaration with another attribute declaration.

 <p><a name="index-g_t_0040code_007b_0023pragma_007d_002c-reason-for-not-using-2555"></a><a name="index-pragma_002c-reason-for-not-using-2556"></a>Some people object to the <code>__attribute__</code> feature, suggesting that
ISO C's <code>#pragma</code> should be used instead.  At the time
<code>__attribute__</code> was designed, there were two reasons for not doing
this.

     <ol type=1 start=1>
<li>It is impossible to generate <code>#pragma</code> commands from a macro.

     <li>There is no telling what the same <code>#pragma</code> might mean in another
compiler.
      </ol>

 <p>These two reasons applied to almost any application that might have been
proposed for <code>#pragma</code>.  It was basically a mistake to use
<code>#pragma</code> for <em>anything</em>.

 <p>The ISO C99 standard includes <code>_Pragma</code>, which now allows pragmas
to be generated from macros.  In addition, a <code>#pragma GCC</code>
namespace is now in use for GCC-specific pragmas.  However, it has been
found convenient to use <code>__attribute__</code> to achieve a natural
attachment of attributes to their corresponding declarations, whereas
<code>#pragma GCC</code> is of use for constructs that do not naturally form
part of the grammar.  See <a href="cpp.html#Other-Directives">Miscellaneous Preprocessing Directives</a>.

<div class="node">
<a name="Attribute-Syntax"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Function-Prototypes">Function Prototypes</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Function-Attributes">Function Attributes</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.31 Attribute Syntax</h3>

<p><a name="index-attribute-syntax-2557"></a>
This section describes the syntax with which <code>__attribute__</code> may be
used, and the constructs to which attribute specifiers bind, for the C
language.  Some details may vary for C++ and Objective-C.  Because of
infelicities in the grammar for attributes, some forms described here
may not be successfully parsed in all cases.

 <p>There are some problems with the semantics of attributes in C++.  For
example, there are no manglings for attributes, although they may affect
code generation, so problems may arise when attributed types are used in
conjunction with templates or overloading.  Similarly, <code>typeid</code>
does not distinguish between types with different attributes.  Support
for attributes in C++ may be restricted in future to attributes on
declarations only, but not on nested declarators.

 <p>See <a href="#Function-Attributes">Function Attributes</a>, for details of the semantics of attributes
applying to functions.  See <a href="#Variable-Attributes">Variable Attributes</a>, for details of the
semantics of attributes applying to variables.  See <a href="#Type-Attributes">Type Attributes</a>,
for details of the semantics of attributes applying to structure, union
and enumerated types.

 <p>An <dfn>attribute specifier</dfn> is of the form
<code>__attribute__ ((</code><var>attribute-list</var><code>))</code>.  An <dfn>attribute list</dfn>
is a possibly empty comma-separated sequence of <dfn>attributes</dfn>, where
each attribute is one of the following:

     <ul>
<li>Empty.  Empty attributes are ignored.

     <li>A word (which may be an identifier such as <code>unused</code>, or a reserved
word such as <code>const</code>).

     <li>A word, followed by, in parentheses, parameters for the attribute. 
These parameters take one of the following forms:

          <ul>
<li>An identifier.  For example, <code>mode</code> attributes use this form.

          <li>An identifier followed by a comma and a non-empty comma-separated list
of expressions.  For example, <code>format</code> attributes use this form.

          <li>A possibly empty comma-separated list of expressions.  For example,
<code>format_arg</code> attributes use this form with the list being a single
integer constant expression, and <code>alias</code> attributes use this form
with the list being a single string constant. 
</ul>
     </ul>

 <p>An <dfn>attribute specifier list</dfn> is a sequence of one or more attribute
specifiers, not separated by any other tokens.

 <p>In GNU C, an attribute specifier list may appear after the colon following a
label, other than a <code>case</code> or <code>default</code> label.  The only
attribute it makes sense to use after a label is <code>unused</code>.  This
feature is intended for code generated by programs which contains labels
that may be unused but which is compiled with <samp><span class="option">-Wall</span></samp>.  It would
not normally be appropriate to use in it human-written code, though it
could be useful in cases where the code that jumps to the label is
contained within an <code>#ifdef</code> conditional.  GNU C++ only permits
attributes on labels if the attribute specifier is immediately
followed by a semicolon (i.e., the label applies to an empty
statement).  If the semicolon is missing, C++ label attributes are
ambiguous, as it is permissible for a declaration, which could begin
with an attribute list, to be labelled in C++.  Declarations cannot be
labelled in C90 or C99, so the ambiguity does not arise there.

 <p>An attribute specifier list may appear as part of a <code>struct</code>,
<code>union</code> or <code>enum</code> specifier.  It may go either immediately
after the <code>struct</code>, <code>union</code> or <code>enum</code> keyword, or after
the closing brace.  The former syntax is preferred. 
Where attribute specifiers follow the closing brace, they are considered
to relate to the structure, union or enumerated type defined, not to any
enclosing declaration the type specifier appears in, and the type
defined is not complete until after the attribute specifiers. 
<!-- Otherwise, there would be the following problems: a shift/reduce -->
<!-- conflict between attributes binding the struct/union/enum and -->
<!-- binding to the list of specifiers/qualifiers; and "aligned" -->
<!-- attributes could use sizeof for the structure, but the size could be -->
<!-- changed later by "packed" attributes. -->

 <p>Otherwise, an attribute specifier appears as part of a declaration,
counting declarations of unnamed parameters and type names, and relates
to that declaration (which may be nested in another declaration, for
example in the case of a parameter declaration), or to a particular declarator
within a declaration.  Where an
attribute specifier is applied to a parameter declared as a function or
an array, it should apply to the function or array rather than the
pointer to which the parameter is implicitly converted, but this is not
yet correctly implemented.

 <p>Any list of specifiers and qualifiers at the start of a declaration may
contain attribute specifiers, whether or not such a list may in that
context contain storage class specifiers.  (Some attributes, however,
are essentially in the nature of storage class specifiers, and only make
sense where storage class specifiers may be used; for example,
<code>section</code>.)  There is one necessary limitation to this syntax: the
first old-style parameter declaration in a function definition cannot
begin with an attribute specifier, because such an attribute applies to
the function instead by syntax described below (which, however, is not
yet implemented in this case).  In some other cases, attribute
specifiers are permitted by this grammar but not yet supported by the
compiler.  All attribute specifiers in this place relate to the
declaration as a whole.  In the obsolescent usage where a type of
<code>int</code> is implied by the absence of type specifiers, such a list of
specifiers and qualifiers may be an attribute specifier list with no
other specifiers or qualifiers.

 <p>At present, the first parameter in a function prototype must have some
type specifier which is not an attribute specifier; this resolves an
ambiguity in the interpretation of <code>void f(int
(__attribute__((foo)) x))</code>, but is subject to change.  At present, if
the parentheses of a function declarator contain only attributes then
those attributes are ignored, rather than yielding an error or warning
or implying a single parameter of type int, but this is subject to
change.

 <p>An attribute specifier list may appear immediately before a declarator
(other than the first) in a comma-separated list of declarators in a
declaration of more than one identifier using a single list of
specifiers and qualifiers.  Such attribute specifiers apply
only to the identifier before whose declarator they appear.  For
example, in

<pre class="smallexample">     __attribute__((noreturn)) void d0 (void),
         __attribute__((format(printf, 1, 2))) d1 (const char *, ...),
          d2 (void)
</pre>
 <p class="noindent">the <code>noreturn</code> attribute applies to all the functions
declared; the <code>format</code> attribute only applies to <code>d1</code>.

 <p>An attribute specifier list may appear immediately before the comma,
<code>=</code> or semicolon terminating the declaration of an identifier other
than a function definition.  Such attribute specifiers apply
to the declared object or function.  Where an
assembler name for an object or function is specified (see <a href="#Asm-Labels">Asm Labels</a>), the attribute must follow the <code>asm</code>
specification.

 <p>An attribute specifier list may, in future, be permitted to appear after
the declarator in a function definition (before any old-style parameter
declarations or the function body).

 <p>Attribute specifiers may be mixed with type qualifiers appearing inside
the <code>[]</code> of a parameter array declarator, in the C99 construct by
which such qualifiers are applied to the pointer to which the array is
implicitly converted.  Such attribute specifiers apply to the pointer,
not to the array, but at present this is not implemented and they are
ignored.

 <p>An attribute specifier list may appear at the start of a nested
declarator.  At present, there are some limitations in this usage: the
attributes correctly apply to the declarator, but for most individual
attributes the semantics this implies are not implemented. 
When attribute specifiers follow the <code>*</code> of a pointer
declarator, they may be mixed with any type qualifiers present. 
The following describes the formal semantics of this syntax.  It will make the
most sense if you are familiar with the formal specification of
declarators in the ISO C standard.

 <p>Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration <code>T
D1</code>, where <code>T</code> contains declaration specifiers that specify a type
<var>Type</var> (such as <code>int</code>) and <code>D1</code> is a declarator that
contains an identifier <var>ident</var>.  The type specified for <var>ident</var>
for derived declarators whose type does not include an attribute
specifier is as in the ISO C standard.

 <p>If <code>D1</code> has the form <code>( </code><var>attribute-specifier-list</var><code> D )</code>,
and the declaration <code>T D</code> specifies the type
&ldquo;<var>derived-declarator-type-list</var> <var>Type</var>&rdquo; for <var>ident</var>, then
<code>T D1</code> specifies the type &ldquo;<var>derived-declarator-type-list</var>
<var>attribute-specifier-list</var> <var>Type</var>&rdquo; for <var>ident</var>.

 <p>If <code>D1</code> has the form <code>*
</code><var>type-qualifier-and-attribute-specifier-list</var><code> D</code>, and the
declaration <code>T D</code> specifies the type
&ldquo;<var>derived-declarator-type-list</var> <var>Type</var>&rdquo; for <var>ident</var>, then
<code>T D1</code> specifies the type &ldquo;<var>derived-declarator-type-list</var>
<var>type-qualifier-and-attribute-specifier-list</var> pointer to <var>Type</var>&rdquo; for
<var>ident</var>.

 <p>For example,

<pre class="smallexample">     void (__attribute__((noreturn)) ****f) (void);
</pre>
 <p class="noindent">specifies the type &ldquo;pointer to pointer to pointer to pointer to
non-returning function returning <code>void</code>&rdquo;.  As another example,

<pre class="smallexample">     char *__attribute__((aligned(8))) *f;
</pre>
 <p class="noindent">specifies the type &ldquo;pointer to 8-byte-aligned pointer to <code>char</code>&rdquo;. 
Note again that this does not work with most attributes; for example,
the usage of &lsquo;<samp><span class="samp">aligned</span></samp>&rsquo; and &lsquo;<samp><span class="samp">noreturn</span></samp>&rsquo; attributes given above
is not yet supported.

 <p>For compatibility with existing code written for compiler versions that
did not implement attributes on nested declarators, some laxity is
allowed in the placing of attributes.  If an attribute that only applies
to types is applied to a declaration, it will be treated as applying to
the type of that declaration.  If an attribute that only applies to
declarations is applied to the type of a declaration, it will be treated
as applying to that declaration; and, for compatibility with code
placing the attributes immediately before the identifier declared, such
an attribute applied to a function return type will be treated as
applying to the function type, and such an attribute applied to an array
element type will be treated as applying to the array type.  If an
attribute that only applies to function types is applied to a
pointer-to-function type, it will be treated as applying to the pointer
target type; if such an attribute is applied to a function return type
that is not a pointer-to-function type, it will be treated as applying
to the function type.

<div class="node">
<a name="Function-Prototypes"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#C_002b_002b-Comments">C++ Comments</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Attribute-Syntax">Attribute Syntax</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.32 Prototypes and Old-Style Function Definitions</h3>

<p><a name="index-function-prototype-declarations-2558"></a><a name="index-old_002dstyle-function-definitions-2559"></a><a name="index-promotion-of-formal-parameters-2560"></a>
GNU C extends ISO C to allow a function prototype to override a later
old-style non-prototype definition.  Consider the following example:

<pre class="smallexample">     /* <span class="roman">Use prototypes unless the compiler is old-fashioned.</span>  */
     #ifdef __STDC__
     #define P(x) x
     #else
     #define P(x) ()
     #endif
     
     /* <span class="roman">Prototype function declaration.</span>  */
     int isroot P((uid_t));
     
     /* <span class="roman">Old-style function definition.</span>  */
     int
     isroot (x)   /* <span class="roman">??? lossage here ???</span> */
          uid_t x;
     {
       return x == 0;
     }
</pre>
 <p>Suppose the type <code>uid_t</code> happens to be <code>short</code>.  ISO C does
not allow this example, because subword arguments in old-style
non-prototype definitions are promoted.  Therefore in this example the
function definition's argument is really an <code>int</code>, which does not
match the prototype argument type of <code>short</code>.

 <p>This restriction of ISO C makes it hard to write code that is portable
to traditional C compilers, because the programmer does not know
whether the <code>uid_t</code> type is <code>short</code>, <code>int</code>, or
<code>long</code>.  Therefore, in cases like these GNU C allows a prototype
to override a later old-style definition.  More precisely, in GNU C, a
function prototype argument type overrides the argument type specified
by a later old-style definition if the former type is the same as the
latter type before promotion.  Thus in GNU C the above example is
equivalent to the following:

<pre class="smallexample">     int isroot (uid_t);
     
     int
     isroot (uid_t x)
     {
       return x == 0;
     }
</pre>
 <p class="noindent">GNU C++ does not support old-style function definitions, so this
extension is irrelevant.

<div class="node">
<a name="C++-Comments"></a>
<a name="C_002b_002b-Comments"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Dollar-Signs">Dollar Signs</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Function-Prototypes">Function Prototypes</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.33 C++ Style Comments</h3>

<p><a name="index-g_t_0040code_007b_002f_002f_007d-2561"></a><a name="index-C_002b_002b-comments-2562"></a><a name="index-comments_002c-C_002b_002b-style-2563"></a>
In GNU C, you may use C++ style comments, which start with &lsquo;<samp><span class="samp">//</span></samp>&rsquo; and
continue until the end of the line.  Many other C implementations allow
such comments, and they are included in the 1999 C standard.  However,
C++ style comments are not recognized if you specify an <samp><span class="option">-std</span></samp>
option specifying a version of ISO C before C99, or <samp><span class="option">-ansi</span></samp>
(equivalent to <samp><span class="option">-std=c90</span></samp>).

<div class="node">
<a name="Dollar-Signs"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Character-Escapes">Character Escapes</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#C_002b_002b-Comments">C++ Comments</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.34 Dollar Signs in Identifier Names</h3>

<p><a name="index-g_t_0024-2564"></a><a name="index-dollar-signs-in-identifier-names-2565"></a><a name="index-identifier-names_002c-dollar-signs-in-2566"></a>
In GNU C, you may normally use dollar signs in identifier names. 
This is because many traditional C implementations allow such identifiers. 
However, dollar signs in identifiers are not supported on a few target
machines, typically because the target assembler does not allow them.

<div class="node">
<a name="Character-Escapes"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Variable-Attributes">Variable Attributes</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Dollar-Signs">Dollar Signs</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.35 The Character &lt;ESC&gt; in Constants</h3>

<p>You can use the sequence &lsquo;<samp><span class="samp">\e</span></samp>&rsquo; in a string or character constant to
stand for the ASCII character &lt;ESC&gt;.

<div class="node">
<a name="Variable-Attributes"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Type-Attributes">Type Attributes</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Character-Escapes">Character Escapes</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.36 Specifying Attributes of Variables</h3>

<p><a name="index-attribute-of-variables-2567"></a><a name="index-variable-attributes-2568"></a>
The keyword <code>__attribute__</code> allows you to specify special
attributes of variables or structure fields.  This keyword is followed
by an attribute specification inside double parentheses.  Some
attributes are currently defined generically for variables. 
Other attributes are defined for variables on particular target
systems.  Other attributes are available for functions
(see <a href="#Function-Attributes">Function Attributes</a>) and for types (see <a href="#Type-Attributes">Type Attributes</a>). 
Other front ends might define more attributes
(see <a href="#C_002b_002b-Extensions">Extensions to the C++ Language</a>).

 <p>You may also specify attributes with &lsquo;<samp><span class="samp">__</span></samp>&rsquo; preceding and following
each keyword.  This allows you to use them in header files without
being concerned about a possible macro of the same name.  For example,
you may use <code>__aligned__</code> instead of <code>aligned</code>.

 <p>See <a href="#Attribute-Syntax">Attribute Syntax</a>, for details of the exact syntax for using
attributes.

     
<a name="index-g_t_0040code_007baligned_007d-attribute-2569"></a>
<dl><dt><code>aligned (</code><var>alignment</var><code>)</code><dd>This attribute specifies a minimum alignment for the variable or
structure field, measured in bytes.  For example, the declaration:

     <pre class="smallexample">          int x __attribute__ ((aligned (16))) = 0;
</pre>
     <p class="noindent">causes the compiler to allocate the global variable <code>x</code> on a
16-byte boundary.  On a 68040, this could be used in conjunction with
an <code>asm</code> expression to access the <code>move16</code> instruction which
requires 16-byte aligned operands.

     <p>You can also specify the alignment of structure fields.  For example, to
create a double-word aligned <code>int</code> pair, you could write:

     <pre class="smallexample">          struct foo { int x[2] __attribute__ ((aligned (8))); };
</pre>
     <p class="noindent">This is an alternative to creating a union with a <code>double</code> member
that forces the union to be double-word aligned.

     <p>As in the preceding examples, you can explicitly specify the alignment
(in bytes) that you wish the compiler to use for a given variable or
structure field.  Alternatively, you can leave out the alignment factor
and just ask the compiler to align a variable or field to the
default alignment for the target architecture you are compiling for. 
The default alignment is sufficient for all scalar types, but may not be
enough for all vector types on a target which supports vector operations. 
The default alignment is fixed for a particular target ABI.

     <p>Gcc also provides a target specific macro <code>__BIGGEST_ALIGNMENT__</code>,
which is the largest alignment ever used for any data type on the
target machine you are compiling for.  For example, you could write:

     <pre class="smallexample">          short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__)));
</pre>
     <p>The compiler automatically sets the alignment for the declared
variable or field to <code>__BIGGEST_ALIGNMENT__</code>.  Doing this can
often make copy operations more efficient, because the compiler can
use whatever instructions copy the biggest chunks of memory when
performing copies to or from the variables or fields that you have
aligned this way.  Note that the value of <code>__BIGGEST_ALIGNMENT__</code>
may change depending on command line options.

     <p>When used on a struct, or struct member, the <code>aligned</code> attribute can
only increase the alignment; in order to decrease it, the <code>packed</code>
attribute must be specified as well.  When used as part of a typedef, the
<code>aligned</code> attribute can both increase and decrease alignment, and
specifying the <code>packed</code> attribute will generate a warning.

     <p>Note that the effectiveness of <code>aligned</code> attributes may be limited
by inherent limitations in your linker.  On many systems, the linker is
only able to arrange for variables to be aligned up to a certain maximum
alignment.  (For some linkers, the maximum supported alignment may
be very very small.)  If your linker is only able to align variables
up to a maximum of 8 byte alignment, then specifying <code>aligned(16)</code>
in an <code>__attribute__</code> will still only provide you with 8 byte
alignment.  See your linker documentation for further information.

     <p>The <code>aligned</code> attribute can also be used for functions
(see <a href="#Function-Attributes">Function Attributes</a>.)

     <br><dt><code>cleanup (</code><var>cleanup_function</var><code>)</code><dd><a name="index-g_t_0040code_007bcleanup_007d-attribute-2570"></a>The <code>cleanup</code> attribute runs a function when the variable goes
out of scope.  This attribute can only be applied to auto function
scope variables; it may not be applied to parameters or variables
with static storage duration.  The function must take one parameter,
a pointer to a type compatible with the variable.  The return value
of the function (if any) is ignored.

     <p>If <samp><span class="option">-fexceptions</span></samp> is enabled, then <var>cleanup_function</var>
will be run during the stack unwinding that happens during the
processing of the exception.  Note that the <code>cleanup</code> attribute
does not allow the exception to be caught, only to perform an action. 
It is undefined what happens if <var>cleanup_function</var> does not
return normally.

     <br><dt><code>common</code><dt><code>nocommon</code><dd><a name="index-g_t_0040code_007bcommon_007d-attribute-2571"></a><a name="index-g_t_0040code_007bnocommon_007d-attribute-2572"></a><a name="index-fcommon-2573"></a><a name="index-fno_002dcommon-2574"></a>The <code>common</code> attribute requests GCC to place a variable in
&ldquo;common&rdquo; storage.  The <code>nocommon</code> attribute requests the
opposite&mdash;to allocate space for it directly.

     <p>These attributes override the default chosen by the
<samp><span class="option">-fno-common</span></samp> and <samp><span class="option">-fcommon</span></samp> flags respectively.

     <br><dt><code>deprecated</code><dt><code>deprecated (</code><var>msg</var><code>)</code><dd><a name="index-g_t_0040code_007bdeprecated_007d-attribute-2575"></a>The <code>deprecated</code> attribute results in a warning if the variable
is used anywhere in the source file.  This is useful when identifying
variables that are expected to be removed in a future version of a
program.  The warning also includes the location of the declaration
of the deprecated variable, to enable users to easily find further
information about why the variable is deprecated, or what they should
do instead.  Note that the warning only occurs for uses:

     <pre class="smallexample">          extern int old_var __attribute__ ((deprecated));
          extern int old_var;
          int new_fn () { return old_var; }
</pre>
     <p>results in a warning on line 3 but not line 2.  The optional msg
argument, which must be a string, will be printed in the warning if
present.

     <p>The <code>deprecated</code> attribute can also be used for functions and
types (see <a href="#Function-Attributes">Function Attributes</a>, see <a href="#Type-Attributes">Type Attributes</a>.)

     <br><dt><code>mode (</code><var>mode</var><code>)</code><dd><a name="index-g_t_0040code_007bmode_007d-attribute-2576"></a>This attribute specifies the data type for the declaration&mdash;whichever
type corresponds to the mode <var>mode</var>.  This in effect lets you
request an integer or floating point type according to its width.

     <p>You may also specify a mode of &lsquo;<samp><span class="samp">byte</span></samp>&rsquo; or &lsquo;<samp><span class="samp">__byte__</span></samp>&rsquo; to
indicate the mode corresponding to a one-byte integer, &lsquo;<samp><span class="samp">word</span></samp>&rsquo; or
&lsquo;<samp><span class="samp">__word__</span></samp>&rsquo; for the mode of a one-word integer, and &lsquo;<samp><span class="samp">pointer</span></samp>&rsquo;
or &lsquo;<samp><span class="samp">__pointer__</span></samp>&rsquo; for the mode used to represent pointers.

     <br><dt><code>packed</code><dd><a name="index-g_t_0040code_007bpacked_007d-attribute-2577"></a>The <code>packed</code> attribute specifies that a variable or structure field
should have the smallest possible alignment&mdash;one byte for a variable,
and one bit for a field, unless you specify a larger value with the
<code>aligned</code> attribute.

     <p>Here is a structure in which the field <code>x</code> is packed, so that it
immediately follows <code>a</code>:

     <pre class="smallexample">          struct foo
          {
            char a;
            int x[2] __attribute__ ((packed));
          };
</pre>
     <p><em>Note:</em> The 4.1, 4.2 and 4.3 series of GCC ignore the
<code>packed</code> attribute on bit-fields of type <code>char</code>.  This has
been fixed in GCC 4.4 but the change can lead to differences in the
structure layout.  See the documentation of
<samp><span class="option">-Wpacked-bitfield-compat</span></samp> for more information.

     <br><dt><code>section ("</code><var>section-name</var><code>")</code><dd><a name="index-g_t_0040code_007bsection_007d-variable-attribute-2578"></a>Normally, the compiler places the objects it generates in sections like
<code>data</code> and <code>bss</code>.  Sometimes, however, you need additional sections,
or you need certain particular variables to appear in special sections,
for example to map to special hardware.  The <code>section</code>
attribute specifies that a variable (or function) lives in a particular
section.  For example, this small program uses several specific section names:

     <pre class="smallexample">          struct duart a __attribute__ ((section ("DUART_A"))) = { 0 };
          struct duart b __attribute__ ((section ("DUART_B"))) = { 0 };
          char stack[10000] __attribute__ ((section ("STACK"))) = { 0 };
          int init_data __attribute__ ((section ("INITDATA")));
          
          main()
          {
            /* <span class="roman">Initialize stack pointer</span> */
            init_sp (stack + sizeof (stack));
          
            /* <span class="roman">Initialize initialized data</span> */
            memcpy (&amp;init_data, &amp;data, &amp;edata - &amp;data);
          
            /* <span class="roman">Turn on the serial ports</span> */
            init_duart (&amp;a);
            init_duart (&amp;b);
          }
</pre>
     <p class="noindent">Use the <code>section</code> attribute with
<em>global</em> variables and not <em>local</em> variables,
as shown in the example.

     <p>You may use the <code>section</code> attribute with initialized or
uninitialized global variables but the linker requires
each object be defined once, with the exception that uninitialized
variables tentatively go in the <code>common</code> (or <code>bss</code>) section
and can be multiply &ldquo;defined&rdquo;.  Using the <code>section</code> attribute
will change what section the variable goes into and may cause the
linker to issue an error if an uninitialized variable has multiple
definitions.  You can force a variable to be initialized with the
<samp><span class="option">-fno-common</span></samp> flag or the <code>nocommon</code> attribute.

     <p>Some file formats do not support arbitrary sections so the <code>section</code>
attribute is not available on all platforms. 
If you need to map the entire contents of a module to a particular
section, consider using the facilities of the linker instead.

     <br><dt><code>shared</code><dd><a name="index-g_t_0040code_007bshared_007d-variable-attribute-2579"></a>On Microsoft Windows, in addition to putting variable definitions in a named
section, the section can also be shared among all running copies of an
executable or DLL.  For example, this small program defines shared data
by putting it in a named section <code>shared</code> and marking the section
shareable:

     <pre class="smallexample">          int foo __attribute__((section ("shared"), shared)) = 0;
          
          int
          main()
          {
            /* <span class="roman">Read and write foo.  All running
               copies see the same value.</span>  */
            return 0;
          }
</pre>
     <p class="noindent">You may only use the <code>shared</code> attribute along with <code>section</code>
attribute with a fully initialized global definition because of the way
linkers work.  See <code>section</code> attribute for more information.

     <p>The <code>shared</code> attribute is only available on Microsoft Windows.

     <br><dt><code>tls_model ("</code><var>tls_model</var><code>")</code><dd><a name="index-g_t_0040code_007btls_005fmodel_007d-attribute-2580"></a>The <code>tls_model</code> attribute sets thread-local storage model
(see <a href="#Thread_002dLocal">Thread-Local</a>) of a particular <code>__thread</code> variable,
overriding <samp><span class="option">-ftls-model=</span></samp> command-line switch on a per-variable
basis. 
The <var>tls_model</var> argument should be one of <code>global-dynamic</code>,
<code>local-dynamic</code>, <code>initial-exec</code> or <code>local-exec</code>.

     <p>Not all targets support this attribute.

     <br><dt><code>unused</code><dd>This attribute, attached to a variable, means that the variable is meant
to be possibly unused.  GCC will not produce a warning for this
variable.

     <br><dt><code>used</code><dd>This attribute, attached to a variable, means that the variable must be
emitted even if it appears that the variable is not referenced.

     <br><dt><code>vector_size (</code><var>bytes</var><code>)</code><dd>This attribute specifies the vector size for the variable, measured in
bytes.  For example, the declaration:

     <pre class="smallexample">          int foo __attribute__ ((vector_size (16)));
</pre>
     <p class="noindent">causes the compiler to set the mode for <code>foo</code>, to be 16 bytes,
divided into <code>int</code> sized units.  Assuming a 32-bit int (a vector of
4 units of 4 bytes), the corresponding mode of <code>foo</code> will be V4SI.

     <p>This attribute is only applicable to integral and float scalars,
although arrays, pointers, and function return values are allowed in
conjunction with this construct.

     <p>Aggregates with this attribute are invalid, even if they are of the same
size as a corresponding scalar.  For example, the declaration:

     <pre class="smallexample">          struct S { int a; };
          struct S  __attribute__ ((vector_size (16))) foo;
</pre>
     <p class="noindent">is invalid even if the size of the structure is the same as the size of
the <code>int</code>.

     <br><dt><code>selectany</code><dd>The <code>selectany</code> attribute causes an initialized global variable to
have link-once semantics.  When multiple definitions of the variable are
encountered by the linker, the first is selected and the remainder are
discarded.  Following usage by the Microsoft compiler, the linker is told
<em>not</em> to warn about size or content differences of the multiple
definitions.

     <p>Although the primary usage of this attribute is for POD types, the
attribute can also be applied to global C++ objects that are initialized
by a constructor.  In this case, the static initialization and destruction
code for the object is emitted in each translation defining the object,
but the calls to the constructor and destructor are protected by a
link-once guard variable.

     <p>The <code>selectany</code> attribute is only available on Microsoft Windows
targets.  You can use <code>__declspec (selectany)</code> as a synonym for
<code>__attribute__ ((selectany))</code> for compatibility with other
compilers.

     <br><dt><code>weak</code><dd>The <code>weak</code> attribute is described in <a href="#Function-Attributes">Function Attributes</a>.

     <br><dt><code>dllimport</code><dd>The <code>dllimport</code> attribute is described in <a href="#Function-Attributes">Function Attributes</a>.

     <br><dt><code>dllexport</code><dd>The <code>dllexport</code> attribute is described in <a href="#Function-Attributes">Function Attributes</a>.

 </dl>

<h4 class="subsection">6.36.1 AVR Variable Attributes</h4>

     <dl>
<dt><code>progmem</code><dd><a name="index-g_t_0040code_007bprogmem_007d-AVR-variable-attribute-2581"></a>The <code>progmem</code> attribute is used on the AVR to place data in the program
memory address space (flash). This is accomplished by putting
respective variables into a section whose name starts with <code>.progmem</code>.

     <p>AVR is a Harvard architecture processor and data and reas only data
normally resides in the data memory address space (RAM). 
</dl>

<h4 class="subsection">6.36.2 Blackfin Variable Attributes</h4>

<p>Three attributes are currently defined for the Blackfin.

     <dl>
<dt><code>l1_data</code><dt><code>l1_data_A</code><dt><code>l1_data_B</code><dd><a name="index-g_t_0040code_007bl1_005fdata_007d-variable-attribute-2582"></a><a name="index-g_t_0040code_007bl1_005fdata_005fA_007d-variable-attribute-2583"></a><a name="index-g_t_0040code_007bl1_005fdata_005fB_007d-variable-attribute-2584"></a>Use these attributes on the Blackfin to place the variable into L1 Data SRAM. 
Variables with <code>l1_data</code> attribute will be put into the specific section
named <code>.l1.data</code>. Those with <code>l1_data_A</code> attribute will be put into
the specific section named <code>.l1.data.A</code>. Those with <code>l1_data_B</code>
attribute will be put into the specific section named <code>.l1.data.B</code>.

     <br><dt><code>l2</code><dd><a name="index-g_t_0040code_007bl2_007d-variable-attribute-2585"></a>Use this attribute on the Blackfin to place the variable into L2 SRAM. 
Variables with <code>l2</code> attribute will be put into the specific section
named <code>.l2.data</code>. 
</dl>

<h4 class="subsection">6.36.3 M32R/D Variable Attributes</h4>

<p>One attribute is currently defined for the M32R/D.

     <dl>
<dt><code>model (</code><var>model-name</var><code>)</code><dd><a name="index-variable-addressability-on-the-M32R_002fD-2586"></a>Use this attribute on the M32R/D to set the addressability of an object. 
The identifier <var>model-name</var> is one of <code>small</code>, <code>medium</code>,
or <code>large</code>, representing each of the code models.

     <p>Small model objects live in the lower 16MB of memory (so that their
addresses can be loaded with the <code>ld24</code> instruction).

     <p>Medium and large model objects may live anywhere in the 32-bit address space
(the compiler will generate <code>seth/add3</code> instructions to load their
addresses). 
</dl>

 <p><a name="MeP-Variable-Attributes"></a>

<h4 class="subsection">6.36.4 MeP Variable Attributes</h4>

<p>The MeP target has a number of addressing modes and busses.  The
<code>near</code> space spans the standard memory space's first 16 megabytes
(24 bits).  The <code>far</code> space spans the entire 32-bit memory space. 
The <code>based</code> space is a 128 byte region in the memory space which
is addressed relative to the <code>$tp</code> register.  The <code>tiny</code>
space is a 65536 byte region relative to the <code>$gp</code> register.  In
addition to these memory regions, the MeP target has a separate 16-bit
control bus which is specified with <code>cb</code> attributes.

     <dl>
<dt><code>based</code><dd>Any variable with the <code>based</code> attribute will be assigned to the
<code>.based</code> section, and will be accessed with relative to the
<code>$tp</code> register.

     <br><dt><code>tiny</code><dd>Likewise, the <code>tiny</code> attribute assigned variables to the
<code>.tiny</code> section, relative to the <code>$gp</code> register.

     <br><dt><code>near</code><dd>Variables with the <code>near</code> attribute are assumed to have addresses
that fit in a 24-bit addressing mode.  This is the default for large
variables (<code>-mtiny=4</code> is the default) but this attribute can
override <code>-mtiny=</code> for small variables, or override <code>-ml</code>.

     <br><dt><code>far</code><dd>Variables with the <code>far</code> attribute are addressed using a full
32-bit address.  Since this covers the entire memory space, this
allows modules to make no assumptions about where variables might be
stored.

     <br><dt><code>io</code><dt><code>io (</code><var>addr</var><code>)</code><dd>Variables with the <code>io</code> attribute are used to address
memory-mapped peripherals.  If an address is specified, the variable
is assigned that address, else it is not assigned an address (it is
assumed some other module will assign an address).  Example:

     <pre class="example">          int timer_count __attribute__((io(0x123)));
</pre>
     <br><dt><code>cb</code><dt><code>cb (</code><var>addr</var><code>)</code><dd>Variables with the <code>cb</code> attribute are used to access the control
bus, using special instructions.  <code>addr</code> indicates the control bus
address.  Example:

     <pre class="example">          int cpu_clock __attribute__((cb(0x123)));
</pre>
     </dl>

 <p><a name="i386-Variable-Attributes"></a>

<h4 class="subsection">6.36.5 i386 Variable Attributes</h4>

<p>Two attributes are currently defined for i386 configurations:
<code>ms_struct</code> and <code>gcc_struct</code>

     <dl>
<dt><code>ms_struct</code><dt><code>gcc_struct</code><dd><a name="index-g_t_0040code_007bms_005fstruct_007d-attribute-2587"></a><a name="index-g_t_0040code_007bgcc_005fstruct_007d-attribute-2588"></a>
If <code>packed</code> is used on a structure, or if bit-fields are used
it may be that the Microsoft ABI packs them differently
than GCC would normally pack them.  Particularly when moving packed
data between functions compiled with GCC and the native Microsoft compiler
(either via function call or as data in a file), it may be necessary to access
either format.

     <p>Currently <samp><span class="option">-m[no-]ms-bitfields</span></samp> is provided for the Microsoft Windows X86
compilers to match the native Microsoft compiler.

     <p>The Microsoft structure layout algorithm is fairly simple with the exception
of the bitfield packing:

     <p>The padding and alignment of members of structures and whether a bit field
can straddle a storage-unit boundary

          <ol type=1 start=1>
<li>Structure members are stored sequentially in the order in which they are
declared: the first member has the lowest memory address and the last member
the highest.

          <li>Every data object has an alignment-requirement. The alignment-requirement
for all data except structures, unions, and arrays is either the size of the
object or the current packing size (specified with either the aligned attribute
or the pack pragma), whichever is less. For structures,  unions, and arrays,
the alignment-requirement is the largest alignment-requirement of its members. 
Every object is allocated an offset so that:

          <p>offset %  alignment-requirement == 0

          <li>Adjacent bit fields are packed into the same 1-, 2-, or 4-byte allocation
unit if the integral types are the same size and if the next bit field fits
into the current allocation unit without crossing the boundary imposed by the
common alignment requirements of the bit fields.
          </ol>

     <p>Handling of zero-length bitfields:

     <p>MSVC interprets zero-length bitfields in the following ways:

          <ol type=1 start=1>
<li>If a zero-length bitfield is inserted between two bitfields that would
normally be coalesced, the bitfields will not be coalesced.

          <p>For example:

          <pre class="smallexample">               struct
                {
                  unsigned long bf_1 : 12;
                  unsigned long : 0;
                  unsigned long bf_2 : 12;
                } t1;
</pre>
          <p>The size of <code>t1</code> would be 8 bytes with the zero-length bitfield.  If the
zero-length bitfield were removed, <code>t1</code>'s size would be 4 bytes.

          <li>If a zero-length bitfield is inserted after a bitfield, <code>foo</code>, and the
alignment of the zero-length bitfield is greater than the member that follows it,
<code>bar</code>, <code>bar</code> will be aligned as the type of the zero-length bitfield.

          <p>For example:

          <pre class="smallexample">               struct
                {
                  char foo : 4;
                  short : 0;
                  char bar;
                } t2;
               
               struct
                {
                  char foo : 4;
                  short : 0;
                  double bar;
                } t3;
</pre>
          <p>For <code>t2</code>, <code>bar</code> will be placed at offset 2, rather than offset 1. 
Accordingly, the size of <code>t2</code> will be 4.  For <code>t3</code>, the zero-length
bitfield will not affect the alignment of <code>bar</code> or, as a result, the size
of the structure.

          <p>Taking this into account, it is important to note the following:

               <ol type=1 start=1>
<li>If a zero-length bitfield follows a normal bitfield, the type of the
zero-length bitfield may affect the alignment of the structure as whole. For
example, <code>t2</code> has a size of 4 bytes, since the zero-length bitfield follows a
normal bitfield, and is of type short.

               <li>Even if a zero-length bitfield is not followed by a normal bitfield, it may
still affect the alignment of the structure:

               <pre class="smallexample">                    struct
                     {
                       char foo : 6;
                       long : 0;
                     } t4;
</pre>
               <p>Here, <code>t4</code> will take up 4 bytes.
               </ol>

          <li>Zero-length bitfields following non-bitfield members are ignored:

          <pre class="smallexample">               struct
                {
                  char foo;
                  long : 0;
                  char bar;
                } t5;
</pre>
          <p>Here, <code>t5</code> will take up 2 bytes.
          </ol>
</dl>

<h4 class="subsection">6.36.6 PowerPC Variable Attributes</h4>

<p>Three attributes currently are defined for PowerPC configurations:
<code>altivec</code>, <code>ms_struct</code> and <code>gcc_struct</code>.

 <p>For full documentation of the struct attributes please see the
documentation in <a href="#i386-Variable-Attributes">i386 Variable Attributes</a>.

 <p>For documentation of <code>altivec</code> attribute please see the
documentation in <a href="#PowerPC-Type-Attributes">PowerPC Type Attributes</a>.

<h4 class="subsection">6.36.7 SPU Variable Attributes</h4>

<p>The SPU supports the <code>spu_vector</code> attribute for variables.  For
documentation of this attribute please see the documentation in
<a href="#SPU-Type-Attributes">SPU Type Attributes</a>.

<h4 class="subsection">6.36.8 Xstormy16 Variable Attributes</h4>

<p>One attribute is currently defined for xstormy16 configurations:
<code>below100</code>.

     <dl>
<dt><code>below100</code><dd><a name="index-g_t_0040code_007bbelow100_007d-attribute-2589"></a>
If a variable has the <code>below100</code> attribute (<code>BELOW100</code> is
allowed also), GCC will place the variable in the first 0x100 bytes of
memory and use special opcodes to access it.  Such variables will be
placed in either the <code>.bss_below100</code> section or the
<code>.data_below100</code> section.

 </dl>

<div class="node">
<a name="Type-Attributes"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Alignment">Alignment</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Variable-Attributes">Variable Attributes</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.37 Specifying Attributes of Types</h3>

<p><a name="index-attribute-of-types-2590"></a><a name="index-type-attributes-2591"></a>
The keyword <code>__attribute__</code> allows you to specify special
attributes of <code>struct</code> and <code>union</code> types when you define
such types.  This keyword is followed by an attribute specification
inside double parentheses.  Seven attributes are currently defined for
types: <code>aligned</code>, <code>packed</code>, <code>transparent_union</code>,
<code>unused</code>, <code>deprecated</code>, <code>visibility</code>, and
<code>may_alias</code>.  Other attributes are defined for functions
(see <a href="#Function-Attributes">Function Attributes</a>) and for variables (see <a href="#Variable-Attributes">Variable Attributes</a>).

 <p>You may also specify any one of these attributes with &lsquo;<samp><span class="samp">__</span></samp>&rsquo;
preceding and following its keyword.  This allows you to use these
attributes in header files without being concerned about a possible
macro of the same name.  For example, you may use <code>__aligned__</code>
instead of <code>aligned</code>.

 <p>You may specify type attributes in an enum, struct or union type
declaration or definition, or for other types in a <code>typedef</code>
declaration.

 <p>For an enum, struct or union type, you may specify attributes either
between the enum, struct or union tag and the name of the type, or
just past the closing curly brace of the <em>definition</em>.  The
former syntax is preferred.

 <p>See <a href="#Attribute-Syntax">Attribute Syntax</a>, for details of the exact syntax for using
attributes.

     
<a name="index-g_t_0040code_007baligned_007d-attribute-2592"></a>
<dl><dt><code>aligned (</code><var>alignment</var><code>)</code><dd>This attribute specifies a minimum alignment (in bytes) for variables
of the specified type.  For example, the declarations:

     <pre class="smallexample">          struct S { short f[3]; } __attribute__ ((aligned (8)));
          typedef int more_aligned_int __attribute__ ((aligned (8)));
</pre>
     <p class="noindent">force the compiler to insure (as far as it can) that each variable whose
type is <code>struct S</code> or <code>more_aligned_int</code> will be allocated and
aligned <em>at least</em> on a 8-byte boundary.  On a SPARC, having all
variables of type <code>struct S</code> aligned to 8-byte boundaries allows
the compiler to use the <code>ldd</code> and <code>std</code> (doubleword load and
store) instructions when copying one variable of type <code>struct S</code> to
another, thus improving run-time efficiency.

     <p>Note that the alignment of any given <code>struct</code> or <code>union</code> type
is required by the ISO C standard to be at least a perfect multiple of
the lowest common multiple of the alignments of all of the members of
the <code>struct</code> or <code>union</code> in question.  This means that you <em>can</em>
effectively adjust the alignment of a <code>struct</code> or <code>union</code>
type by attaching an <code>aligned</code> attribute to any one of the members
of such a type, but the notation illustrated in the example above is a
more obvious, intuitive, and readable way to request the compiler to
adjust the alignment of an entire <code>struct</code> or <code>union</code> type.

     <p>As in the preceding example, you can explicitly specify the alignment
(in bytes) that you wish the compiler to use for a given <code>struct</code>
or <code>union</code> type.  Alternatively, you can leave out the alignment factor
and just ask the compiler to align a type to the maximum
useful alignment for the target machine you are compiling for.  For
example, you could write:

     <pre class="smallexample">          struct S { short f[3]; } __attribute__ ((aligned));
</pre>
     <p>Whenever you leave out the alignment factor in an <code>aligned</code>
attribute specification, the compiler automatically sets the alignment
for the type to the largest alignment which is ever used for any data
type on the target machine you are compiling for.  Doing this can often
make copy operations more efficient, because the compiler can use
whatever instructions copy the biggest chunks of memory when performing
copies to or from the variables which have types that you have aligned
this way.

     <p>In the example above, if the size of each <code>short</code> is 2 bytes, then
the size of the entire <code>struct S</code> type is 6 bytes.  The smallest
power of two which is greater than or equal to that is 8, so the
compiler sets the alignment for the entire <code>struct S</code> type to 8
bytes.

     <p>Note that although you can ask the compiler to select a time-efficient
alignment for a given type and then declare only individual stand-alone
objects of that type, the compiler's ability to select a time-efficient
alignment is primarily useful only when you plan to create arrays of
variables having the relevant (efficiently aligned) type.  If you
declare or use arrays of variables of an efficiently-aligned type, then
it is likely that your program will also be doing pointer arithmetic (or
subscripting, which amounts to the same thing) on pointers to the
relevant type, and the code that the compiler generates for these
pointer arithmetic operations will often be more efficient for
efficiently-aligned types than for other types.

     <p>The <code>aligned</code> attribute can only increase the alignment; but you
can decrease it by specifying <code>packed</code> as well.  See below.

     <p>Note that the effectiveness of <code>aligned</code> attributes may be limited
by inherent limitations in your linker.  On many systems, the linker is
only able to arrange for variables to be aligned up to a certain maximum
alignment.  (For some linkers, the maximum supported alignment may
be very very small.)  If your linker is only able to align variables
up to a maximum of 8 byte alignment, then specifying <code>aligned(16)</code>
in an <code>__attribute__</code> will still only provide you with 8 byte
alignment.  See your linker documentation for further information.

     <br><dt><code>packed</code><dd>This attribute, attached to <code>struct</code> or <code>union</code> type
definition, specifies that each member (other than zero-width bitfields)
of the structure or union is placed to minimize the memory required.  When
attached to an <code>enum</code> definition, it indicates that the smallest
integral type should be used.

     <p><a name="index-fshort_002denums-2593"></a>Specifying this attribute for <code>struct</code> and <code>union</code> types is
equivalent to specifying the <code>packed</code> attribute on each of the
structure or union members.  Specifying the <samp><span class="option">-fshort-enums</span></samp>
flag on the line is equivalent to specifying the <code>packed</code>
attribute on all <code>enum</code> definitions.

     <p>In the following example <code>struct my_packed_struct</code>'s members are
packed closely together, but the internal layout of its <code>s</code> member
is not packed&mdash;to do that, <code>struct my_unpacked_struct</code> would need to
be packed too.

     <pre class="smallexample">          struct my_unpacked_struct
           {
              char c;
              int i;
           };
          
          struct __attribute__ ((__packed__)) my_packed_struct
            {
               char c;
               int  i;
               struct my_unpacked_struct s;
            };
</pre>
     <p>You may only specify this attribute on the definition of an <code>enum</code>,
<code>struct</code> or <code>union</code>, not on a <code>typedef</code> which does not
also define the enumerated type, structure or union.

     <br><dt><code>transparent_union</code><dd>This attribute, attached to a <code>union</code> type definition, indicates
that any function parameter having that union type causes calls to that
function to be treated in a special way.

     <p>First, the argument corresponding to a transparent union type can be of
any type in the union; no cast is required.  Also, if the union contains
a pointer type, the corresponding argument can be a null pointer
constant or a void pointer expression; and if the union contains a void
pointer type, the corresponding argument can be any pointer expression. 
If the union member type is a pointer, qualifiers like <code>const</code> on
the referenced type must be respected, just as with normal pointer
conversions.

     <p>Second, the argument is passed to the function using the calling
conventions of the first member of the transparent union, not the calling
conventions of the union itself.  All members of the union must have the
same machine representation; this is necessary for this argument passing
to work properly.

     <p>Transparent unions are designed for library functions that have multiple
interfaces for compatibility reasons.  For example, suppose the
<code>wait</code> function must accept either a value of type <code>int *</code> to
comply with Posix, or a value of type <code>union wait *</code> to comply with
the 4.1BSD interface.  If <code>wait</code>'s parameter were <code>void *</code>,
<code>wait</code> would accept both kinds of arguments, but it would also
accept any other pointer type and this would make argument type checking
less useful.  Instead, <code>&lt;sys/wait.h&gt;</code> might define the interface
as follows:

     <pre class="smallexample">          typedef union __attribute__ ((__transparent_union__))
            {
              int *__ip;
              union wait *__up;
            } wait_status_ptr_t;
          
          pid_t wait (wait_status_ptr_t);
</pre>
     <p>This interface allows either <code>int *</code> or <code>union wait *</code>
arguments to be passed, using the <code>int *</code> calling convention. 
The program can call <code>wait</code> with arguments of either type:

     <pre class="smallexample">          int w1 () { int w; return wait (&amp;w); }
          int w2 () { union wait w; return wait (&amp;w); }
</pre>
     <p>With this interface, <code>wait</code>'s implementation might look like this:

     <pre class="smallexample">          pid_t wait (wait_status_ptr_t p)
          {
            return waitpid (-1, p.__ip, 0);
          }
</pre>
     <br><dt><code>unused</code><dd>When attached to a type (including a <code>union</code> or a <code>struct</code>),
this attribute means that variables of that type are meant to appear
possibly unused.  GCC will not produce a warning for any variables of
that type, even if the variable appears to do nothing.  This is often
the case with lock or thread classes, which are usually defined and then
not referenced, but contain constructors and destructors that have
nontrivial bookkeeping functions.

     <br><dt><code>deprecated</code><dt><code>deprecated (</code><var>msg</var><code>)</code><dd>The <code>deprecated</code> attribute results in a warning if the type
is used anywhere in the source file.  This is useful when identifying
types that are expected to be removed in a future version of a program. 
If possible, the warning also includes the location of the declaration
of the deprecated type, to enable users to easily find further
information about why the type is deprecated, or what they should do
instead.  Note that the warnings only occur for uses and then only
if the type is being applied to an identifier that itself is not being
declared as deprecated.

     <pre class="smallexample">          typedef int T1 __attribute__ ((deprecated));
          T1 x;
          typedef T1 T2;
          T2 y;
          typedef T1 T3 __attribute__ ((deprecated));
          T3 z __attribute__ ((deprecated));
</pre>
     <p>results in a warning on line 2 and 3 but not lines 4, 5, or 6.  No
warning is issued for line 4 because T2 is not explicitly
deprecated.  Line 5 has no warning because T3 is explicitly
deprecated.  Similarly for line 6.  The optional msg
argument, which must be a string, will be printed in the warning if
present.

     <p>The <code>deprecated</code> attribute can also be used for functions and
variables (see <a href="#Function-Attributes">Function Attributes</a>, see <a href="#Variable-Attributes">Variable Attributes</a>.)

     <br><dt><code>may_alias</code><dd>Accesses through pointers to types with this attribute are not subject
to type-based alias analysis, but are instead assumed to be able to alias
any other type of objects.  In the context of 6.5/7 an lvalue expression
dereferencing such a pointer is treated like having a character type. 
See <samp><span class="option">-fstrict-aliasing</span></samp> for more information on aliasing issues. 
This extension exists to support some vector APIs, in which pointers to
one vector type are permitted to alias pointers to a different vector type.

     <p>Note that an object of a type with this attribute does not have any
special semantics.

     <p>Example of use:

     <pre class="smallexample">          typedef short __attribute__((__may_alias__)) short_a;
          
          int
          main (void)
          {
            int a = 0x12345678;
            short_a *b = (short_a *) &amp;a;
          
            b[1] = 0;
          
            if (a == 0x12345678)
              abort();
          
            exit(0);
          }
</pre>
     <p>If you replaced <code>short_a</code> with <code>short</code> in the variable
declaration, the above program would abort when compiled with
<samp><span class="option">-fstrict-aliasing</span></samp>, which is on by default at <samp><span class="option">-O2</span></samp> or
above in recent GCC versions.

     <br><dt><code>visibility</code><dd>In C++, attribute visibility (see <a href="#Function-Attributes">Function Attributes</a>) can also be
applied to class, struct, union and enum types.  Unlike other type
attributes, the attribute must appear between the initial keyword and
the name of the type; it cannot appear after the body of the type.

     <p>Note that the type visibility is applied to vague linkage entities
associated with the class (vtable, typeinfo node, etc.).  In
particular, if a class is thrown as an exception in one shared object
and caught in another, the class must have default visibility. 
Otherwise the two shared objects will be unable to use the same
typeinfo node and exception handling will break.

 </dl>

<h4 class="subsection">6.37.1 ARM Type Attributes</h4>

<p>On those ARM targets that support <code>dllimport</code> (such as Symbian
OS), you can use the <code>notshared</code> attribute to indicate that the
virtual table and other similar data for a class should not be
exported from a DLL.  For example:

<pre class="smallexample">     class __declspec(notshared) C {
     public:
       __declspec(dllimport) C();
       virtual void f();
     }
     
     __declspec(dllexport)
     C::C() {}
</pre>
 <p>In this code, <code>C::C</code> is exported from the current DLL, but the
virtual table for <code>C</code> is not exported.  (You can use
<code>__attribute__</code> instead of <code>__declspec</code> if you prefer, but
most Symbian OS code uses <code>__declspec</code>.)

 <p><a name="MeP-Type-Attributes"></a>

<h4 class="subsection">6.37.2 MeP Type Attributes</h4>

<p>Many of the MeP variable attributes may be applied to types as well. 
Specifically, the <code>based</code>, <code>tiny</code>, <code>near</code>, and
<code>far</code> attributes may be applied to either.  The <code>io</code> and
<code>cb</code> attributes may not be applied to types.

 <p><a name="i386-Type-Attributes"></a>

<h4 class="subsection">6.37.3 i386 Type Attributes</h4>

<p>Two attributes are currently defined for i386 configurations:
<code>ms_struct</code> and <code>gcc_struct</code>.

     <dl>
<dt><code>ms_struct</code><dt><code>gcc_struct</code><dd><a name="index-g_t_0040code_007bms_005fstruct_007d-2594"></a><a name="index-g_t_0040code_007bgcc_005fstruct_007d-2595"></a>
If <code>packed</code> is used on a structure, or if bit-fields are used
it may be that the Microsoft ABI packs them differently
than GCC would normally pack them.  Particularly when moving packed
data between functions compiled with GCC and the native Microsoft compiler
(either via function call or as data in a file), it may be necessary to access
either format.

     <p>Currently <samp><span class="option">-m[no-]ms-bitfields</span></samp> is provided for the Microsoft Windows X86
compilers to match the native Microsoft compiler. 
</dl>

 <p>To specify multiple attributes, separate them by commas within the
double parentheses: for example, &lsquo;<samp><span class="samp">__attribute__ ((aligned (16),
packed))</span></samp>&rsquo;.

 <p><a name="PowerPC-Type-Attributes"></a>

<h4 class="subsection">6.37.4 PowerPC Type Attributes</h4>

<p>Three attributes currently are defined for PowerPC configurations:
<code>altivec</code>, <code>ms_struct</code> and <code>gcc_struct</code>.

 <p>For full documentation of the <code>ms_struct</code> and <code>gcc_struct</code>
attributes please see the documentation in <a href="#i386-Type-Attributes">i386 Type Attributes</a>.

 <p>The <code>altivec</code> attribute allows one to declare AltiVec vector data
types supported by the AltiVec Programming Interface Manual.  The
attribute requires an argument to specify one of three vector types:
<code>vector__</code>, <code>pixel__</code> (always followed by unsigned short),
and <code>bool__</code> (always followed by unsigned).

<pre class="smallexample">     __attribute__((altivec(vector__)))
     __attribute__((altivec(pixel__))) unsigned short
     __attribute__((altivec(bool__))) unsigned
</pre>
 <p>These attributes mainly are intended to support the <code>__vector</code>,
<code>__pixel</code>, and <code>__bool</code> AltiVec keywords.

 <p><a name="SPU-Type-Attributes"></a>

<h4 class="subsection">6.37.5 SPU Type Attributes</h4>

<p>The SPU supports the <code>spu_vector</code> attribute for types.  This attribute
allows one to declare vector data types supported by the Sony/Toshiba/IBM SPU
Language Extensions Specification.  It is intended to support the
<code>__vector</code> keyword.

<div class="node">
<a name="Alignment"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Inline">Inline</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Type-Attributes">Type Attributes</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.38 Inquiring on Alignment of Types or Variables</h3>

<p><a name="index-alignment-2596"></a><a name="index-type-alignment-2597"></a><a name="index-variable-alignment-2598"></a>
The keyword <code>__alignof__</code> allows you to inquire about how an object
is aligned, or the minimum alignment usually required by a type.  Its
syntax is just like <code>sizeof</code>.

 <p>For example, if the target machine requires a <code>double</code> value to be
aligned on an 8-byte boundary, then <code>__alignof__ (double)</code> is 8. 
This is true on many RISC machines.  On more traditional machine
designs, <code>__alignof__ (double)</code> is 4 or even 2.

 <p>Some machines never actually require alignment; they allow reference to any
data type even at an odd address.  For these machines, <code>__alignof__</code>
reports the smallest alignment that GCC will give the data type, usually as
mandated by the target ABI.

 <p>If the operand of <code>__alignof__</code> is an lvalue rather than a type,
its value is the required alignment for its type, taking into account
any minimum alignment specified with GCC's <code>__attribute__</code>
extension (see <a href="#Variable-Attributes">Variable Attributes</a>).  For example, after this
declaration:

<pre class="smallexample">     struct foo { int x; char y; } foo1;
</pre>
 <p class="noindent">the value of <code>__alignof__ (foo1.y)</code> is 1, even though its actual
alignment is probably 2 or 4, the same as <code>__alignof__ (int)</code>.

 <p>It is an error to ask for the alignment of an incomplete type.

<div class="node">
<a name="Inline"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Volatiles">Volatiles</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Alignment">Alignment</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.39 An Inline Function is As Fast As a Macro</h3>

<p><a name="index-inline-functions-2599"></a><a name="index-integrating-function-code-2600"></a><a name="index-open-coding-2601"></a><a name="index-macros_002c-inline-alternative-2602"></a>
By declaring a function inline, you can direct GCC to make
calls to that function faster.  One way GCC can achieve this is to
integrate that function's code into the code for its callers.  This
makes execution faster by eliminating the function-call overhead; in
addition, if any of the actual argument values are constant, their
known values may permit simplifications at compile time so that not
all of the inline function's code needs to be included.  The effect on
code size is less predictable; object code may be larger or smaller
with function inlining, depending on the particular case.  You can
also direct GCC to try to integrate all &ldquo;simple enough&rdquo; functions
into their callers with the option <samp><span class="option">-finline-functions</span></samp>.

 <p>GCC implements three different semantics of declaring a function
inline.  One is available with <samp><span class="option">-std=gnu89</span></samp> or
<samp><span class="option">-fgnu89-inline</span></samp> or when <code>gnu_inline</code> attribute is present
on all inline declarations, another when
<samp><span class="option">-std=c99</span></samp>, <samp><span class="option">-std=c1x</span></samp>,
<samp><span class="option">-std=gnu99</span></samp> or <samp><span class="option">-std=gnu1x</span></samp>
(without <samp><span class="option">-fgnu89-inline</span></samp>), and the third
is used when compiling C++.

 <p>To declare a function inline, use the <code>inline</code> keyword in its
declaration, like this:

<pre class="smallexample">     static inline int
     inc (int *a)
     {
       return (*a)++;
     }
</pre>
 <p>If you are writing a header file to be included in ISO C90 programs, write
<code>__inline__</code> instead of <code>inline</code>.  See <a href="#Alternate-Keywords">Alternate Keywords</a>.

 <p>The three types of inlining behave similarly in two important cases:
when the <code>inline</code> keyword is used on a <code>static</code> function,
like the example above, and when a function is first declared without
using the <code>inline</code> keyword and then is defined with
<code>inline</code>, like this:

<pre class="smallexample">     extern int inc (int *a);
     inline int
     inc (int *a)
     {
       return (*a)++;
     }
</pre>
 <p>In both of these common cases, the program behaves the same as if you
had not used the <code>inline</code> keyword, except for its speed.

 <p><a name="index-inline-functions_002c-omission-of-2603"></a><a name="index-fkeep_002dinline_002dfunctions-2604"></a>When a function is both inline and <code>static</code>, if all calls to the
function are integrated into the caller, and the function's address is
never used, then the function's own assembler code is never referenced. 
In this case, GCC does not actually output assembler code for the
function, unless you specify the option <samp><span class="option">-fkeep-inline-functions</span></samp>. 
Some calls cannot be integrated for various reasons (in particular,
calls that precede the function's definition cannot be integrated, and
neither can recursive calls within the definition).  If there is a
nonintegrated call, then the function is compiled to assembler code as
usual.  The function must also be compiled as usual if the program
refers to its address, because that can't be inlined.

 <p><a name="index-Winline-2605"></a>Note that certain usages in a function definition can make it unsuitable
for inline substitution.  Among these usages are: use of varargs, use of
alloca, use of variable sized data types (see <a href="#Variable-Length">Variable Length</a>),
use of computed goto (see <a href="#Labels-as-Values">Labels as Values</a>), use of nonlocal goto,
and nested functions (see <a href="#Nested-Functions">Nested Functions</a>).  Using <samp><span class="option">-Winline</span></samp>
will warn when a function marked <code>inline</code> could not be substituted,
and will give the reason for the failure.

 <p><a name="index-automatic-_0040code_007binline_007d-for-C_002b_002b-member-fns-2606"></a><a name="index-g_t_0040code_007binline_007d-automatic-for-C_002b_002b-member-fns-2607"></a><a name="index-member-fns_002c-automatically-_0040code_007binline_007d-2608"></a><a name="index-C_002b_002b-member-fns_002c-automatically-_0040code_007binline_007d-2609"></a><a name="index-fno_002ddefault_002dinline-2610"></a>As required by ISO C++, GCC considers member functions defined within
the body of a class to be marked inline even if they are
not explicitly declared with the <code>inline</code> keyword.  You can
override this with <samp><span class="option">-fno-default-inline</span></samp>; see <a href="#C_002b_002b-Dialect-Options">Options Controlling C++ Dialect</a>.

 <p>GCC does not inline any functions when not optimizing unless you specify
the &lsquo;<samp><span class="samp">always_inline</span></samp>&rsquo; attribute for the function, like this:

<pre class="smallexample">     /* <span class="roman">Prototype.</span>  */
     inline void foo (const char) __attribute__((always_inline));
</pre>
 <p>The remainder of this section is specific to GNU C90 inlining.

 <p><a name="index-non_002dstatic-inline-function-2611"></a>When an inline function is not <code>static</code>, then the compiler must assume
that there may be calls from other source files; since a global symbol can
be defined only once in any program, the function must not be defined in
the other source files, so the calls therein cannot be integrated. 
Therefore, a non-<code>static</code> inline function is always compiled on its
own in the usual fashion.

 <p>If you specify both <code>inline</code> and <code>extern</code> in the function
definition, then the definition is used only for inlining.  In no case
is the function compiled on its own, not even if you refer to its
address explicitly.  Such an address becomes an external reference, as
if you had only declared the function, and had not defined it.

 <p>This combination of <code>inline</code> and <code>extern</code> has almost the
effect of a macro.  The way to use it is to put a function definition in
a header file with these keywords, and put another copy of the
definition (lacking <code>inline</code> and <code>extern</code>) in a library file. 
The definition in the header file will cause most calls to the function
to be inlined.  If any uses of the function remain, they will refer to
the single copy in the library.

<div class="node">
<a name="Volatiles"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Extended-Asm">Extended Asm</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Inline">Inline</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.40 When is a Volatile Object Accessed?</h3>

<p><a name="index-accessing-volatiles-2612"></a><a name="index-volatile-read-2613"></a><a name="index-volatile-write-2614"></a><a name="index-volatile-access-2615"></a>
C has the concept of volatile objects.  These are normally accessed by
pointers and used for accessing hardware or inter-thread
communication.  The standard encourages compilers to refrain from
optimizations concerning accesses to volatile objects, but leaves it
implementation defined as to what constitutes a volatile access.  The
minimum requirement is that at a sequence point all previous accesses
to volatile objects have stabilized and no subsequent accesses have
occurred.  Thus an implementation is free to reorder and combine
volatile accesses which occur between sequence points, but cannot do
so for accesses across a sequence point.  The use of volatile does
not allow you to violate the restriction on updating objects multiple
times between two sequence points.

 <p>Accesses to non-volatile objects are not ordered with respect to
volatile accesses.  You cannot use a volatile object as a memory
barrier to order a sequence of writes to non-volatile memory.  For
instance:

<pre class="smallexample">     int *ptr = <var>something</var>;
     volatile int vobj;
     *ptr = <var>something</var>;
     vobj = 1;
</pre>
 <p>Unless <var>*ptr</var> and <var>vobj</var> can be aliased, it is not guaranteed
that the write to <var>*ptr</var> will have occurred by the time the update
of <var>vobj</var> has happened.  If you need this guarantee, you must use
a stronger memory barrier such as:

<pre class="smallexample">     int *ptr = <var>something</var>;
     volatile int vobj;
     *ptr = <var>something</var>;
     asm volatile ("" : : : "memory");
     vobj = 1;
</pre>
 <p>A scalar volatile object is read when it is accessed in a void context:

<pre class="smallexample">     volatile int *src = <var>somevalue</var>;
     *src;
</pre>
 <p>Such expressions are rvalues, and GCC implements this as a
read of the volatile object being pointed to.

 <p>Assignments are also expressions and have an rvalue.  However when
assigning to a scalar volatile, the volatile object is not reread,
regardless of whether the assignment expression's rvalue is used or
not.  If the assignment's rvalue is used, the value is that assigned
to the volatile object.  For instance, there is no read of <var>vobj</var>
in all the following cases:

<pre class="smallexample">     int obj;
     volatile int vobj;
     vobj = <var>something</var>;
     obj = vobj = <var>something</var>;
     obj ? vobj = <var>onething</var> : vobj = <var>anotherthing</var>;
     obj = (<var>something</var>, vobj = <var>anotherthing</var>);
</pre>
 <p>If you need to read the volatile object after an assignment has
occurred, you must use a separate expression with an intervening
sequence point.

 <p>As bitfields are not individually addressable, volatile bitfields may
be implicitly read when written to, or when adjacent bitfields are
accessed.  Bitfield operations may be optimized such that adjacent
bitfields are only partially accessed, if they straddle a storage unit
boundary.  For these reasons it is unwise to use volatile bitfields to
access hardware.

<div class="node">
<a name="Extended-Asm"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Constraints">Constraints</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Volatiles">Volatiles</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.41 Assembler Instructions with C Expression Operands</h3>

<p><a name="index-extended-_0040code_007basm_007d-2616"></a><a name="index-g_t_0040code_007basm_007d-expressions-2617"></a><a name="index-assembler-instructions-2618"></a><a name="index-registers-2619"></a>
In an assembler instruction using <code>asm</code>, you can specify the
operands of the instruction using C expressions.  This means you need not
guess which registers or memory locations will contain the data you want
to use.

 <p>You must specify an assembler instruction template much like what
appears in a machine description, plus an operand constraint string for
each operand.

 <p>For example, here is how to use the 68881's <code>fsinx</code> instruction:

<pre class="smallexample">     asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));
</pre>
 <p class="noindent">Here <code>angle</code> is the C expression for the input operand while
<code>result</code> is that of the output operand.  Each has &lsquo;<samp><span class="samp">"f"</span></samp>&rsquo; as its
operand constraint, saying that a floating point register is required. 
The &lsquo;<samp><span class="samp">=</span></samp>&rsquo; in &lsquo;<samp><span class="samp">=f</span></samp>&rsquo; indicates that the operand is an output; all
output operands' constraints must use &lsquo;<samp><span class="samp">=</span></samp>&rsquo;.  The constraints use the
same language used in the machine description (see <a href="#Constraints">Constraints</a>).

 <p>Each operand is described by an operand-constraint string followed by
the C expression in parentheses.  A colon separates the assembler
template from the first output operand and another separates the last
output operand from the first input, if any.  Commas separate the
operands within each group.  The total number of operands is currently
limited to 30; this limitation may be lifted in some future version of
GCC.

 <p>If there are no output operands but there are input operands, you must
place two consecutive colons surrounding the place where the output
operands would go.

 <p>As of GCC version 3.1, it is also possible to specify input and output
operands using symbolic names which can be referenced within the
assembler code.  These names are specified inside square brackets
preceding the constraint string, and can be referenced inside the
assembler code using <code>%[</code><var>name</var><code>]</code> instead of a percentage sign
followed by the operand number.  Using named operands the above example
could look like:

<pre class="smallexample">     asm ("fsinx %[angle],%[output]"
          : [output] "=f" (result)
          : [angle] "f" (angle));
</pre>
 <p class="noindent">Note that the symbolic operand names have no relation whatsoever to
other C identifiers.  You may use any name you like, even those of
existing C symbols, but you must ensure that no two operands within the same
assembler construct use the same symbolic name.

 <p>Output operand expressions must be lvalues; the compiler can check this. 
The input operands need not be lvalues.  The compiler cannot check
whether the operands have data types that are reasonable for the
instruction being executed.  It does not parse the assembler instruction
template and does not know what it means or even whether it is valid
assembler input.  The extended <code>asm</code> feature is most often used for
machine instructions the compiler itself does not know exist.  If
the output expression cannot be directly addressed (for example, it is a
bit-field), your constraint must allow a register.  In that case, GCC
will use the register as the output of the <code>asm</code>, and then store
that register into the output.

 <p>The ordinary output operands must be write-only; GCC will assume that
the values in these operands before the instruction are dead and need
not be generated.  Extended asm supports input-output or read-write
operands.  Use the constraint character &lsquo;<samp><span class="samp">+</span></samp>&rsquo; to indicate such an
operand and list it with the output operands.  You should only use
read-write operands when the constraints for the operand (or the
operand in which only some of the bits are to be changed) allow a
register.

 <p>You may, as an alternative, logically split its function into two
separate operands, one input operand and one write-only output
operand.  The connection between them is expressed by constraints
which say they need to be in the same location when the instruction
executes.  You can use the same C expression for both operands, or
different expressions.  For example, here we write the (fictitious)
&lsquo;<samp><span class="samp">combine</span></samp>&rsquo; instruction with <code>bar</code> as its read-only source
operand and <code>foo</code> as its read-write destination:

<pre class="smallexample">     asm ("combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar));
</pre>
 <p class="noindent">The constraint &lsquo;<samp><span class="samp">"0"</span></samp>&rsquo; for operand 1 says that it must occupy the
same location as operand 0.  A number in constraint is allowed only in
an input operand and it must refer to an output operand.

 <p>Only a number in the constraint can guarantee that one operand will be in
the same place as another.  The mere fact that <code>foo</code> is the value
of both operands is not enough to guarantee that they will be in the
same place in the generated assembler code.  The following would not
work reliably:

<pre class="smallexample">     asm ("combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar));
</pre>
 <p>Various optimizations or reloading could cause operands 0 and 1 to be in
different registers; GCC knows no reason not to do so.  For example, the
compiler might find a copy of the value of <code>foo</code> in one register and
use it for operand 1, but generate the output operand 0 in a different
register (copying it afterward to <code>foo</code>'s own address).  Of course,
since the register for operand 1 is not even mentioned in the assembler
code, the result will not work, but GCC can't tell that.

 <p>As of GCC version 3.1, one may write <code>[</code><var>name</var><code>]</code> instead of
the operand number for a matching constraint.  For example:

<pre class="smallexample">     asm ("cmoveq %1,%2,%[result]"
          : [result] "=r"(result)
          : "r" (test), "r"(new), "[result]"(old));
</pre>
 <p>Sometimes you need to make an <code>asm</code> operand be a specific register,
but there's no matching constraint letter for that register <em>by
itself</em>.  To force the operand into that register, use a local variable
for the operand and specify the register in the variable declaration. 
See <a href="#Explicit-Reg-Vars">Explicit Reg Vars</a>.  Then for the <code>asm</code> operand, use any
register constraint letter that matches the register:

<pre class="smallexample">     register int *p1 asm ("r0") = ...;
     register int *p2 asm ("r1") = ...;
     register int *result asm ("r0");
     asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
</pre>
 <p><a name="Example-of-asm-with-clobbered-asm-reg"></a>In the above example, beware that a register that is call-clobbered by
the target ABI will be overwritten by any function call in the
assignment, including library calls for arithmetic operators. 
Also a register may be clobbered when generating some operations,
like variable shift, memory copy or memory move on x86. 
Assuming it is a call-clobbered register, this may happen to <code>r0</code>
above by the assignment to <code>p2</code>.  If you have to use such a
register, use temporary variables for expressions between the register
assignment and use:

<pre class="smallexample">     int t1 = ...;
     register int *p1 asm ("r0") = ...;
     register int *p2 asm ("r1") = t1;
     register int *result asm ("r0");
     asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
</pre>
 <p>Some instructions clobber specific hard registers.  To describe this,
write a third colon after the input operands, followed by the names of
the clobbered hard registers (given as strings).  Here is a realistic
example for the VAX:

<pre class="smallexample">     asm volatile ("movc3 %0,%1,%2"
                   : /* <span class="roman">no outputs</span> */
                   : "g" (from), "g" (to), "g" (count)
                   : "r0", "r1", "r2", "r3", "r4", "r5");
</pre>
 <p>You may not write a clobber description in a way that overlaps with an
input or output operand.  For example, you may not have an operand
describing a register class with one member if you mention that register
in the clobber list.  Variables declared to live in specific registers
(see <a href="#Explicit-Reg-Vars">Explicit Reg Vars</a>), and used as asm input or output operands must
have no part mentioned in the clobber description. 
There is no way for you to specify that an input
operand is modified without also specifying it as an output
operand.  Note that if all the output operands you specify are for this
purpose (and hence unused), you will then also need to specify
<code>volatile</code> for the <code>asm</code> construct, as described below, to
prevent GCC from deleting the <code>asm</code> statement as unused.

 <p>If you refer to a particular hardware register from the assembler code,
you will probably have to list the register after the third colon to
tell the compiler the register's value is modified.  In some assemblers,
the register names begin with &lsquo;<samp><span class="samp">%</span></samp>&rsquo;; to produce one &lsquo;<samp><span class="samp">%</span></samp>&rsquo; in the
assembler code, you must write &lsquo;<samp><span class="samp">%%</span></samp>&rsquo; in the input.

 <p>If your assembler instruction can alter the condition code register, add
&lsquo;<samp><span class="samp">cc</span></samp>&rsquo; to the list of clobbered registers.  GCC on some machines
represents the condition codes as a specific hardware register;
&lsquo;<samp><span class="samp">cc</span></samp>&rsquo; serves to name this register.  On other machines, the
condition code is handled differently, and specifying &lsquo;<samp><span class="samp">cc</span></samp>&rsquo; has no
effect.  But it is valid no matter what the machine.

 <p>If your assembler instructions access memory in an unpredictable
fashion, add &lsquo;<samp><span class="samp">memory</span></samp>&rsquo; to the list of clobbered registers.  This
will cause GCC to not keep memory values cached in registers across the
assembler instruction and not optimize stores or loads to that memory. 
You will also want to add the <code>volatile</code> keyword if the memory
affected is not listed in the inputs or outputs of the <code>asm</code>, as
the &lsquo;<samp><span class="samp">memory</span></samp>&rsquo; clobber does not count as a side-effect of the
<code>asm</code>.  If you know how large the accessed memory is, you can add
it as input or output but if this is not known, you should add
&lsquo;<samp><span class="samp">memory</span></samp>&rsquo;.  As an example, if you access ten bytes of a string, you
can use a memory input like:

<pre class="smallexample">     {"m"( ({ struct { char x[10]; } *p = (void *)ptr ; *p; }) )}.
</pre>
 <p>Note that in the following example the memory input is necessary,
otherwise GCC might optimize the store to <code>x</code> away:
<pre class="smallexample">     int foo ()
     {
       int x = 42;
       int *y = &amp;x;
       int result;
       asm ("magic stuff accessing an 'int' pointed to by '%1'"
             "=&amp;d" (r) : "a" (y), "m" (*y));
       return result;
     }
</pre>
 <p>You can put multiple assembler instructions together in a single
<code>asm</code> template, separated by the characters normally used in assembly
code for the system.  A combination that works in most places is a newline
to break the line, plus a tab character to move to the instruction field
(written as &lsquo;<samp><span class="samp">\n\t</span></samp>&rsquo;).  Sometimes semicolons can be used, if the
assembler allows semicolons as a line-breaking character.  Note that some
assembler dialects use semicolons to start a comment. 
The input operands are guaranteed not to use any of the clobbered
registers, and neither will the output operands' addresses, so you can
read and write the clobbered registers as many times as you like.  Here
is an example of multiple instructions in a template; it assumes the
subroutine <code>_foo</code> accepts arguments in registers 9 and 10:

<pre class="smallexample">     asm ("movl %0,r9\n\tmovl %1,r10\n\tcall _foo"
          : /* no outputs */
          : "g" (from), "g" (to)
          : "r9", "r10");
</pre>
 <p>Unless an output operand has the &lsquo;<samp><span class="samp">&amp;</span></samp>&rsquo; constraint modifier, GCC
may allocate it in the same register as an unrelated input operand, on
the assumption the inputs are consumed before the outputs are produced. 
This assumption may be false if the assembler code actually consists of
more than one instruction.  In such a case, use &lsquo;<samp><span class="samp">&amp;</span></samp>&rsquo; for each output
operand that may not overlap an input.  See <a href="#Modifiers">Modifiers</a>.

 <p>If you want to test the condition code produced by an assembler
instruction, you must include a branch and a label in the <code>asm</code>
construct, as follows:

<pre class="smallexample">     asm ("clr %0\n\tfrob %1\n\tbeq 0f\n\tmov #1,%0\n0:"
          : "g" (result)
          : "g" (input));
</pre>
 <p class="noindent">This assumes your assembler supports local labels, as the GNU assembler
and most Unix assemblers do.

 <p>Speaking of labels, jumps from one <code>asm</code> to another are not
supported.  The compiler's optimizers do not know about these jumps, and
therefore they cannot take account of them when deciding how to
optimize.  See <a href="#Extended-asm-with-goto">Extended asm with goto</a>.

 <p><a name="index-macros-containing-_0040code_007basm_007d-2620"></a>Usually the most convenient way to use these <code>asm</code> instructions is to
encapsulate them in macros that look like functions.  For example,

<pre class="smallexample">     #define sin(x)       \
     ({ double __value, __arg = (x);   \
        asm ("fsinx %1,%0": "=f" (__value): "f" (__arg));  \
        __value; })
</pre>
 <p class="noindent">Here the variable <code>__arg</code> is used to make sure that the instruction
operates on a proper <code>double</code> value, and to accept only those
arguments <code>x</code> which can convert automatically to a <code>double</code>.

 <p>Another way to make sure the instruction operates on the correct data
type is to use a cast in the <code>asm</code>.  This is different from using a
variable <code>__arg</code> in that it converts more different types.  For
example, if the desired type were <code>int</code>, casting the argument to
<code>int</code> would accept a pointer with no complaint, while assigning the
argument to an <code>int</code> variable named <code>__arg</code> would warn about
using a pointer unless the caller explicitly casts it.

 <p>If an <code>asm</code> has output operands, GCC assumes for optimization
purposes the instruction has no side effects except to change the output
operands.  This does not mean instructions with a side effect cannot be
used, but you must be careful, because the compiler may eliminate them
if the output operands aren't used, or move them out of loops, or
replace two with one if they constitute a common subexpression.  Also,
if your instruction does have a side effect on a variable that otherwise
appears not to change, the old value of the variable may be reused later
if it happens to be found in a register.

 <p>You can prevent an <code>asm</code> instruction from being deleted
by writing the keyword <code>volatile</code> after
the <code>asm</code>.  For example:

<pre class="smallexample">     #define get_and_set_priority(new)              \
     ({ int __old;                                  \
        asm volatile ("get_and_set_priority %0, %1" \
                      : "=g" (__old) : "g" (new));  \
        __old; })
</pre>
 <p class="noindent">The <code>volatile</code> keyword indicates that the instruction has
important side-effects.  GCC will not delete a volatile <code>asm</code> if
it is reachable.  (The instruction can still be deleted if GCC can
prove that control-flow will never reach the location of the
instruction.)  Note that even a volatile <code>asm</code> instruction
can be moved relative to other code, including across jump
instructions.  For example, on many targets there is a system
register which can be set to control the rounding mode of
floating point operations.  You might try
setting it with a volatile <code>asm</code>, like this PowerPC example:

<pre class="smallexample">            asm volatile("mtfsf 255,%0" : : "f" (fpenv));
            sum = x + y;
</pre>
 <p class="noindent">This will not work reliably, as the compiler may move the addition back
before the volatile <code>asm</code>.  To make it work you need to add an
artificial dependency to the <code>asm</code> referencing a variable in the code
you don't want moved, for example:

<pre class="smallexample">         asm volatile ("mtfsf 255,%1" : "=X"(sum): "f"(fpenv));
         sum = x + y;
</pre>
 <p>Similarly, you can't expect a
sequence of volatile <code>asm</code> instructions to remain perfectly
consecutive.  If you want consecutive output, use a single <code>asm</code>. 
Also, GCC will perform some optimizations across a volatile <code>asm</code>
instruction; GCC does not &ldquo;forget everything&rdquo; when it encounters
a volatile <code>asm</code> instruction the way some other compilers do.

 <p>An <code>asm</code> instruction without any output operands will be treated
identically to a volatile <code>asm</code> instruction.

 <p>It is a natural idea to look for a way to give access to the condition
code left by the assembler instruction.  However, when we attempted to
implement this, we found no way to make it work reliably.  The problem
is that output operands might need reloading, which would result in
additional following &ldquo;store&rdquo; instructions.  On most machines, these
instructions would alter the condition code before there was time to
test it.  This problem doesn't arise for ordinary &ldquo;test&rdquo; and
&ldquo;compare&rdquo; instructions because they don't have any output operands.

 <p>For reasons similar to those described above, it is not possible to give
an assembler instruction access to the condition code left by previous
instructions.

 <p><a name="Extended-asm-with-goto"></a>As of GCC version 4.5, <code>asm goto</code> may be used to have the assembly
jump to one or more C labels.  In this form, a fifth section after the
clobber list contains a list of all C labels to which the assembly may jump. 
Each label operand is implicitly self-named.  The <code>asm</code> is also assumed
to fall through to the next statement.

 <p>This form of <code>asm</code> is restricted to not have outputs.  This is due
to a internal restriction in the compiler that control transfer instructions
cannot have outputs.  This restriction on <code>asm goto</code> may be lifted
in some future version of the compiler.  In the mean time, <code>asm goto</code>
may include a memory clobber, and so leave outputs in memory.

<pre class="smallexample">     int frob(int x)
     {
       int y;
       asm goto ("frob %%r5, %1; jc %l[error]; mov (%2), %%r5"
                 : : "r"(x), "r"(&amp;y) : "r5", "memory" : error);
       return y;
      error:
       return -1;
     }
</pre>
 <p>In this (inefficient) example, the <code>frob</code> instruction sets the
carry bit to indicate an error.  The <code>jc</code> instruction detects
this and branches to the <code>error</code> label.  Finally, the output
of the <code>frob</code> instruction (<code>%r5</code>) is stored into the memory
for variable <code>y</code>, which is later read by the <code>return</code> statement.

<pre class="smallexample">     void doit(void)
     {
       int i = 0;
       asm goto ("mfsr %%r1, 123; jmp %%r1;"
                 ".pushsection doit_table;"
                 ".long %l0, %l1, %l2, %l3;"
                 ".popsection"
                 : : : "r1" : label1, label2, label3, label4);
       __builtin_unreachable ();
     
      label1:
       f1();
       return;
      label2:
       f2();
       return;
      label3:
       i = 1;
      label4:
       f3(i);
     }
</pre>
 <p>In this (also inefficient) example, the <code>mfsr</code> instruction reads
an address from some out-of-band machine register, and the following
<code>jmp</code> instruction branches to that address.  The address read by
the <code>mfsr</code> instruction is assumed to have been previously set via
some application-specific mechanism to be one of the four values stored
in the <code>doit_table</code> section.  Finally, the <code>asm</code> is followed
by a call to <code>__builtin_unreachable</code> to indicate that the <code>asm</code>
does not in fact fall through.

<pre class="smallexample">     #define TRACE1(NUM)                         \
       do {                                      \
         asm goto ("0: nop;"                     \
                   ".pushsection trace_table;"   \
                   ".long 0b, %l0;"              \
                   ".popsection"                 \
                   : : : : trace#NUM);           \
         if (0) { trace#NUM: trace(); }          \
       } while (0)
     #define TRACE  TRACE1(__COUNTER__)
</pre>
 <p>In this example (which in fact inspired the <code>asm goto</code> feature)
we want on rare occasions to call the <code>trace</code> function; on other
occasions we'd like to keep the overhead to the absolute minimum. 
The normal code path consists of a single <code>nop</code> instruction. 
However, we record the address of this <code>nop</code> together with the
address of a label that calls the <code>trace</code> function.  This allows
the <code>nop</code> instruction to be patched at runtime to be an
unconditional branch to the stored label.  It is assumed that an
optimizing compiler will move the labeled block out of line, to
optimize the fall through path from the <code>asm</code>.

 <p>If you are writing a header file that should be includable in ISO C
programs, write <code>__asm__</code> instead of <code>asm</code>.  See <a href="#Alternate-Keywords">Alternate Keywords</a>.

<h4 class="subsection">6.41.1 Size of an <code>asm</code></h4>

<p>Some targets require that GCC track the size of each instruction used in
order to generate correct code.  Because the final length of an
<code>asm</code> is only known by the assembler, GCC must make an estimate as
to how big it will be.  The estimate is formed by counting the number of
statements in the pattern of the <code>asm</code> and multiplying that by the
length of the longest instruction on that processor.  Statements in the
<code>asm</code> are identified by newline characters and whatever statement
separator characters are supported by the assembler; on most processors
this is the `<code>;</code>' character.

 <p>Normally, GCC's estimate is perfectly adequate to ensure that correct
code is generated, but it is possible to confuse the compiler if you use
pseudo instructions or assembler macros that expand into multiple real
instructions or if you use assembler directives that expand to more
space in the object file than would be needed for a single instruction. 
If this happens then the assembler will produce a diagnostic saying that
a label is unreachable.

<h4 class="subsection">6.41.2 i386 floating point asm operands</h4>

<p>There are several rules on the usage of stack-like regs in
asm_operands insns.  These rules apply only to the operands that are
stack-like regs:

     <ol type=1 start=1>
<li>Given a set of input regs that die in an asm_operands, it is
necessary to know which are implicitly popped by the asm, and
which must be explicitly popped by gcc.

     <p>An input reg that is implicitly popped by the asm must be
explicitly clobbered, unless it is constrained to match an
output operand.

     <li>For any input reg that is implicitly popped by an asm, it is
necessary to know how to adjust the stack to compensate for the pop. 
If any non-popped input is closer to the top of the reg-stack than
the implicitly popped reg, it would not be possible to know what the
stack looked like&mdash;it's not clear how the rest of the stack &ldquo;slides
up&rdquo;.

     <p>All implicitly popped input regs must be closer to the top of
the reg-stack than any input that is not implicitly popped.

     <p>It is possible that if an input dies in an insn, reload might
use the input reg for an output reload.  Consider this example:

     <pre class="smallexample">          asm ("foo" : "=t" (a) : "f" (b));
</pre>
     <p>This asm says that input B is not popped by the asm, and that
the asm pushes a result onto the reg-stack, i.e., the stack is one
deeper after the asm than it was before.  But, it is possible that
reload will think that it can use the same reg for both the input and
the output, if input B dies in this insn.

     <p>If any input operand uses the <code>f</code> constraint, all output reg
constraints must use the <code>&amp;</code> earlyclobber.

     <p>The asm above would be written as

     <pre class="smallexample">          asm ("foo" : "=&amp;t" (a) : "f" (b));
</pre>
     <li>Some operands need to be in particular places on the stack.  All
output operands fall in this category&mdash;there is no other way to
know which regs the outputs appear in unless the user indicates
this in the constraints.

     <p>Output operands must specifically indicate which reg an output
appears in after an asm.  <code>=f</code> is not allowed: the operand
constraints must select a class with a single reg.

     <li>Output operands may not be &ldquo;inserted&rdquo; between existing stack regs. 
Since no 387 opcode uses a read/write operand, all output operands
are dead before the asm_operands, and are pushed by the asm_operands. 
It makes no sense to push anywhere but the top of the reg-stack.

     <p>Output operands must start at the top of the reg-stack: output
operands may not &ldquo;skip&rdquo; a reg.

     <li>Some asm statements may need extra stack space for internal
calculations.  This can be guaranteed by clobbering stack registers
unrelated to the inputs and outputs.

      </ol>

 <p>Here are a couple of reasonable asms to want to write.  This asm
takes one input, which is internally popped, and produces two outputs.

<pre class="smallexample">     asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
</pre>
 <p>This asm takes two inputs, which are popped by the <code>fyl2xp1</code> opcode,
and replaces them with one output.  The user must code the <code>st(1)</code>
clobber for reg-stack.c to know that <code>fyl2xp1</code> pops both inputs.

<pre class="smallexample">     asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
</pre>
 <!-- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1996, 1998, 1999, 2000, 2001, -->
<!-- 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<!-- Most of this node appears by itself (in a different place) even -->
<!-- when the INTERNALS flag is clear.  Passages that require the internals -->
<!-- manual's context are conditionalized to appear only in the internals manual. -->
<div class="node">
<a name="Constraints"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Asm-Labels">Asm Labels</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Extended-Asm">Extended Asm</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.42 Constraints for <code>asm</code> Operands</h3>

<p><a name="index-operand-constraints_002c-_0040code_007basm_007d-2621"></a><a name="index-constraints_002c-_0040code_007basm_007d-2622"></a><a name="index-g_t_0040code_007basm_007d-constraints-2623"></a>
Here are specific details on what constraint letters you can use with
<code>asm</code> operands. 
Constraints can say whether
an operand may be in a register, and which kinds of register; whether the
operand can be a memory reference, and which kinds of address; whether the
operand may be an immediate constant, and which possible values it may
have.  Constraints can also require two operands to match. 
Side-effects aren't allowed in operands of inline <code>asm</code>, unless
&lsquo;<samp><span class="samp">&lt;</span></samp>&rsquo; or &lsquo;<samp><span class="samp">&gt;</span></samp>&rsquo; constraints are used, because there is no guarantee
that the side-effects will happen exactly once in an instruction that can update
the addressing register.

<ul class="menu">
<li><a accesskey="1" href="#Simple-Constraints">Simple Constraints</a>:   Basic use of constraints. 
<li><a accesskey="2" href="#Multi_002dAlternative">Multi-Alternative</a>:    When an insn has two alternative constraint-patterns. 
<li><a accesskey="3" href="#Modifiers">Modifiers</a>:            More precise control over effects of constraints. 
<li><a accesskey="4" href="#Machine-Constraints">Machine Constraints</a>:  Special constraints for some particular machines. 
</ul>

<div class="node">
<a name="Simple-Constraints"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Multi_002dAlternative">Multi-Alternative</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Constraints">Constraints</a>

</div>

<h4 class="subsection">6.42.1 Simple Constraints</h4>

<p><a name="index-simple-constraints-2624"></a>
The simplest kind of constraint is a string full of letters, each of
which describes one kind of operand that is permitted.  Here are
the letters that are allowed:

     <dl>
<dt>whitespace<dd>Whitespace characters are ignored and can be inserted at any position
except the first.  This enables each alternative for different operands to
be visually aligned in the machine description even if they have different
number of constraints and modifiers.

     <p><a name="index-g_t_0040samp_007bm_007d-in-constraint-2625"></a><a name="index-memory-references-in-constraints-2626"></a><br><dt>&lsquo;<samp><span class="samp">m</span></samp>&rsquo;<dd>A memory operand is allowed, with any kind of address that the machine
supports in general. 
Note that the letter used for the general memory constraint can be
re-defined by a back end using the <code>TARGET_MEM_CONSTRAINT</code> macro.

     <p><a name="index-offsettable-address-2627"></a><a name="index-g_t_0040samp_007bo_007d-in-constraint-2628"></a><br><dt>&lsquo;<samp><span class="samp">o</span></samp>&rsquo;<dd>A memory operand is allowed, but only if the address is
<dfn>offsettable</dfn>.  This means that adding a small integer (actually,
the width in bytes of the operand, as determined by its machine mode)
may be added to the address and the result is also a valid memory
address.

     <p><a name="index-autoincrement_002fdecrement-addressing-2629"></a>For example, an address which is constant is offsettable; so is an
address that is the sum of a register and a constant (as long as a
slightly larger constant is also within the range of address-offsets
supported by the machine); but an autoincrement or autodecrement
address is not offsettable.  More complicated indirect/indexed
addresses may or may not be offsettable depending on the other
addressing modes that the machine supports.

     <p>Note that in an output operand which can be matched by another
operand, the constraint letter &lsquo;<samp><span class="samp">o</span></samp>&rsquo; is valid only when accompanied
by both &lsquo;<samp><span class="samp">&lt;</span></samp>&rsquo; (if the target machine has predecrement addressing)
and &lsquo;<samp><span class="samp">&gt;</span></samp>&rsquo; (if the target machine has preincrement addressing).

     <p><a name="index-g_t_0040samp_007bV_007d-in-constraint-2630"></a><br><dt>&lsquo;<samp><span class="samp">V</span></samp>&rsquo;<dd>A memory operand that is not offsettable.  In other words, anything that
would fit the &lsquo;<samp><span class="samp">m</span></samp>&rsquo; constraint but not the &lsquo;<samp><span class="samp">o</span></samp>&rsquo; constraint.

     <p><a name="index-g_t_0040samp_007b_003c_007d-in-constraint-2631"></a><br><dt>&lsquo;<samp><span class="samp">&lt;</span></samp>&rsquo;<dd>A memory operand with autodecrement addressing (either predecrement or
postdecrement) is allowed.  In inline <code>asm</code> this constraint is only
allowed if the operand is used exactly once in an instruction that can
handle the side-effects.  Not using an operand with &lsquo;<samp><span class="samp">&lt;</span></samp>&rsquo; in constraint
string in the inline <code>asm</code> pattern at all or using it in multiple
instructions isn't valid, because the side-effects wouldn't be performed
or would be performed more than once.  Furthermore, on some targets
the operand with &lsquo;<samp><span class="samp">&lt;</span></samp>&rsquo; in constraint string must be accompanied by
special instruction suffixes like <code>%U0</code> instruction suffix on PowerPC
or <code>%P0</code> on IA-64.

     <p><a name="index-g_t_0040samp_007b_003e_007d-in-constraint-2632"></a><br><dt>&lsquo;<samp><span class="samp">&gt;</span></samp>&rsquo;<dd>A memory operand with autoincrement addressing (either preincrement or
postincrement) is allowed.  In inline <code>asm</code> the same restrictions
as for &lsquo;<samp><span class="samp">&lt;</span></samp>&rsquo; apply.

     <p><a name="index-g_t_0040samp_007br_007d-in-constraint-2633"></a><a name="index-registers-in-constraints-2634"></a><br><dt>&lsquo;<samp><span class="samp">r</span></samp>&rsquo;<dd>A register operand is allowed provided that it is in a general
register.

     <p><a name="index-constants-in-constraints-2635"></a><a name="index-g_t_0040samp_007bi_007d-in-constraint-2636"></a><br><dt>&lsquo;<samp><span class="samp">i</span></samp>&rsquo;<dd>An immediate integer operand (one with constant value) is allowed. 
This includes symbolic constants whose values will be known only at
assembly time or later.

     <p><a name="index-g_t_0040samp_007bn_007d-in-constraint-2637"></a><br><dt>&lsquo;<samp><span class="samp">n</span></samp>&rsquo;<dd>An immediate integer operand with a known numeric value is allowed. 
Many systems cannot support assembly-time constants for operands less
than a word wide.  Constraints for these operands should use &lsquo;<samp><span class="samp">n</span></samp>&rsquo;
rather than &lsquo;<samp><span class="samp">i</span></samp>&rsquo;.

     <p><a name="index-g_t_0040samp_007bI_007d-in-constraint-2638"></a><br><dt>&lsquo;<samp><span class="samp">I</span></samp>&rsquo;, &lsquo;<samp><span class="samp">J</span></samp>&rsquo;, &lsquo;<samp><span class="samp">K</span></samp>&rsquo;, <small class="dots">...</small> &lsquo;<samp><span class="samp">P</span></samp>&rsquo;<dd>Other letters in the range &lsquo;<samp><span class="samp">I</span></samp>&rsquo; through &lsquo;<samp><span class="samp">P</span></samp>&rsquo; may be defined in
a machine-dependent fashion to permit immediate integer operands with
explicit integer values in specified ranges.  For example, on the
68000, &lsquo;<samp><span class="samp">I</span></samp>&rsquo; is defined to stand for the range of values 1 to 8. 
This is the range permitted as a shift count in the shift
instructions.

     <p><a name="index-g_t_0040samp_007bE_007d-in-constraint-2639"></a><br><dt>&lsquo;<samp><span class="samp">E</span></samp>&rsquo;<dd>An immediate floating operand (expression code <code>const_double</code>) is
allowed, but only if the target floating point format is the same as
that of the host machine (on which the compiler is running).

     <p><a name="index-g_t_0040samp_007bF_007d-in-constraint-2640"></a><br><dt>&lsquo;<samp><span class="samp">F</span></samp>&rsquo;<dd>An immediate floating operand (expression code <code>const_double</code> or
<code>const_vector</code>) is allowed.

     <p><a name="index-g_t_0040samp_007bG_007d-in-constraint-2641"></a><a name="index-g_t_0040samp_007bH_007d-in-constraint-2642"></a><br><dt>&lsquo;<samp><span class="samp">G</span></samp>&rsquo;, &lsquo;<samp><span class="samp">H</span></samp>&rsquo;<dd>&lsquo;<samp><span class="samp">G</span></samp>&rsquo; and &lsquo;<samp><span class="samp">H</span></samp>&rsquo; may be defined in a machine-dependent fashion to
permit immediate floating operands in particular ranges of values.

     <p><a name="index-g_t_0040samp_007bs_007d-in-constraint-2643"></a><br><dt>&lsquo;<samp><span class="samp">s</span></samp>&rsquo;<dd>An immediate integer operand whose value is not an explicit integer is
allowed.

     <p>This might appear strange; if an insn allows a constant operand with a
value not known at compile time, it certainly must allow any known
value.  So why use &lsquo;<samp><span class="samp">s</span></samp>&rsquo; instead of &lsquo;<samp><span class="samp">i</span></samp>&rsquo;?  Sometimes it allows
better code to be generated.

     <p>For example, on the 68000 in a fullword instruction it is possible to
use an immediate operand; but if the immediate value is between &minus;128
and 127, better code results from loading the value into a register and
using the register.  This is because the load into the register can be
done with a &lsquo;<samp><span class="samp">moveq</span></samp>&rsquo; instruction.  We arrange for this to happen
by defining the letter &lsquo;<samp><span class="samp">K</span></samp>&rsquo; to mean &ldquo;any integer outside the
range &minus;128 to 127&rdquo;, and then specifying &lsquo;<samp><span class="samp">Ks</span></samp>&rsquo; in the operand
constraints.

     <p><a name="index-g_t_0040samp_007bg_007d-in-constraint-2644"></a><br><dt>&lsquo;<samp><span class="samp">g</span></samp>&rsquo;<dd>Any register, memory or immediate integer operand is allowed, except for
registers that are not general registers.

     <p><a name="index-g_t_0040samp_007bX_007d-in-constraint-2645"></a><br><dt>&lsquo;<samp><span class="samp">X</span></samp>&rsquo;<dd>Any operand whatsoever is allowed.

     <p><a name="index-g_t_0040samp_007b0_007d-in-constraint-2646"></a><a name="index-digits-in-constraint-2647"></a><br><dt>&lsquo;<samp><span class="samp">0</span></samp>&rsquo;, &lsquo;<samp><span class="samp">1</span></samp>&rsquo;, &lsquo;<samp><span class="samp">2</span></samp>&rsquo;, <small class="dots">...</small> &lsquo;<samp><span class="samp">9</span></samp>&rsquo;<dd>An operand that matches the specified operand number is allowed.  If a
digit is used together with letters within the same alternative, the
digit should come last.

     <p>This number is allowed to be more than a single digit.  If multiple
digits are encountered consecutively, they are interpreted as a single
decimal integer.  There is scant chance for ambiguity, since to-date
it has never been desirable that &lsquo;<samp><span class="samp">10</span></samp>&rsquo; be interpreted as matching
either operand 1 <em>or</em> operand 0.  Should this be desired, one
can use multiple alternatives instead.

     <p><a name="index-matching-constraint-2648"></a><a name="index-constraint_002c-matching-2649"></a>This is called a <dfn>matching constraint</dfn> and what it really means is
that the assembler has only a single operand that fills two roles
which <code>asm</code> distinguishes.  For example, an add instruction uses
two input operands and an output operand, but on most CISC
machines an add instruction really has only two operands, one of them an
input-output operand:

     <pre class="smallexample">          addl #35,r12
</pre>
     <p>Matching constraints are used in these circumstances. 
More precisely, the two operands that match must include one input-only
operand and one output-only operand.  Moreover, the digit must be a
smaller number than the number of the operand that uses it in the
constraint.

     <p><a name="index-load-address-instruction-2650"></a><a name="index-push-address-instruction-2651"></a><a name="index-address-constraints-2652"></a><a name="index-g_t_0040samp_007bp_007d-in-constraint-2653"></a><br><dt>&lsquo;<samp><span class="samp">p</span></samp>&rsquo;<dd>An operand that is a valid memory address is allowed.  This is
for &ldquo;load address&rdquo; and &ldquo;push address&rdquo; instructions.

     <p><a name="index-address_005foperand-2654"></a>&lsquo;<samp><span class="samp">p</span></samp>&rsquo; in the constraint must be accompanied by <code>address_operand</code>
as the predicate in the <code>match_operand</code>.  This predicate interprets
the mode specified in the <code>match_operand</code> as the mode of the memory
reference for which the address would be valid.

     <p><a name="index-other-register-constraints-2655"></a><a name="index-extensible-constraints-2656"></a><br><dt><var>other-letters</var><dd>Other letters can be defined in machine-dependent fashion to stand for
particular classes of registers or other arbitrary operand types. 
&lsquo;<samp><span class="samp">d</span></samp>&rsquo;, &lsquo;<samp><span class="samp">a</span></samp>&rsquo; and &lsquo;<samp><span class="samp">f</span></samp>&rsquo; are defined on the 68000/68020 to stand
for data, address and floating point registers. 
</dl>

<div class="node">
<a name="Multi-Alternative"></a>
<a name="Multi_002dAlternative"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Modifiers">Modifiers</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Simple-Constraints">Simple Constraints</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Constraints">Constraints</a>

</div>

<h4 class="subsection">6.42.2 Multiple Alternative Constraints</h4>

<p><a name="index-multiple-alternative-constraints-2657"></a>
Sometimes a single instruction has multiple alternative sets of possible
operands.  For example, on the 68000, a logical-or instruction can combine
register or an immediate value into memory, or it can combine any kind of
operand into a register; but it cannot combine one memory location into
another.

 <p>These constraints are represented as multiple alternatives.  An alternative
can be described by a series of letters for each operand.  The overall
constraint for an operand is made from the letters for this operand
from the first alternative, a comma, the letters for this operand from
the second alternative, a comma, and so on until the last alternative.

<!-- FIXME Is this ? and ! stuff of use in asm()?  If not, hide unless INTERNAL -->
 <p>If all the operands fit any one alternative, the instruction is valid. 
Otherwise, for each alternative, the compiler counts how many instructions
must be added to copy the operands so that that alternative applies. 
The alternative requiring the least copying is chosen.  If two alternatives
need the same amount of copying, the one that comes first is chosen. 
These choices can be altered with the &lsquo;<samp><span class="samp">?</span></samp>&rsquo; and &lsquo;<samp><span class="samp">!</span></samp>&rsquo; characters:

     
<a name="index-g_t_0040samp_007b_003f_007d-in-constraint-2658"></a>
<a name="index-question-mark-2659"></a>
<dl><dt><code>?</code><dd>Disparage slightly the alternative that the &lsquo;<samp><span class="samp">?</span></samp>&rsquo; appears in,
as a choice when no alternative applies exactly.  The compiler regards
this alternative as one unit more costly for each &lsquo;<samp><span class="samp">?</span></samp>&rsquo; that appears
in it.

     <p><a name="index-g_t_0040samp_007b_0021_007d-in-constraint-2660"></a><a name="index-exclamation-point-2661"></a><br><dt><code>!</code><dd>Disparage severely the alternative that the &lsquo;<samp><span class="samp">!</span></samp>&rsquo; appears in. 
This alternative can still be used if it fits without reloading,
but if reloading is needed, some other alternative will be used. 
</dl>

<div class="node">
<a name="Modifiers"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Machine-Constraints">Machine Constraints</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Multi_002dAlternative">Multi-Alternative</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Constraints">Constraints</a>

</div>

<h4 class="subsection">6.42.3 Constraint Modifier Characters</h4>

<p><a name="index-modifiers-in-constraints-2662"></a><a name="index-constraint-modifier-characters-2663"></a>
<!-- prevent bad page break with this line -->
Here are constraint modifier characters.

     
<a name="index-g_t_0040samp_007b_003d_007d-in-constraint-2664"></a>
<dl><dt>&lsquo;<samp><span class="samp">=</span></samp>&rsquo;<dd>Means that this operand is write-only for this instruction: the previous
value is discarded and replaced by output data.

     <p><a name="index-g_t_0040samp_007b_002b_007d-in-constraint-2665"></a><br><dt>&lsquo;<samp><span class="samp">+</span></samp>&rsquo;<dd>Means that this operand is both read and written by the instruction.

     <p>When the compiler fixes up the operands to satisfy the constraints,
it needs to know which operands are inputs to the instruction and
which are outputs from it.  &lsquo;<samp><span class="samp">=</span></samp>&rsquo; identifies an output; &lsquo;<samp><span class="samp">+</span></samp>&rsquo;
identifies an operand that is both input and output; all other operands
are assumed to be input only.

     <p>If you specify &lsquo;<samp><span class="samp">=</span></samp>&rsquo; or &lsquo;<samp><span class="samp">+</span></samp>&rsquo; in a constraint, you put it in the
first character of the constraint string.

     <p><a name="index-g_t_0040samp_007b_0026_007d-in-constraint-2666"></a><a name="index-earlyclobber-operand-2667"></a><br><dt>&lsquo;<samp><span class="samp">&amp;</span></samp>&rsquo;<dd>Means (in a particular alternative) that this operand is an
<dfn>earlyclobber</dfn> operand, which is modified before the instruction is
finished using the input operands.  Therefore, this operand may not lie
in a register that is used as an input operand or as part of any memory
address.

     <p>&lsquo;<samp><span class="samp">&amp;</span></samp>&rsquo; applies only to the alternative in which it is written.  In
constraints with multiple alternatives, sometimes one alternative
requires &lsquo;<samp><span class="samp">&amp;</span></samp>&rsquo; while others do not.  See, for example, the
&lsquo;<samp><span class="samp">movdf</span></samp>&rsquo; insn of the 68000.

     <p>An input operand can be tied to an earlyclobber operand if its only
use as an input occurs before the early result is written.  Adding
alternatives of this form often allows GCC to produce better code
when only some of the inputs can be affected by the earlyclobber. 
See, for example, the &lsquo;<samp><span class="samp">mulsi3</span></samp>&rsquo; insn of the ARM.

     <p>&lsquo;<samp><span class="samp">&amp;</span></samp>&rsquo; does not obviate the need to write &lsquo;<samp><span class="samp">=</span></samp>&rsquo;.

     <p><a name="index-g_t_0040samp_007b_0025_007d-in-constraint-2668"></a><br><dt>&lsquo;<samp><span class="samp">%</span></samp>&rsquo;<dd>Declares the instruction to be commutative for this operand and the
following operand.  This means that the compiler may interchange the
two operands if that is the cheapest way to make all operands fit the
constraints. 
GCC can only handle one commutative pair in an asm; if you use more,
the compiler may fail.  Note that you need not use the modifier if
the two alternatives are strictly identical; this would only waste
time in the reload pass.  The modifier is not operational after
register allocation, so the result of <code>define_peephole2</code>
and <code>define_split</code>s performed after reload cannot rely on
&lsquo;<samp><span class="samp">%</span></samp>&rsquo; to make the intended insn match.

     <p><a name="index-g_t_0040samp_007b_0023_007d-in-constraint-2669"></a><br><dt>&lsquo;<samp><span class="samp">#</span></samp>&rsquo;<dd>Says that all following characters, up to the next comma, are to be
ignored as a constraint.  They are significant only for choosing
register preferences.

     <p><a name="index-g_t_0040samp_007b_002a_007d-in-constraint-2670"></a><br><dt>&lsquo;<samp><span class="samp">*</span></samp>&rsquo;<dd>Says that the following character should be ignored when choosing
register preferences.  &lsquo;<samp><span class="samp">*</span></samp>&rsquo; has no effect on the meaning of the
constraint as a constraint, and no effect on reloading.

 </dl>

<div class="node">
<a name="Machine-Constraints"></a>
<p><hr>
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Modifiers">Modifiers</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Constraints">Constraints</a>

</div>

<h4 class="subsection">6.42.4 Constraints for Particular Machines</h4>

<p><a name="index-machine-specific-constraints-2671"></a><a name="index-constraints_002c-machine-specific-2672"></a>
Whenever possible, you should use the general-purpose constraint letters
in <code>asm</code> arguments, since they will convey meaning more readily to
people reading your code.  Failing that, use the constraint letters
that usually have very similar meanings across architectures.  The most
commonly used constraints are &lsquo;<samp><span class="samp">m</span></samp>&rsquo; and &lsquo;<samp><span class="samp">r</span></samp>&rsquo; (for memory and
general-purpose registers respectively; see <a href="#Simple-Constraints">Simple Constraints</a>), and
&lsquo;<samp><span class="samp">I</span></samp>&rsquo;, usually the letter indicating the most common
immediate-constant format.

 <p>Each architecture defines additional constraints.  These constraints
are used by the compiler itself for instruction generation, as well as
for <code>asm</code> statements; therefore, some of the constraints are not
particularly useful for <code>asm</code>.  Here is a summary of some of the
machine-dependent constraints available on some particular machines;
it includes both constraints that are useful for <code>asm</code> and
constraints that aren't.  The compiler source file mentioned in the
table heading for each architecture is the definitive reference for
the meanings of that architecture's constraints.

     <dl>
<dt><em>ARM family&mdash;</em><samp><span class="file">config/arm/arm.h</span></samp><dd>
          <dl>
<dt><code>f</code><dd>Floating-point register

          <br><dt><code>w</code><dd>VFP floating-point register

          <br><dt><code>F</code><dd>One of the floating-point constants 0.0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0
or 10.0

          <br><dt><code>G</code><dd>Floating-point constant that would satisfy the constraint &lsquo;<samp><span class="samp">F</span></samp>&rsquo; if it
were negated

          <br><dt><code>I</code><dd>Integer that is valid as an immediate operand in a data processing
instruction.  That is, an integer in the range 0 to 255 rotated by a
multiple of 2

          <br><dt><code>J</code><dd>Integer in the range &minus;4095 to 4095

          <br><dt><code>K</code><dd>Integer that satisfies constraint &lsquo;<samp><span class="samp">I</span></samp>&rsquo; when inverted (ones complement)

          <br><dt><code>L</code><dd>Integer that satisfies constraint &lsquo;<samp><span class="samp">I</span></samp>&rsquo; when negated (twos complement)

          <br><dt><code>M</code><dd>Integer in the range 0 to 32

          <br><dt><code>Q</code><dd>A memory reference where the exact address is in a single register
(`&lsquo;<samp><span class="samp">m</span></samp>&rsquo;' is preferable for <code>asm</code> statements)

          <br><dt><code>R</code><dd>An item in the constant pool

          <br><dt><code>S</code><dd>A symbol in the text segment of the current file

          <br><dt><code>Uv</code><dd>A memory reference suitable for VFP load/store insns (reg+constant offset)

          <br><dt><code>Uy</code><dd>A memory reference suitable for iWMMXt load/store instructions.

          <br><dt><code>Uq</code><dd>A memory reference suitable for the ARMv4 ldrsb instruction. 
</dl>

     <br><dt><em>AVR family&mdash;</em><samp><span class="file">config/avr/constraints.md</span></samp><dd>
          <dl>
<dt><code>l</code><dd>Registers from r0 to r15

          <br><dt><code>a</code><dd>Registers from r16 to r23

          <br><dt><code>d</code><dd>Registers from r16 to r31

          <br><dt><code>w</code><dd>Registers from r24 to r31.  These registers can be used in &lsquo;<samp><span class="samp">adiw</span></samp>&rsquo; command

          <br><dt><code>e</code><dd>Pointer register (r26&ndash;r31)

          <br><dt><code>b</code><dd>Base pointer register (r28&ndash;r31)

          <br><dt><code>q</code><dd>Stack pointer register (SPH:SPL)

          <br><dt><code>t</code><dd>Temporary register r0

          <br><dt><code>x</code><dd>Register pair X (r27:r26)

          <br><dt><code>y</code><dd>Register pair Y (r29:r28)

          <br><dt><code>z</code><dd>Register pair Z (r31:r30)

          <br><dt><code>I</code><dd>Constant greater than &minus;1, less than 64

          <br><dt><code>J</code><dd>Constant greater than &minus;64, less than 1

          <br><dt><code>K</code><dd>Constant integer 2

          <br><dt><code>L</code><dd>Constant integer 0

          <br><dt><code>M</code><dd>Constant that fits in 8 bits

          <br><dt><code>N</code><dd>Constant integer &minus;1

          <br><dt><code>O</code><dd>Constant integer 8, 16, or 24

          <br><dt><code>P</code><dd>Constant integer 1

          <br><dt><code>G</code><dd>A floating point constant 0.0

          <br><dt><code>R</code><dd>Integer constant in the range &minus;6 <small class="dots">...</small> 5.

          <br><dt><code>Q</code><dd>A memory address based on Y or Z pointer with displacement. 
</dl>

     <br><dt><em>CRX Architecture&mdash;</em><samp><span class="file">config/crx/crx.h</span></samp><dd>
          <dl>
<dt><code>b</code><dd>Registers from r0 to r14 (registers without stack pointer)

          <br><dt><code>l</code><dd>Register r16 (64-bit accumulator lo register)

          <br><dt><code>h</code><dd>Register r17 (64-bit accumulator hi register)

          <br><dt><code>k</code><dd>Register pair r16-r17. (64-bit accumulator lo-hi pair)

          <br><dt><code>I</code><dd>Constant that fits in 3 bits

          <br><dt><code>J</code><dd>Constant that fits in 4 bits

          <br><dt><code>K</code><dd>Constant that fits in 5 bits

          <br><dt><code>L</code><dd>Constant that is one of &minus;1, 4, &minus;4, 7, 8, 12, 16, 20, 32, 48

          <br><dt><code>G</code><dd>Floating point constant that is legal for store immediate
</dl>

     <br><dt><em>Hewlett-Packard PA-RISC&mdash;</em><samp><span class="file">config/pa/pa.h</span></samp><dd>
          <dl>
<dt><code>a</code><dd>General register 1

          <br><dt><code>f</code><dd>Floating point register

          <br><dt><code>q</code><dd>Shift amount register

          <br><dt><code>x</code><dd>Floating point register (deprecated)

          <br><dt><code>y</code><dd>Upper floating point register (32-bit), floating point register (64-bit)

          <br><dt><code>Z</code><dd>Any register

          <br><dt><code>I</code><dd>Signed 11-bit integer constant

          <br><dt><code>J</code><dd>Signed 14-bit integer constant

          <br><dt><code>K</code><dd>Integer constant that can be deposited with a <code>zdepi</code> instruction

          <br><dt><code>L</code><dd>Signed 5-bit integer constant

          <br><dt><code>M</code><dd>Integer constant 0

          <br><dt><code>N</code><dd>Integer constant that can be loaded with a <code>ldil</code> instruction

          <br><dt><code>O</code><dd>Integer constant whose value plus one is a power of 2

          <br><dt><code>P</code><dd>Integer constant that can be used for <code>and</code> operations in <code>depi</code>
and <code>extru</code> instructions

          <br><dt><code>S</code><dd>Integer constant 31

          <br><dt><code>U</code><dd>Integer constant 63

          <br><dt><code>G</code><dd>Floating-point constant 0.0

          <br><dt><code>A</code><dd>A <code>lo_sum</code> data-linkage-table memory operand

          <br><dt><code>Q</code><dd>A memory operand that can be used as the destination operand of an
integer store instruction

          <br><dt><code>R</code><dd>A scaled or unscaled indexed memory operand

          <br><dt><code>T</code><dd>A memory operand for floating-point loads and stores

          <br><dt><code>W</code><dd>A register indirect memory operand
</dl>

     <br><dt><em>picoChip family&mdash;</em><samp><span class="file">picochip.h</span></samp><dd>
          <dl>
<dt><code>k</code><dd>Stack register.

          <br><dt><code>f</code><dd>Pointer register.  A register which can be used to access memory without
supplying an offset.  Any other register can be used to access memory,
but will need a constant offset.  In the case of the offset being zero,
it is more efficient to use a pointer register, since this reduces code
size.

          <br><dt><code>t</code><dd>A twin register.  A register which may be paired with an adjacent
register to create a 32-bit register.

          <br><dt><code>a</code><dd>Any absolute memory address (e.g., symbolic constant, symbolic
constant + offset).

          <br><dt><code>I</code><dd>4-bit signed integer.

          <br><dt><code>J</code><dd>4-bit unsigned integer.

          <br><dt><code>K</code><dd>8-bit signed integer.

          <br><dt><code>M</code><dd>Any constant whose absolute value is no greater than 4-bits.

          <br><dt><code>N</code><dd>10-bit signed integer

          <br><dt><code>O</code><dd>16-bit signed integer.

     </dl>

     <br><dt><em>PowerPC and IBM RS6000&mdash;</em><samp><span class="file">config/rs6000/rs6000.h</span></samp><dd>
          <dl>
<dt><code>b</code><dd>Address base register

          <br><dt><code>d</code><dd>Floating point register (containing 64-bit value)

          <br><dt><code>f</code><dd>Floating point register (containing 32-bit value)

          <br><dt><code>v</code><dd>Altivec vector register

          <br><dt><code>wd</code><dd>VSX vector register to hold vector double data

          <br><dt><code>wf</code><dd>VSX vector register to hold vector float data

          <br><dt><code>ws</code><dd>VSX vector register to hold scalar float data

          <br><dt><code>wa</code><dd>Any VSX register

          <br><dt><code>h</code><dd>&lsquo;<samp><span class="samp">MQ</span></samp>&rsquo;, &lsquo;<samp><span class="samp">CTR</span></samp>&rsquo;, or &lsquo;<samp><span class="samp">LINK</span></samp>&rsquo; register

          <br><dt><code>q</code><dd>&lsquo;<samp><span class="samp">MQ</span></samp>&rsquo; register

          <br><dt><code>c</code><dd>&lsquo;<samp><span class="samp">CTR</span></samp>&rsquo; register

          <br><dt><code>l</code><dd>&lsquo;<samp><span class="samp">LINK</span></samp>&rsquo; register

          <br><dt><code>x</code><dd>&lsquo;<samp><span class="samp">CR</span></samp>&rsquo; register (condition register) number 0

          <br><dt><code>y</code><dd>&lsquo;<samp><span class="samp">CR</span></samp>&rsquo; register (condition register)

          <br><dt><code>z</code><dd>&lsquo;<samp><span class="samp">XER[CA]</span></samp>&rsquo; carry bit (part of the XER register)

          <br><dt><code>I</code><dd>Signed 16-bit constant

          <br><dt><code>J</code><dd>Unsigned 16-bit constant shifted left 16 bits (use &lsquo;<samp><span class="samp">L</span></samp>&rsquo; instead for
<code>SImode</code> constants)

          <br><dt><code>K</code><dd>Unsigned 16-bit constant

          <br><dt><code>L</code><dd>Signed 16-bit constant shifted left 16 bits

          <br><dt><code>M</code><dd>Constant larger than 31

          <br><dt><code>N</code><dd>Exact power of 2

          <br><dt><code>O</code><dd>Zero

          <br><dt><code>P</code><dd>Constant whose negation is a signed 16-bit constant

          <br><dt><code>G</code><dd>Floating point constant that can be loaded into a register with one
instruction per word

          <br><dt><code>H</code><dd>Integer/Floating point constant that can be loaded into a register using
three instructions

          <br><dt><code>m</code><dd>Memory operand. 
Normally, <code>m</code> does not allow addresses that update the base register. 
If &lsquo;<samp><span class="samp">&lt;</span></samp>&rsquo; or &lsquo;<samp><span class="samp">&gt;</span></samp>&rsquo; constraint is also used, they are allowed and
therefore on PowerPC targets in that case it is only safe
to use &lsquo;<samp><span class="samp">m&lt;&gt;</span></samp>&rsquo; in an <code>asm</code> statement if that <code>asm</code> statement
accesses the operand exactly once.  The <code>asm</code> statement must also
use &lsquo;<samp><span class="samp">%U</span><var>&lt;opno&gt;</var></samp>&rsquo; as a placeholder for the &ldquo;update&rdquo; flag in the
corresponding load or store instruction.  For example:

          <pre class="smallexample">               asm ("st%U0 %1,%0" : "=m&lt;&gt;" (mem) : "r" (val));
</pre>
          <p>is correct but:

          <pre class="smallexample">               asm ("st %1,%0" : "=m&lt;&gt;" (mem) : "r" (val));
</pre>
          <p>is not.

          <br><dt><code>es</code><dd>A &ldquo;stable&rdquo; memory operand; that is, one which does not include any
automodification of the base register.  This used to be useful when
&lsquo;<samp><span class="samp">m</span></samp>&rsquo; allowed automodification of the base register, but as those are now only
allowed when &lsquo;<samp><span class="samp">&lt;</span></samp>&rsquo; or &lsquo;<samp><span class="samp">&gt;</span></samp>&rsquo; is used, &lsquo;<samp><span class="samp">es</span></samp>&rsquo; is basically the same
as &lsquo;<samp><span class="samp">m</span></samp>&rsquo; without &lsquo;<samp><span class="samp">&lt;</span></samp>&rsquo; and &lsquo;<samp><span class="samp">&gt;</span></samp>&rsquo;.

          <br><dt><code>Q</code><dd>Memory operand that is an offset from a register (it is usually better
to use &lsquo;<samp><span class="samp">m</span></samp>&rsquo; or &lsquo;<samp><span class="samp">es</span></samp>&rsquo; in <code>asm</code> statements)

          <br><dt><code>Z</code><dd>Memory operand that is an indexed or indirect from a register (it is
usually better to use &lsquo;<samp><span class="samp">m</span></samp>&rsquo; or &lsquo;<samp><span class="samp">es</span></samp>&rsquo; in <code>asm</code> statements)

          <br><dt><code>R</code><dd>AIX TOC entry

          <br><dt><code>a</code><dd>Address operand that is an indexed or indirect from a register (&lsquo;<samp><span class="samp">p</span></samp>&rsquo; is
preferable for <code>asm</code> statements)

          <br><dt><code>S</code><dd>Constant suitable as a 64-bit mask operand

          <br><dt><code>T</code><dd>Constant suitable as a 32-bit mask operand

          <br><dt><code>U</code><dd>System V Release 4 small data area reference

          <br><dt><code>t</code><dd>AND masks that can be performed by two rldic{l, r} instructions

          <br><dt><code>W</code><dd>Vector constant that does not require memory

          <br><dt><code>j</code><dd>Vector constant that is all zeros.

     </dl>

     <br><dt><em>Intel 386&mdash;</em><samp><span class="file">config/i386/constraints.md</span></samp><dd>
          <dl>
<dt><code>R</code><dd>Legacy register&mdash;the eight integer registers available on all
i386 processors (<code>a</code>, <code>b</code>, <code>c</code>, <code>d</code>,
<code>si</code>, <code>di</code>, <code>bp</code>, <code>sp</code>).

          <br><dt><code>q</code><dd>Any register accessible as <var>r</var><code>l</code>.  In 32-bit mode, <code>a</code>,
<code>b</code>, <code>c</code>, and <code>d</code>; in 64-bit mode, any integer register.

          <br><dt><code>Q</code><dd>Any register accessible as <var>r</var><code>h</code>: <code>a</code>, <code>b</code>,
<code>c</code>, and <code>d</code>.

          <br><dt><code>a</code><dd>The <code>a</code> register.

          <br><dt><code>b</code><dd>The <code>b</code> register.

          <br><dt><code>c</code><dd>The <code>c</code> register.

          <br><dt><code>d</code><dd>The <code>d</code> register.

          <br><dt><code>S</code><dd>The <code>si</code> register.

          <br><dt><code>D</code><dd>The <code>di</code> register.

          <br><dt><code>A</code><dd>The <code>a</code> and <code>d</code> registers.  This class is used for instructions
that return double word results in the <code>ax:dx</code> register pair.  Single
word values will be allocated either in <code>ax</code> or <code>dx</code>. 
For example on i386 the following implements <code>rdtsc</code>:

          <pre class="smallexample">               unsigned long long rdtsc (void)
               {
                 unsigned long long tick;
                 __asm__ __volatile__("rdtsc":"=A"(tick));
                 return tick;
               }
</pre>
          <p>This is not correct on x86_64 as it would allocate tick in either <code>ax</code>
or <code>dx</code>.  You have to use the following variant instead:

          <pre class="smallexample">               unsigned long long rdtsc (void)
               {
                 unsigned int tickl, tickh;
                 __asm__ __volatile__("rdtsc":"=a"(tickl),"=d"(tickh));
                 return ((unsigned long long)tickh &lt;&lt; 32)|tickl;
               }
</pre>
          <br><dt><code>f</code><dd>Any 80387 floating-point (stack) register.

          <br><dt><code>t</code><dd>Top of 80387 floating-point stack (<code>%st(0)</code>).

          <br><dt><code>u</code><dd>Second from top of 80387 floating-point stack (<code>%st(1)</code>).

          <br><dt><code>y</code><dd>Any MMX register.

          <br><dt><code>x</code><dd>Any SSE register.

          <br><dt><code>Yz</code><dd>First SSE register (<code>%xmm0</code>).

          <br><dt><code>I</code><dd>Integer constant in the range 0 <small class="dots">...</small> 31, for 32-bit shifts.

          <br><dt><code>J</code><dd>Integer constant in the range 0 <small class="dots">...</small> 63, for 64-bit shifts.

          <br><dt><code>K</code><dd>Signed 8-bit integer constant.

          <br><dt><code>L</code><dd><code>0xFF</code> or <code>0xFFFF</code>, for andsi as a zero-extending move.

          <br><dt><code>M</code><dd>0, 1, 2, or 3 (shifts for the <code>lea</code> instruction).

          <br><dt><code>N</code><dd>Unsigned 8-bit integer constant (for <code>in</code> and <code>out</code>
instructions).

          <br><dt><code>G</code><dd>Standard 80387 floating point constant.

          <br><dt><code>C</code><dd>Standard SSE floating point constant.

          <br><dt><code>e</code><dd>32-bit signed integer constant, or a symbolic reference known
to fit that range (for immediate operands in sign-extending x86-64
instructions).

          <br><dt><code>Z</code><dd>32-bit unsigned integer constant, or a symbolic reference known
to fit that range (for immediate operands in zero-extending x86-64
instructions).

     </dl>

     <br><dt><em>Intel IA-64&mdash;</em><samp><span class="file">config/ia64/ia64.h</span></samp><dd>
          <dl>
<dt><code>a</code><dd>General register <code>r0</code> to <code>r3</code> for <code>addl</code> instruction

          <br><dt><code>b</code><dd>Branch register

          <br><dt><code>c</code><dd>Predicate register (&lsquo;<samp><span class="samp">c</span></samp>&rsquo; as in &ldquo;conditional&rdquo;)

          <br><dt><code>d</code><dd>Application register residing in M-unit

          <br><dt><code>e</code><dd>Application register residing in I-unit

          <br><dt><code>f</code><dd>Floating-point register

          <br><dt><code>m</code><dd>Memory operand.  If used together with &lsquo;<samp><span class="samp">&lt;</span></samp>&rsquo; or &lsquo;<samp><span class="samp">&gt;</span></samp>&rsquo;,
the operand can have postincrement and postdecrement which
require printing with &lsquo;<samp><span class="samp">%Pn</span></samp>&rsquo; on IA-64.

          <br><dt><code>G</code><dd>Floating-point constant 0.0 or 1.0

          <br><dt><code>I</code><dd>14-bit signed integer constant

          <br><dt><code>J</code><dd>22-bit signed integer constant

          <br><dt><code>K</code><dd>8-bit signed integer constant for logical instructions

          <br><dt><code>L</code><dd>8-bit adjusted signed integer constant for compare pseudo-ops

          <br><dt><code>M</code><dd>6-bit unsigned integer constant for shift counts

          <br><dt><code>N</code><dd>9-bit signed integer constant for load and store postincrements

          <br><dt><code>O</code><dd>The constant zero

          <br><dt><code>P</code><dd>0 or &minus;1 for <code>dep</code> instruction

          <br><dt><code>Q</code><dd>Non-volatile memory for floating-point loads and stores

          <br><dt><code>R</code><dd>Integer constant in the range 1 to 4 for <code>shladd</code> instruction

          <br><dt><code>S</code><dd>Memory operand except postincrement and postdecrement.  This is
now roughly the same as &lsquo;<samp><span class="samp">m</span></samp>&rsquo; when not used together with &lsquo;<samp><span class="samp">&lt;</span></samp>&rsquo;
or &lsquo;<samp><span class="samp">&gt;</span></samp>&rsquo;. 
</dl>

     <br><dt><em>FRV&mdash;</em><samp><span class="file">config/frv/frv.h</span></samp><dd>
          <dl>
<dt><code>a</code><dd>Register in the class <code>ACC_REGS</code> (<code>acc0</code> to <code>acc7</code>).

          <br><dt><code>b</code><dd>Register in the class <code>EVEN_ACC_REGS</code> (<code>acc0</code> to <code>acc7</code>).

          <br><dt><code>c</code><dd>Register in the class <code>CC_REGS</code> (<code>fcc0</code> to <code>fcc3</code> and
<code>icc0</code> to <code>icc3</code>).

          <br><dt><code>d</code><dd>Register in the class <code>GPR_REGS</code> (<code>gr0</code> to <code>gr63</code>).

          <br><dt><code>e</code><dd>Register in the class <code>EVEN_REGS</code> (<code>gr0</code> to <code>gr63</code>). 
Odd registers are excluded not in the class but through the use of a machine
mode larger than 4 bytes.

          <br><dt><code>f</code><dd>Register in the class <code>FPR_REGS</code> (<code>fr0</code> to <code>fr63</code>).

          <br><dt><code>h</code><dd>Register in the class <code>FEVEN_REGS</code> (<code>fr0</code> to <code>fr63</code>). 
Odd registers are excluded not in the class but through the use of a machine
mode larger than 4 bytes.

          <br><dt><code>l</code><dd>Register in the class <code>LR_REG</code> (the <code>lr</code> register).

          <br><dt><code>q</code><dd>Register in the class <code>QUAD_REGS</code> (<code>gr2</code> to <code>gr63</code>). 
Register numbers not divisible by 4 are excluded not in the class but through
the use of a machine mode larger than 8 bytes.

          <br><dt><code>t</code><dd>Register in the class <code>ICC_REGS</code> (<code>icc0</code> to <code>icc3</code>).

          <br><dt><code>u</code><dd>Register in the class <code>FCC_REGS</code> (<code>fcc0</code> to <code>fcc3</code>).

          <br><dt><code>v</code><dd>Register in the class <code>ICR_REGS</code> (<code>cc4</code> to <code>cc7</code>).

          <br><dt><code>w</code><dd>Register in the class <code>FCR_REGS</code> (<code>cc0</code> to <code>cc3</code>).

          <br><dt><code>x</code><dd>Register in the class <code>QUAD_FPR_REGS</code> (<code>fr0</code> to <code>fr63</code>). 
Register numbers not divisible by 4 are excluded not in the class but through
the use of a machine mode larger than 8 bytes.

          <br><dt><code>z</code><dd>Register in the class <code>SPR_REGS</code> (<code>lcr</code> and <code>lr</code>).

          <br><dt><code>A</code><dd>Register in the class <code>QUAD_ACC_REGS</code> (<code>acc0</code> to <code>acc7</code>).

          <br><dt><code>B</code><dd>Register in the class <code>ACCG_REGS</code> (<code>accg0</code> to <code>accg7</code>).

          <br><dt><code>C</code><dd>Register in the class <code>CR_REGS</code> (<code>cc0</code> to <code>cc7</code>).

          <br><dt><code>G</code><dd>Floating point constant zero

          <br><dt><code>I</code><dd>6-bit signed integer constant

          <br><dt><code>J</code><dd>10-bit signed integer constant

          <br><dt><code>L</code><dd>16-bit signed integer constant

          <br><dt><code>M</code><dd>16-bit unsigned integer constant

          <br><dt><code>N</code><dd>12-bit signed integer constant that is negative&mdash;i.e. in the
range of &minus;2048 to &minus;1

          <br><dt><code>O</code><dd>Constant zero

          <br><dt><code>P</code><dd>12-bit signed integer constant that is greater than zero&mdash;i.e. in the
range of 1 to 2047.

     </dl>

     <br><dt><em>Blackfin family&mdash;</em><samp><span class="file">config/bfin/constraints.md</span></samp><dd>
          <dl>
<dt><code>a</code><dd>P register

          <br><dt><code>d</code><dd>D register

          <br><dt><code>z</code><dd>A call clobbered P register.

          <br><dt><code>q</code><var>n</var><dd>A single register.  If <var>n</var> is in the range 0 to 7, the corresponding D
register.  If it is <code>A</code>, then the register P0.

          <br><dt><code>D</code><dd>Even-numbered D register

          <br><dt><code>W</code><dd>Odd-numbered D register

          <br><dt><code>e</code><dd>Accumulator register.

          <br><dt><code>A</code><dd>Even-numbered accumulator register.

          <br><dt><code>B</code><dd>Odd-numbered accumulator register.

          <br><dt><code>b</code><dd>I register

          <br><dt><code>v</code><dd>B register

          <br><dt><code>f</code><dd>M register

          <br><dt><code>c</code><dd>Registers used for circular buffering, i.e. I, B, or L registers.

          <br><dt><code>C</code><dd>The CC register.

          <br><dt><code>t</code><dd>LT0 or LT1.

          <br><dt><code>k</code><dd>LC0 or LC1.

          <br><dt><code>u</code><dd>LB0 or LB1.

          <br><dt><code>x</code><dd>Any D, P, B, M, I or L register.

          <br><dt><code>y</code><dd>Additional registers typically used only in prologues and epilogues: RETS,
RETN, RETI, RETX, RETE, ASTAT, SEQSTAT and USP.

          <br><dt><code>w</code><dd>Any register except accumulators or CC.

          <br><dt><code>Ksh</code><dd>Signed 16 bit integer (in the range &minus;32768 to 32767)

          <br><dt><code>Kuh</code><dd>Unsigned 16 bit integer (in the range 0 to 65535)

          <br><dt><code>Ks7</code><dd>Signed 7 bit integer (in the range &minus;64 to 63)

          <br><dt><code>Ku7</code><dd>Unsigned 7 bit integer (in the range 0 to 127)

          <br><dt><code>Ku5</code><dd>Unsigned 5 bit integer (in the range 0 to 31)

          <br><dt><code>Ks4</code><dd>Signed 4 bit integer (in the range &minus;8 to 7)

          <br><dt><code>Ks3</code><dd>Signed 3 bit integer (in the range &minus;3 to 4)

          <br><dt><code>Ku3</code><dd>Unsigned 3 bit integer (in the range 0 to 7)

          <br><dt><code>P</code><var>n</var><dd>Constant <var>n</var>, where <var>n</var> is a single-digit constant in the range 0 to 4.

          <br><dt><code>PA</code><dd>An integer equal to one of the MACFLAG_XXX constants that is suitable for
use with either accumulator.

          <br><dt><code>PB</code><dd>An integer equal to one of the MACFLAG_XXX constants that is suitable for
use only with accumulator A1.

          <br><dt><code>M1</code><dd>Constant 255.

          <br><dt><code>M2</code><dd>Constant 65535.

          <br><dt><code>J</code><dd>An integer constant with exactly a single bit set.

          <br><dt><code>L</code><dd>An integer constant with all bits set except exactly one.

          <br><dt><code>H</code>
<br><dt><code>Q</code><dd>Any SYMBOL_REF. 
</dl>

     <br><dt><em>M32C&mdash;</em><samp><span class="file">config/m32c/m32c.c</span></samp><dd>
          <dl>
<dt><code>Rsp</code><dt><code>Rfb</code><dt><code>Rsb</code><dd>&lsquo;<samp><span class="samp">$sp</span></samp>&rsquo;, &lsquo;<samp><span class="samp">$fb</span></samp>&rsquo;, &lsquo;<samp><span class="samp">$sb</span></samp>&rsquo;.

          <br><dt><code>Rcr</code><dd>Any control register, when they're 16 bits wide (nothing if control
registers are 24 bits wide)

          <br><dt><code>Rcl</code><dd>Any control register, when they're 24 bits wide.

          <br><dt><code>R0w</code><dt><code>R1w</code><dt><code>R2w</code><dt><code>R3w</code><dd>$r0, $r1, $r2, $r3.

          <br><dt><code>R02</code><dd>$r0 or $r2, or $r2r0 for 32 bit values.

          <br><dt><code>R13</code><dd>$r1 or $r3, or $r3r1 for 32 bit values.

          <br><dt><code>Rdi</code><dd>A register that can hold a 64 bit value.

          <br><dt><code>Rhl</code><dd>$r0 or $r1 (registers with addressable high/low bytes)

          <br><dt><code>R23</code><dd>$r2 or $r3

          <br><dt><code>Raa</code><dd>Address registers

          <br><dt><code>Raw</code><dd>Address registers when they're 16 bits wide.

          <br><dt><code>Ral</code><dd>Address registers when they're 24 bits wide.

          <br><dt><code>Rqi</code><dd>Registers that can hold QI values.

          <br><dt><code>Rad</code><dd>Registers that can be used with displacements ($a0, $a1, $sb).

          <br><dt><code>Rsi</code><dd>Registers that can hold 32 bit values.

          <br><dt><code>Rhi</code><dd>Registers that can hold 16 bit values.

          <br><dt><code>Rhc</code><dd>Registers chat can hold 16 bit values, including all control
registers.

          <br><dt><code>Rra</code><dd>$r0 through R1, plus $a0 and $a1.

          <br><dt><code>Rfl</code><dd>The flags register.

          <br><dt><code>Rmm</code><dd>The memory-based pseudo-registers $mem0 through $mem15.

          <br><dt><code>Rpi</code><dd>Registers that can hold pointers (16 bit registers for r8c, m16c; 24
bit registers for m32cm, m32c).

          <br><dt><code>Rpa</code><dd>Matches multiple registers in a PARALLEL to form a larger register. 
Used to match function return values.

          <br><dt><code>Is3</code><dd>&minus;8 <small class="dots">...</small> 7

          <br><dt><code>IS1</code><dd>&minus;128 <small class="dots">...</small> 127

          <br><dt><code>IS2</code><dd>&minus;32768 <small class="dots">...</small> 32767

          <br><dt><code>IU2</code><dd>0 <small class="dots">...</small> 65535

          <br><dt><code>In4</code><dd>&minus;8 <small class="dots">...</small> &minus;1 or 1 <small class="dots">...</small> 8

          <br><dt><code>In5</code><dd>&minus;16 <small class="dots">...</small> &minus;1 or 1 <small class="dots">...</small> 16

          <br><dt><code>In6</code><dd>&minus;32 <small class="dots">...</small> &minus;1 or 1 <small class="dots">...</small> 32

          <br><dt><code>IM2</code><dd>&minus;65536 <small class="dots">...</small> &minus;1

          <br><dt><code>Ilb</code><dd>An 8 bit value with exactly one bit set.

          <br><dt><code>Ilw</code><dd>A 16 bit value with exactly one bit set.

          <br><dt><code>Sd</code><dd>The common src/dest memory addressing modes.

          <br><dt><code>Sa</code><dd>Memory addressed using $a0 or $a1.

          <br><dt><code>Si</code><dd>Memory addressed with immediate addresses.

          <br><dt><code>Ss</code><dd>Memory addressed using the stack pointer ($sp).

          <br><dt><code>Sf</code><dd>Memory addressed using the frame base register ($fb).

          <br><dt><code>Ss</code><dd>Memory addressed using the small base register ($sb).

          <br><dt><code>S1</code><dd>$r1h
</dl>

     <br><dt><em>MeP&mdash;</em><samp><span class="file">config/mep/constraints.md</span></samp><dd>
          <dl>
<dt><code>a</code><dd>The $sp register.

          <br><dt><code>b</code><dd>The $tp register.

          <br><dt><code>c</code><dd>Any control register.

          <br><dt><code>d</code><dd>Either the $hi or the $lo register.

          <br><dt><code>em</code><dd>Coprocessor registers that can be directly loaded ($c0-$c15).

          <br><dt><code>ex</code><dd>Coprocessor registers that can be moved to each other.

          <br><dt><code>er</code><dd>Coprocessor registers that can be moved to core registers.

          <br><dt><code>h</code><dd>The $hi register.

          <br><dt><code>j</code><dd>The $rpc register.

          <br><dt><code>l</code><dd>The $lo register.

          <br><dt><code>t</code><dd>Registers which can be used in $tp-relative addressing.

          <br><dt><code>v</code><dd>The $gp register.

          <br><dt><code>x</code><dd>The coprocessor registers.

          <br><dt><code>y</code><dd>The coprocessor control registers.

          <br><dt><code>z</code><dd>The $0 register.

          <br><dt><code>A</code><dd>User-defined register set A.

          <br><dt><code>B</code><dd>User-defined register set B.

          <br><dt><code>C</code><dd>User-defined register set C.

          <br><dt><code>D</code><dd>User-defined register set D.

          <br><dt><code>I</code><dd>Offsets for $gp-rel addressing.

          <br><dt><code>J</code><dd>Constants that can be used directly with boolean insns.

          <br><dt><code>K</code><dd>Constants that can be moved directly to registers.

          <br><dt><code>L</code><dd>Small constants that can be added to registers.

          <br><dt><code>M</code><dd>Long shift counts.

          <br><dt><code>N</code><dd>Small constants that can be compared to registers.

          <br><dt><code>O</code><dd>Constants that can be loaded into the top half of registers.

          <br><dt><code>S</code><dd>Signed 8-bit immediates.

          <br><dt><code>T</code><dd>Symbols encoded for $tp-rel or $gp-rel addressing.

          <br><dt><code>U</code><dd>Non-constant addresses for loading/saving coprocessor registers.

          <br><dt><code>W</code><dd>The top half of a symbol's value.

          <br><dt><code>Y</code><dd>A register indirect address without offset.

          <br><dt><code>Z</code><dd>Symbolic references to the control bus.

     </dl>

     <br><dt><em>MicroBlaze&mdash;</em><samp><span class="file">config/microblaze/constraints.md</span></samp><dd>
          <dl>
<dt><code>d</code><dd>A general register (<code>r0</code> to <code>r31</code>).

          <br><dt><code>z</code><dd>A status register (<code>rmsr</code>, <code>$fcc1</code> to <code>$fcc7</code>).

     </dl>

     <br><dt><em>MIPS&mdash;</em><samp><span class="file">config/mips/constraints.md</span></samp><dd>
          <dl>
<dt><code>d</code><dd>An address register.  This is equivalent to <code>r</code> unless
generating MIPS16 code.

          <br><dt><code>f</code><dd>A floating-point register (if available).

          <br><dt><code>h</code><dd>Formerly the <code>hi</code> register.  This constraint is no longer supported.

          <br><dt><code>l</code><dd>The <code>lo</code> register.  Use this register to store values that are
no bigger than a word.

          <br><dt><code>x</code><dd>The concatenated <code>hi</code> and <code>lo</code> registers.  Use this register
to store doubleword values.

          <br><dt><code>c</code><dd>A register suitable for use in an indirect jump.  This will always be
<code>$25</code> for <samp><span class="option">-mabicalls</span></samp>.

          <br><dt><code>v</code><dd>Register <code>$3</code>.  Do not use this constraint in new code;
it is retained only for compatibility with glibc.

          <br><dt><code>y</code><dd>Equivalent to <code>r</code>; retained for backwards compatibility.

          <br><dt><code>z</code><dd>A floating-point condition code register.

          <br><dt><code>I</code><dd>A signed 16-bit constant (for arithmetic instructions).

          <br><dt><code>J</code><dd>Integer zero.

          <br><dt><code>K</code><dd>An unsigned 16-bit constant (for logic instructions).

          <br><dt><code>L</code><dd>A signed 32-bit constant in which the lower 16 bits are zero. 
Such constants can be loaded using <code>lui</code>.

          <br><dt><code>M</code><dd>A constant that cannot be loaded using <code>lui</code>, <code>addiu</code>
or <code>ori</code>.

          <br><dt><code>N</code><dd>A constant in the range &minus;65535 to &minus;1 (inclusive).

          <br><dt><code>O</code><dd>A signed 15-bit constant.

          <br><dt><code>P</code><dd>A constant in the range 1 to 65535 (inclusive).

          <br><dt><code>G</code><dd>Floating-point zero.

          <br><dt><code>R</code><dd>An address that can be used in a non-macro load or store. 
</dl>

     <br><dt><em>Motorola 680x0&mdash;</em><samp><span class="file">config/m68k/constraints.md</span></samp><dd>
          <dl>
<dt><code>a</code><dd>Address register

          <br><dt><code>d</code><dd>Data register

          <br><dt><code>f</code><dd>68881 floating-point register, if available

          <br><dt><code>I</code><dd>Integer in the range 1 to 8

          <br><dt><code>J</code><dd>16-bit signed number

          <br><dt><code>K</code><dd>Signed number whose magnitude is greater than 0x80

          <br><dt><code>L</code><dd>Integer in the range &minus;8 to &minus;1

          <br><dt><code>M</code><dd>Signed number whose magnitude is greater than 0x100

          <br><dt><code>N</code><dd>Range 24 to 31, rotatert:SI 8 to 1 expressed as rotate

          <br><dt><code>O</code><dd>16 (for rotate using swap)

          <br><dt><code>P</code><dd>Range 8 to 15, rotatert:HI 8 to 1 expressed as rotate

          <br><dt><code>R</code><dd>Numbers that mov3q can handle

          <br><dt><code>G</code><dd>Floating point constant that is not a 68881 constant

          <br><dt><code>S</code><dd>Operands that satisfy 'm' when -mpcrel is in effect

          <br><dt><code>T</code><dd>Operands that satisfy 's' when -mpcrel is not in effect

          <br><dt><code>Q</code><dd>Address register indirect addressing mode

          <br><dt><code>U</code><dd>Register offset addressing

          <br><dt><code>W</code><dd>const_call_operand

          <br><dt><code>Cs</code><dd>symbol_ref or const

          <br><dt><code>Ci</code><dd>const_int

          <br><dt><code>C0</code><dd>const_int 0

          <br><dt><code>Cj</code><dd>Range of signed numbers that don't fit in 16 bits

          <br><dt><code>Cmvq</code><dd>Integers valid for mvq

          <br><dt><code>Capsw</code><dd>Integers valid for a moveq followed by a swap

          <br><dt><code>Cmvz</code><dd>Integers valid for mvz

          <br><dt><code>Cmvs</code><dd>Integers valid for mvs

          <br><dt><code>Ap</code><dd>push_operand

          <br><dt><code>Ac</code><dd>Non-register operands allowed in clr

     </dl>

     <br><dt><em>Motorola 68HC11 &amp; 68HC12 families&mdash;</em><samp><span class="file">config/m68hc11/m68hc11.h</span></samp><dd>
          <dl>
<dt><code>a</code><dd>Register `a'

          <br><dt><code>b</code><dd>Register `b'

          <br><dt><code>d</code><dd>Register `d'

          <br><dt><code>q</code><dd>An 8-bit register

          <br><dt><code>t</code><dd>Temporary soft register _.tmp

          <br><dt><code>u</code><dd>A soft register _.d1 to _.d31

          <br><dt><code>w</code><dd>Stack pointer register

          <br><dt><code>x</code><dd>Register `x'

          <br><dt><code>y</code><dd>Register `y'

          <br><dt><code>z</code><dd>Pseudo register `z' (replaced by `x' or `y' at the end)

          <br><dt><code>A</code><dd>An address register: x, y or z

          <br><dt><code>B</code><dd>An address register: x or y

          <br><dt><code>D</code><dd>Register pair (x:d) to form a 32-bit value

          <br><dt><code>L</code><dd>Constants in the range &minus;65536 to 65535

          <br><dt><code>M</code><dd>Constants whose 16-bit low part is zero

          <br><dt><code>N</code><dd>Constant integer 1 or &minus;1

          <br><dt><code>O</code><dd>Constant integer 16

          <br><dt><code>P</code><dd>Constants in the range &minus;8 to 2

     </dl>

     <br><dt><em>Moxie&mdash;</em><samp><span class="file">config/moxie/constraints.md</span></samp><dd>
          <dl>
<dt><code>A</code><dd>An absolute address

          <br><dt><code>B</code><dd>An offset address

          <br><dt><code>W</code><dd>A register indirect memory operand

          <br><dt><code>I</code><dd>A constant in the range of 0 to 255.

          <br><dt><code>N</code><dd>A constant in the range of 0 to &minus;255.

     </dl>

     <br><dt><em>PDP-11&mdash;</em><samp><span class="file">config/pdp11/constraints.md</span></samp><dd>
          <dl>
<dt><code>a</code><dd>Floating point registers AC0 through AC3.  These can be loaded from/to
memory with a single instruction.

          <br><dt><code>d</code><dd>Odd numbered general registers (R1, R3, R5).  These are used for
16-bit multiply operations.

          <br><dt><code>f</code><dd>Any of the floating point registers (AC0 through AC5).

          <br><dt><code>G</code><dd>Floating point constant 0.

          <br><dt><code>I</code><dd>An integer constant that fits in 16 bits.

          <br><dt><code>J</code><dd>An integer constant whose low order 16 bits are zero.

          <br><dt><code>K</code><dd>An integer constant that does not meet the constraints for codes
&lsquo;<samp><span class="samp">I</span></samp>&rsquo; or &lsquo;<samp><span class="samp">J</span></samp>&rsquo;.

          <br><dt><code>L</code><dd>The integer constant 1.

          <br><dt><code>M</code><dd>The integer constant &minus;1.

          <br><dt><code>N</code><dd>The integer constant 0.

          <br><dt><code>O</code><dd>Integer constants &minus;4 through &minus;1 and 1 through 4; shifts by these
amounts are handled as multiple single-bit shifts rather than a single
variable-length shift.

          <br><dt><code>Q</code><dd>A memory reference which requires an additional word (address or
offset) after the opcode.

          <br><dt><code>R</code><dd>A memory reference that is encoded within the opcode.

     </dl>

     <br><dt><em>RX&mdash;</em><samp><span class="file">config/rx/constraints.md</span></samp><dd>
          <dl>
<dt><code>Q</code><dd>An address which does not involve register indirect addressing or
pre/post increment/decrement addressing.

          <br><dt><code>Symbol</code><dd>A symbol reference.

          <br><dt><code>Int08</code><dd>A constant in the range &minus;256 to 255, inclusive.

          <br><dt><code>Sint08</code><dd>A constant in the range &minus;128 to 127, inclusive.

          <br><dt><code>Sint16</code><dd>A constant in the range &minus;32768 to 32767, inclusive.

          <br><dt><code>Sint24</code><dd>A constant in the range &minus;8388608 to 8388607, inclusive.

          <br><dt><code>Uint04</code><dd>A constant in the range 0 to 15, inclusive.

     </dl>

     <br><dt><em>SPARC&mdash;</em><samp><span class="file">config/sparc/sparc.h</span></samp><dd>
          <dl>
<dt><code>f</code><dd>Floating-point register on the SPARC-V8 architecture and
lower floating-point register on the SPARC-V9 architecture.

          <br><dt><code>e</code><dd>Floating-point register.  It is equivalent to &lsquo;<samp><span class="samp">f</span></samp>&rsquo; on the
SPARC-V8 architecture and contains both lower and upper
floating-point registers on the SPARC-V9 architecture.

          <br><dt><code>c</code><dd>Floating-point condition code register.

          <br><dt><code>d</code><dd>Lower floating-point register.  It is only valid on the SPARC-V9
architecture when the Visual Instruction Set is available.

          <br><dt><code>b</code><dd>Floating-point register.  It is only valid on the SPARC-V9 architecture
when the Visual Instruction Set is available.

          <br><dt><code>h</code><dd>64-bit global or out register for the SPARC-V8+ architecture.

          <br><dt><code>D</code><dd>A vector constant

          <br><dt><code>I</code><dd>Signed 13-bit constant

          <br><dt><code>J</code><dd>Zero

          <br><dt><code>K</code><dd>32-bit constant with the low 12 bits clear (a constant that can be
loaded with the <code>sethi</code> instruction)

          <br><dt><code>L</code><dd>A constant in the range supported by <code>movcc</code> instructions

          <br><dt><code>M</code><dd>A constant in the range supported by <code>movrcc</code> instructions

          <br><dt><code>N</code><dd>Same as &lsquo;<samp><span class="samp">K</span></samp>&rsquo;, except that it verifies that bits that are not in the
lower 32-bit range are all zero.  Must be used instead of &lsquo;<samp><span class="samp">K</span></samp>&rsquo; for
modes wider than <code>SImode</code>

          <br><dt><code>O</code><dd>The constant 4096

          <br><dt><code>G</code><dd>Floating-point zero

          <br><dt><code>H</code><dd>Signed 13-bit constant, sign-extended to 32 or 64 bits

          <br><dt><code>Q</code><dd>Floating-point constant whose integral representation can
be moved into an integer register using a single sethi
instruction

          <br><dt><code>R</code><dd>Floating-point constant whose integral representation can
be moved into an integer register using a single mov
instruction

          <br><dt><code>S</code><dd>Floating-point constant whose integral representation can
be moved into an integer register using a high/lo_sum
instruction sequence

          <br><dt><code>T</code><dd>Memory address aligned to an 8-byte boundary

          <br><dt><code>U</code><dd>Even register

          <br><dt><code>W</code><dd>Memory address for &lsquo;<samp><span class="samp">e</span></samp>&rsquo; constraint registers

          <br><dt><code>Y</code><dd>Vector zero

     </dl>

     <br><dt><em>SPU&mdash;</em><samp><span class="file">config/spu/spu.h</span></samp><dd>
          <dl>
<dt><code>a</code><dd>An immediate which can be loaded with the il/ila/ilh/ilhu instructions.  const_int is treated as a 64 bit value.

          <br><dt><code>c</code><dd>An immediate for and/xor/or instructions.  const_int is treated as a 64 bit value.

          <br><dt><code>d</code><dd>An immediate for the <code>iohl</code> instruction.  const_int is treated as a 64 bit value.

          <br><dt><code>f</code><dd>An immediate which can be loaded with <code>fsmbi</code>.

          <br><dt><code>A</code><dd>An immediate which can be loaded with the il/ila/ilh/ilhu instructions.  const_int is treated as a 32 bit value.

          <br><dt><code>B</code><dd>An immediate for most arithmetic instructions.  const_int is treated as a 32 bit value.

          <br><dt><code>C</code><dd>An immediate for and/xor/or instructions.  const_int is treated as a 32 bit value.

          <br><dt><code>D</code><dd>An immediate for the <code>iohl</code> instruction.  const_int is treated as a 32 bit value.

          <br><dt><code>I</code><dd>A constant in the range [&minus;64, 63] for shift/rotate instructions.

          <br><dt><code>J</code><dd>An unsigned 7-bit constant for conversion/nop/channel instructions.

          <br><dt><code>K</code><dd>A signed 10-bit constant for most arithmetic instructions.

          <br><dt><code>M</code><dd>A signed 16 bit immediate for <code>stop</code>.

          <br><dt><code>N</code><dd>An unsigned 16-bit constant for <code>iohl</code> and <code>fsmbi</code>.

          <br><dt><code>O</code><dd>An unsigned 7-bit constant whose 3 least significant bits are 0.

          <br><dt><code>P</code><dd>An unsigned 3-bit constant for 16-byte rotates and shifts

          <br><dt><code>R</code><dd>Call operand, reg, for indirect calls

          <br><dt><code>S</code><dd>Call operand, symbol, for relative calls.

          <br><dt><code>T</code><dd>Call operand, const_int, for absolute calls.

          <br><dt><code>U</code><dd>An immediate which can be loaded with the il/ila/ilh/ilhu instructions.  const_int is sign extended to 128 bit.

          <br><dt><code>W</code><dd>An immediate for shift and rotate instructions.  const_int is treated as a 32 bit value.

          <br><dt><code>Y</code><dd>An immediate for and/xor/or instructions.  const_int is sign extended as a 128 bit.

          <br><dt><code>Z</code><dd>An immediate for the <code>iohl</code> instruction.  const_int is sign extended to 128 bit.

     </dl>

     <br><dt><em>S/390 and zSeries&mdash;</em><samp><span class="file">config/s390/s390.h</span></samp><dd>
          <dl>
<dt><code>a</code><dd>Address register (general purpose register except r0)

          <br><dt><code>c</code><dd>Condition code register

          <br><dt><code>d</code><dd>Data register (arbitrary general purpose register)

          <br><dt><code>f</code><dd>Floating-point register

          <br><dt><code>I</code><dd>Unsigned 8-bit constant (0&ndash;255)

          <br><dt><code>J</code><dd>Unsigned 12-bit constant (0&ndash;4095)

          <br><dt><code>K</code><dd>Signed 16-bit constant (&minus;32768&ndash;32767)

          <br><dt><code>L</code><dd>Value appropriate as displacement.
               <dl>
<dt><code>(0..4095)</code><dd>for short displacement
<br><dt><code>(&minus;524288..524287)</code><dd>for long displacement
</dl>

          <br><dt><code>M</code><dd>Constant integer with a value of 0x7fffffff.

          <br><dt><code>N</code><dd>Multiple letter constraint followed by 4 parameter letters.
               <dl>
<dt><code>0..9:</code><dd>number of the part counting from most to least significant
<br><dt><code>H,Q:</code><dd>mode of the part
<br><dt><code>D,S,H:</code><dd>mode of the containing operand
<br><dt><code>0,F:</code><dd>value of the other parts (F&mdash;all bits set)
</dl>
          The constraint matches if the specified part of a constant
has a value different from its other parts.

          <br><dt><code>Q</code><dd>Memory reference without index register and with short displacement.

          <br><dt><code>R</code><dd>Memory reference with index register and short displacement.

          <br><dt><code>S</code><dd>Memory reference without index register but with long displacement.

          <br><dt><code>T</code><dd>Memory reference with index register and long displacement.

          <br><dt><code>U</code><dd>Pointer with short displacement.

          <br><dt><code>W</code><dd>Pointer with long displacement.

          <br><dt><code>Y</code><dd>Shift count operand.

     </dl>

     <br><dt><em>Score family&mdash;</em><samp><span class="file">config/score/score.h</span></samp><dd>
          <dl>
<dt><code>d</code><dd>Registers from r0 to r32.

          <br><dt><code>e</code><dd>Registers from r0 to r16.

          <br><dt><code>t</code><dd>r8&mdash;r11 or r22&mdash;r27 registers.

          <br><dt><code>h</code><dd>hi register.

          <br><dt><code>l</code><dd>lo register.

          <br><dt><code>x</code><dd>hi + lo register.

          <br><dt><code>q</code><dd>cnt register.

          <br><dt><code>y</code><dd>lcb register.

          <br><dt><code>z</code><dd>scb register.

          <br><dt><code>a</code><dd>cnt + lcb + scb register.

          <br><dt><code>c</code><dd>cr0&mdash;cr15 register.

          <br><dt><code>b</code><dd>cp1 registers.

          <br><dt><code>f</code><dd>cp2 registers.

          <br><dt><code>i</code><dd>cp3 registers.

          <br><dt><code>j</code><dd>cp1 + cp2 + cp3 registers.

          <br><dt><code>I</code><dd>High 16-bit constant (32-bit constant with 16 LSBs zero).

          <br><dt><code>J</code><dd>Unsigned 5 bit integer (in the range 0 to 31).

          <br><dt><code>K</code><dd>Unsigned 16 bit integer (in the range 0 to 65535).

          <br><dt><code>L</code><dd>Signed 16 bit integer (in the range &minus;32768 to 32767).

          <br><dt><code>M</code><dd>Unsigned 14 bit integer (in the range 0 to 16383).

          <br><dt><code>N</code><dd>Signed 14 bit integer (in the range &minus;8192 to 8191).

          <br><dt><code>Z</code><dd>Any SYMBOL_REF. 
</dl>

     <br><dt><em>Xstormy16&mdash;</em><samp><span class="file">config/stormy16/stormy16.h</span></samp><dd>
          <dl>
<dt><code>a</code><dd>Register r0.

          <br><dt><code>b</code><dd>Register r1.

          <br><dt><code>c</code><dd>Register r2.

          <br><dt><code>d</code><dd>Register r8.

          <br><dt><code>e</code><dd>Registers r0 through r7.

          <br><dt><code>t</code><dd>Registers r0 and r1.

          <br><dt><code>y</code><dd>The carry register.

          <br><dt><code>z</code><dd>Registers r8 and r9.

          <br><dt><code>I</code><dd>A constant between 0 and 3 inclusive.

          <br><dt><code>J</code><dd>A constant that has exactly one bit set.

          <br><dt><code>K</code><dd>A constant that has exactly one bit clear.

          <br><dt><code>L</code><dd>A constant between 0 and 255 inclusive.

          <br><dt><code>M</code><dd>A constant between &minus;255 and 0 inclusive.

          <br><dt><code>N</code><dd>A constant between &minus;3 and 0 inclusive.

          <br><dt><code>O</code><dd>A constant between 1 and 4 inclusive.

          <br><dt><code>P</code><dd>A constant between &minus;4 and &minus;1 inclusive.

          <br><dt><code>Q</code><dd>A memory reference that is a stack push.

          <br><dt><code>R</code><dd>A memory reference that is a stack pop.

          <br><dt><code>S</code><dd>A memory reference that refers to a constant address of known value.

          <br><dt><code>T</code><dd>The register indicated by Rx (not implemented yet).

          <br><dt><code>U</code><dd>A constant that is not between 2 and 15 inclusive.

          <br><dt><code>Z</code><dd>The constant 0.

     </dl>

     <br><dt><em>Xtensa&mdash;</em><samp><span class="file">config/xtensa/constraints.md</span></samp><dd>
          <dl>
<dt><code>a</code><dd>General-purpose 32-bit register

          <br><dt><code>b</code><dd>One-bit boolean register

          <br><dt><code>A</code><dd>MAC16 40-bit accumulator register

          <br><dt><code>I</code><dd>Signed 12-bit integer constant, for use in MOVI instructions

          <br><dt><code>J</code><dd>Signed 8-bit integer constant, for use in ADDI instructions

          <br><dt><code>K</code><dd>Integer constant valid for BccI instructions

          <br><dt><code>L</code><dd>Unsigned constant valid for BccUI instructions

     </dl>

 </dl>

<!-- Each of the following nodes are wrapped in separate -->
<!-- "@ifset INTERNALS" to work around memory limits for the default -->
<!-- configuration in older tetex distributions.  Known to not work: -->
<!-- tetex-1.0.7, known to work: tetex-2.0.2. -->
<div class="node">
<a name="Asm-Labels"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Explicit-Reg-Vars">Explicit Reg Vars</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Constraints">Constraints</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.43 Controlling Names Used in Assembler Code</h3>

<p><a name="index-assembler-names-for-identifiers-2673"></a><a name="index-names-used-in-assembler-code-2674"></a><a name="index-identifiers_002c-names-in-assembler-code-2675"></a>
You can specify the name to be used in the assembler code for a C
function or variable by writing the <code>asm</code> (or <code>__asm__</code>)
keyword after the declarator as follows:

<pre class="smallexample">     int foo asm ("myfoo") = 2;
</pre>
 <p class="noindent">This specifies that the name to be used for the variable <code>foo</code> in
the assembler code should be &lsquo;<samp><span class="samp">myfoo</span></samp>&rsquo; rather than the usual
&lsquo;<samp><span class="samp">_foo</span></samp>&rsquo;.

 <p>On systems where an underscore is normally prepended to the name of a C
function or variable, this feature allows you to define names for the
linker that do not start with an underscore.

 <p>It does not make sense to use this feature with a non-static local
variable since such variables do not have assembler names.  If you are
trying to put the variable in a particular register, see <a href="#Explicit-Reg-Vars">Explicit Reg Vars</a>.  GCC presently accepts such code with a warning, but will
probably be changed to issue an error, rather than a warning, in the
future.

 <p>You cannot use <code>asm</code> in this way in a function <em>definition</em>; but
you can get the same effect by writing a declaration for the function
before its definition and putting <code>asm</code> there, like this:

<pre class="smallexample">     extern func () asm ("FUNC");
     
     func (x, y)
          int x, y;
     /* <span class="roman">...</span> */
</pre>
 <p>It is up to you to make sure that the assembler names you choose do not
conflict with any other assembler symbols.  Also, you must not use a
register name; that would produce completely invalid assembler code.  GCC
does not as yet have the ability to store static variables in registers. 
Perhaps that will be added.

<div class="node">
<a name="Explicit-Reg-Vars"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Alternate-Keywords">Alternate Keywords</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Asm-Labels">Asm Labels</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.44 Variables in Specified Registers</h3>

<p><a name="index-explicit-register-variables-2676"></a><a name="index-variables-in-specified-registers-2677"></a><a name="index-specified-registers-2678"></a><a name="index-registers_002c-global-allocation-2679"></a>
GNU C allows you to put a few global variables into specified hardware
registers.  You can also specify the register in which an ordinary
register variable should be allocated.

     <ul>
<li>Global register variables reserve registers throughout the program. 
This may be useful in programs such as programming language
interpreters which have a couple of global variables that are accessed
very often.

     <li>Local register variables in specific registers do not reserve the
registers, except at the point where they are used as input or output
operands in an <code>asm</code> statement and the <code>asm</code> statement itself is
not deleted.  The compiler's data flow analysis is capable of determining
where the specified registers contain live values, and where they are
available for other uses.  Stores into local register variables may be deleted
when they appear to be dead according to dataflow analysis.  References
to local register variables may be deleted or moved or simplified.

     <p>These local variables are sometimes convenient for use with the extended
<code>asm</code> feature (see <a href="#Extended-Asm">Extended Asm</a>), if you want to write one
output of the assembler instruction directly into a particular register. 
(This will work provided the register you specify fits the constraints
specified for that operand in the <code>asm</code>.) 
</ul>

<ul class="menu">
<li><a accesskey="1" href="#Global-Reg-Vars">Global Reg Vars</a>
<li><a accesskey="2" href="#Local-Reg-Vars">Local Reg Vars</a>
</ul>

<div class="node">
<a name="Global-Reg-Vars"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Local-Reg-Vars">Local Reg Vars</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Explicit-Reg-Vars">Explicit Reg Vars</a>

</div>

<h4 class="subsection">6.44.1 Defining Global Register Variables</h4>

<p><a name="index-global-register-variables-2680"></a><a name="index-registers_002c-global-variables-in-2681"></a>
You can define a global register variable in GNU C like this:

<pre class="smallexample">     register int *foo asm ("a5");
</pre>
 <p class="noindent">Here <code>a5</code> is the name of the register which should be used.  Choose a
register which is normally saved and restored by function calls on your
machine, so that library routines will not clobber it.

 <p>Naturally the register name is cpu-dependent, so you would need to
conditionalize your program according to cpu type.  The register
<code>a5</code> would be a good choice on a 68000 for a variable of pointer
type.  On machines with register windows, be sure to choose a &ldquo;global&rdquo;
register that is not affected magically by the function call mechanism.

 <p>In addition, operating systems on one type of cpu may differ in how they
name the registers; then you would need additional conditionals.  For
example, some 68000 operating systems call this register <code>%a5</code>.

 <p>Eventually there may be a way of asking the compiler to choose a register
automatically, but first we need to figure out how it should choose and
how to enable you to guide the choice.  No solution is evident.

 <p>Defining a global register variable in a certain register reserves that
register entirely for this use, at least within the current compilation. 
The register will not be allocated for any other purpose in the functions
in the current compilation.  The register will not be saved and restored by
these functions.  Stores into this register are never deleted even if they
would appear to be dead, but references may be deleted or moved or
simplified.

 <p>It is not safe to access the global register variables from signal
handlers, or from more than one thread of control, because the system
library routines may temporarily use the register for other things (unless
you recompile them specially for the task at hand).

 <p><a name="index-g_t_0040code_007bqsort_007d_002c-and-global-register-variables-2682"></a>It is not safe for one function that uses a global register variable to
call another such function <code>foo</code> by way of a third function
<code>lose</code> that was compiled without knowledge of this variable (i.e. in a
different source file in which the variable wasn't declared).  This is
because <code>lose</code> might save the register and put some other value there. 
For example, you can't expect a global register variable to be available in
the comparison-function that you pass to <code>qsort</code>, since <code>qsort</code>
might have put something else in that register.  (If you are prepared to
recompile <code>qsort</code> with the same global register variable, you can
solve this problem.)

 <p>If you want to recompile <code>qsort</code> or other source files which do not
actually use your global register variable, so that they will not use that
register for any other purpose, then it suffices to specify the compiler
option <samp><span class="option">-ffixed-</span><var>reg</var></samp>.  You need not actually add a global
register declaration to their source code.

 <p>A function which can alter the value of a global register variable cannot
safely be called from a function compiled without this variable, because it
could clobber the value the caller expects to find there on return. 
Therefore, the function which is the entry point into the part of the
program that uses the global register variable must explicitly save and
restore the value which belongs to its caller.

 <p><a name="index-register-variable-after-_0040code_007blongjmp_007d-2683"></a><a name="index-global-register-after-_0040code_007blongjmp_007d-2684"></a><a name="index-value-after-_0040code_007blongjmp_007d-2685"></a><a name="index-longjmp-2686"></a><a name="index-setjmp-2687"></a>On most machines, <code>longjmp</code> will restore to each global register
variable the value it had at the time of the <code>setjmp</code>.  On some
machines, however, <code>longjmp</code> will not change the value of global
register variables.  To be portable, the function that called <code>setjmp</code>
should make other arrangements to save the values of the global register
variables, and to restore them in a <code>longjmp</code>.  This way, the same
thing will happen regardless of what <code>longjmp</code> does.

 <p>All global register variable declarations must precede all function
definitions.  If such a declaration could appear after function
definitions, the declaration would be too late to prevent the register from
being used for other purposes in the preceding functions.

 <p>Global register variables may not have initial values, because an
executable file has no means to supply initial contents for a register.

 <p>On the SPARC, there are reports that g3 <small class="dots">...</small> g7 are suitable
registers, but certain library functions, such as <code>getwd</code>, as well
as the subroutines for division and remainder, modify g3 and g4.  g1 and
g2 are local temporaries.

 <p>On the 68000, a2 <small class="dots">...</small> a5 should be suitable, as should d2 <small class="dots">...</small> d7. 
Of course, it will not do to use more than a few of those.

<div class="node">
<a name="Local-Reg-Vars"></a>
<p><hr>
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Global-Reg-Vars">Global Reg Vars</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Explicit-Reg-Vars">Explicit Reg Vars</a>

</div>

<h4 class="subsection">6.44.2 Specifying Registers for Local Variables</h4>

<p><a name="index-local-variables_002c-specifying-registers-2688"></a><a name="index-specifying-registers-for-local-variables-2689"></a><a name="index-registers-for-local-variables-2690"></a>
You can define a local register variable with a specified register
like this:

<pre class="smallexample">     register int *foo asm ("a5");
</pre>
 <p class="noindent">Here <code>a5</code> is the name of the register which should be used.  Note
that this is the same syntax used for defining global register
variables, but for a local variable it would appear within a function.

 <p>Naturally the register name is cpu-dependent, but this is not a
problem, since specific registers are most often useful with explicit
assembler instructions (see <a href="#Extended-Asm">Extended Asm</a>).  Both of these things
generally require that you conditionalize your program according to
cpu type.

 <p>In addition, operating systems on one type of cpu may differ in how they
name the registers; then you would need additional conditionals.  For
example, some 68000 operating systems call this register <code>%a5</code>.

 <p>Defining such a register variable does not reserve the register; it
remains available for other uses in places where flow control determines
the variable's value is not live.

 <p>This option does not guarantee that GCC will generate code that has
this variable in the register you specify at all times.  You may not
code an explicit reference to this register in the <em>assembler
instruction template</em> part of an <code>asm</code> statement and assume it will
always refer to this variable.  However, using the variable as an
<code>asm</code> <em>operand</em> guarantees that the specified register is used
for the operand.

 <p>Stores into local register variables may be deleted when they appear to be dead
according to dataflow analysis.  References to local register variables may
be deleted or moved or simplified.

 <p>As for global register variables, it's recommended that you choose a
register which is normally saved and restored by function calls on
your machine, so that library routines will not clobber it.  A common
pitfall is to initialize multiple call-clobbered registers with
arbitrary expressions, where a function call or library call for an
arithmetic operator will overwrite a register value from a previous
assignment, for example <code>r0</code> below:
<pre class="smallexample">     register int *p1 asm ("r0") = ...;
     register int *p2 asm ("r1") = ...;
</pre>
 <p>In those cases, a solution is to use a temporary variable for
each arbitrary expression.   See <a href="#Example-of-asm-with-clobbered-asm-reg">Example of asm with clobbered asm reg</a>.

<div class="node">
<a name="Alternate-Keywords"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Incomplete-Enums">Incomplete Enums</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Explicit-Reg-Vars">Explicit Reg Vars</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.45 Alternate Keywords</h3>

<p><a name="index-alternate-keywords-2691"></a><a name="index-keywords_002c-alternate-2692"></a>
<samp><span class="option">-ansi</span></samp> and the various <samp><span class="option">-std</span></samp> options disable certain
keywords.  This causes trouble when you want to use GNU C extensions, or
a general-purpose header file that should be usable by all programs,
including ISO C programs.  The keywords <code>asm</code>, <code>typeof</code> and
<code>inline</code> are not available in programs compiled with
<samp><span class="option">-ansi</span></samp> or <samp><span class="option">-std</span></samp> (although <code>inline</code> can be used in a
program compiled with <samp><span class="option">-std=c99</span></samp> or <samp><span class="option">-std=c1x</span></samp>).  The
ISO C99 keyword
<code>restrict</code> is only available when <samp><span class="option">-std=gnu99</span></samp> (which will
eventually be the default) or <samp><span class="option">-std=c99</span></samp> (or the equivalent
<samp><span class="option">-std=iso9899:1999</span></samp>), or an option for a later standard
version, is used.

 <p>The way to solve these problems is to put &lsquo;<samp><span class="samp">__</span></samp>&rsquo; at the beginning and
end of each problematical keyword.  For example, use <code>__asm__</code>
instead of <code>asm</code>, and <code>__inline__</code> instead of <code>inline</code>.

 <p>Other C compilers won't accept these alternative keywords; if you want to
compile with another compiler, you can define the alternate keywords as
macros to replace them with the customary keywords.  It looks like this:

<pre class="smallexample">     #ifndef __GNUC__
     #define __asm__ asm
     #endif
</pre>
 <p><a name="index-g_t_005f_005fextension_005f_005f-2693"></a><a name="index-pedantic-2694"></a><samp><span class="option">-pedantic</span></samp> and other options cause warnings for many GNU C extensions. 
You can
prevent such warnings within one expression by writing
<code>__extension__</code> before the expression.  <code>__extension__</code> has no
effect aside from this.

<div class="node">
<a name="Incomplete-Enums"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Function-Names">Function Names</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Alternate-Keywords">Alternate Keywords</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.46 Incomplete <code>enum</code> Types</h3>

<p>You can define an <code>enum</code> tag without specifying its possible values. 
This results in an incomplete type, much like what you get if you write
<code>struct foo</code> without describing the elements.  A later declaration
which does specify the possible values completes the type.

 <p>You can't allocate variables or storage using the type while it is
incomplete.  However, you can work with pointers to that type.

 <p>This extension may not be very useful, but it makes the handling of
<code>enum</code> more consistent with the way <code>struct</code> and <code>union</code>
are handled.

 <p>This extension is not supported by GNU C++.

<div class="node">
<a name="Function-Names"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Return-Address">Return Address</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Incomplete-Enums">Incomplete Enums</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.47 Function Names as Strings</h3>

<p><a name="index-g_t_0040code_007b_005f_005ffunc_005f_005f_007d-identifier-2695"></a><a name="index-g_t_0040code_007b_005f_005fFUNCTION_005f_005f_007d-identifier-2696"></a><a name="index-g_t_0040code_007b_005f_005fPRETTY_005fFUNCTION_005f_005f_007d-identifier-2697"></a>
GCC provides three magic variables which hold the name of the current
function, as a string.  The first of these is <code>__func__</code>, which
is part of the C99 standard:

 <p>The identifier <code>__func__</code> is implicitly declared by the translator
as if, immediately following the opening brace of each function
definition, the declaration

<pre class="smallexample">     static const char __func__[] = "function-name";
</pre>
 <p class="noindent">appeared, where function-name is the name of the lexically-enclosing
function.  This name is the unadorned name of the function.

 <p><code>__FUNCTION__</code> is another name for <code>__func__</code>.  Older
versions of GCC recognize only this name.  However, it is not
standardized.  For maximum portability, we recommend you use
<code>__func__</code>, but provide a fallback definition with the
preprocessor:

<pre class="smallexample">     #if __STDC_VERSION__ &lt; 199901L
     # if __GNUC__ &gt;= 2
     #  define __func__ __FUNCTION__
     # else
     #  define __func__ "&lt;unknown&gt;"
     # endif
     #endif
</pre>
 <p>In C, <code>__PRETTY_FUNCTION__</code> is yet another name for
<code>__func__</code>.  However, in C++, <code>__PRETTY_FUNCTION__</code> contains
the type signature of the function as well as its bare name.  For
example, this program:

<pre class="smallexample">     extern "C" {
     extern int printf (char *, ...);
     }
     
     class a {
      public:
       void sub (int i)
         {
           printf ("__FUNCTION__ = %s\n", __FUNCTION__);
           printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
         }
     };
     
     int
     main (void)
     {
       a ax;
       ax.sub (0);
       return 0;
     }
</pre>
 <p class="noindent">gives this output:

<pre class="smallexample">     __FUNCTION__ = sub
     __PRETTY_FUNCTION__ = void a::sub(int)
</pre>
 <p>These identifiers are not preprocessor macros.  In GCC 3.3 and
earlier, in C only, <code>__FUNCTION__</code> and <code>__PRETTY_FUNCTION__</code>
were treated as string literals; they could be used to initialize
<code>char</code> arrays, and they could be concatenated with other string
literals.  GCC 3.4 and later treat them as variables, like
<code>__func__</code>.  In C++, <code>__FUNCTION__</code> and
<code>__PRETTY_FUNCTION__</code> have always been variables.

<div class="node">
<a name="Return-Address"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Vector-Extensions">Vector Extensions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Function-Names">Function Names</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.48 Getting the Return or Frame Address of a Function</h3>

<p>These functions may be used to get information about the callers of a
function.

<div class="defun">
&mdash; Built-in Function: void * <b>__builtin_return_address</b> (<var>unsigned int level</var>)<var><a name="index-g_t_005f_005fbuiltin_005freturn_005faddress-2698"></a></var><br>
<blockquote><p>This function returns the return address of the current function, or of
one of its callers.  The <var>level</var> argument is number of frames to
scan up the call stack.  A value of <code>0</code> yields the return address
of the current function, a value of <code>1</code> yields the return address
of the caller of the current function, and so forth.  When inlining
the expected behavior is that the function will return the address of
the function that will be returned to.  To work around this behavior use
the <code>noinline</code> function attribute.

      <p>The <var>level</var> argument must be a constant integer.

      <p>On some machines it may be impossible to determine the return address of
any function other than the current one; in such cases, or when the top
of the stack has been reached, this function will return <code>0</code> or a
random value.  In addition, <code>__builtin_frame_address</code> may be used
to determine if the top of the stack has been reached.

      <p>Additional post-processing of the returned value may be needed, see
<code>__builtin_extract_return_address</code>.

      <p>This function should only be used with a nonzero argument for debugging
purposes. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: void * <b>__builtin_extract_return_address</b> (<var>void *addr</var>)<var><a name="index-g_t_005f_005fbuiltin_005fextract_005freturn_005faddress-2699"></a></var><br>
<blockquote><p>The address as returned by <code>__builtin_return_address</code> may have to be fed
through this function to get the actual encoded address.  For example, on the
31-bit S/390 platform the highest bit has to be masked out, or on SPARC
platforms an offset has to be added for the true next instruction to be
executed.

      <p>If no fixup is needed, this function simply passes through <var>addr</var>. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: void * <b>__builtin_frob_return_address</b> (<var>void *addr</var>)<var><a name="index-g_t_005f_005fbuiltin_005ffrob_005freturn_005faddress-2700"></a></var><br>
<blockquote><p>This function does the reverse of <code>__builtin_extract_return_address</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: void * <b>__builtin_frame_address</b> (<var>unsigned int level</var>)<var><a name="index-g_t_005f_005fbuiltin_005fframe_005faddress-2701"></a></var><br>
<blockquote><p>This function is similar to <code>__builtin_return_address</code>, but it
returns the address of the function frame rather than the return address
of the function.  Calling <code>__builtin_frame_address</code> with a value of
<code>0</code> yields the frame address of the current function, a value of
<code>1</code> yields the frame address of the caller of the current function,
and so forth.

      <p>The frame is the area on the stack which holds local variables and saved
registers.  The frame address is normally the address of the first word
pushed on to the stack by the function.  However, the exact definition
depends upon the processor and the calling convention.  If the processor
has a dedicated frame pointer register, and the function has a frame,
then <code>__builtin_frame_address</code> will return the value of the frame
pointer register.

      <p>On some machines it may be impossible to determine the frame address of
any function other than the current one; in such cases, or when the top
of the stack has been reached, this function will return <code>0</code> if
the first frame pointer is properly initialized by the startup code.

      <p>This function should only be used with a nonzero argument for debugging
purposes. 
</p></blockquote></div>

<div class="node">
<a name="Vector-Extensions"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Offsetof">Offsetof</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Return-Address">Return Address</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.49 Using vector instructions through built-in functions</h3>

<p>On some targets, the instruction set contains SIMD vector instructions that
operate on multiple values contained in one large register at the same time. 
For example, on the i386 the MMX, 3DNow! and SSE extensions can be used
this way.

 <p>The first step in using these extensions is to provide the necessary data
types.  This should be done using an appropriate <code>typedef</code>:

<pre class="smallexample">     typedef int v4si __attribute__ ((vector_size (16)));
</pre>
 <p>The <code>int</code> type specifies the base type, while the attribute specifies
the vector size for the variable, measured in bytes.  For example, the
declaration above causes the compiler to set the mode for the <code>v4si</code>
type to be 16 bytes wide and divided into <code>int</code> sized units.  For
a 32-bit <code>int</code> this means a vector of 4 units of 4 bytes, and the
corresponding mode of <code>foo</code> will be <acronym>V4SI</acronym>.

 <p>The <code>vector_size</code> attribute is only applicable to integral and
float scalars, although arrays, pointers, and function return values
are allowed in conjunction with this construct.

 <p>All the basic integer types can be used as base types, both as signed
and as unsigned: <code>char</code>, <code>short</code>, <code>int</code>, <code>long</code>,
<code>long long</code>.  In addition, <code>float</code> and <code>double</code> can be
used to build floating-point vector types.

 <p>Specifying a combination that is not valid for the current architecture
will cause GCC to synthesize the instructions using a narrower mode. 
For example, if you specify a variable of type <code>V4SI</code> and your
architecture does not allow for this specific SIMD type, GCC will
produce code that uses 4 <code>SIs</code>.

 <p>The types defined in this manner can be used with a subset of normal C
operations.  Currently, GCC will allow using the following operators
on these types: <code>+, -, *, /, unary minus, ^, |, &amp;, ~, %</code>.

 <p>The operations behave like C++ <code>valarrays</code>.  Addition is defined as
the addition of the corresponding elements of the operands.  For
example, in the code below, each of the 4 elements in <var>a</var> will be
added to the corresponding 4 elements in <var>b</var> and the resulting
vector will be stored in <var>c</var>.

<pre class="smallexample">     typedef int v4si __attribute__ ((vector_size (16)));
     
     v4si a, b, c;
     
     c = a + b;
</pre>
 <p>Subtraction, multiplication, division, and the logical operations
operate in a similar manner.  Likewise, the result of using the unary
minus or complement operators on a vector type is a vector whose
elements are the negative or complemented values of the corresponding
elements in the operand.

 <p>In C it is possible to use shifting operators <code>&lt;&lt;</code>, <code>&gt;&gt;</code> on
integer-type vectors. The operation is defined as following: <code>{a0,
a1, ..., an} &gt;&gt; {b0, b1, ..., bn} == {a0 &gt;&gt; b0, a1 &gt;&gt; b1,
..., an &gt;&gt; bn}</code>. Vector operands must have the same number of
elements.  Additionally second operands can be a scalar integer in which
case the scalar is converted to the type used by the vector operand (with
possible truncation) and each element of this new vector is the scalar's
value. 
Consider the following code.

<pre class="smallexample">     typedef int v4si __attribute__ ((vector_size (16)));
     
     v4si a, b;
     
     b = a &gt;&gt; 1;     /* b = a &gt;&gt; {1,1,1,1}; */
</pre>
 <p>In C vectors can be subscripted as if the vector were an array with
the same number of elements and base type.  Out of bound accesses
invoke undefined behavior at runtime.  Warnings for out of bound
accesses for vector subscription can be enabled with
<samp><span class="option">-Warray-bounds</span></samp>.

 <p>You can declare variables and use them in function calls and returns, as
well as in assignments and some casts.  You can specify a vector type as
a return type for a function.  Vector types can also be used as function
arguments.  It is possible to cast from one vector type to another,
provided they are of the same size (in fact, you can also cast vectors
to and from other datatypes of the same size).

 <p>You cannot operate between vectors of different lengths or different
signedness without a cast.

 <p>A port that supports hardware vector operations, usually provides a set
of built-in functions that can be used to operate on vectors.  For
example, a function to add two vectors and multiply the result by a
third could look like this:

<pre class="smallexample">     v4si f (v4si a, v4si b, v4si c)
     {
       v4si tmp = __builtin_addv4si (a, b);
       return __builtin_mulv4si (tmp, c);
     }
     
</pre>
 <div class="node">
<a name="Offsetof"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Atomic-Builtins">Atomic Builtins</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Vector-Extensions">Vector Extensions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.50 Offsetof</h3>

<p><a name="index-g_t_005f_005fbuiltin_005foffsetof-2702"></a>
GCC implements for both C and C++ a syntactic extension to implement
the <code>offsetof</code> macro.

<pre class="smallexample">     primary:
             "__builtin_offsetof" "(" <code>typename</code> "," offsetof_member_designator ")"
     
     offsetof_member_designator:
               <code>identifier</code>
             | offsetof_member_designator "." <code>identifier</code>
             | offsetof_member_designator "[" <code>expr</code> "]"
</pre>
 <p>This extension is sufficient such that

<pre class="smallexample">     #define offsetof(<var>type</var>, <var>member</var>)  __builtin_offsetof (<var>type</var>, <var>member</var>)
</pre>
 <p>is a suitable definition of the <code>offsetof</code> macro.  In C++, <var>type</var>
may be dependent.  In either case, <var>member</var> may consist of a single
identifier, or a sequence of member accesses and array references.

<div class="node">
<a name="Atomic-Builtins"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Object-Size-Checking">Object Size Checking</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Offsetof">Offsetof</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.51 Built-in functions for atomic memory access</h3>

<p>The following builtins are intended to be compatible with those described
in the <cite>Intel Itanium Processor-specific Application Binary Interface</cite>,
section 7.4.  As such, they depart from the normal GCC practice of using
the &ldquo;__builtin_&rdquo; prefix, and further that they are overloaded such that
they work on multiple types.

 <p>The definition given in the Intel documentation allows only for the use of
the types <code>int</code>, <code>long</code>, <code>long long</code> as well as their unsigned
counterparts.  GCC will allow any integral scalar or pointer type that is
1, 2, 4 or 8 bytes in length.

 <p>Not all operations are supported by all target processors.  If a particular
operation cannot be implemented on the target processor, a warning will be
generated and a call an external function will be generated.  The external
function will carry the same name as the builtin, with an additional suffix
&lsquo;<samp><span class="samp">_</span><var>n</var></samp>&rsquo; where <var>n</var> is the size of the data type.

<!-- ??? Should we have a mechanism to suppress this warning?  This is almost -->
<!-- useful for implementing the operation under the control of an external -->
<!-- mutex. -->
 <p>In most cases, these builtins are considered a <dfn>full barrier</dfn>.  That is,
no memory operand will be moved across the operation, either forward or
backward.  Further, instructions will be issued as necessary to prevent the
processor from speculating loads across the operation and from queuing stores
after the operation.

 <p>All of the routines are described in the Intel documentation to take
&ldquo;an optional list of variables protected by the memory barrier&rdquo;.  It's
not clear what is meant by that; it could mean that <em>only</em> the
following variables are protected, or it could mean that these variables
should in addition be protected.  At present GCC ignores this list and
protects all variables which are globally accessible.  If in the future
we make some use of this list, an empty list will continue to mean all
globally accessible variables.

     <dl>
<dt><var>type</var><code> __sync_fetch_and_add (</code><var>type</var><code> *ptr, </code><var>type</var><code> value, ...)</code><dt><var>type</var><code> __sync_fetch_and_sub (</code><var>type</var><code> *ptr, </code><var>type</var><code> value, ...)</code><dt><var>type</var><code> __sync_fetch_and_or (</code><var>type</var><code> *ptr, </code><var>type</var><code> value, ...)</code><dt><var>type</var><code> __sync_fetch_and_and (</code><var>type</var><code> *ptr, </code><var>type</var><code> value, ...)</code><dt><var>type</var><code> __sync_fetch_and_xor (</code><var>type</var><code> *ptr, </code><var>type</var><code> value, ...)</code><dt><var>type</var><code> __sync_fetch_and_nand (</code><var>type</var><code> *ptr, </code><var>type</var><code> value, ...)</code><dd><a name="index-g_t_005f_005fsync_005ffetch_005fand_005fadd-2703"></a><a name="index-g_t_005f_005fsync_005ffetch_005fand_005fsub-2704"></a><a name="index-g_t_005f_005fsync_005ffetch_005fand_005for-2705"></a><a name="index-g_t_005f_005fsync_005ffetch_005fand_005fand-2706"></a><a name="index-g_t_005f_005fsync_005ffetch_005fand_005fxor-2707"></a><a name="index-g_t_005f_005fsync_005ffetch_005fand_005fnand-2708"></a>These builtins perform the operation suggested by the name, and
returns the value that had previously been in memory.  That is,

     <pre class="smallexample">          { tmp = *ptr; *ptr <var>op</var>= value; return tmp; }
          { tmp = *ptr; *ptr = ~(tmp &amp; value); return tmp; }   // nand
</pre>
     <p><em>Note:</em> GCC 4.4 and later implement <code>__sync_fetch_and_nand</code>
builtin as <code>*ptr = ~(tmp &amp; value)</code> instead of <code>*ptr = ~tmp &amp; value</code>.

     <br><dt><var>type</var><code> __sync_add_and_fetch (</code><var>type</var><code> *ptr, </code><var>type</var><code> value, ...)</code><dt><var>type</var><code> __sync_sub_and_fetch (</code><var>type</var><code> *ptr, </code><var>type</var><code> value, ...)</code><dt><var>type</var><code> __sync_or_and_fetch (</code><var>type</var><code> *ptr, </code><var>type</var><code> value, ...)</code><dt><var>type</var><code> __sync_and_and_fetch (</code><var>type</var><code> *ptr, </code><var>type</var><code> value, ...)</code><dt><var>type</var><code> __sync_xor_and_fetch (</code><var>type</var><code> *ptr, </code><var>type</var><code> value, ...)</code><dt><var>type</var><code> __sync_nand_and_fetch (</code><var>type</var><code> *ptr, </code><var>type</var><code> value, ...)</code><dd><a name="index-g_t_005f_005fsync_005fadd_005fand_005ffetch-2709"></a><a name="index-g_t_005f_005fsync_005fsub_005fand_005ffetch-2710"></a><a name="index-g_t_005f_005fsync_005for_005fand_005ffetch-2711"></a><a name="index-g_t_005f_005fsync_005fand_005fand_005ffetch-2712"></a><a name="index-g_t_005f_005fsync_005fxor_005fand_005ffetch-2713"></a><a name="index-g_t_005f_005fsync_005fnand_005fand_005ffetch-2714"></a>These builtins perform the operation suggested by the name, and
return the new value.  That is,

     <pre class="smallexample">          { *ptr <var>op</var>= value; return *ptr; }
          { *ptr = ~(*ptr &amp; value); return *ptr; }   // nand
</pre>
     <p><em>Note:</em> GCC 4.4 and later implement <code>__sync_nand_and_fetch</code>
builtin as <code>*ptr = ~(*ptr &amp; value)</code> instead of
<code>*ptr = ~*ptr &amp; value</code>.

     <br><dt><code>bool __sync_bool_compare_and_swap (</code><var>type</var><code> *ptr, </code><var>type</var><code> oldval </code><var>type</var><code> newval, ...)</code><dt><var>type</var><code> __sync_val_compare_and_swap (</code><var>type</var><code> *ptr, </code><var>type</var><code> oldval </code><var>type</var><code> newval, ...)</code><dd><a name="index-g_t_005f_005fsync_005fbool_005fcompare_005fand_005fswap-2715"></a><a name="index-g_t_005f_005fsync_005fval_005fcompare_005fand_005fswap-2716"></a>These builtins perform an atomic compare and swap.  That is, if the current
value of <code>*</code><var>ptr</var> is <var>oldval</var>, then write <var>newval</var> into
<code>*</code><var>ptr</var>.

     <p>The &ldquo;bool&rdquo; version returns true if the comparison is successful and
<var>newval</var> was written.  The &ldquo;val&rdquo; version returns the contents
of <code>*</code><var>ptr</var> before the operation.

     <br><dt><code>__sync_synchronize (...)</code><dd><a name="index-g_t_005f_005fsync_005fsynchronize-2717"></a>This builtin issues a full memory barrier.

     <br><dt><var>type</var><code> __sync_lock_test_and_set (</code><var>type</var><code> *ptr, </code><var>type</var><code> value, ...)</code><dd><a name="index-g_t_005f_005fsync_005flock_005ftest_005fand_005fset-2718"></a>This builtin, as described by Intel, is not a traditional test-and-set
operation, but rather an atomic exchange operation.  It writes <var>value</var>
into <code>*</code><var>ptr</var>, and returns the previous contents of
<code>*</code><var>ptr</var>.

     <p>Many targets have only minimal support for such locks, and do not support
a full exchange operation.  In this case, a target may support reduced
functionality here by which the <em>only</em> valid value to store is the
immediate constant 1.  The exact value actually stored in <code>*</code><var>ptr</var>
is implementation defined.

     <p>This builtin is not a full barrier, but rather an <dfn>acquire barrier</dfn>. 
This means that references after the builtin cannot move to (or be
speculated to) before the builtin, but previous memory stores may not
be globally visible yet, and previous memory loads may not yet be
satisfied.

     <br><dt><code>void __sync_lock_release (</code><var>type</var><code> *ptr, ...)</code><dd><a name="index-g_t_005f_005fsync_005flock_005frelease-2719"></a>This builtin releases the lock acquired by <code>__sync_lock_test_and_set</code>. 
Normally this means writing the constant 0 to <code>*</code><var>ptr</var>.

     <p>This builtin is not a full barrier, but rather a <dfn>release barrier</dfn>. 
This means that all previous memory stores are globally visible, and all
previous memory loads have been satisfied, but following memory reads
are not prevented from being speculated to before the barrier. 
</dl>

<div class="node">
<a name="Object-Size-Checking"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Other-Builtins">Other Builtins</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Atomic-Builtins">Atomic Builtins</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.52 Object Size Checking Builtins</h3>

<p><a name="index-g_t_005f_005fbuiltin_005fobject_005fsize-2720"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005fmemcpy_005fchk-2721"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005fmempcpy_005fchk-2722"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005fmemmove_005fchk-2723"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005fmemset_005fchk-2724"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005fstrcpy_005fchk-2725"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005fstpcpy_005fchk-2726"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005fstrncpy_005fchk-2727"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005fstrcat_005fchk-2728"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005fstrncat_005fchk-2729"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005fsprintf_005fchk-2730"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005fsnprintf_005fchk-2731"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005fvsprintf_005fchk-2732"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005fvsnprintf_005fchk-2733"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005fprintf_005fchk-2734"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005fvprintf_005fchk-2735"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005ffprintf_005fchk-2736"></a><a name="index-g_t_005f_005fbuiltin_005f_005f_005fvfprintf_005fchk-2737"></a>
GCC implements a limited buffer overflow protection mechanism
that can prevent some buffer overflow attacks.

<div class="defun">
&mdash; Built-in Function: size_t <b>__builtin_object_size</b> (<var>void * ptr, int type</var>)<var><a name="index-g_t_005f_005fbuiltin_005fobject_005fsize-2738"></a></var><br>
<blockquote><p>is a built-in construct that returns a constant number of bytes from
<var>ptr</var> to the end of the object <var>ptr</var> pointer points to
(if known at compile time).  <code>__builtin_object_size</code> never evaluates
its arguments for side-effects.  If there are any side-effects in them, it
returns <code>(size_t) -1</code> for <var>type</var> 0 or 1 and <code>(size_t) 0</code>
for <var>type</var> 2 or 3.  If there are multiple objects <var>ptr</var> can
point to and all of them are known at compile time, the returned number
is the maximum of remaining byte counts in those objects if <var>type</var> &amp; 2 is
0 and minimum if nonzero.  If it is not possible to determine which objects
<var>ptr</var> points to at compile time, <code>__builtin_object_size</code> should
return <code>(size_t) -1</code> for <var>type</var> 0 or 1 and <code>(size_t) 0</code>
for <var>type</var> 2 or 3.

      <p><var>type</var> is an integer constant from 0 to 3.  If the least significant
bit is clear, objects are whole variables, if it is set, a closest
surrounding subobject is considered the object a pointer points to. 
The second bit determines if maximum or minimum of remaining bytes
is computed.

     <pre class="smallexample">          struct V { char buf1[10]; int b; char buf2[10]; } var;
          char *p = &amp;var.buf1[1], *q = &amp;var.b;
          
          /* Here the object p points to is var.  */
          assert (__builtin_object_size (p, 0) == sizeof (var) - 1);
          /* The subobject p points to is var.buf1.  */
          assert (__builtin_object_size (p, 1) == sizeof (var.buf1) - 1);
          /* The object q points to is var.  */
          assert (__builtin_object_size (q, 0)
                  == (char *) (&amp;var + 1) - (char *) &amp;var.b);
          /* The subobject q points to is var.b.  */
          assert (__builtin_object_size (q, 1) == sizeof (var.b));
</pre>
      </blockquote></div>

 <p>There are built-in functions added for many common string operation
functions, e.g., for <code>memcpy</code> <code>__builtin___memcpy_chk</code>
built-in is provided.  This built-in has an additional last argument,
which is the number of bytes remaining in object the <var>dest</var>
argument points to or <code>(size_t) -1</code> if the size is not known.

 <p>The built-in functions are optimized into the normal string functions
like <code>memcpy</code> if the last argument is <code>(size_t) -1</code> or if
it is known at compile time that the destination object will not
be overflown.  If the compiler can determine at compile time the
object will be always overflown, it issues a warning.

 <p>The intended use can be e.g.

<pre class="smallexample">     #undef memcpy
     #define bos0(dest) __builtin_object_size (dest, 0)
     #define memcpy(dest, src, n) \
       __builtin___memcpy_chk (dest, src, n, bos0 (dest))
     
     char *volatile p;
     char buf[10];
     /* It is unknown what object p points to, so this is optimized
        into plain memcpy - no checking is possible.  */
     memcpy (p, "abcde", n);
     /* Destination is known and length too.  It is known at compile
        time there will be no overflow.  */
     memcpy (&amp;buf[5], "abcde", 5);
     /* Destination is known, but the length is not known at compile time.
        This will result in __memcpy_chk call that can check for overflow
        at runtime.  */
     memcpy (&amp;buf[5], "abcde", n);
     /* Destination is known and it is known at compile time there will
        be overflow.  There will be a warning and __memcpy_chk call that
        will abort the program at runtime.  */
     memcpy (&amp;buf[6], "abcde", 5);
</pre>
 <p>Such built-in functions are provided for <code>memcpy</code>, <code>mempcpy</code>,
<code>memmove</code>, <code>memset</code>, <code>strcpy</code>, <code>stpcpy</code>, <code>strncpy</code>,
<code>strcat</code> and <code>strncat</code>.

 <p>There are also checking built-in functions for formatted output functions.
<pre class="smallexample">     int __builtin___sprintf_chk (char *s, int flag, size_t os, const char *fmt, ...);
     int __builtin___snprintf_chk (char *s, size_t maxlen, int flag, size_t os,
                                   const char *fmt, ...);
     int __builtin___vsprintf_chk (char *s, int flag, size_t os, const char *fmt,
                                   va_list ap);
     int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os,
                                    const char *fmt, va_list ap);
</pre>
 <p>The added <var>flag</var> argument is passed unchanged to <code>__sprintf_chk</code>
etc. functions and can contain implementation specific flags on what
additional security measures the checking function might take, such as
handling <code>%n</code> differently.

 <p>The <var>os</var> argument is the object size <var>s</var> points to, like in the
other built-in functions.  There is a small difference in the behavior
though, if <var>os</var> is <code>(size_t) -1</code>, the built-in functions are
optimized into the non-checking functions only if <var>flag</var> is 0, otherwise
the checking function is called with <var>os</var> argument set to
<code>(size_t) -1</code>.

 <p>In addition to this, there are checking built-in functions
<code>__builtin___printf_chk</code>, <code>__builtin___vprintf_chk</code>,
<code>__builtin___fprintf_chk</code> and <code>__builtin___vfprintf_chk</code>. 
These have just one additional argument, <var>flag</var>, right before
format string <var>fmt</var>.  If the compiler is able to optimize them to
<code>fputc</code> etc. functions, it will, otherwise the checking function
should be called and the <var>flag</var> argument passed to it.

<div class="node">
<a name="Other-Builtins"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Target-Builtins">Target Builtins</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Object-Size-Checking">Object Size Checking</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.53 Other built-in functions provided by GCC</h3>

<p><a name="index-built_002din-functions-2739"></a><a name="index-g_t_005f_005fbuiltin_005ffpclassify-2740"></a><a name="index-g_t_005f_005fbuiltin_005fisfinite-2741"></a><a name="index-g_t_005f_005fbuiltin_005fisnormal-2742"></a><a name="index-g_t_005f_005fbuiltin_005fisgreater-2743"></a><a name="index-g_t_005f_005fbuiltin_005fisgreaterequal-2744"></a><a name="index-g_t_005f_005fbuiltin_005fisinf_005fsign-2745"></a><a name="index-g_t_005f_005fbuiltin_005fisless-2746"></a><a name="index-g_t_005f_005fbuiltin_005fislessequal-2747"></a><a name="index-g_t_005f_005fbuiltin_005fislessgreater-2748"></a><a name="index-g_t_005f_005fbuiltin_005fisunordered-2749"></a><a name="index-g_t_005f_005fbuiltin_005fpowi-2750"></a><a name="index-g_t_005f_005fbuiltin_005fpowif-2751"></a><a name="index-g_t_005f_005fbuiltin_005fpowil-2752"></a><a name="index-g_t_005fExit-2753"></a><a name="index-g_t_005fexit-2754"></a><a name="index-abort-2755"></a><a name="index-abs-2756"></a><a name="index-acos-2757"></a><a name="index-acosf-2758"></a><a name="index-acosh-2759"></a><a name="index-acoshf-2760"></a><a name="index-acoshl-2761"></a><a name="index-acosl-2762"></a><a name="index-alloca-2763"></a><a name="index-asin-2764"></a><a name="index-asinf-2765"></a><a name="index-asinh-2766"></a><a name="index-asinhf-2767"></a><a name="index-asinhl-2768"></a><a name="index-asinl-2769"></a><a name="index-atan-2770"></a><a name="index-atan2-2771"></a><a name="index-atan2f-2772"></a><a name="index-atan2l-2773"></a><a name="index-atanf-2774"></a><a name="index-atanh-2775"></a><a name="index-atanhf-2776"></a><a name="index-atanhl-2777"></a><a name="index-atanl-2778"></a><a name="index-bcmp-2779"></a><a name="index-bzero-2780"></a><a name="index-cabs-2781"></a><a name="index-cabsf-2782"></a><a name="index-cabsl-2783"></a><a name="index-cacos-2784"></a><a name="index-cacosf-2785"></a><a name="index-cacosh-2786"></a><a name="index-cacoshf-2787"></a><a name="index-cacoshl-2788"></a><a name="index-cacosl-2789"></a><a name="index-calloc-2790"></a><a name="index-carg-2791"></a><a name="index-cargf-2792"></a><a name="index-cargl-2793"></a><a name="index-casin-2794"></a><a name="index-casinf-2795"></a><a name="index-casinh-2796"></a><a name="index-casinhf-2797"></a><a name="index-casinhl-2798"></a><a name="index-casinl-2799"></a><a name="index-catan-2800"></a><a name="index-catanf-2801"></a><a name="index-catanh-2802"></a><a name="index-catanhf-2803"></a><a name="index-catanhl-2804"></a><a name="index-catanl-2805"></a><a name="index-cbrt-2806"></a><a name="index-cbrtf-2807"></a><a name="index-cbrtl-2808"></a><a name="index-ccos-2809"></a><a name="index-ccosf-2810"></a><a name="index-ccosh-2811"></a><a name="index-ccoshf-2812"></a><a name="index-ccoshl-2813"></a><a name="index-ccosl-2814"></a><a name="index-ceil-2815"></a><a name="index-ceilf-2816"></a><a name="index-ceill-2817"></a><a name="index-cexp-2818"></a><a name="index-cexpf-2819"></a><a name="index-cexpl-2820"></a><a name="index-cimag-2821"></a><a name="index-cimagf-2822"></a><a name="index-cimagl-2823"></a><a name="index-clog-2824"></a><a name="index-clogf-2825"></a><a name="index-clogl-2826"></a><a name="index-conj-2827"></a><a name="index-conjf-2828"></a><a name="index-conjl-2829"></a><a name="index-copysign-2830"></a><a name="index-copysignf-2831"></a><a name="index-copysignl-2832"></a><a name="index-cos-2833"></a><a name="index-cosf-2834"></a><a name="index-cosh-2835"></a><a name="index-coshf-2836"></a><a name="index-coshl-2837"></a><a name="index-cosl-2838"></a><a name="index-cpow-2839"></a><a name="index-cpowf-2840"></a><a name="index-cpowl-2841"></a><a name="index-cproj-2842"></a><a name="index-cprojf-2843"></a><a name="index-cprojl-2844"></a><a name="index-creal-2845"></a><a name="index-crealf-2846"></a><a name="index-creall-2847"></a><a name="index-csin-2848"></a><a name="index-csinf-2849"></a><a name="index-csinh-2850"></a><a name="index-csinhf-2851"></a><a name="index-csinhl-2852"></a><a name="index-csinl-2853"></a><a name="index-csqrt-2854"></a><a name="index-csqrtf-2855"></a><a name="index-csqrtl-2856"></a><a name="index-ctan-2857"></a><a name="index-ctanf-2858"></a><a name="index-ctanh-2859"></a><a name="index-ctanhf-2860"></a><a name="index-ctanhl-2861"></a><a name="index-ctanl-2862"></a><a name="index-dcgettext-2863"></a><a name="index-dgettext-2864"></a><a name="index-drem-2865"></a><a name="index-dremf-2866"></a><a name="index-dreml-2867"></a><a name="index-erf-2868"></a><a name="index-erfc-2869"></a><a name="index-erfcf-2870"></a><a name="index-erfcl-2871"></a><a name="index-erff-2872"></a><a name="index-erfl-2873"></a><a name="index-exit-2874"></a><a name="index-exp-2875"></a><a name="index-exp10-2876"></a><a name="index-exp10f-2877"></a><a name="index-exp10l-2878"></a><a name="index-exp2-2879"></a><a name="index-exp2f-2880"></a><a name="index-exp2l-2881"></a><a name="index-expf-2882"></a><a name="index-expl-2883"></a><a name="index-expm1-2884"></a><a name="index-expm1f-2885"></a><a name="index-expm1l-2886"></a><a name="index-fabs-2887"></a><a name="index-fabsf-2888"></a><a name="index-fabsl-2889"></a><a name="index-fdim-2890"></a><a name="index-fdimf-2891"></a><a name="index-fdiml-2892"></a><a name="index-ffs-2893"></a><a name="index-floor-2894"></a><a name="index-floorf-2895"></a><a name="index-floorl-2896"></a><a name="index-fma-2897"></a><a name="index-fmaf-2898"></a><a name="index-fmal-2899"></a><a name="index-fmax-2900"></a><a name="index-fmaxf-2901"></a><a name="index-fmaxl-2902"></a><a name="index-fmin-2903"></a><a name="index-fminf-2904"></a><a name="index-fminl-2905"></a><a name="index-fmod-2906"></a><a name="index-fmodf-2907"></a><a name="index-fmodl-2908"></a><a name="index-fprintf-2909"></a><a name="index-fprintf_005funlocked-2910"></a><a name="index-fputs-2911"></a><a name="index-fputs_005funlocked-2912"></a><a name="index-frexp-2913"></a><a name="index-frexpf-2914"></a><a name="index-frexpl-2915"></a><a name="index-fscanf-2916"></a><a name="index-gamma-2917"></a><a name="index-gammaf-2918"></a><a name="index-gammal-2919"></a><a name="index-gamma_005fr-2920"></a><a name="index-gammaf_005fr-2921"></a><a name="index-gammal_005fr-2922"></a><a name="index-gettext-2923"></a><a name="index-hypot-2924"></a><a name="index-hypotf-2925"></a><a name="index-hypotl-2926"></a><a name="index-ilogb-2927"></a><a name="index-ilogbf-2928"></a><a name="index-ilogbl-2929"></a><a name="index-imaxabs-2930"></a><a name="index-index-2931"></a><a name="index-isalnum-2932"></a><a name="index-isalpha-2933"></a><a name="index-isascii-2934"></a><a name="index-isblank-2935"></a><a name="index-iscntrl-2936"></a><a name="index-isdigit-2937"></a><a name="index-isgraph-2938"></a><a name="index-islower-2939"></a><a name="index-isprint-2940"></a><a name="index-ispunct-2941"></a><a name="index-isspace-2942"></a><a name="index-isupper-2943"></a><a name="index-iswalnum-2944"></a><a name="index-iswalpha-2945"></a><a name="index-iswblank-2946"></a><a name="index-iswcntrl-2947"></a><a name="index-iswdigit-2948"></a><a name="index-iswgraph-2949"></a><a name="index-iswlower-2950"></a><a name="index-iswprint-2951"></a><a name="index-iswpunct-2952"></a><a name="index-iswspace-2953"></a><a name="index-iswupper-2954"></a><a name="index-iswxdigit-2955"></a><a name="index-isxdigit-2956"></a><a name="index-j0-2957"></a><a name="index-j0f-2958"></a><a name="index-j0l-2959"></a><a name="index-j1-2960"></a><a name="index-j1f-2961"></a><a name="index-j1l-2962"></a><a name="index-jn-2963"></a><a name="index-jnf-2964"></a><a name="index-jnl-2965"></a><a name="index-labs-2966"></a><a name="index-ldexp-2967"></a><a name="index-ldexpf-2968"></a><a name="index-ldexpl-2969"></a><a name="index-lgamma-2970"></a><a name="index-lgammaf-2971"></a><a name="index-lgammal-2972"></a><a name="index-lgamma_005fr-2973"></a><a name="index-lgammaf_005fr-2974"></a><a name="index-lgammal_005fr-2975"></a><a name="index-llabs-2976"></a><a name="index-llrint-2977"></a><a name="index-llrintf-2978"></a><a name="index-llrintl-2979"></a><a name="index-llround-2980"></a><a name="index-llroundf-2981"></a><a name="index-llroundl-2982"></a><a name="index-log-2983"></a><a name="index-log10-2984"></a><a name="index-log10f-2985"></a><a name="index-log10l-2986"></a><a name="index-log1p-2987"></a><a name="index-log1pf-2988"></a><a name="index-log1pl-2989"></a><a name="index-log2-2990"></a><a name="index-log2f-2991"></a><a name="index-log2l-2992"></a><a name="index-logb-2993"></a><a name="index-logbf-2994"></a><a name="index-logbl-2995"></a><a name="index-logf-2996"></a><a name="index-logl-2997"></a><a name="index-lrint-2998"></a><a name="index-lrintf-2999"></a><a name="index-lrintl-3000"></a><a name="index-lround-3001"></a><a name="index-lroundf-3002"></a><a name="index-lroundl-3003"></a><a name="index-malloc-3004"></a><a name="index-memchr-3005"></a><a name="index-memcmp-3006"></a><a name="index-memcpy-3007"></a><a name="index-mempcpy-3008"></a><a name="index-memset-3009"></a><a name="index-modf-3010"></a><a name="index-modff-3011"></a><a name="index-modfl-3012"></a><a name="index-nearbyint-3013"></a><a name="index-nearbyintf-3014"></a><a name="index-nearbyintl-3015"></a><a name="index-nextafter-3016"></a><a name="index-nextafterf-3017"></a><a name="index-nextafterl-3018"></a><a name="index-nexttoward-3019"></a><a name="index-nexttowardf-3020"></a><a name="index-nexttowardl-3021"></a><a name="index-pow-3022"></a><a name="index-pow10-3023"></a><a name="index-pow10f-3024"></a><a name="index-pow10l-3025"></a><a name="index-powf-3026"></a><a name="index-powl-3027"></a><a name="index-printf-3028"></a><a name="index-printf_005funlocked-3029"></a><a name="index-putchar-3030"></a><a name="index-puts-3031"></a><a name="index-remainder-3032"></a><a name="index-remainderf-3033"></a><a name="index-remainderl-3034"></a><a name="index-remquo-3035"></a><a name="index-remquof-3036"></a><a name="index-remquol-3037"></a><a name="index-rindex-3038"></a><a name="index-rint-3039"></a><a name="index-rintf-3040"></a><a name="index-rintl-3041"></a><a name="index-round-3042"></a><a name="index-roundf-3043"></a><a name="index-roundl-3044"></a><a name="index-scalb-3045"></a><a name="index-scalbf-3046"></a><a name="index-scalbl-3047"></a><a name="index-scalbln-3048"></a><a name="index-scalblnf-3049"></a><a name="index-scalblnf-3050"></a><a name="index-scalbn-3051"></a><a name="index-scalbnf-3052"></a><a name="index-scanfnl-3053"></a><a name="index-signbit-3054"></a><a name="index-signbitf-3055"></a><a name="index-signbitl-3056"></a><a name="index-signbitd32-3057"></a><a name="index-signbitd64-3058"></a><a name="index-signbitd128-3059"></a><a name="index-significand-3060"></a><a name="index-significandf-3061"></a><a name="index-significandl-3062"></a><a name="index-sin-3063"></a><a name="index-sincos-3064"></a><a name="index-sincosf-3065"></a><a name="index-sincosl-3066"></a><a name="index-sinf-3067"></a><a name="index-sinh-3068"></a><a name="index-sinhf-3069"></a><a name="index-sinhl-3070"></a><a name="index-sinl-3071"></a><a name="index-snprintf-3072"></a><a name="index-sprintf-3073"></a><a name="index-sqrt-3074"></a><a name="index-sqrtf-3075"></a><a name="index-sqrtl-3076"></a><a name="index-sscanf-3077"></a><a name="index-stpcpy-3078"></a><a name="index-stpncpy-3079"></a><a name="index-strcasecmp-3080"></a><a name="index-strcat-3081"></a><a name="index-strchr-3082"></a><a name="index-strcmp-3083"></a><a name="index-strcpy-3084"></a><a name="index-strcspn-3085"></a><a name="index-strdup-3086"></a><a name="index-strfmon-3087"></a><a name="index-strftime-3088"></a><a name="index-strlen-3089"></a><a name="index-strncasecmp-3090"></a><a name="index-strncat-3091"></a><a name="index-strncmp-3092"></a><a name="index-strncpy-3093"></a><a name="index-strndup-3094"></a><a name="index-strpbrk-3095"></a><a name="index-strrchr-3096"></a><a name="index-strspn-3097"></a><a name="index-strstr-3098"></a><a name="index-tan-3099"></a><a name="index-tanf-3100"></a><a name="index-tanh-3101"></a><a name="index-tanhf-3102"></a><a name="index-tanhl-3103"></a><a name="index-tanl-3104"></a><a name="index-tgamma-3105"></a><a name="index-tgammaf-3106"></a><a name="index-tgammal-3107"></a><a name="index-toascii-3108"></a><a name="index-tolower-3109"></a><a name="index-toupper-3110"></a><a name="index-towlower-3111"></a><a name="index-towupper-3112"></a><a name="index-trunc-3113"></a><a name="index-truncf-3114"></a><a name="index-truncl-3115"></a><a name="index-vfprintf-3116"></a><a name="index-vfscanf-3117"></a><a name="index-vprintf-3118"></a><a name="index-vscanf-3119"></a><a name="index-vsnprintf-3120"></a><a name="index-vsprintf-3121"></a><a name="index-vsscanf-3122"></a><a name="index-y0-3123"></a><a name="index-y0f-3124"></a><a name="index-y0l-3125"></a><a name="index-y1-3126"></a><a name="index-y1f-3127"></a><a name="index-y1l-3128"></a><a name="index-yn-3129"></a><a name="index-ynf-3130"></a><a name="index-ynl-3131"></a>
GCC provides a large number of built-in functions other than the ones
mentioned above.  Some of these are for internal use in the processing
of exceptions or variable-length argument lists and will not be
documented here because they may change from time to time; we do not
recommend general use of these functions.

 <p>The remaining functions are provided for optimization purposes.

 <p><a name="index-fno_002dbuiltin-3132"></a>GCC includes built-in versions of many of the functions in the standard
C library.  The versions prefixed with <code>__builtin_</code> will always be
treated as having the same meaning as the C library function even if you
specify the <samp><span class="option">-fno-builtin</span></samp> option.  (see <a href="#C-Dialect-Options">C Dialect Options</a>)
Many of these functions are only optimized in certain cases; if they are
not optimized in a particular case, a call to the library function will
be emitted.

 <p><a name="index-ansi-3133"></a><a name="index-std-3134"></a>Outside strict ISO C mode (<samp><span class="option">-ansi</span></samp>, <samp><span class="option">-std=c90</span></samp>,
<samp><span class="option">-std=c99</span></samp> or <samp><span class="option">-std=c1x</span></samp>), the functions
<code>_exit</code>, <code>alloca</code>, <code>bcmp</code>, <code>bzero</code>,
<code>dcgettext</code>, <code>dgettext</code>, <code>dremf</code>, <code>dreml</code>,
<code>drem</code>, <code>exp10f</code>, <code>exp10l</code>, <code>exp10</code>, <code>ffsll</code>,
<code>ffsl</code>, <code>ffs</code>, <code>fprintf_unlocked</code>,
<code>fputs_unlocked</code>, <code>gammaf</code>, <code>gammal</code>, <code>gamma</code>,
<code>gammaf_r</code>, <code>gammal_r</code>, <code>gamma_r</code>, <code>gettext</code>,
<code>index</code>, <code>isascii</code>, <code>j0f</code>, <code>j0l</code>, <code>j0</code>,
<code>j1f</code>, <code>j1l</code>, <code>j1</code>, <code>jnf</code>, <code>jnl</code>, <code>jn</code>,
<code>lgammaf_r</code>, <code>lgammal_r</code>, <code>lgamma_r</code>, <code>mempcpy</code>,
<code>pow10f</code>, <code>pow10l</code>, <code>pow10</code>, <code>printf_unlocked</code>,
<code>rindex</code>, <code>scalbf</code>, <code>scalbl</code>, <code>scalb</code>,
<code>signbit</code>, <code>signbitf</code>, <code>signbitl</code>, <code>signbitd32</code>,
<code>signbitd64</code>, <code>signbitd128</code>, <code>significandf</code>,
<code>significandl</code>, <code>significand</code>, <code>sincosf</code>,
<code>sincosl</code>, <code>sincos</code>, <code>stpcpy</code>, <code>stpncpy</code>,
<code>strcasecmp</code>, <code>strdup</code>, <code>strfmon</code>, <code>strncasecmp</code>,
<code>strndup</code>, <code>toascii</code>, <code>y0f</code>, <code>y0l</code>, <code>y0</code>,
<code>y1f</code>, <code>y1l</code>, <code>y1</code>, <code>ynf</code>, <code>ynl</code> and
<code>yn</code>
may be handled as built-in functions. 
All these functions have corresponding versions
prefixed with <code>__builtin_</code>, which may be used even in strict C90
mode.

 <p>The ISO C99 functions
<code>_Exit</code>, <code>acoshf</code>, <code>acoshl</code>, <code>acosh</code>, <code>asinhf</code>,
<code>asinhl</code>, <code>asinh</code>, <code>atanhf</code>, <code>atanhl</code>, <code>atanh</code>,
<code>cabsf</code>, <code>cabsl</code>, <code>cabs</code>, <code>cacosf</code>, <code>cacoshf</code>,
<code>cacoshl</code>, <code>cacosh</code>, <code>cacosl</code>, <code>cacos</code>,
<code>cargf</code>, <code>cargl</code>, <code>carg</code>, <code>casinf</code>, <code>casinhf</code>,
<code>casinhl</code>, <code>casinh</code>, <code>casinl</code>, <code>casin</code>,
<code>catanf</code>, <code>catanhf</code>, <code>catanhl</code>, <code>catanh</code>,
<code>catanl</code>, <code>catan</code>, <code>cbrtf</code>, <code>cbrtl</code>, <code>cbrt</code>,
<code>ccosf</code>, <code>ccoshf</code>, <code>ccoshl</code>, <code>ccosh</code>, <code>ccosl</code>,
<code>ccos</code>, <code>cexpf</code>, <code>cexpl</code>, <code>cexp</code>, <code>cimagf</code>,
<code>cimagl</code>, <code>cimag</code>, <code>clogf</code>, <code>clogl</code>, <code>clog</code>,
<code>conjf</code>, <code>conjl</code>, <code>conj</code>, <code>copysignf</code>, <code>copysignl</code>,
<code>copysign</code>, <code>cpowf</code>, <code>cpowl</code>, <code>cpow</code>, <code>cprojf</code>,
<code>cprojl</code>, <code>cproj</code>, <code>crealf</code>, <code>creall</code>, <code>creal</code>,
<code>csinf</code>, <code>csinhf</code>, <code>csinhl</code>, <code>csinh</code>, <code>csinl</code>,
<code>csin</code>, <code>csqrtf</code>, <code>csqrtl</code>, <code>csqrt</code>, <code>ctanf</code>,
<code>ctanhf</code>, <code>ctanhl</code>, <code>ctanh</code>, <code>ctanl</code>, <code>ctan</code>,
<code>erfcf</code>, <code>erfcl</code>, <code>erfc</code>, <code>erff</code>, <code>erfl</code>,
<code>erf</code>, <code>exp2f</code>, <code>exp2l</code>, <code>exp2</code>, <code>expm1f</code>,
<code>expm1l</code>, <code>expm1</code>, <code>fdimf</code>, <code>fdiml</code>, <code>fdim</code>,
<code>fmaf</code>, <code>fmal</code>, <code>fmaxf</code>, <code>fmaxl</code>, <code>fmax</code>,
<code>fma</code>, <code>fminf</code>, <code>fminl</code>, <code>fmin</code>, <code>hypotf</code>,
<code>hypotl</code>, <code>hypot</code>, <code>ilogbf</code>, <code>ilogbl</code>, <code>ilogb</code>,
<code>imaxabs</code>, <code>isblank</code>, <code>iswblank</code>, <code>lgammaf</code>,
<code>lgammal</code>, <code>lgamma</code>, <code>llabs</code>, <code>llrintf</code>, <code>llrintl</code>,
<code>llrint</code>, <code>llroundf</code>, <code>llroundl</code>, <code>llround</code>,
<code>log1pf</code>, <code>log1pl</code>, <code>log1p</code>, <code>log2f</code>, <code>log2l</code>,
<code>log2</code>, <code>logbf</code>, <code>logbl</code>, <code>logb</code>, <code>lrintf</code>,
<code>lrintl</code>, <code>lrint</code>, <code>lroundf</code>, <code>lroundl</code>,
<code>lround</code>, <code>nearbyintf</code>, <code>nearbyintl</code>, <code>nearbyint</code>,
<code>nextafterf</code>, <code>nextafterl</code>, <code>nextafter</code>,
<code>nexttowardf</code>, <code>nexttowardl</code>, <code>nexttoward</code>,
<code>remainderf</code>, <code>remainderl</code>, <code>remainder</code>, <code>remquof</code>,
<code>remquol</code>, <code>remquo</code>, <code>rintf</code>, <code>rintl</code>, <code>rint</code>,
<code>roundf</code>, <code>roundl</code>, <code>round</code>, <code>scalblnf</code>,
<code>scalblnl</code>, <code>scalbln</code>, <code>scalbnf</code>, <code>scalbnl</code>,
<code>scalbn</code>, <code>snprintf</code>, <code>tgammaf</code>, <code>tgammal</code>,
<code>tgamma</code>, <code>truncf</code>, <code>truncl</code>, <code>trunc</code>,
<code>vfscanf</code>, <code>vscanf</code>, <code>vsnprintf</code> and <code>vsscanf</code>
are handled as built-in functions
except in strict ISO C90 mode (<samp><span class="option">-ansi</span></samp> or <samp><span class="option">-std=c90</span></samp>).

 <p>There are also built-in versions of the ISO C99 functions
<code>acosf</code>, <code>acosl</code>, <code>asinf</code>, <code>asinl</code>, <code>atan2f</code>,
<code>atan2l</code>, <code>atanf</code>, <code>atanl</code>, <code>ceilf</code>, <code>ceill</code>,
<code>cosf</code>, <code>coshf</code>, <code>coshl</code>, <code>cosl</code>, <code>expf</code>,
<code>expl</code>, <code>fabsf</code>, <code>fabsl</code>, <code>floorf</code>, <code>floorl</code>,
<code>fmodf</code>, <code>fmodl</code>, <code>frexpf</code>, <code>frexpl</code>, <code>ldexpf</code>,
<code>ldexpl</code>, <code>log10f</code>, <code>log10l</code>, <code>logf</code>, <code>logl</code>,
<code>modfl</code>, <code>modf</code>, <code>powf</code>, <code>powl</code>, <code>sinf</code>,
<code>sinhf</code>, <code>sinhl</code>, <code>sinl</code>, <code>sqrtf</code>, <code>sqrtl</code>,
<code>tanf</code>, <code>tanhf</code>, <code>tanhl</code> and <code>tanl</code>
that are recognized in any mode since ISO C90 reserves these names for
the purpose to which ISO C99 puts them.  All these functions have
corresponding versions prefixed with <code>__builtin_</code>.

 <p>The ISO C94 functions
<code>iswalnum</code>, <code>iswalpha</code>, <code>iswcntrl</code>, <code>iswdigit</code>,
<code>iswgraph</code>, <code>iswlower</code>, <code>iswprint</code>, <code>iswpunct</code>,
<code>iswspace</code>, <code>iswupper</code>, <code>iswxdigit</code>, <code>towlower</code> and
<code>towupper</code>
are handled as built-in functions
except in strict ISO C90 mode (<samp><span class="option">-ansi</span></samp> or <samp><span class="option">-std=c90</span></samp>).

 <p>The ISO C90 functions
<code>abort</code>, <code>abs</code>, <code>acos</code>, <code>asin</code>, <code>atan2</code>,
<code>atan</code>, <code>calloc</code>, <code>ceil</code>, <code>cosh</code>, <code>cos</code>,
<code>exit</code>, <code>exp</code>, <code>fabs</code>, <code>floor</code>, <code>fmod</code>,
<code>fprintf</code>, <code>fputs</code>, <code>frexp</code>, <code>fscanf</code>,
<code>isalnum</code>, <code>isalpha</code>, <code>iscntrl</code>, <code>isdigit</code>,
<code>isgraph</code>, <code>islower</code>, <code>isprint</code>, <code>ispunct</code>,
<code>isspace</code>, <code>isupper</code>, <code>isxdigit</code>, <code>tolower</code>,
<code>toupper</code>, <code>labs</code>, <code>ldexp</code>, <code>log10</code>, <code>log</code>,
<code>malloc</code>, <code>memchr</code>, <code>memcmp</code>, <code>memcpy</code>,
<code>memset</code>, <code>modf</code>, <code>pow</code>, <code>printf</code>, <code>putchar</code>,
<code>puts</code>, <code>scanf</code>, <code>sinh</code>, <code>sin</code>, <code>snprintf</code>,
<code>sprintf</code>, <code>sqrt</code>, <code>sscanf</code>, <code>strcat</code>,
<code>strchr</code>, <code>strcmp</code>, <code>strcpy</code>, <code>strcspn</code>,
<code>strlen</code>, <code>strncat</code>, <code>strncmp</code>, <code>strncpy</code>,
<code>strpbrk</code>, <code>strrchr</code>, <code>strspn</code>, <code>strstr</code>,
<code>tanh</code>, <code>tan</code>, <code>vfprintf</code>, <code>vprintf</code> and <code>vsprintf</code>
are all recognized as built-in functions unless
<samp><span class="option">-fno-builtin</span></samp> is specified (or <samp><span class="option">-fno-builtin-</span><var>function</var></samp>
is specified for an individual function).  All of these functions have
corresponding versions prefixed with <code>__builtin_</code>.

 <p>GCC provides built-in versions of the ISO C99 floating point comparison
macros that avoid raising exceptions for unordered operands.  They have
the same names as the standard macros ( <code>isgreater</code>,
<code>isgreaterequal</code>, <code>isless</code>, <code>islessequal</code>,
<code>islessgreater</code>, and <code>isunordered</code>) , with <code>__builtin_</code>
prefixed.  We intend for a library implementor to be able to simply
<code>#define</code> each standard macro to its built-in equivalent. 
In the same fashion, GCC provides <code>fpclassify</code>, <code>isfinite</code>,
<code>isinf_sign</code> and <code>isnormal</code> built-ins used with
<code>__builtin_</code> prefixed.  The <code>isinf</code> and <code>isnan</code>
builtins appear both with and without the <code>__builtin_</code> prefix.

<div class="defun">
&mdash; Built-in Function: int <b>__builtin_types_compatible_p</b> (<var>type1, type2</var>)<var><a name="index-g_t_005f_005fbuiltin_005ftypes_005fcompatible_005fp-3135"></a></var><br>
<blockquote>
      <p>You can use the built-in function <code>__builtin_types_compatible_p</code> to
determine whether two types are the same.

      <p>This built-in function returns 1 if the unqualified versions of the
types <var>type1</var> and <var>type2</var> (which are types, not expressions) are
compatible, 0 otherwise.  The result of this built-in function can be
used in integer constant expressions.

      <p>This built-in function ignores top level qualifiers (e.g., <code>const</code>,
<code>volatile</code>).  For example, <code>int</code> is equivalent to <code>const
int</code>.

      <p>The type <code>int[]</code> and <code>int[5]</code> are compatible.  On the other
hand, <code>int</code> and <code>char *</code> are not compatible, even if the size
of their types, on the particular architecture are the same.  Also, the
amount of pointer indirection is taken into account when determining
similarity.  Consequently, <code>short *</code> is not similar to
<code>short **</code>.  Furthermore, two types that are typedefed are
considered compatible if their underlying types are compatible.

      <p>An <code>enum</code> type is not considered to be compatible with another
<code>enum</code> type even if both are compatible with the same integer
type; this is what the C standard specifies. 
For example, <code>enum {foo, bar}</code> is not similar to
<code>enum {hot, dog}</code>.

      <p>You would typically use this function in code whose execution varies
depending on the arguments' types.  For example:

     <pre class="smallexample">          #define foo(x)                                                  \
            ({                                                           \
              typeof (x) tmp = (x);                                       \
              if (__builtin_types_compatible_p (typeof (x), long double)) \
                tmp = foo_long_double (tmp);                              \
              else if (__builtin_types_compatible_p (typeof (x), double)) \
                tmp = foo_double (tmp);                                   \
              else if (__builtin_types_compatible_p (typeof (x), float))  \
                tmp = foo_float (tmp);                                    \
              else                                                        \
                abort ();                                                 \
              tmp;                                                        \
            })
</pre>
      <p><em>Note:</em> This construct is only available for C.

      </blockquote></div>

<div class="defun">
&mdash; Built-in Function: <var>type</var> <b>__builtin_choose_expr</b> (<var>const_exp, exp1, exp2</var>)<var><a name="index-g_t_005f_005fbuiltin_005fchoose_005fexpr-3136"></a></var><br>
<blockquote>
      <p>You can use the built-in function <code>__builtin_choose_expr</code> to
evaluate code depending on the value of a constant expression.  This
built-in function returns <var>exp1</var> if <var>const_exp</var>, which is an
integer constant expression, is nonzero.  Otherwise it returns <var>exp2</var>.

      <p>This built-in function is analogous to the &lsquo;<samp><span class="samp">? :</span></samp>&rsquo; operator in C,
except that the expression returned has its type unaltered by promotion
rules.  Also, the built-in function does not evaluate the expression
that was not chosen.  For example, if <var>const_exp</var> evaluates to true,
<var>exp2</var> is not evaluated even if it has side-effects.

      <p>This built-in function can return an lvalue if the chosen argument is an
lvalue.

      <p>If <var>exp1</var> is returned, the return type is the same as <var>exp1</var>'s
type.  Similarly, if <var>exp2</var> is returned, its return type is the same
as <var>exp2</var>.

      <p>Example:

     <pre class="smallexample">          #define foo(x)                                                    \
            __builtin_choose_expr (                                         \
              __builtin_types_compatible_p (typeof (x), double),            \
              foo_double (x),                                               \
              __builtin_choose_expr (                                       \
                __builtin_types_compatible_p (typeof (x), float),           \
                foo_float (x),                                              \
                /* <span class="roman">The void expression results in a compile-time error</span>  \
                   <span class="roman">when assigning the result to something.</span>  */          \
                (void)0))
</pre>
      <p><em>Note:</em> This construct is only available for C.  Furthermore, the
unused expression (<var>exp1</var> or <var>exp2</var> depending on the value of
<var>const_exp</var>) may still generate syntax errors.  This may change in
future revisions.

      </blockquote></div>

<div class="defun">
&mdash; Built-in Function: int <b>__builtin_constant_p</b> (<var>exp</var>)<var><a name="index-g_t_005f_005fbuiltin_005fconstant_005fp-3137"></a></var><br>
<blockquote><p>You can use the built-in function <code>__builtin_constant_p</code> to
determine if a value is known to be constant at compile-time and hence
that GCC can perform constant-folding on expressions involving that
value.  The argument of the function is the value to test.  The function
returns the integer 1 if the argument is known to be a compile-time
constant and 0 if it is not known to be a compile-time constant.  A
return of 0 does not indicate that the value is <em>not</em> a constant,
but merely that GCC cannot prove it is a constant with the specified
value of the <samp><span class="option">-O</span></samp> option.

      <p>You would typically use this function in an embedded application where
memory was a critical resource.  If you have some complex calculation,
you may want it to be folded if it involves constants, but need to call
a function if it does not.  For example:

     <pre class="smallexample">          #define Scale_Value(X)      \
            (__builtin_constant_p (X) \
            ? ((X) * SCALE + OFFSET) : Scale (X))
</pre>
      <p>You may use this built-in function in either a macro or an inline
function.  However, if you use it in an inlined function and pass an
argument of the function as the argument to the built-in, GCC will
never return 1 when you call the inline function with a string constant
or compound literal (see <a href="#Compound-Literals">Compound Literals</a>) and will not return 1
when you pass a constant numeric value to the inline function unless you
specify the <samp><span class="option">-O</span></samp> option.

      <p>You may also use <code>__builtin_constant_p</code> in initializers for static
data.  For instance, you can write

     <pre class="smallexample">          static const int table[] = {
             __builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,
             /* <span class="roman">...</span> */
          };
</pre>
      <p class="noindent">This is an acceptable initializer even if <var>EXPRESSION</var> is not a
constant expression, including the case where
<code>__builtin_constant_p</code> returns 1 because <var>EXPRESSION</var> can be
folded to a constant but <var>EXPRESSION</var> contains operands that would
not otherwise be permitted in a static initializer (for example,
<code>0 &amp;&amp; foo ()</code>).  GCC must be more conservative about evaluating the
built-in in this case, because it has no opportunity to perform
optimization.

      <p>Previous versions of GCC did not accept this built-in in data
initializers.  The earliest version where it is completely safe is
3.0.1. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: long <b>__builtin_expect</b> (<var>long exp, long c</var>)<var><a name="index-g_t_005f_005fbuiltin_005fexpect-3138"></a></var><br>
<blockquote><p><a name="index-fprofile_002darcs-3139"></a>You may use <code>__builtin_expect</code> to provide the compiler with
branch prediction information.  In general, you should prefer to
use actual profile feedback for this (<samp><span class="option">-fprofile-arcs</span></samp>), as
programmers are notoriously bad at predicting how their programs
actually perform.  However, there are applications in which this
data is hard to collect.

      <p>The return value is the value of <var>exp</var>, which should be an integral
expression.  The semantics of the built-in are that it is expected that
<var>exp</var> == <var>c</var>.  For example:

     <pre class="smallexample">          if (__builtin_expect (x, 0))
            foo ();
</pre>
      <p class="noindent">would indicate that we do not expect to call <code>foo</code>, since
we expect <code>x</code> to be zero.  Since you are limited to integral
expressions for <var>exp</var>, you should use constructions such as

     <pre class="smallexample">          if (__builtin_expect (ptr != NULL, 1))
            error ();
</pre>
      <p class="noindent">when testing pointer or floating-point values. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: void <b>__builtin_trap</b> (<var>void</var>)<var><a name="index-g_t_005f_005fbuiltin_005ftrap-3140"></a></var><br>
<blockquote><p>This function causes the program to exit abnormally.  GCC implements
this function by using a target-dependent mechanism (such as
intentionally executing an illegal instruction) or by calling
<code>abort</code>.  The mechanism used may vary from release to release so
you should not rely on any particular implementation. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: void <b>__builtin_unreachable</b> (<var>void</var>)<var><a name="index-g_t_005f_005fbuiltin_005funreachable-3141"></a></var><br>
<blockquote><p>If control flow reaches the point of the <code>__builtin_unreachable</code>,
the program is undefined.  It is useful in situations where the
compiler cannot deduce the unreachability of the code.

      <p>One such case is immediately following an <code>asm</code> statement that
will either never terminate, or one that transfers control elsewhere
and never returns.  In this example, without the
<code>__builtin_unreachable</code>, GCC would issue a warning that control
reaches the end of a non-void function.  It would also generate code
to return after the <code>asm</code>.

     <pre class="smallexample">          int f (int c, int v)
          {
            if (c)
              {
                return v;
              }
            else
              {
                asm("jmp error_handler");
                __builtin_unreachable ();
              }
          }
</pre>
      <p>Because the <code>asm</code> statement unconditionally transfers control out
of the function, control will never reach the end of the function
body.  The <code>__builtin_unreachable</code> is in fact unreachable and
communicates this fact to the compiler.

      <p>Another use for <code>__builtin_unreachable</code> is following a call a
function that never returns but that is not declared
<code>__attribute__((noreturn))</code>, as in this example:

     <pre class="smallexample">          void function_that_never_returns (void);
          
          int g (int c)
          {
            if (c)
              {
                return 1;
              }
            else
              {
                function_that_never_returns ();
                __builtin_unreachable ();
              }
          }
</pre>
      </blockquote></div>

<div class="defun">
&mdash; Built-in Function: void <b>__builtin___clear_cache</b> (<var>char *begin, char *end</var>)<var><a name="index-g_t_005f_005fbuiltin_005f_005f_005fclear_005fcache-3142"></a></var><br>
<blockquote><p>This function is used to flush the processor's instruction cache for
the region of memory between <var>begin</var> inclusive and <var>end</var>
exclusive.  Some targets require that the instruction cache be
flushed, after modifying memory containing code, in order to obtain
deterministic behavior.

      <p>If the target does not require instruction cache flushes,
<code>__builtin___clear_cache</code> has no effect.  Otherwise either
instructions are emitted in-line to clear the instruction cache or a
call to the <code>__clear_cache</code> function in libgcc is made. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: void <b>__builtin_prefetch</b> (<var>const void *addr, ...</var>)<var><a name="index-g_t_005f_005fbuiltin_005fprefetch-3143"></a></var><br>
<blockquote><p>This function is used to minimize cache-miss latency by moving data into
a cache before it is accessed. 
You can insert calls to <code>__builtin_prefetch</code> into code for which
you know addresses of data in memory that is likely to be accessed soon. 
If the target supports them, data prefetch instructions will be generated. 
If the prefetch is done early enough before the access then the data will
be in the cache by the time it is accessed.

      <p>The value of <var>addr</var> is the address of the memory to prefetch. 
There are two optional arguments, <var>rw</var> and <var>locality</var>. 
The value of <var>rw</var> is a compile-time constant one or zero; one
means that the prefetch is preparing for a write to the memory address
and zero, the default, means that the prefetch is preparing for a read. 
The value <var>locality</var> must be a compile-time constant integer between
zero and three.  A value of zero means that the data has no temporal
locality, so it need not be left in the cache after the access.  A value
of three means that the data has a high degree of temporal locality and
should be left in all levels of cache possible.  Values of one and two
mean, respectively, a low or moderate degree of temporal locality.  The
default is three.

     <pre class="smallexample">          for (i = 0; i &lt; n; i++)
            {
              a[i] = a[i] + b[i];
              __builtin_prefetch (&amp;a[i+j], 1, 1);
              __builtin_prefetch (&amp;b[i+j], 0, 1);
              /* <span class="roman">...</span> */
            }
</pre>
      <p>Data prefetch does not generate faults if <var>addr</var> is invalid, but
the address expression itself must be valid.  For example, a prefetch
of <code>p-&gt;next</code> will not fault if <code>p-&gt;next</code> is not a valid
address, but evaluation will fault if <code>p</code> is not a valid address.

      <p>If the target does not support data prefetch, the address expression
is evaluated if it includes side effects but no other code is generated
and GCC does not issue a warning. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: double <b>__builtin_huge_val</b> (<var>void</var>)<var><a name="index-g_t_005f_005fbuiltin_005fhuge_005fval-3144"></a></var><br>
<blockquote><p>Returns a positive infinity, if supported by the floating-point format,
else <code>DBL_MAX</code>.  This function is suitable for implementing the
ISO C macro <code>HUGE_VAL</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: float <b>__builtin_huge_valf</b> (<var>void</var>)<var><a name="index-g_t_005f_005fbuiltin_005fhuge_005fvalf-3145"></a></var><br>
<blockquote><p>Similar to <code>__builtin_huge_val</code>, except the return type is <code>float</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: long double <b>__builtin_huge_vall</b> (<var>void</var>)<var><a name="index-g_t_005f_005fbuiltin_005fhuge_005fvall-3146"></a></var><br>
<blockquote><p>Similar to <code>__builtin_huge_val</code>, except the return
type is <code>long double</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: int <b>__builtin_fpclassify</b> (<var>int, int, int, int, int, ...</var>)<var><a name="index-g_t_005f_005fbuiltin_005ffpclassify-3147"></a></var><br>
<blockquote><p>This built-in implements the C99 fpclassify functionality.  The first
five int arguments should be the target library's notion of the
possible FP classes and are used for return values.  They must be
constant values and they must appear in this order: <code>FP_NAN</code>,
<code>FP_INFINITE</code>, <code>FP_NORMAL</code>, <code>FP_SUBNORMAL</code> and
<code>FP_ZERO</code>.  The ellipsis is for exactly one floating point value
to classify.  GCC treats the last argument as type-generic, which
means it does not do default promotion from float to double. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: double <b>__builtin_inf</b> (<var>void</var>)<var><a name="index-g_t_005f_005fbuiltin_005finf-3148"></a></var><br>
<blockquote><p>Similar to <code>__builtin_huge_val</code>, except a warning is generated
if the target floating-point format does not support infinities. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: _Decimal32 <b>__builtin_infd32</b> (<var>void</var>)<var><a name="index-g_t_005f_005fbuiltin_005finfd32-3149"></a></var><br>
<blockquote><p>Similar to <code>__builtin_inf</code>, except the return type is <code>_Decimal32</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: _Decimal64 <b>__builtin_infd64</b> (<var>void</var>)<var><a name="index-g_t_005f_005fbuiltin_005finfd64-3150"></a></var><br>
<blockquote><p>Similar to <code>__builtin_inf</code>, except the return type is <code>_Decimal64</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: _Decimal128 <b>__builtin_infd128</b> (<var>void</var>)<var><a name="index-g_t_005f_005fbuiltin_005finfd128-3151"></a></var><br>
<blockquote><p>Similar to <code>__builtin_inf</code>, except the return type is <code>_Decimal128</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: float <b>__builtin_inff</b> (<var>void</var>)<var><a name="index-g_t_005f_005fbuiltin_005finff-3152"></a></var><br>
<blockquote><p>Similar to <code>__builtin_inf</code>, except the return type is <code>float</code>. 
This function is suitable for implementing the ISO C99 macro <code>INFINITY</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: long double <b>__builtin_infl</b> (<var>void</var>)<var><a name="index-g_t_005f_005fbuiltin_005finfl-3153"></a></var><br>
<blockquote><p>Similar to <code>__builtin_inf</code>, except the return
type is <code>long double</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: int <b>__builtin_isinf_sign</b> (<var>...</var>)<var><a name="index-g_t_005f_005fbuiltin_005fisinf_005fsign-3154"></a></var><br>
<blockquote><p>Similar to <code>isinf</code>, except the return value will be negative for
an argument of <code>-Inf</code>.  Note while the parameter list is an
ellipsis, this function only accepts exactly one floating point
argument.  GCC treats this parameter as type-generic, which means it
does not do default promotion from float to double. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: double <b>__builtin_nan</b> (<var>const char *str</var>)<var><a name="index-g_t_005f_005fbuiltin_005fnan-3155"></a></var><br>
<blockquote><p>This is an implementation of the ISO C99 function <code>nan</code>.

      <p>Since ISO C99 defines this function in terms of <code>strtod</code>, which we
do not implement, a description of the parsing is in order.  The string
is parsed as by <code>strtol</code>; that is, the base is recognized by
leading &lsquo;<samp><span class="samp">0</span></samp>&rsquo; or &lsquo;<samp><span class="samp">0x</span></samp>&rsquo; prefixes.  The number parsed is placed
in the significand such that the least significant bit of the number
is at the least significant bit of the significand.  The number is
truncated to fit the significand field provided.  The significand is
forced to be a quiet NaN.

      <p>This function, if given a string literal all of which would have been
consumed by strtol, is evaluated early enough that it is considered a
compile-time constant. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: _Decimal32 <b>__builtin_nand32</b> (<var>const char *str</var>)<var><a name="index-g_t_005f_005fbuiltin_005fnand32-3156"></a></var><br>
<blockquote><p>Similar to <code>__builtin_nan</code>, except the return type is <code>_Decimal32</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: _Decimal64 <b>__builtin_nand64</b> (<var>const char *str</var>)<var><a name="index-g_t_005f_005fbuiltin_005fnand64-3157"></a></var><br>
<blockquote><p>Similar to <code>__builtin_nan</code>, except the return type is <code>_Decimal64</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: _Decimal128 <b>__builtin_nand128</b> (<var>const char *str</var>)<var><a name="index-g_t_005f_005fbuiltin_005fnand128-3158"></a></var><br>
<blockquote><p>Similar to <code>__builtin_nan</code>, except the return type is <code>_Decimal128</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: float <b>__builtin_nanf</b> (<var>const char *str</var>)<var><a name="index-g_t_005f_005fbuiltin_005fnanf-3159"></a></var><br>
<blockquote><p>Similar to <code>__builtin_nan</code>, except the return type is <code>float</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: long double <b>__builtin_nanl</b> (<var>const char *str</var>)<var><a name="index-g_t_005f_005fbuiltin_005fnanl-3160"></a></var><br>
<blockquote><p>Similar to <code>__builtin_nan</code>, except the return type is <code>long double</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: double <b>__builtin_nans</b> (<var>const char *str</var>)<var><a name="index-g_t_005f_005fbuiltin_005fnans-3161"></a></var><br>
<blockquote><p>Similar to <code>__builtin_nan</code>, except the significand is forced
to be a signaling NaN.  The <code>nans</code> function is proposed by
<a href="http://www.open-std.org/jtc1/sc22/wg14/www/docs/n965.htm">WG14 N965</a>. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: float <b>__builtin_nansf</b> (<var>const char *str</var>)<var><a name="index-g_t_005f_005fbuiltin_005fnansf-3162"></a></var><br>
<blockquote><p>Similar to <code>__builtin_nans</code>, except the return type is <code>float</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: long double <b>__builtin_nansl</b> (<var>const char *str</var>)<var><a name="index-g_t_005f_005fbuiltin_005fnansl-3163"></a></var><br>
<blockquote><p>Similar to <code>__builtin_nans</code>, except the return type is <code>long double</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: int <b>__builtin_ffs</b> (<var>unsigned int x</var>)<var><a name="index-g_t_005f_005fbuiltin_005fffs-3164"></a></var><br>
<blockquote><p>Returns one plus the index of the least significant 1-bit of <var>x</var>, or
if <var>x</var> is zero, returns zero. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: int <b>__builtin_clz</b> (<var>unsigned int x</var>)<var><a name="index-g_t_005f_005fbuiltin_005fclz-3165"></a></var><br>
<blockquote><p>Returns the number of leading 0-bits in <var>x</var>, starting at the most
significant bit position.  If <var>x</var> is 0, the result is undefined. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: int <b>__builtin_ctz</b> (<var>unsigned int x</var>)<var><a name="index-g_t_005f_005fbuiltin_005fctz-3166"></a></var><br>
<blockquote><p>Returns the number of trailing 0-bits in <var>x</var>, starting at the least
significant bit position.  If <var>x</var> is 0, the result is undefined. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: int <b>__builtin_popcount</b> (<var>unsigned int x</var>)<var><a name="index-g_t_005f_005fbuiltin_005fpopcount-3167"></a></var><br>
<blockquote><p>Returns the number of 1-bits in <var>x</var>. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: int <b>__builtin_parity</b> (<var>unsigned int x</var>)<var><a name="index-g_t_005f_005fbuiltin_005fparity-3168"></a></var><br>
<blockquote><p>Returns the parity of <var>x</var>, i.e. the number of 1-bits in <var>x</var>
modulo 2. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: int <b>__builtin_ffsl</b> (<var>unsigned long</var>)<var><a name="index-g_t_005f_005fbuiltin_005fffsl-3169"></a></var><br>
<blockquote><p>Similar to <code>__builtin_ffs</code>, except the argument type is
<code>unsigned long</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: int <b>__builtin_clzl</b> (<var>unsigned long</var>)<var><a name="index-g_t_005f_005fbuiltin_005fclzl-3170"></a></var><br>
<blockquote><p>Similar to <code>__builtin_clz</code>, except the argument type is
<code>unsigned long</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: int <b>__builtin_ctzl</b> (<var>unsigned long</var>)<var><a name="index-g_t_005f_005fbuiltin_005fctzl-3171"></a></var><br>
<blockquote><p>Similar to <code>__builtin_ctz</code>, except the argument type is
<code>unsigned long</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: int <b>__builtin_popcountl</b> (<var>unsigned long</var>)<var><a name="index-g_t_005f_005fbuiltin_005fpopcountl-3172"></a></var><br>
<blockquote><p>Similar to <code>__builtin_popcount</code>, except the argument type is
<code>unsigned long</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: int <b>__builtin_parityl</b> (<var>unsigned long</var>)<var><a name="index-g_t_005f_005fbuiltin_005fparityl-3173"></a></var><br>
<blockquote><p>Similar to <code>__builtin_parity</code>, except the argument type is
<code>unsigned long</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: int <b>__builtin_ffsll</b> (<var>unsigned long long</var>)<var><a name="index-g_t_005f_005fbuiltin_005fffsll-3174"></a></var><br>
<blockquote><p>Similar to <code>__builtin_ffs</code>, except the argument type is
<code>unsigned long long</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: int <b>__builtin_clzll</b> (<var>unsigned long long</var>)<var><a name="index-g_t_005f_005fbuiltin_005fclzll-3175"></a></var><br>
<blockquote><p>Similar to <code>__builtin_clz</code>, except the argument type is
<code>unsigned long long</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: int <b>__builtin_ctzll</b> (<var>unsigned long long</var>)<var><a name="index-g_t_005f_005fbuiltin_005fctzll-3176"></a></var><br>
<blockquote><p>Similar to <code>__builtin_ctz</code>, except the argument type is
<code>unsigned long long</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: int <b>__builtin_popcountll</b> (<var>unsigned long long</var>)<var><a name="index-g_t_005f_005fbuiltin_005fpopcountll-3177"></a></var><br>
<blockquote><p>Similar to <code>__builtin_popcount</code>, except the argument type is
<code>unsigned long long</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: int <b>__builtin_parityll</b> (<var>unsigned long long</var>)<var><a name="index-g_t_005f_005fbuiltin_005fparityll-3178"></a></var><br>
<blockquote><p>Similar to <code>__builtin_parity</code>, except the argument type is
<code>unsigned long long</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: double <b>__builtin_powi</b> (<var>double, int</var>)<var><a name="index-g_t_005f_005fbuiltin_005fpowi-3179"></a></var><br>
<blockquote><p>Returns the first argument raised to the power of the second.  Unlike the
<code>pow</code> function no guarantees about precision and rounding are made. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: float <b>__builtin_powif</b> (<var>float, int</var>)<var><a name="index-g_t_005f_005fbuiltin_005fpowif-3180"></a></var><br>
<blockquote><p>Similar to <code>__builtin_powi</code>, except the argument and return types
are <code>float</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: long double <b>__builtin_powil</b> (<var>long double, int</var>)<var><a name="index-g_t_005f_005fbuiltin_005fpowil-3181"></a></var><br>
<blockquote><p>Similar to <code>__builtin_powi</code>, except the argument and return types
are <code>long double</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: int32_t <b>__builtin_bswap32</b> (<var>int32_t x</var>)<var><a name="index-g_t_005f_005fbuiltin_005fbswap32-3182"></a></var><br>
<blockquote><p>Returns <var>x</var> with the order of the bytes reversed; for example,
<code>0xaabbccdd</code> becomes <code>0xddccbbaa</code>.  Byte here always means
exactly 8 bits. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: int64_t <b>__builtin_bswap64</b> (<var>int64_t x</var>)<var><a name="index-g_t_005f_005fbuiltin_005fbswap64-3183"></a></var><br>
<blockquote><p>Similar to <code>__builtin_bswap32</code>, except the argument and return types
are 64-bit. 
</p></blockquote></div>

<div class="node">
<a name="Target-Builtins"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Target-Format-Checks">Target Format Checks</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Other-Builtins">Other Builtins</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.54 Built-in Functions Specific to Particular Target Machines</h3>

<p>On some target machines, GCC supports many built-in functions specific
to those machines.  Generally these generate calls to specific machine
instructions, but allow the compiler to schedule those calls.

<ul class="menu">
<li><a accesskey="1" href="#Alpha-Built_002din-Functions">Alpha Built-in Functions</a>
<li><a accesskey="2" href="#ARM-iWMMXt-Built_002din-Functions">ARM iWMMXt Built-in Functions</a>
<li><a accesskey="3" href="#ARM-NEON-Intrinsics">ARM NEON Intrinsics</a>
<li><a accesskey="4" href="#Blackfin-Built_002din-Functions">Blackfin Built-in Functions</a>
<li><a accesskey="5" href="#FR_002dV-Built_002din-Functions">FR-V Built-in Functions</a>
<li><a accesskey="6" href="#X86-Built_002din-Functions">X86 Built-in Functions</a>
<li><a accesskey="7" href="#MIPS-DSP-Built_002din-Functions">MIPS DSP Built-in Functions</a>
<li><a accesskey="8" href="#MIPS-Paired_002dSingle-Support">MIPS Paired-Single Support</a>
<li><a accesskey="9" href="#MIPS-Loongson-Built_002din-Functions">MIPS Loongson Built-in Functions</a>
<li><a href="#Other-MIPS-Built_002din-Functions">Other MIPS Built-in Functions</a>
<li><a href="#picoChip-Built_002din-Functions">picoChip Built-in Functions</a>
<li><a href="#PowerPC-AltiVec_002fVSX-Built_002din-Functions">PowerPC AltiVec/VSX Built-in Functions</a>
<li><a href="#RX-Built_002din-Functions">RX Built-in Functions</a>
<li><a href="#SPARC-VIS-Built_002din-Functions">SPARC VIS Built-in Functions</a>
<li><a href="#SPU-Built_002din-Functions">SPU Built-in Functions</a>
</ul>

<div class="node">
<a name="Alpha-Built-in-Functions"></a>
<a name="Alpha-Built_002din-Functions"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#ARM-iWMMXt-Built_002din-Functions">ARM iWMMXt Built-in Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Target-Builtins">Target Builtins</a>

</div>

<h4 class="subsection">6.54.1 Alpha Built-in Functions</h4>

<p>These built-in functions are available for the Alpha family of
processors, depending on the command-line switches used.

 <p>The following built-in functions are always available.  They
all generate the machine instruction that is part of the name.

<pre class="smallexample">     long __builtin_alpha_implver (void)
     long __builtin_alpha_rpcc (void)
     long __builtin_alpha_amask (long)
     long __builtin_alpha_cmpbge (long, long)
     long __builtin_alpha_extbl (long, long)
     long __builtin_alpha_extwl (long, long)
     long __builtin_alpha_extll (long, long)
     long __builtin_alpha_extql (long, long)
     long __builtin_alpha_extwh (long, long)
     long __builtin_alpha_extlh (long, long)
     long __builtin_alpha_extqh (long, long)
     long __builtin_alpha_insbl (long, long)
     long __builtin_alpha_inswl (long, long)
     long __builtin_alpha_insll (long, long)
     long __builtin_alpha_insql (long, long)
     long __builtin_alpha_inswh (long, long)
     long __builtin_alpha_inslh (long, long)
     long __builtin_alpha_insqh (long, long)
     long __builtin_alpha_mskbl (long, long)
     long __builtin_alpha_mskwl (long, long)
     long __builtin_alpha_mskll (long, long)
     long __builtin_alpha_mskql (long, long)
     long __builtin_alpha_mskwh (long, long)
     long __builtin_alpha_msklh (long, long)
     long __builtin_alpha_mskqh (long, long)
     long __builtin_alpha_umulh (long, long)
     long __builtin_alpha_zap (long, long)
     long __builtin_alpha_zapnot (long, long)
</pre>
 <p>The following built-in functions are always with <samp><span class="option">-mmax</span></samp>
or <samp><span class="option">-mcpu=</span><var>cpu</var></samp> where <var>cpu</var> is <code>pca56</code> or
later.  They all generate the machine instruction that is part
of the name.

<pre class="smallexample">     long __builtin_alpha_pklb (long)
     long __builtin_alpha_pkwb (long)
     long __builtin_alpha_unpkbl (long)
     long __builtin_alpha_unpkbw (long)
     long __builtin_alpha_minub8 (long, long)
     long __builtin_alpha_minsb8 (long, long)
     long __builtin_alpha_minuw4 (long, long)
     long __builtin_alpha_minsw4 (long, long)
     long __builtin_alpha_maxub8 (long, long)
     long __builtin_alpha_maxsb8 (long, long)
     long __builtin_alpha_maxuw4 (long, long)
     long __builtin_alpha_maxsw4 (long, long)
     long __builtin_alpha_perr (long, long)
</pre>
 <p>The following built-in functions are always with <samp><span class="option">-mcix</span></samp>
or <samp><span class="option">-mcpu=</span><var>cpu</var></samp> where <var>cpu</var> is <code>ev67</code> or
later.  They all generate the machine instruction that is part
of the name.

<pre class="smallexample">     long __builtin_alpha_cttz (long)
     long __builtin_alpha_ctlz (long)
     long __builtin_alpha_ctpop (long)
</pre>
 <p>The following builtins are available on systems that use the OSF/1
PALcode.  Normally they invoke the <code>rduniq</code> and <code>wruniq</code>
PAL calls, but when invoked with <samp><span class="option">-mtls-kernel</span></samp>, they invoke
<code>rdval</code> and <code>wrval</code>.

<pre class="smallexample">     void *__builtin_thread_pointer (void)
     void __builtin_set_thread_pointer (void *)
</pre>
 <div class="node">
<a name="ARM-iWMMXt-Built-in-Functions"></a>
<a name="ARM-iWMMXt-Built_002din-Functions"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#ARM-NEON-Intrinsics">ARM NEON Intrinsics</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Alpha-Built_002din-Functions">Alpha Built-in Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Target-Builtins">Target Builtins</a>

</div>

<h4 class="subsection">6.54.2 ARM iWMMXt Built-in Functions</h4>

<p>These built-in functions are available for the ARM family of
processors when the <samp><span class="option">-mcpu=iwmmxt</span></samp> switch is used:

<pre class="smallexample">     typedef int v2si __attribute__ ((vector_size (8)));
     typedef short v4hi __attribute__ ((vector_size (8)));
     typedef char v8qi __attribute__ ((vector_size (8)));
     
     int __builtin_arm_getwcx (int)
     void __builtin_arm_setwcx (int, int)
     int __builtin_arm_textrmsb (v8qi, int)
     int __builtin_arm_textrmsh (v4hi, int)
     int __builtin_arm_textrmsw (v2si, int)
     int __builtin_arm_textrmub (v8qi, int)
     int __builtin_arm_textrmuh (v4hi, int)
     int __builtin_arm_textrmuw (v2si, int)
     v8qi __builtin_arm_tinsrb (v8qi, int)
     v4hi __builtin_arm_tinsrh (v4hi, int)
     v2si __builtin_arm_tinsrw (v2si, int)
     long long __builtin_arm_tmia (long long, int, int)
     long long __builtin_arm_tmiabb (long long, int, int)
     long long __builtin_arm_tmiabt (long long, int, int)
     long long __builtin_arm_tmiaph (long long, int, int)
     long long __builtin_arm_tmiatb (long long, int, int)
     long long __builtin_arm_tmiatt (long long, int, int)
     int __builtin_arm_tmovmskb (v8qi)
     int __builtin_arm_tmovmskh (v4hi)
     int __builtin_arm_tmovmskw (v2si)
     long long __builtin_arm_waccb (v8qi)
     long long __builtin_arm_wacch (v4hi)
     long long __builtin_arm_waccw (v2si)
     v8qi __builtin_arm_waddb (v8qi, v8qi)
     v8qi __builtin_arm_waddbss (v8qi, v8qi)
     v8qi __builtin_arm_waddbus (v8qi, v8qi)
     v4hi __builtin_arm_waddh (v4hi, v4hi)
     v4hi __builtin_arm_waddhss (v4hi, v4hi)
     v4hi __builtin_arm_waddhus (v4hi, v4hi)
     v2si __builtin_arm_waddw (v2si, v2si)
     v2si __builtin_arm_waddwss (v2si, v2si)
     v2si __builtin_arm_waddwus (v2si, v2si)
     v8qi __builtin_arm_walign (v8qi, v8qi, int)
     long long __builtin_arm_wand(long long, long long)
     long long __builtin_arm_wandn (long long, long long)
     v8qi __builtin_arm_wavg2b (v8qi, v8qi)
     v8qi __builtin_arm_wavg2br (v8qi, v8qi)
     v4hi __builtin_arm_wavg2h (v4hi, v4hi)
     v4hi __builtin_arm_wavg2hr (v4hi, v4hi)
     v8qi __builtin_arm_wcmpeqb (v8qi, v8qi)
     v4hi __builtin_arm_wcmpeqh (v4hi, v4hi)
     v2si __builtin_arm_wcmpeqw (v2si, v2si)
     v8qi __builtin_arm_wcmpgtsb (v8qi, v8qi)
     v4hi __builtin_arm_wcmpgtsh (v4hi, v4hi)
     v2si __builtin_arm_wcmpgtsw (v2si, v2si)
     v8qi __builtin_arm_wcmpgtub (v8qi, v8qi)
     v4hi __builtin_arm_wcmpgtuh (v4hi, v4hi)
     v2si __builtin_arm_wcmpgtuw (v2si, v2si)
     long long __builtin_arm_wmacs (long long, v4hi, v4hi)
     long long __builtin_arm_wmacsz (v4hi, v4hi)
     long long __builtin_arm_wmacu (long long, v4hi, v4hi)
     long long __builtin_arm_wmacuz (v4hi, v4hi)
     v4hi __builtin_arm_wmadds (v4hi, v4hi)
     v4hi __builtin_arm_wmaddu (v4hi, v4hi)
     v8qi __builtin_arm_wmaxsb (v8qi, v8qi)
     v4hi __builtin_arm_wmaxsh (v4hi, v4hi)
     v2si __builtin_arm_wmaxsw (v2si, v2si)
     v8qi __builtin_arm_wmaxub (v8qi, v8qi)
     v4hi __builtin_arm_wmaxuh (v4hi, v4hi)
     v2si __builtin_arm_wmaxuw (v2si, v2si)
     v8qi __builtin_arm_wminsb (v8qi, v8qi)
     v4hi __builtin_arm_wminsh (v4hi, v4hi)
     v2si __builtin_arm_wminsw (v2si, v2si)
     v8qi __builtin_arm_wminub (v8qi, v8qi)
     v4hi __builtin_arm_wminuh (v4hi, v4hi)
     v2si __builtin_arm_wminuw (v2si, v2si)
     v4hi __builtin_arm_wmulsm (v4hi, v4hi)
     v4hi __builtin_arm_wmulul (v4hi, v4hi)
     v4hi __builtin_arm_wmulum (v4hi, v4hi)
     long long __builtin_arm_wor (long long, long long)
     v2si __builtin_arm_wpackdss (long long, long long)
     v2si __builtin_arm_wpackdus (long long, long long)
     v8qi __builtin_arm_wpackhss (v4hi, v4hi)
     v8qi __builtin_arm_wpackhus (v4hi, v4hi)
     v4hi __builtin_arm_wpackwss (v2si, v2si)
     v4hi __builtin_arm_wpackwus (v2si, v2si)
     long long __builtin_arm_wrord (long long, long long)
     long long __builtin_arm_wrordi (long long, int)
     v4hi __builtin_arm_wrorh (v4hi, long long)
     v4hi __builtin_arm_wrorhi (v4hi, int)
     v2si __builtin_arm_wrorw (v2si, long long)
     v2si __builtin_arm_wrorwi (v2si, int)
     v2si __builtin_arm_wsadb (v8qi, v8qi)
     v2si __builtin_arm_wsadbz (v8qi, v8qi)
     v2si __builtin_arm_wsadh (v4hi, v4hi)
     v2si __builtin_arm_wsadhz (v4hi, v4hi)
     v4hi __builtin_arm_wshufh (v4hi, int)
     long long __builtin_arm_wslld (long long, long long)
     long long __builtin_arm_wslldi (long long, int)
     v4hi __builtin_arm_wsllh (v4hi, long long)
     v4hi __builtin_arm_wsllhi (v4hi, int)
     v2si __builtin_arm_wsllw (v2si, long long)
     v2si __builtin_arm_wsllwi (v2si, int)
     long long __builtin_arm_wsrad (long long, long long)
     long long __builtin_arm_wsradi (long long, int)
     v4hi __builtin_arm_wsrah (v4hi, long long)
     v4hi __builtin_arm_wsrahi (v4hi, int)
     v2si __builtin_arm_wsraw (v2si, long long)
     v2si __builtin_arm_wsrawi (v2si, int)
     long long __builtin_arm_wsrld (long long, long long)
     long long __builtin_arm_wsrldi (long long, int)
     v4hi __builtin_arm_wsrlh (v4hi, long long)
     v4hi __builtin_arm_wsrlhi (v4hi, int)
     v2si __builtin_arm_wsrlw (v2si, long long)
     v2si __builtin_arm_wsrlwi (v2si, int)
     v8qi __builtin_arm_wsubb (v8qi, v8qi)
     v8qi __builtin_arm_wsubbss (v8qi, v8qi)
     v8qi __builtin_arm_wsubbus (v8qi, v8qi)
     v4hi __builtin_arm_wsubh (v4hi, v4hi)
     v4hi __builtin_arm_wsubhss (v4hi, v4hi)
     v4hi __builtin_arm_wsubhus (v4hi, v4hi)
     v2si __builtin_arm_wsubw (v2si, v2si)
     v2si __builtin_arm_wsubwss (v2si, v2si)
     v2si __builtin_arm_wsubwus (v2si, v2si)
     v4hi __builtin_arm_wunpckehsb (v8qi)
     v2si __builtin_arm_wunpckehsh (v4hi)
     long long __builtin_arm_wunpckehsw (v2si)
     v4hi __builtin_arm_wunpckehub (v8qi)
     v2si __builtin_arm_wunpckehuh (v4hi)
     long long __builtin_arm_wunpckehuw (v2si)
     v4hi __builtin_arm_wunpckelsb (v8qi)
     v2si __builtin_arm_wunpckelsh (v4hi)
     long long __builtin_arm_wunpckelsw (v2si)
     v4hi __builtin_arm_wunpckelub (v8qi)
     v2si __builtin_arm_wunpckeluh (v4hi)
     long long __builtin_arm_wunpckeluw (v2si)
     v8qi __builtin_arm_wunpckihb (v8qi, v8qi)
     v4hi __builtin_arm_wunpckihh (v4hi, v4hi)
     v2si __builtin_arm_wunpckihw (v2si, v2si)
     v8qi __builtin_arm_wunpckilb (v8qi, v8qi)
     v4hi __builtin_arm_wunpckilh (v4hi, v4hi)
     v2si __builtin_arm_wunpckilw (v2si, v2si)
     long long __builtin_arm_wxor (long long, long long)
     long long __builtin_arm_wzero ()
</pre>
 <div class="node">
<a name="ARM-NEON-Intrinsics"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Blackfin-Built_002din-Functions">Blackfin Built-in Functions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#ARM-iWMMXt-Built_002din-Functions">ARM iWMMXt Built-in Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Target-Builtins">Target Builtins</a>

</div>

<h4 class="subsection">6.54.3 ARM NEON Intrinsics</h4>

<p>These built-in intrinsics for the ARM Advanced SIMD extension are available
when the <samp><span class="option">-mfpu=neon</span></samp> switch is used:

<!-- Copyright (C) 2006 Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<!-- This file is generated automatically using gcc/config/arm/neon-docgen.ml -->
<!-- Please do not edit manually. -->
<h5 class="subsubsection">6.54.3.1 Addition</h5>

     <ul>
<li>uint32x2_t vadd_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vadd.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vadd_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vadd.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vadd_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vadd.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vadd_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vadd.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vadd_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vadd.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vadd_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vadd.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>float32x2_t vadd_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vadd.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint64x1_t vadd_u64 (uint64x1_t, uint64x1_t)
</ul>

     <ul>
<li>int64x1_t vadd_s64 (int64x1_t, int64x1_t)
</ul>

     <ul>
<li>uint32x4_t vaddq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vadd.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vaddq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vadd.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vaddq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vadd.i8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x4_t vaddq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vadd.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vaddq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vadd.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vaddq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vadd.i8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint64x2_t vaddq_u64 (uint64x2_t, uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vadd.i64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int64x2_t vaddq_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vadd.i64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>float32x4_t vaddq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vadd.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint64x2_t vaddl_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vaddl.u32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vaddl_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vaddl.u16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x8_t vaddl_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vaddl.u8 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int64x2_t vaddl_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vaddl.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x4_t vaddl_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vaddl.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x8_t vaddl_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vaddl.s8 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint64x2_t vaddw_u32 (uint64x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vaddw.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vaddw_u16 (uint32x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vaddw.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x8_t vaddw_u8 (uint16x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vaddw.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int64x2_t vaddw_s32 (int64x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vaddw.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x4_t vaddw_s16 (int32x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vaddw.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x8_t vaddw_s8 (int16x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vaddw.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x2_t vhadd_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vhadd.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vhadd_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vhadd.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vhadd_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vhadd.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vhadd_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vhadd.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vhadd_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vhadd.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vhadd_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vhadd.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vhaddq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vhadd.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vhaddq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vhadd.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vhaddq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vhadd.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x4_t vhaddq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vhadd.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vhaddq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vhadd.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vhaddq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vhadd.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint32x2_t vrhadd_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrhadd.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vrhadd_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrhadd.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vrhadd_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrhadd.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vrhadd_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrhadd.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vrhadd_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrhadd.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vrhadd_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrhadd.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vrhaddq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrhadd.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vrhaddq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrhadd.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vrhaddq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vrhadd.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x4_t vrhaddq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrhadd.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vrhaddq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrhadd.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vrhaddq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vrhadd.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint32x2_t vqadd_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqadd.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vqadd_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqadd.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vqadd_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqadd.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vqadd_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqadd.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vqadd_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqadd.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vqadd_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqadd.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint64x1_t vqadd_u64 (uint64x1_t, uint64x1_t)
<br><em>Form of expected instruction(s):</em> <code>vqadd.u64 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int64x1_t vqadd_s64 (int64x1_t, int64x1_t)
<br><em>Form of expected instruction(s):</em> <code>vqadd.s64 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vqaddq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqadd.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vqaddq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqadd.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vqaddq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vqadd.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x4_t vqaddq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqadd.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vqaddq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqadd.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vqaddq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vqadd.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint64x2_t vqaddq_u64 (uint64x2_t, uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqadd.u64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int64x2_t vqaddq_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqadd.s64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint32x2_t vaddhn_u64 (uint64x2_t, uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vaddhn.i64 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x4_t vaddhn_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vaddhn.i32 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x8_t vaddhn_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vaddhn.i16 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x2_t vaddhn_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vaddhn.i64 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x4_t vaddhn_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vaddhn.i32 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x8_t vaddhn_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vaddhn.i16 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint32x2_t vraddhn_u64 (uint64x2_t, uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vraddhn.i64 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x4_t vraddhn_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vraddhn.i32 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x8_t vraddhn_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vraddhn.i16 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x2_t vraddhn_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vraddhn.i64 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x4_t vraddhn_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vraddhn.i32 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x8_t vraddhn_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vraddhn.i16 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.2 Multiplication</h5>

     <ul>
<li>uint32x2_t vmul_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vmul_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vmul_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vmul_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vmul_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vmul_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>float32x2_t vmul_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>poly8x8_t vmul_p8 (poly8x8_t, poly8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.p8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vmulq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vmulq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vmulq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x4_t vmulq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vmulq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vmulq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>float32x4_t vmulq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>poly8x16_t vmulq_p8 (poly8x16_t, poly8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.p8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x2_t vqdmulh_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmulh.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vqdmulh_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmulh.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x4_t vqdmulhq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmulh.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vqdmulhq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmulh.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x2_t vqrdmulh_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqrdmulh.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vqrdmulh_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqrdmulh.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x4_t vqrdmulhq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqrdmulh.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vqrdmulhq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqrdmulh.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint64x2_t vmull_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmull.u32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vmull_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmull.u16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x8_t vmull_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmull.u8 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int64x2_t vmull_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmull.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x4_t vmull_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmull.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x8_t vmull_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmull.s8 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>poly16x8_t vmull_p8 (poly8x8_t, poly8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmull.p8 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int64x2_t vqdmull_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmull.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x4_t vqdmull_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmull.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

<h5 class="subsubsection">6.54.3.3 Multiply-accumulate</h5>

     <ul>
<li>uint32x2_t vmla_u32 (uint32x2_t, uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vmla_u16 (uint16x4_t, uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vmla_u8 (uint8x8_t, uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vmla_s32 (int32x2_t, int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vmla_s16 (int16x4_t, int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vmla_s8 (int8x8_t, int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>float32x2_t vmla_f32 (float32x2_t, float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vmlaq_u32 (uint32x4_t, uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vmlaq_u16 (uint16x8_t, uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vmlaq_u8 (uint8x16_t, uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x4_t vmlaq_s32 (int32x4_t, int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vmlaq_s16 (int16x8_t, int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vmlaq_s8 (int8x16_t, int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>float32x4_t vmlaq_f32 (float32x4_t, float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint64x2_t vmlal_u32 (uint64x2_t, uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmlal.u32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vmlal_u16 (uint32x4_t, uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmlal.u16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x8_t vmlal_u8 (uint16x8_t, uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmlal.u8 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int64x2_t vmlal_s32 (int64x2_t, int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmlal.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x4_t vmlal_s16 (int32x4_t, int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmlal.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x8_t vmlal_s8 (int16x8_t, int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmlal.s8 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int64x2_t vqdmlal_s32 (int64x2_t, int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmlal.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x4_t vqdmlal_s16 (int32x4_t, int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmlal.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

<h5 class="subsubsection">6.54.3.4 Multiply-subtract</h5>

     <ul>
<li>uint32x2_t vmls_u32 (uint32x2_t, uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vmls_u16 (uint16x4_t, uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vmls_u8 (uint8x8_t, uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vmls_s32 (int32x2_t, int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vmls_s16 (int16x4_t, int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vmls_s8 (int8x8_t, int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>float32x2_t vmls_f32 (float32x2_t, float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vmlsq_u32 (uint32x4_t, uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vmlsq_u16 (uint16x8_t, uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vmlsq_u8 (uint8x16_t, uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x4_t vmlsq_s32 (int32x4_t, int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vmlsq_s16 (int16x8_t, int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vmlsq_s8 (int8x16_t, int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>float32x4_t vmlsq_f32 (float32x4_t, float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint64x2_t vmlsl_u32 (uint64x2_t, uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmlsl.u32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vmlsl_u16 (uint32x4_t, uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmlsl.u16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x8_t vmlsl_u8 (uint16x8_t, uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmlsl.u8 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int64x2_t vmlsl_s32 (int64x2_t, int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmlsl.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x4_t vmlsl_s16 (int32x4_t, int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmlsl.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x8_t vmlsl_s8 (int16x8_t, int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmlsl.s8 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int64x2_t vqdmlsl_s32 (int64x2_t, int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmlsl.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x4_t vqdmlsl_s16 (int32x4_t, int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmlsl.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

<h5 class="subsubsection">6.54.3.5 Subtraction</h5>

     <ul>
<li>uint32x2_t vsub_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vsub.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vsub_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vsub.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vsub_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vsub.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vsub_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vsub.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vsub_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vsub.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vsub_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vsub.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>float32x2_t vsub_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vsub.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint64x1_t vsub_u64 (uint64x1_t, uint64x1_t)
</ul>

     <ul>
<li>int64x1_t vsub_s64 (int64x1_t, int64x1_t)
</ul>

     <ul>
<li>uint32x4_t vsubq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vsub.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vsubq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vsub.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vsubq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vsub.i8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x4_t vsubq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vsub.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vsubq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vsub.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vsubq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vsub.i8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint64x2_t vsubq_u64 (uint64x2_t, uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vsub.i64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int64x2_t vsubq_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vsub.i64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>float32x4_t vsubq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vsub.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint64x2_t vsubl_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vsubl.u32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vsubl_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vsubl.u16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x8_t vsubl_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vsubl.u8 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int64x2_t vsubl_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vsubl.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x4_t vsubl_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vsubl.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x8_t vsubl_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vsubl.s8 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint64x2_t vsubw_u32 (uint64x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vsubw.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vsubw_u16 (uint32x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vsubw.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x8_t vsubw_u8 (uint16x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vsubw.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int64x2_t vsubw_s32 (int64x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vsubw.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x4_t vsubw_s16 (int32x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vsubw.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x8_t vsubw_s8 (int16x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vsubw.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x2_t vhsub_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vhsub.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vhsub_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vhsub.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vhsub_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vhsub.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vhsub_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vhsub.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vhsub_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vhsub.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vhsub_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vhsub.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vhsubq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vhsub.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vhsubq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vhsub.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vhsubq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vhsub.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x4_t vhsubq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vhsub.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vhsubq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vhsub.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vhsubq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vhsub.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint32x2_t vqsub_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqsub.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vqsub_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqsub.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vqsub_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqsub.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vqsub_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqsub.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vqsub_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqsub.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vqsub_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqsub.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint64x1_t vqsub_u64 (uint64x1_t, uint64x1_t)
<br><em>Form of expected instruction(s):</em> <code>vqsub.u64 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int64x1_t vqsub_s64 (int64x1_t, int64x1_t)
<br><em>Form of expected instruction(s):</em> <code>vqsub.s64 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vqsubq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqsub.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vqsubq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqsub.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vqsubq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vqsub.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x4_t vqsubq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqsub.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vqsubq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqsub.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vqsubq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vqsub.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint64x2_t vqsubq_u64 (uint64x2_t, uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqsub.u64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int64x2_t vqsubq_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqsub.s64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint32x2_t vsubhn_u64 (uint64x2_t, uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vsubhn.i64 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x4_t vsubhn_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vsubhn.i32 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x8_t vsubhn_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vsubhn.i16 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x2_t vsubhn_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vsubhn.i64 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x4_t vsubhn_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vsubhn.i32 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x8_t vsubhn_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vsubhn.i16 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint32x2_t vrsubhn_u64 (uint64x2_t, uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrsubhn.i64 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x4_t vrsubhn_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrsubhn.i32 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x8_t vrsubhn_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrsubhn.i16 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x2_t vrsubhn_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrsubhn.i64 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x4_t vrsubhn_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrsubhn.i32 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x8_t vrsubhn_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrsubhn.i16 </code><var>d0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.6 Comparison (equal-to)</h5>

     <ul>
<li>uint32x2_t vceq_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vceq.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vceq_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vceq.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vceq_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vceq.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x2_t vceq_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vceq.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vceq_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vceq.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vceq_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vceq.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x2_t vceq_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vceq.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vceq_p8 (poly8x8_t, poly8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vceq.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vceqq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vceq.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vceqq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vceq.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vceqq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vceq.i8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint32x4_t vceqq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vceq.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vceqq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vceq.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vceqq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vceq.i8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint32x4_t vceqq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vceq.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vceqq_p8 (poly8x16_t, poly8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vceq.i8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.7 Comparison (greater-than-or-equal-to)</h5>

     <ul>
<li>uint32x2_t vcge_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vcge_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vcge_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x2_t vcge_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vcge_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vcge_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x2_t vcge_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vcgeq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vcgeq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vcgeq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint32x4_t vcgeq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vcgeq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vcgeq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint32x4_t vcgeq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.8 Comparison (less-than-or-equal-to)</h5>

     <ul>
<li>uint32x2_t vcle_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vcle_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vcle_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x2_t vcle_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vcle_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vcle_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x2_t vcle_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vcleq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vcleq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vcleq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint32x4_t vcleq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vcleq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vcleq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint32x4_t vcleq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcge.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.9 Comparison (greater-than)</h5>

     <ul>
<li>uint32x2_t vcgt_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vcgt_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vcgt_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x2_t vcgt_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vcgt_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vcgt_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x2_t vcgt_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vcgtq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vcgtq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vcgtq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint32x4_t vcgtq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vcgtq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vcgtq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint32x4_t vcgtq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.10 Comparison (less-than)</h5>

     <ul>
<li>uint32x2_t vclt_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vclt_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vclt_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x2_t vclt_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vclt_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vclt_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x2_t vclt_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vcltq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vcltq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vcltq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint32x4_t vcltq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vcltq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vcltq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint32x4_t vcltq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcgt.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.11 Comparison (absolute greater-than-or-equal-to)</h5>

     <ul>
<li>uint32x2_t vcage_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vacge.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vcageq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vacge.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.12 Comparison (absolute less-than-or-equal-to)</h5>

     <ul>
<li>uint32x2_t vcale_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vacge.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vcaleq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vacge.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.13 Comparison (absolute greater-than)</h5>

     <ul>
<li>uint32x2_t vcagt_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vacgt.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vcagtq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vacgt.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.14 Comparison (absolute less-than)</h5>

     <ul>
<li>uint32x2_t vcalt_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vacgt.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vcaltq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vacgt.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.15 Test bits</h5>

     <ul>
<li>uint32x2_t vtst_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vtst.32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vtst_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vtst.16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vtst_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtst.8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x2_t vtst_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vtst.32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vtst_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vtst.16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vtst_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtst.8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vtst_p8 (poly8x8_t, poly8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtst.8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vtstq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vtst.32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vtstq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtst.16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vtstq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vtst.8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint32x4_t vtstq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vtst.32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vtstq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtst.16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vtstq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vtst.8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vtstq_p8 (poly8x16_t, poly8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vtst.8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.16 Absolute difference</h5>

     <ul>
<li>uint32x2_t vabd_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vabd.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vabd_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vabd.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vabd_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vabd.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vabd_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vabd.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vabd_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vabd.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vabd_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vabd.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>float32x2_t vabd_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vabd.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vabdq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vabd.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vabdq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vabd.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vabdq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vabd.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x4_t vabdq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vabd.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vabdq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vabd.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vabdq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vabd.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>float32x4_t vabdq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vabd.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint64x2_t vabdl_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vabdl.u32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vabdl_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vabdl.u16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x8_t vabdl_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vabdl.u8 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int64x2_t vabdl_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vabdl.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x4_t vabdl_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vabdl.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x8_t vabdl_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vabdl.s8 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

<h5 class="subsubsection">6.54.3.17 Absolute difference and accumulate</h5>

     <ul>
<li>uint32x2_t vaba_u32 (uint32x2_t, uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vaba.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vaba_u16 (uint16x4_t, uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vaba.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vaba_u8 (uint8x8_t, uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vaba.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vaba_s32 (int32x2_t, int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vaba.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vaba_s16 (int16x4_t, int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vaba.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vaba_s8 (int8x8_t, int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vaba.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vabaq_u32 (uint32x4_t, uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vaba.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vabaq_u16 (uint16x8_t, uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vaba.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vabaq_u8 (uint8x16_t, uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vaba.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x4_t vabaq_s32 (int32x4_t, int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vaba.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vabaq_s16 (int16x8_t, int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vaba.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vabaq_s8 (int8x16_t, int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vaba.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint64x2_t vabal_u32 (uint64x2_t, uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vabal.u32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vabal_u16 (uint32x4_t, uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vabal.u16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x8_t vabal_u8 (uint16x8_t, uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vabal.u8 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int64x2_t vabal_s32 (int64x2_t, int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vabal.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x4_t vabal_s16 (int32x4_t, int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vabal.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x8_t vabal_s8 (int16x8_t, int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vabal.s8 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

<h5 class="subsubsection">6.54.3.18 Maximum</h5>

     <ul>
<li>uint32x2_t vmax_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmax.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vmax_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmax.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vmax_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmax.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vmax_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmax.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vmax_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmax.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vmax_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmax.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>float32x2_t vmax_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmax.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vmaxq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmax.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vmaxq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmax.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vmaxq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmax.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x4_t vmaxq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmax.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vmaxq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmax.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vmaxq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmax.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>float32x4_t vmaxq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmax.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.19 Minimum</h5>

     <ul>
<li>uint32x2_t vmin_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmin.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vmin_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmin.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vmin_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmin.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vmin_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmin.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vmin_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmin.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vmin_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmin.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>float32x2_t vmin_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmin.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vminq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmin.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vminq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmin.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vminq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmin.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x4_t vminq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmin.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vminq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmin.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vminq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmin.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>float32x4_t vminq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmin.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.20 Pairwise add</h5>

     <ul>
<li>uint32x2_t vpadd_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vpadd.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vpadd_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vpadd.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vpadd_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vpadd.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vpadd_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vpadd.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vpadd_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vpadd.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vpadd_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vpadd.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>float32x2_t vpadd_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vpadd.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint64x1_t vpaddl_u32 (uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vpaddl.u32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x2_t vpaddl_u16 (uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vpaddl.u16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vpaddl_u8 (uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vpaddl.u8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int64x1_t vpaddl_s32 (int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vpaddl.s32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vpaddl_s16 (int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vpaddl.s16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vpaddl_s8 (int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vpaddl.s8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint64x2_t vpaddlq_u32 (uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vpaddl.u32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint32x4_t vpaddlq_u16 (uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vpaddl.u16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vpaddlq_u8 (uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vpaddl.u8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int64x2_t vpaddlq_s32 (int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vpaddl.s32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x4_t vpaddlq_s16 (int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vpaddl.s16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vpaddlq_s8 (int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vpaddl.s8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.21 Pairwise add, single_opcode widen and accumulate</h5>

     <ul>
<li>uint64x1_t vpadal_u32 (uint64x1_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vpadal.u32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x2_t vpadal_u16 (uint32x2_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vpadal.u16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vpadal_u8 (uint16x4_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vpadal.u8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int64x1_t vpadal_s32 (int64x1_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vpadal.s32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vpadal_s16 (int32x2_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vpadal.s16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vpadal_s8 (int16x4_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vpadal.s8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint64x2_t vpadalq_u32 (uint64x2_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vpadal.u32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint32x4_t vpadalq_u16 (uint32x4_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vpadal.u16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vpadalq_u8 (uint16x8_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vpadal.u8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int64x2_t vpadalq_s32 (int64x2_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vpadal.s32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x4_t vpadalq_s16 (int32x4_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vpadal.s16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vpadalq_s8 (int16x8_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vpadal.s8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.22 Folding maximum</h5>

     <ul>
<li>uint32x2_t vpmax_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vpmax.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vpmax_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vpmax.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vpmax_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vpmax.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vpmax_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vpmax.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vpmax_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vpmax.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vpmax_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vpmax.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>float32x2_t vpmax_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vpmax.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

<h5 class="subsubsection">6.54.3.23 Folding minimum</h5>

     <ul>
<li>uint32x2_t vpmin_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vpmin.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vpmin_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vpmin.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vpmin_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vpmin.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vpmin_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vpmin.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vpmin_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vpmin.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vpmin_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vpmin.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>float32x2_t vpmin_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vpmin.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

<h5 class="subsubsection">6.54.3.24 Reciprocal step</h5>

     <ul>
<li>float32x2_t vrecps_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrecps.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>float32x4_t vrecpsq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrecps.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>float32x2_t vrsqrts_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrsqrts.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>float32x4_t vrsqrtsq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrsqrts.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.25 Vector shift left</h5>

     <ul>
<li>uint32x2_t vshl_u32 (uint32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vshl.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vshl_u16 (uint16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vshl.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vshl_u8 (uint8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vshl.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vshl_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vshl.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vshl_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vshl.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vshl_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vshl.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint64x1_t vshl_u64 (uint64x1_t, int64x1_t)
<br><em>Form of expected instruction(s):</em> <code>vshl.u64 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int64x1_t vshl_s64 (int64x1_t, int64x1_t)
<br><em>Form of expected instruction(s):</em> <code>vshl.s64 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vshlq_u32 (uint32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vshl.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vshlq_u16 (uint16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vshl.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vshlq_u8 (uint8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vshl.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x4_t vshlq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vshl.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vshlq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vshl.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vshlq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vshl.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint64x2_t vshlq_u64 (uint64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vshl.u64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int64x2_t vshlq_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vshl.s64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint32x2_t vrshl_u32 (uint32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrshl.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vrshl_u16 (uint16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrshl.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vrshl_u8 (uint8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrshl.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vrshl_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrshl.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vrshl_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrshl.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vrshl_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrshl.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint64x1_t vrshl_u64 (uint64x1_t, int64x1_t)
<br><em>Form of expected instruction(s):</em> <code>vrshl.u64 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int64x1_t vrshl_s64 (int64x1_t, int64x1_t)
<br><em>Form of expected instruction(s):</em> <code>vrshl.s64 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vrshlq_u32 (uint32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrshl.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vrshlq_u16 (uint16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrshl.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vrshlq_u8 (uint8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vrshl.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x4_t vrshlq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrshl.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vrshlq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrshl.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vrshlq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vrshl.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint64x2_t vrshlq_u64 (uint64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrshl.u64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int64x2_t vrshlq_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrshl.s64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint32x2_t vqshl_u32 (uint32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqshl.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vqshl_u16 (uint16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqshl.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vqshl_u8 (uint8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqshl.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vqshl_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqshl.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vqshl_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqshl.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vqshl_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqshl.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint64x1_t vqshl_u64 (uint64x1_t, int64x1_t)
<br><em>Form of expected instruction(s):</em> <code>vqshl.u64 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int64x1_t vqshl_s64 (int64x1_t, int64x1_t)
<br><em>Form of expected instruction(s):</em> <code>vqshl.s64 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vqshlq_u32 (uint32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqshl.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vqshlq_u16 (uint16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqshl.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vqshlq_u8 (uint8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vqshl.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x4_t vqshlq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqshl.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vqshlq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqshl.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vqshlq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vqshl.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint64x2_t vqshlq_u64 (uint64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqshl.u64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int64x2_t vqshlq_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqshl.s64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint32x2_t vqrshl_u32 (uint32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqrshl.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vqrshl_u16 (uint16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqrshl.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vqrshl_u8 (uint8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqrshl.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vqrshl_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqrshl.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vqrshl_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqrshl.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vqrshl_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqrshl.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint64x1_t vqrshl_u64 (uint64x1_t, int64x1_t)
<br><em>Form of expected instruction(s):</em> <code>vqrshl.u64 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int64x1_t vqrshl_s64 (int64x1_t, int64x1_t)
<br><em>Form of expected instruction(s):</em> <code>vqrshl.s64 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vqrshlq_u32 (uint32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqrshl.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vqrshlq_u16 (uint16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqrshl.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vqrshlq_u8 (uint8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vqrshl.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x4_t vqrshlq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqrshl.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vqrshlq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqrshl.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vqrshlq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vqrshl.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint64x2_t vqrshlq_u64 (uint64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqrshl.u64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int64x2_t vqrshlq_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqrshl.s64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.26 Vector shift left by constant</h5>

     <ul>
<li>uint32x2_t vshl_n_u32 (uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshl.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint16x4_t vshl_n_u16 (uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshl.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint8x8_t vshl_n_u8 (uint8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshl.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int32x2_t vshl_n_s32 (int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshl.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int16x4_t vshl_n_s16 (int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshl.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int8x8_t vshl_n_s8 (int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshl.i8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint64x1_t vshl_n_u64 (uint64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshl.i64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int64x1_t vshl_n_s64 (int64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshl.i64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint32x4_t vshlq_n_u32 (uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshl.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint16x8_t vshlq_n_u16 (uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshl.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint8x16_t vshlq_n_u8 (uint8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshl.i8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int32x4_t vshlq_n_s32 (int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshl.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int16x8_t vshlq_n_s16 (int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshl.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int8x16_t vshlq_n_s8 (int8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshl.i8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint64x2_t vshlq_n_u64 (uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshl.i64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int64x2_t vshlq_n_s64 (int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshl.i64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint32x2_t vqshl_n_u32 (uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshl.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint16x4_t vqshl_n_u16 (uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshl.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint8x8_t vqshl_n_u8 (uint8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshl.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int32x2_t vqshl_n_s32 (int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshl.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int16x4_t vqshl_n_s16 (int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshl.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int8x8_t vqshl_n_s8 (int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshl.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint64x1_t vqshl_n_u64 (uint64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshl.u64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int64x1_t vqshl_n_s64 (int64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshl.s64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint32x4_t vqshlq_n_u32 (uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshl.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint16x8_t vqshlq_n_u16 (uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshl.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint8x16_t vqshlq_n_u8 (uint8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshl.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int32x4_t vqshlq_n_s32 (int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshl.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int16x8_t vqshlq_n_s16 (int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshl.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int8x16_t vqshlq_n_s8 (int8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshl.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint64x2_t vqshlq_n_u64 (uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshl.u64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int64x2_t vqshlq_n_s64 (int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshl.s64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint64x1_t vqshlu_n_s64 (int64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshlu.s64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint32x2_t vqshlu_n_s32 (int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshlu.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint16x4_t vqshlu_n_s16 (int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshlu.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint8x8_t vqshlu_n_s8 (int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshlu.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint64x2_t vqshluq_n_s64 (int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshlu.s64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint32x4_t vqshluq_n_s32 (int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshlu.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint16x8_t vqshluq_n_s16 (int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshlu.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint8x16_t vqshluq_n_s8 (int8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshlu.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint64x2_t vshll_n_u32 (uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshll.u32 </code><var>q0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint32x4_t vshll_n_u16 (uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshll.u16 </code><var>q0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint16x8_t vshll_n_u8 (uint8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshll.u8 </code><var>q0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int64x2_t vshll_n_s32 (int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshll.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int32x4_t vshll_n_s16 (int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshll.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int16x8_t vshll_n_s8 (int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshll.s8 </code><var>q0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

<h5 class="subsubsection">6.54.3.27 Vector shift right by constant</h5>

     <ul>
<li>uint32x2_t vshr_n_u32 (uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshr.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint16x4_t vshr_n_u16 (uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshr.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint8x8_t vshr_n_u8 (uint8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshr.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int32x2_t vshr_n_s32 (int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshr.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int16x4_t vshr_n_s16 (int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshr.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int8x8_t vshr_n_s8 (int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshr.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint64x1_t vshr_n_u64 (uint64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshr.u64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int64x1_t vshr_n_s64 (int64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshr.s64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint32x4_t vshrq_n_u32 (uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshr.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint16x8_t vshrq_n_u16 (uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshr.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint8x16_t vshrq_n_u8 (uint8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshr.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int32x4_t vshrq_n_s32 (int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshr.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int16x8_t vshrq_n_s16 (int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshr.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int8x16_t vshrq_n_s8 (int8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshr.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint64x2_t vshrq_n_u64 (uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshr.u64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int64x2_t vshrq_n_s64 (int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshr.s64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint32x2_t vrshr_n_u32 (uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshr.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint16x4_t vrshr_n_u16 (uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshr.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint8x8_t vrshr_n_u8 (uint8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshr.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int32x2_t vrshr_n_s32 (int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshr.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int16x4_t vrshr_n_s16 (int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshr.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int8x8_t vrshr_n_s8 (int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshr.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint64x1_t vrshr_n_u64 (uint64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshr.u64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int64x1_t vrshr_n_s64 (int64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshr.s64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint32x4_t vrshrq_n_u32 (uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshr.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint16x8_t vrshrq_n_u16 (uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshr.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint8x16_t vrshrq_n_u8 (uint8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshr.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int32x4_t vrshrq_n_s32 (int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshr.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int16x8_t vrshrq_n_s16 (int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshr.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int8x16_t vrshrq_n_s8 (int8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshr.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint64x2_t vrshrq_n_u64 (uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshr.u64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int64x2_t vrshrq_n_s64 (int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshr.s64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint32x2_t vshrn_n_u64 (uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshrn.i64 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint16x4_t vshrn_n_u32 (uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshrn.i32 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint8x8_t vshrn_n_u16 (uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshrn.i16 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int32x2_t vshrn_n_s64 (int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshrn.i64 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int16x4_t vshrn_n_s32 (int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshrn.i32 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int8x8_t vshrn_n_s16 (int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vshrn.i16 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint32x2_t vrshrn_n_u64 (uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshrn.i64 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint16x4_t vrshrn_n_u32 (uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshrn.i32 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint8x8_t vrshrn_n_u16 (uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshrn.i16 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int32x2_t vrshrn_n_s64 (int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshrn.i64 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int16x4_t vrshrn_n_s32 (int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshrn.i32 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int8x8_t vrshrn_n_s16 (int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrshrn.i16 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint32x2_t vqshrn_n_u64 (uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshrn.u64 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint16x4_t vqshrn_n_u32 (uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshrn.u32 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint8x8_t vqshrn_n_u16 (uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshrn.u16 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int32x2_t vqshrn_n_s64 (int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshrn.s64 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int16x4_t vqshrn_n_s32 (int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshrn.s32 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int8x8_t vqshrn_n_s16 (int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshrn.s16 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint32x2_t vqrshrn_n_u64 (uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqrshrn.u64 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint16x4_t vqrshrn_n_u32 (uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqrshrn.u32 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint8x8_t vqrshrn_n_u16 (uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqrshrn.u16 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int32x2_t vqrshrn_n_s64 (int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqrshrn.s64 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int16x4_t vqrshrn_n_s32 (int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqrshrn.s32 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int8x8_t vqrshrn_n_s16 (int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqrshrn.s16 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint32x2_t vqshrun_n_s64 (int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshrun.s64 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint16x4_t vqshrun_n_s32 (int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshrun.s32 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint8x8_t vqshrun_n_s16 (int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqshrun.s16 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint32x2_t vqrshrun_n_s64 (int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqrshrun.s64 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint16x4_t vqrshrun_n_s32 (int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqrshrun.s32 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint8x8_t vqrshrun_n_s16 (int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqrshrun.s16 </code><var>d0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

<h5 class="subsubsection">6.54.3.28 Vector shift right by constant and accumulate</h5>

     <ul>
<li>uint32x2_t vsra_n_u32 (uint32x2_t, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsra.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint16x4_t vsra_n_u16 (uint16x4_t, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsra.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint8x8_t vsra_n_u8 (uint8x8_t, uint8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsra.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int32x2_t vsra_n_s32 (int32x2_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsra.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int16x4_t vsra_n_s16 (int16x4_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsra.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int8x8_t vsra_n_s8 (int8x8_t, int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsra.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint64x1_t vsra_n_u64 (uint64x1_t, uint64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsra.u64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int64x1_t vsra_n_s64 (int64x1_t, int64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsra.s64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint32x4_t vsraq_n_u32 (uint32x4_t, uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsra.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint16x8_t vsraq_n_u16 (uint16x8_t, uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsra.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint8x16_t vsraq_n_u8 (uint8x16_t, uint8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsra.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int32x4_t vsraq_n_s32 (int32x4_t, int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsra.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int16x8_t vsraq_n_s16 (int16x8_t, int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsra.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int8x16_t vsraq_n_s8 (int8x16_t, int8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsra.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint64x2_t vsraq_n_u64 (uint64x2_t, uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsra.u64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int64x2_t vsraq_n_s64 (int64x2_t, int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsra.s64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint32x2_t vrsra_n_u32 (uint32x2_t, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrsra.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint16x4_t vrsra_n_u16 (uint16x4_t, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrsra.u16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint8x8_t vrsra_n_u8 (uint8x8_t, uint8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrsra.u8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int32x2_t vrsra_n_s32 (int32x2_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrsra.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int16x4_t vrsra_n_s16 (int16x4_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrsra.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int8x8_t vrsra_n_s8 (int8x8_t, int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrsra.s8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint64x1_t vrsra_n_u64 (uint64x1_t, uint64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrsra.u64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int64x1_t vrsra_n_s64 (int64x1_t, int64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrsra.s64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint32x4_t vrsraq_n_u32 (uint32x4_t, uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrsra.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint16x8_t vrsraq_n_u16 (uint16x8_t, uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrsra.u16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint8x16_t vrsraq_n_u8 (uint8x16_t, uint8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrsra.u8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int32x4_t vrsraq_n_s32 (int32x4_t, int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrsra.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int16x8_t vrsraq_n_s16 (int16x8_t, int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrsra.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int8x16_t vrsraq_n_s8 (int8x16_t, int8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrsra.s8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint64x2_t vrsraq_n_u64 (uint64x2_t, uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrsra.u64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int64x2_t vrsraq_n_s64 (int64x2_t, int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vrsra.s64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

<h5 class="subsubsection">6.54.3.29 Vector shift right and insert</h5>

     <ul>
<li>uint32x2_t vsri_n_u32 (uint32x2_t, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint16x4_t vsri_n_u16 (uint16x4_t, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint8x8_t vsri_n_u8 (uint8x8_t, uint8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int32x2_t vsri_n_s32 (int32x2_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int16x4_t vsri_n_s16 (int16x4_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int8x8_t vsri_n_s8 (int8x8_t, int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint64x1_t vsri_n_u64 (uint64x1_t, uint64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int64x1_t vsri_n_s64 (int64x1_t, int64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>poly16x4_t vsri_n_p16 (poly16x4_t, poly16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>poly8x8_t vsri_n_p8 (poly8x8_t, poly8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint32x4_t vsriq_n_u32 (uint32x4_t, uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint16x8_t vsriq_n_u16 (uint16x8_t, uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint8x16_t vsriq_n_u8 (uint8x16_t, uint8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int32x4_t vsriq_n_s32 (int32x4_t, int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int16x8_t vsriq_n_s16 (int16x8_t, int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int8x16_t vsriq_n_s8 (int8x16_t, int8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint64x2_t vsriq_n_u64 (uint64x2_t, uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int64x2_t vsriq_n_s64 (int64x2_t, int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>poly16x8_t vsriq_n_p16 (poly16x8_t, poly16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>poly8x16_t vsriq_n_p8 (poly8x16_t, poly8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsri.8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

<h5 class="subsubsection">6.54.3.30 Vector shift left and insert</h5>

     <ul>
<li>uint32x2_t vsli_n_u32 (uint32x2_t, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint16x4_t vsli_n_u16 (uint16x4_t, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint8x8_t vsli_n_u8 (uint8x8_t, uint8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int32x2_t vsli_n_s32 (int32x2_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int16x4_t vsli_n_s16 (int16x4_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int8x8_t vsli_n_s8 (int8x8_t, int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint64x1_t vsli_n_u64 (uint64x1_t, uint64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int64x1_t vsli_n_s64 (int64x1_t, int64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.64 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>poly16x4_t vsli_n_p16 (poly16x4_t, poly16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.16 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>poly8x8_t vsli_n_p8 (poly8x8_t, poly8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.8 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint32x4_t vsliq_n_u32 (uint32x4_t, uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint16x8_t vsliq_n_u16 (uint16x8_t, uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint8x16_t vsliq_n_u8 (uint8x16_t, uint8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int32x4_t vsliq_n_s32 (int32x4_t, int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int16x8_t vsliq_n_s16 (int16x8_t, int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int8x16_t vsliq_n_s8 (int8x16_t, int8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint64x2_t vsliq_n_u64 (uint64x2_t, uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int64x2_t vsliq_n_s64 (int64x2_t, int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.64 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>poly16x8_t vsliq_n_p16 (poly16x8_t, poly16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.16 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>poly8x16_t vsliq_n_p8 (poly8x16_t, poly8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vsli.8 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

<h5 class="subsubsection">6.54.3.31 Absolute value</h5>

     <ul>
<li>float32x2_t vabs_f32 (float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vabs.f32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vabs_s32 (int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vabs.s32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vabs_s16 (int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vabs.s16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vabs_s8 (int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vabs.s8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>float32x4_t vabsq_f32 (float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vabs.f32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x4_t vabsq_s32 (int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vabs.s32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vabsq_s16 (int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vabs.s16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vabsq_s8 (int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vabs.s8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x2_t vqabs_s32 (int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqabs.s32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vqabs_s16 (int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqabs.s16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vqabs_s8 (int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqabs.s8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x4_t vqabsq_s32 (int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqabs.s32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vqabsq_s16 (int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqabs.s16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vqabsq_s8 (int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vqabs.s8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.32 Negation</h5>

     <ul>
<li>float32x2_t vneg_f32 (float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vneg.f32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vneg_s32 (int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vneg.s32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vneg_s16 (int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vneg.s16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vneg_s8 (int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vneg.s8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>float32x4_t vnegq_f32 (float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vneg.f32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x4_t vnegq_s32 (int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vneg.s32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vnegq_s16 (int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vneg.s16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vnegq_s8 (int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vneg.s8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x2_t vqneg_s32 (int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqneg.s32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vqneg_s16 (int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqneg.s16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vqneg_s8 (int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqneg.s8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x4_t vqnegq_s32 (int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqneg.s32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vqnegq_s16 (int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqneg.s16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vqnegq_s8 (int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vqneg.s8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.33 Bitwise not</h5>

     <ul>
<li>uint32x2_t vmvn_u32 (uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmvn </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vmvn_u16 (uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmvn </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vmvn_u8 (uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmvn </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vmvn_s32 (int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmvn </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vmvn_s16 (int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmvn </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vmvn_s8 (int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmvn </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>poly8x8_t vmvn_p8 (poly8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmvn </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vmvnq_u32 (uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmvn </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vmvnq_u16 (uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmvn </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vmvnq_u8 (uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmvn </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x4_t vmvnq_s32 (int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmvn </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vmvnq_s16 (int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmvn </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vmvnq_s8 (int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmvn </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>poly8x16_t vmvnq_p8 (poly8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmvn </code><var>q0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.34 Count leading sign bits</h5>

     <ul>
<li>int32x2_t vcls_s32 (int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcls.s32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vcls_s16 (int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcls.s16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vcls_s8 (int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcls.s8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x4_t vclsq_s32 (int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcls.s32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vclsq_s16 (int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcls.s16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vclsq_s8 (int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vcls.s8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.35 Count leading zeros</h5>

     <ul>
<li>uint32x2_t vclz_u32 (uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vclz.i32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vclz_u16 (uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vclz.i16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vclz_u8 (uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vclz.i8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vclz_s32 (int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vclz.i32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vclz_s16 (int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vclz.i16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vclz_s8 (int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vclz.i8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vclzq_u32 (uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vclz.i32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vclzq_u16 (uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vclz.i16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vclzq_u8 (uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vclz.i8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x4_t vclzq_s32 (int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vclz.i32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vclzq_s16 (int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vclz.i16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vclzq_s8 (int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vclz.i8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.36 Count number of set bits</h5>

     <ul>
<li>uint8x8_t vcnt_u8 (uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcnt.8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vcnt_s8 (int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcnt.8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>poly8x8_t vcnt_p8 (poly8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vcnt.8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x16_t vcntq_u8 (uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vcnt.8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vcntq_s8 (int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vcnt.8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>poly8x16_t vcntq_p8 (poly8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vcnt.8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.37 Reciprocal estimate</h5>

     <ul>
<li>float32x2_t vrecpe_f32 (float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrecpe.f32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x2_t vrecpe_u32 (uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrecpe.u32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>float32x4_t vrecpeq_f32 (float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrecpe.f32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint32x4_t vrecpeq_u32 (uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrecpe.u32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.38 Reciprocal square-root estimate</h5>

     <ul>
<li>float32x2_t vrsqrte_f32 (float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrsqrte.f32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x2_t vrsqrte_u32 (uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrsqrte.u32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>float32x4_t vrsqrteq_f32 (float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrsqrte.f32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint32x4_t vrsqrteq_u32 (uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrsqrte.u32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.39 Get lanes from a vector</h5>

     <ul>
<li>uint32_t vget_lane_u32 (uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.32 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint16_t vget_lane_u16 (uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.u16 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint8_t vget_lane_u8 (uint8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.u8 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32_t vget_lane_s32 (int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.32 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int16_t vget_lane_s16 (int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.s16 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int8_t vget_lane_s8 (int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.s8 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>float32_t vget_lane_f32 (float32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.32 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>poly16_t vget_lane_p16 (poly16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.u16 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>poly8_t vget_lane_p8 (poly8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.u8 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint64_t vget_lane_u64 (uint64x1_t, const int)
</ul>

     <ul>
<li>int64_t vget_lane_s64 (int64x1_t, const int)
</ul>

     <ul>
<li>uint32_t vgetq_lane_u32 (uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.32 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint16_t vgetq_lane_u16 (uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.u16 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint8_t vgetq_lane_u8 (uint8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.u8 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32_t vgetq_lane_s32 (int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.32 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int16_t vgetq_lane_s16 (int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.s16 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int8_t vgetq_lane_s8 (int8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.s8 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>float32_t vgetq_lane_f32 (float32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.32 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>poly16_t vgetq_lane_p16 (poly16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.u16 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>poly8_t vgetq_lane_p8 (poly8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.u8 </code><var>r0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint64_t vgetq_lane_u64 (uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov </code><var>r0</var><code>, </code><var>r0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int64_t vgetq_lane_s64 (int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov </code><var>r0</var><code>, </code><var>r0</var><code>, </code><var>d0</var>
</ul>

<h5 class="subsubsection">6.54.3.40 Set lanes in a vector</h5>

     <ul>
<li>uint32x2_t vset_lane_u32 (uint32_t, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.32 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>

     <ul>
<li>uint16x4_t vset_lane_u16 (uint16_t, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.16 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>

     <ul>
<li>uint8x8_t vset_lane_u8 (uint8_t, uint8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.8 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>

     <ul>
<li>int32x2_t vset_lane_s32 (int32_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.32 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>

     <ul>
<li>int16x4_t vset_lane_s16 (int16_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.16 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>

     <ul>
<li>int8x8_t vset_lane_s8 (int8_t, int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.8 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>

     <ul>
<li>float32x2_t vset_lane_f32 (float32_t, float32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.32 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>

     <ul>
<li>poly16x4_t vset_lane_p16 (poly16_t, poly16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.16 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>

     <ul>
<li>poly8x8_t vset_lane_p8 (poly8_t, poly8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.8 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>

     <ul>
<li>uint64x1_t vset_lane_u64 (uint64_t, uint64x1_t, const int)
</ul>

     <ul>
<li>int64x1_t vset_lane_s64 (int64_t, int64x1_t, const int)
</ul>

     <ul>
<li>uint32x4_t vsetq_lane_u32 (uint32_t, uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.32 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>

     <ul>
<li>uint16x8_t vsetq_lane_u16 (uint16_t, uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.16 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>

     <ul>
<li>uint8x16_t vsetq_lane_u8 (uint8_t, uint8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.8 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>

     <ul>
<li>int32x4_t vsetq_lane_s32 (int32_t, int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.32 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>

     <ul>
<li>int16x8_t vsetq_lane_s16 (int16_t, int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.16 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>

     <ul>
<li>int8x16_t vsetq_lane_s8 (int8_t, int8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.8 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>

     <ul>
<li>float32x4_t vsetq_lane_f32 (float32_t, float32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.32 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>

     <ul>
<li>poly16x8_t vsetq_lane_p16 (poly16_t, poly16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.16 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>

     <ul>
<li>poly8x16_t vsetq_lane_p8 (poly8_t, poly8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov.8 </code><var>d0</var><code>[</code><var>0</var><code>], </code><var>r0</var>
</ul>

     <ul>
<li>uint64x2_t vsetq_lane_u64 (uint64_t, uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov </code><var>d0</var><code>, </code><var>r0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>int64x2_t vsetq_lane_s64 (int64_t, int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmov </code><var>d0</var><code>, </code><var>r0</var><code>, </code><var>r0</var>
</ul>

<h5 class="subsubsection">6.54.3.41 Create vector from literal bit pattern</h5>

     <ul>
<li>uint32x2_t vcreate_u32 (uint64_t)
</ul>

     <ul>
<li>uint16x4_t vcreate_u16 (uint64_t)
</ul>

     <ul>
<li>uint8x8_t vcreate_u8 (uint64_t)
</ul>

     <ul>
<li>int32x2_t vcreate_s32 (uint64_t)
</ul>

     <ul>
<li>int16x4_t vcreate_s16 (uint64_t)
</ul>

     <ul>
<li>int8x8_t vcreate_s8 (uint64_t)
</ul>

     <ul>
<li>uint64x1_t vcreate_u64 (uint64_t)
</ul>

     <ul>
<li>int64x1_t vcreate_s64 (uint64_t)
</ul>

     <ul>
<li>float32x2_t vcreate_f32 (uint64_t)
</ul>

     <ul>
<li>poly16x4_t vcreate_p16 (uint64_t)
</ul>

     <ul>
<li>poly8x8_t vcreate_p8 (uint64_t)
</ul>

<h5 class="subsubsection">6.54.3.42 Set all lanes to the same value</h5>

     <ul>
<li>uint32x2_t vdup_n_u32 (uint32_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>d0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>uint16x4_t vdup_n_u16 (uint16_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>d0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>uint8x8_t vdup_n_u8 (uint8_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>d0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>int32x2_t vdup_n_s32 (int32_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>d0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>int16x4_t vdup_n_s16 (int16_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>d0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>int8x8_t vdup_n_s8 (int8_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>d0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>float32x2_t vdup_n_f32 (float32_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>d0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>poly16x4_t vdup_n_p16 (poly16_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>d0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>poly8x8_t vdup_n_p8 (poly8_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>d0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>uint64x1_t vdup_n_u64 (uint64_t)
</ul>

     <ul>
<li>int64x1_t vdup_n_s64 (int64_t)
</ul>

     <ul>
<li>uint32x4_t vdupq_n_u32 (uint32_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>q0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>uint16x8_t vdupq_n_u16 (uint16_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>q0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>uint8x16_t vdupq_n_u8 (uint8_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>q0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>int32x4_t vdupq_n_s32 (int32_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>q0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>int16x8_t vdupq_n_s16 (int16_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>q0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>int8x16_t vdupq_n_s8 (int8_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>q0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>float32x4_t vdupq_n_f32 (float32_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>q0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>poly16x8_t vdupq_n_p16 (poly16_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>q0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>poly8x16_t vdupq_n_p8 (poly8_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>q0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>uint64x2_t vdupq_n_u64 (uint64_t)
</ul>

     <ul>
<li>int64x2_t vdupq_n_s64 (int64_t)
</ul>

     <ul>
<li>uint32x2_t vmov_n_u32 (uint32_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>d0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>uint16x4_t vmov_n_u16 (uint16_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>d0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>uint8x8_t vmov_n_u8 (uint8_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>d0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>int32x2_t vmov_n_s32 (int32_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>d0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>int16x4_t vmov_n_s16 (int16_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>d0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>int8x8_t vmov_n_s8 (int8_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>d0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>float32x2_t vmov_n_f32 (float32_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>d0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>poly16x4_t vmov_n_p16 (poly16_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>d0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>poly8x8_t vmov_n_p8 (poly8_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>d0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>uint64x1_t vmov_n_u64 (uint64_t)
</ul>

     <ul>
<li>int64x1_t vmov_n_s64 (int64_t)
</ul>

     <ul>
<li>uint32x4_t vmovq_n_u32 (uint32_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>q0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>uint16x8_t vmovq_n_u16 (uint16_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>q0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>uint8x16_t vmovq_n_u8 (uint8_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>q0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>int32x4_t vmovq_n_s32 (int32_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>q0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>int16x8_t vmovq_n_s16 (int16_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>q0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>int8x16_t vmovq_n_s8 (int8_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>q0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>float32x4_t vmovq_n_f32 (float32_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>q0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>poly16x8_t vmovq_n_p16 (poly16_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>q0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>poly8x16_t vmovq_n_p8 (poly8_t)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>q0</var><code>, </code><var>r0</var>
</ul>

     <ul>
<li>uint64x2_t vmovq_n_u64 (uint64_t)
</ul>

     <ul>
<li>int64x2_t vmovq_n_s64 (int64_t)
</ul>

     <ul>
<li>uint32x2_t vdup_lane_u32 (uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint16x4_t vdup_lane_u16 (uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint8x8_t vdup_lane_u8 (uint8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32x2_t vdup_lane_s32 (int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int16x4_t vdup_lane_s16 (int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int8x8_t vdup_lane_s8 (int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>float32x2_t vdup_lane_f32 (float32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>poly16x4_t vdup_lane_p16 (poly16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>poly8x8_t vdup_lane_p8 (poly8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint64x1_t vdup_lane_u64 (uint64x1_t, const int)
</ul>

     <ul>
<li>int64x1_t vdup_lane_s64 (int64x1_t, const int)
</ul>

     <ul>
<li>uint32x4_t vdupq_lane_u32 (uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint16x8_t vdupq_lane_u16 (uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint8x16_t vdupq_lane_u8 (uint8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32x4_t vdupq_lane_s32 (int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int16x8_t vdupq_lane_s16 (int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int8x16_t vdupq_lane_s8 (int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>float32x4_t vdupq_lane_f32 (float32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.32 </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>poly16x8_t vdupq_lane_p16 (poly16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.16 </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>poly8x16_t vdupq_lane_p8 (poly8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vdup.8 </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint64x2_t vdupq_lane_u64 (uint64x1_t, const int)
</ul>

     <ul>
<li>int64x2_t vdupq_lane_s64 (int64x1_t, const int)
</ul>

<h5 class="subsubsection">6.54.3.43 Combining vectors</h5>

     <ul>
<li>uint32x4_t vcombine_u32 (uint32x2_t, uint32x2_t)
</ul>

     <ul>
<li>uint16x8_t vcombine_u16 (uint16x4_t, uint16x4_t)
</ul>

     <ul>
<li>uint8x16_t vcombine_u8 (uint8x8_t, uint8x8_t)
</ul>

     <ul>
<li>int32x4_t vcombine_s32 (int32x2_t, int32x2_t)
</ul>

     <ul>
<li>int16x8_t vcombine_s16 (int16x4_t, int16x4_t)
</ul>

     <ul>
<li>int8x16_t vcombine_s8 (int8x8_t, int8x8_t)
</ul>

     <ul>
<li>uint64x2_t vcombine_u64 (uint64x1_t, uint64x1_t)
</ul>

     <ul>
<li>int64x2_t vcombine_s64 (int64x1_t, int64x1_t)
</ul>

     <ul>
<li>float32x4_t vcombine_f32 (float32x2_t, float32x2_t)
</ul>

     <ul>
<li>poly16x8_t vcombine_p16 (poly16x4_t, poly16x4_t)
</ul>

     <ul>
<li>poly8x16_t vcombine_p8 (poly8x8_t, poly8x8_t)
</ul>

<h5 class="subsubsection">6.54.3.44 Splitting vectors</h5>

     <ul>
<li>uint32x2_t vget_high_u32 (uint32x4_t)
</ul>

     <ul>
<li>uint16x4_t vget_high_u16 (uint16x8_t)
</ul>

     <ul>
<li>uint8x8_t vget_high_u8 (uint8x16_t)
</ul>

     <ul>
<li>int32x2_t vget_high_s32 (int32x4_t)
</ul>

     <ul>
<li>int16x4_t vget_high_s16 (int16x8_t)
</ul>

     <ul>
<li>int8x8_t vget_high_s8 (int8x16_t)
</ul>

     <ul>
<li>uint64x1_t vget_high_u64 (uint64x2_t)
</ul>

     <ul>
<li>int64x1_t vget_high_s64 (int64x2_t)
</ul>

     <ul>
<li>float32x2_t vget_high_f32 (float32x4_t)
</ul>

     <ul>
<li>poly16x4_t vget_high_p16 (poly16x8_t)
</ul>

     <ul>
<li>poly8x8_t vget_high_p8 (poly8x16_t)
</ul>

     <ul>
<li>uint32x2_t vget_low_u32 (uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmov </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vget_low_u16 (uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmov </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vget_low_u8 (uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmov </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vget_low_s32 (int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmov </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vget_low_s16 (int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmov </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vget_low_s8 (int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmov </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>float32x2_t vget_low_f32 (float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmov </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>poly16x4_t vget_low_p16 (poly16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmov </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>poly8x8_t vget_low_p8 (poly8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vmov </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint64x1_t vget_low_u64 (uint64x2_t)
</ul>

     <ul>
<li>int64x1_t vget_low_s64 (int64x2_t)
</ul>

<h5 class="subsubsection">6.54.3.45 Conversions</h5>

     <ul>
<li>float32x2_t vcvt_f32_u32 (uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcvt.f32.u32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>float32x2_t vcvt_f32_s32 (int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcvt.f32.s32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x2_t vcvt_u32_f32 (float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcvt.u32.f32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vcvt_s32_f32 (float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vcvt.s32.f32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>float32x4_t vcvtq_f32_u32 (uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcvt.f32.u32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>float32x4_t vcvtq_f32_s32 (int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcvt.f32.s32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint32x4_t vcvtq_u32_f32 (float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcvt.u32.f32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x4_t vcvtq_s32_f32 (float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vcvt.s32.f32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>float32x2_t vcvt_n_f32_u32 (uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vcvt.f32.u32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>float32x2_t vcvt_n_f32_s32 (int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vcvt.f32.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint32x2_t vcvt_n_u32_f32 (float32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vcvt.u32.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int32x2_t vcvt_n_s32_f32 (float32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vcvt.s32.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>float32x4_t vcvtq_n_f32_u32 (uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vcvt.f32.u32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>float32x4_t vcvtq_n_f32_s32 (int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vcvt.f32.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint32x4_t vcvtq_n_u32_f32 (float32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vcvt.u32.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int32x4_t vcvtq_n_s32_f32 (float32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vcvt.s32.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

<h5 class="subsubsection">6.54.3.46 Move, single_opcode narrowing</h5>

     <ul>
<li>uint32x2_t vmovn_u64 (uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmovn.i64 </code><var>d0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x4_t vmovn_u32 (uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmovn.i32 </code><var>d0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x8_t vmovn_u16 (uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmovn.i16 </code><var>d0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x2_t vmovn_s64 (int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmovn.i64 </code><var>d0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x4_t vmovn_s32 (int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmovn.i32 </code><var>d0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x8_t vmovn_s16 (int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmovn.i16 </code><var>d0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint32x2_t vqmovn_u64 (uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqmovn.u64 </code><var>d0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x4_t vqmovn_u32 (uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqmovn.u32 </code><var>d0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x8_t vqmovn_u16 (uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqmovn.u16 </code><var>d0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x2_t vqmovn_s64 (int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqmovn.s64 </code><var>d0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x4_t vqmovn_s32 (int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqmovn.s32 </code><var>d0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x8_t vqmovn_s16 (int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqmovn.s16 </code><var>d0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint32x2_t vqmovun_s64 (int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vqmovun.s64 </code><var>d0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x4_t vqmovun_s32 (int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vqmovun.s32 </code><var>d0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x8_t vqmovun_s16 (int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vqmovun.s16 </code><var>d0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.47 Move, single_opcode long</h5>

     <ul>
<li>uint64x2_t vmovl_u32 (uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmovl.u32 </code><var>q0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vmovl_u16 (uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmovl.u16 </code><var>q0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x8_t vmovl_u8 (uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmovl.u8 </code><var>q0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int64x2_t vmovl_s32 (int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vmovl.s32 </code><var>q0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x4_t vmovl_s16 (int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vmovl.s16 </code><var>q0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x8_t vmovl_s8 (int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vmovl.s8 </code><var>q0</var><code>, </code><var>d0</var>
</ul>

<h5 class="subsubsection">6.54.3.48 Table lookup</h5>

     <ul>
<li>poly8x8_t vtbl1_p8 (poly8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbl.8 </code><var>d0</var><code>, {</code><var>d0</var><code>}, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vtbl1_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbl.8 </code><var>d0</var><code>, {</code><var>d0</var><code>}, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vtbl1_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbl.8 </code><var>d0</var><code>, {</code><var>d0</var><code>}, </code><var>d0</var>
</ul>

     <ul>
<li>poly8x8_t vtbl2_p8 (poly8x8x2_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbl.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>}, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vtbl2_s8 (int8x8x2_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbl.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>}, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vtbl2_u8 (uint8x8x2_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbl.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>}, </code><var>d0</var>
</ul>

     <ul>
<li>poly8x8_t vtbl3_p8 (poly8x8x3_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbl.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vtbl3_s8 (int8x8x3_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbl.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vtbl3_u8 (uint8x8x3_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbl.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, </code><var>d0</var>
</ul>

     <ul>
<li>poly8x8_t vtbl4_p8 (poly8x8x4_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbl.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vtbl4_s8 (int8x8x4_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbl.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vtbl4_u8 (uint8x8x4_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbl.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, </code><var>d0</var>
</ul>

<h5 class="subsubsection">6.54.3.49 Extended table lookup</h5>

     <ul>
<li>poly8x8_t vtbx1_p8 (poly8x8_t, poly8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbx.8 </code><var>d0</var><code>, {</code><var>d0</var><code>}, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vtbx1_s8 (int8x8_t, int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbx.8 </code><var>d0</var><code>, {</code><var>d0</var><code>}, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vtbx1_u8 (uint8x8_t, uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbx.8 </code><var>d0</var><code>, {</code><var>d0</var><code>}, </code><var>d0</var>
</ul>

     <ul>
<li>poly8x8_t vtbx2_p8 (poly8x8_t, poly8x8x2_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbx.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>}, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vtbx2_s8 (int8x8_t, int8x8x2_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbx.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>}, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vtbx2_u8 (uint8x8_t, uint8x8x2_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbx.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>}, </code><var>d0</var>
</ul>

     <ul>
<li>poly8x8_t vtbx3_p8 (poly8x8_t, poly8x8x3_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbx.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vtbx3_s8 (int8x8_t, int8x8x3_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbx.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vtbx3_u8 (uint8x8_t, uint8x8x3_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbx.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, </code><var>d0</var>
</ul>

     <ul>
<li>poly8x8_t vtbx4_p8 (poly8x8_t, poly8x8x4_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbx.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vtbx4_s8 (int8x8_t, int8x8x4_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbx.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vtbx4_u8 (uint8x8_t, uint8x8x4_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtbx.8 </code><var>d0</var><code>, {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, </code><var>d0</var>
</ul>

<h5 class="subsubsection">6.54.3.50 Multiply, lane</h5>

     <ul>
<li>float32x2_t vmul_lane_f32 (float32x2_t, float32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmul.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint32x2_t vmul_lane_u32 (uint32x2_t, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmul.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint16x4_t vmul_lane_u16 (uint16x4_t, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmul.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32x2_t vmul_lane_s32 (int32x2_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmul.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int16x4_t vmul_lane_s16 (int16x4_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmul.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>float32x4_t vmulq_lane_f32 (float32x4_t, float32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmul.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint32x4_t vmulq_lane_u32 (uint32x4_t, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmul.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint16x8_t vmulq_lane_u16 (uint16x8_t, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmul.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32x4_t vmulq_lane_s32 (int32x4_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmul.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int16x8_t vmulq_lane_s16 (int16x8_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmul.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

<h5 class="subsubsection">6.54.3.51 Long multiply, lane</h5>

     <ul>
<li>uint64x2_t vmull_lane_u32 (uint32x2_t, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmull.u32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint32x4_t vmull_lane_u16 (uint16x4_t, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmull.u16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int64x2_t vmull_lane_s32 (int32x2_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmull.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32x4_t vmull_lane_s16 (int16x4_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmull.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

<h5 class="subsubsection">6.54.3.52 Saturating doubling long multiply, lane</h5>

     <ul>
<li>int64x2_t vqdmull_lane_s32 (int32x2_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqdmull.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32x4_t vqdmull_lane_s16 (int16x4_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqdmull.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

<h5 class="subsubsection">6.54.3.53 Saturating doubling multiply high, lane</h5>

     <ul>
<li>int32x4_t vqdmulhq_lane_s32 (int32x4_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqdmulh.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int16x8_t vqdmulhq_lane_s16 (int16x8_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqdmulh.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32x2_t vqdmulh_lane_s32 (int32x2_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqdmulh.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int16x4_t vqdmulh_lane_s16 (int16x4_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqdmulh.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32x4_t vqrdmulhq_lane_s32 (int32x4_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqrdmulh.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int16x8_t vqrdmulhq_lane_s16 (int16x8_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqrdmulh.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32x2_t vqrdmulh_lane_s32 (int32x2_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqrdmulh.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int16x4_t vqrdmulh_lane_s16 (int16x4_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqrdmulh.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

<h5 class="subsubsection">6.54.3.54 Multiply-accumulate, lane</h5>

     <ul>
<li>float32x2_t vmla_lane_f32 (float32x2_t, float32x2_t, float32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmla.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint32x2_t vmla_lane_u32 (uint32x2_t, uint32x2_t, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmla.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint16x4_t vmla_lane_u16 (uint16x4_t, uint16x4_t, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmla.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32x2_t vmla_lane_s32 (int32x2_t, int32x2_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmla.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int16x4_t vmla_lane_s16 (int16x4_t, int16x4_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmla.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>float32x4_t vmlaq_lane_f32 (float32x4_t, float32x4_t, float32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmla.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint32x4_t vmlaq_lane_u32 (uint32x4_t, uint32x4_t, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmla.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint16x8_t vmlaq_lane_u16 (uint16x8_t, uint16x8_t, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmla.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32x4_t vmlaq_lane_s32 (int32x4_t, int32x4_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmla.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int16x8_t vmlaq_lane_s16 (int16x8_t, int16x8_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmla.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint64x2_t vmlal_lane_u32 (uint64x2_t, uint32x2_t, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmlal.u32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint32x4_t vmlal_lane_u16 (uint32x4_t, uint16x4_t, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmlal.u16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int64x2_t vmlal_lane_s32 (int64x2_t, int32x2_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmlal.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32x4_t vmlal_lane_s16 (int32x4_t, int16x4_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmlal.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int64x2_t vqdmlal_lane_s32 (int64x2_t, int32x2_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqdmlal.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32x4_t vqdmlal_lane_s16 (int32x4_t, int16x4_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqdmlal.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

<h5 class="subsubsection">6.54.3.55 Multiply-subtract, lane</h5>

     <ul>
<li>float32x2_t vmls_lane_f32 (float32x2_t, float32x2_t, float32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmls.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint32x2_t vmls_lane_u32 (uint32x2_t, uint32x2_t, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmls.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint16x4_t vmls_lane_u16 (uint16x4_t, uint16x4_t, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmls.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32x2_t vmls_lane_s32 (int32x2_t, int32x2_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmls.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int16x4_t vmls_lane_s16 (int16x4_t, int16x4_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmls.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>float32x4_t vmlsq_lane_f32 (float32x4_t, float32x4_t, float32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmls.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint32x4_t vmlsq_lane_u32 (uint32x4_t, uint32x4_t, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmls.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint16x8_t vmlsq_lane_u16 (uint16x8_t, uint16x8_t, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmls.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32x4_t vmlsq_lane_s32 (int32x4_t, int32x4_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmls.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int16x8_t vmlsq_lane_s16 (int16x8_t, int16x8_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmls.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint64x2_t vmlsl_lane_u32 (uint64x2_t, uint32x2_t, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmlsl.u32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint32x4_t vmlsl_lane_u16 (uint32x4_t, uint16x4_t, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmlsl.u16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int64x2_t vmlsl_lane_s32 (int64x2_t, int32x2_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmlsl.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32x4_t vmlsl_lane_s16 (int32x4_t, int16x4_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vmlsl.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int64x2_t vqdmlsl_lane_s32 (int64x2_t, int32x2_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqdmlsl.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32x4_t vqdmlsl_lane_s16 (int32x4_t, int16x4_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vqdmlsl.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

<h5 class="subsubsection">6.54.3.56 Vector multiply by scalar</h5>

     <ul>
<li>float32x2_t vmul_n_f32 (float32x2_t, float32_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint32x2_t vmul_n_u32 (uint32x2_t, uint32_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint16x4_t vmul_n_u16 (uint16x4_t, uint16_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32x2_t vmul_n_s32 (int32x2_t, int32_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int16x4_t vmul_n_s16 (int16x4_t, int16_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>float32x4_t vmulq_n_f32 (float32x4_t, float32_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint32x4_t vmulq_n_u32 (uint32x4_t, uint32_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint16x8_t vmulq_n_u16 (uint16x8_t, uint16_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32x4_t vmulq_n_s32 (int32x4_t, int32_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int16x8_t vmulq_n_s16 (int16x8_t, int16_t)
<br><em>Form of expected instruction(s):</em> <code>vmul.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

<h5 class="subsubsection">6.54.3.57 Vector long multiply by scalar</h5>

     <ul>
<li>uint64x2_t vmull_n_u32 (uint32x2_t, uint32_t)
<br><em>Form of expected instruction(s):</em> <code>vmull.u32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint32x4_t vmull_n_u16 (uint16x4_t, uint16_t)
<br><em>Form of expected instruction(s):</em> <code>vmull.u16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int64x2_t vmull_n_s32 (int32x2_t, int32_t)
<br><em>Form of expected instruction(s):</em> <code>vmull.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32x4_t vmull_n_s16 (int16x4_t, int16_t)
<br><em>Form of expected instruction(s):</em> <code>vmull.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

<h5 class="subsubsection">6.54.3.58 Vector saturating doubling long multiply by scalar</h5>

     <ul>
<li>int64x2_t vqdmull_n_s32 (int32x2_t, int32_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmull.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32x4_t vqdmull_n_s16 (int16x4_t, int16_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmull.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

<h5 class="subsubsection">6.54.3.59 Vector saturating doubling multiply high by scalar</h5>

     <ul>
<li>int32x4_t vqdmulhq_n_s32 (int32x4_t, int32_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmulh.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int16x8_t vqdmulhq_n_s16 (int16x8_t, int16_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmulh.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32x2_t vqdmulh_n_s32 (int32x2_t, int32_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmulh.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int16x4_t vqdmulh_n_s16 (int16x4_t, int16_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmulh.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32x4_t vqrdmulhq_n_s32 (int32x4_t, int32_t)
<br><em>Form of expected instruction(s):</em> <code>vqrdmulh.s32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int16x8_t vqrdmulhq_n_s16 (int16x8_t, int16_t)
<br><em>Form of expected instruction(s):</em> <code>vqrdmulh.s16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32x2_t vqrdmulh_n_s32 (int32x2_t, int32_t)
<br><em>Form of expected instruction(s):</em> <code>vqrdmulh.s32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int16x4_t vqrdmulh_n_s16 (int16x4_t, int16_t)
<br><em>Form of expected instruction(s):</em> <code>vqrdmulh.s16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

<h5 class="subsubsection">6.54.3.60 Vector multiply-accumulate by scalar</h5>

     <ul>
<li>float32x2_t vmla_n_f32 (float32x2_t, float32x2_t, float32_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint32x2_t vmla_n_u32 (uint32x2_t, uint32x2_t, uint32_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint16x4_t vmla_n_u16 (uint16x4_t, uint16x4_t, uint16_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32x2_t vmla_n_s32 (int32x2_t, int32x2_t, int32_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int16x4_t vmla_n_s16 (int16x4_t, int16x4_t, int16_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>float32x4_t vmlaq_n_f32 (float32x4_t, float32x4_t, float32_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint32x4_t vmlaq_n_u32 (uint32x4_t, uint32x4_t, uint32_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint16x8_t vmlaq_n_u16 (uint16x8_t, uint16x8_t, uint16_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32x4_t vmlaq_n_s32 (int32x4_t, int32x4_t, int32_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int16x8_t vmlaq_n_s16 (int16x8_t, int16x8_t, int16_t)
<br><em>Form of expected instruction(s):</em> <code>vmla.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint64x2_t vmlal_n_u32 (uint64x2_t, uint32x2_t, uint32_t)
<br><em>Form of expected instruction(s):</em> <code>vmlal.u32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint32x4_t vmlal_n_u16 (uint32x4_t, uint16x4_t, uint16_t)
<br><em>Form of expected instruction(s):</em> <code>vmlal.u16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int64x2_t vmlal_n_s32 (int64x2_t, int32x2_t, int32_t)
<br><em>Form of expected instruction(s):</em> <code>vmlal.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32x4_t vmlal_n_s16 (int32x4_t, int16x4_t, int16_t)
<br><em>Form of expected instruction(s):</em> <code>vmlal.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int64x2_t vqdmlal_n_s32 (int64x2_t, int32x2_t, int32_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmlal.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32x4_t vqdmlal_n_s16 (int32x4_t, int16x4_t, int16_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmlal.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

<h5 class="subsubsection">6.54.3.61 Vector multiply-subtract by scalar</h5>

     <ul>
<li>float32x2_t vmls_n_f32 (float32x2_t, float32x2_t, float32_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.f32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint32x2_t vmls_n_u32 (uint32x2_t, uint32x2_t, uint32_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint16x4_t vmls_n_u16 (uint16x4_t, uint16x4_t, uint16_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32x2_t vmls_n_s32 (int32x2_t, int32x2_t, int32_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int16x4_t vmls_n_s16 (int16x4_t, int16x4_t, int16_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>float32x4_t vmlsq_n_f32 (float32x4_t, float32x4_t, float32_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.f32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint32x4_t vmlsq_n_u32 (uint32x4_t, uint32x4_t, uint32_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint16x8_t vmlsq_n_u16 (uint16x8_t, uint16x8_t, uint16_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32x4_t vmlsq_n_s32 (int32x4_t, int32x4_t, int32_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int16x8_t vmlsq_n_s16 (int16x8_t, int16x8_t, int16_t)
<br><em>Form of expected instruction(s):</em> <code>vmls.i16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint64x2_t vmlsl_n_u32 (uint64x2_t, uint32x2_t, uint32_t)
<br><em>Form of expected instruction(s):</em> <code>vmlsl.u32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>uint32x4_t vmlsl_n_u16 (uint32x4_t, uint16x4_t, uint16_t)
<br><em>Form of expected instruction(s):</em> <code>vmlsl.u16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int64x2_t vmlsl_n_s32 (int64x2_t, int32x2_t, int32_t)
<br><em>Form of expected instruction(s):</em> <code>vmlsl.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32x4_t vmlsl_n_s16 (int32x4_t, int16x4_t, int16_t)
<br><em>Form of expected instruction(s):</em> <code>vmlsl.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int64x2_t vqdmlsl_n_s32 (int64x2_t, int32x2_t, int32_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmlsl.s32 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

     <ul>
<li>int32x4_t vqdmlsl_n_s16 (int32x4_t, int16x4_t, int16_t)
<br><em>Form of expected instruction(s):</em> <code>vqdmlsl.s16 </code><var>q0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>[</code><var>0</var><code>]</code>
</ul>

<h5 class="subsubsection">6.54.3.62 Vector extract</h5>

     <ul>
<li>uint32x2_t vext_u32 (uint32x2_t, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint16x4_t vext_u16 (uint16x4_t, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint8x8_t vext_u8 (uint8x8_t, uint8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int32x2_t vext_s32 (int32x2_t, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int16x4_t vext_s16 (int16x4_t, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int8x8_t vext_s8 (int8x8_t, int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint64x1_t vext_u64 (uint64x1_t, uint64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.64 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int64x1_t vext_s64 (int64x1_t, int64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.64 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>float32x2_t vext_f32 (float32x2_t, float32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.32 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>poly16x4_t vext_p16 (poly16x4_t, poly16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.16 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>poly8x8_t vext_p8 (poly8x8_t, poly8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.8 </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint32x4_t vextq_u32 (uint32x4_t, uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint16x8_t vextq_u16 (uint16x8_t, uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint8x16_t vextq_u8 (uint8x16_t, uint8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int32x4_t vextq_s32 (int32x4_t, int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int16x8_t vextq_s16 (int16x8_t, int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int8x16_t vextq_s8 (int8x16_t, int8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>uint64x2_t vextq_u64 (uint64x2_t, uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>int64x2_t vextq_s64 (int64x2_t, int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.64 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>float32x4_t vextq_f32 (float32x4_t, float32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.32 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>poly16x8_t vextq_p16 (poly16x8_t, poly16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.16 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

     <ul>
<li>poly8x16_t vextq_p8 (poly8x16_t, poly8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vext.8 </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var><code>, #</code><var>0</var>
</ul>

<h5 class="subsubsection">6.54.3.63 Reverse elements</h5>

     <ul>
<li>uint32x2_t vrev64_u32 (uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vrev64_u16 (uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vrev64_u8 (uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vrev64_s32 (int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vrev64_s16 (int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vrev64_s8 (int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>float32x2_t vrev64_f32 (float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.32 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>poly16x4_t vrev64_p16 (poly16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>poly8x8_t vrev64_p8 (poly8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vrev64q_u32 (uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vrev64q_u16 (uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vrev64q_u8 (uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x4_t vrev64q_s32 (int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vrev64q_s16 (int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vrev64q_s8 (int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>float32x4_t vrev64q_f32 (float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.32 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>poly16x8_t vrev64q_p16 (poly16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>poly8x16_t vrev64q_p8 (poly8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vrev64.8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x4_t vrev32_u16 (uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrev32.16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vrev32_s16 (int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrev32.16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vrev32_u8 (uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrev32.8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vrev32_s8 (int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrev32.8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>poly16x4_t vrev32_p16 (poly16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vrev32.16 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>poly8x8_t vrev32_p8 (poly8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrev32.8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x8_t vrev32q_u16 (uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrev32.16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vrev32q_s16 (int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrev32.16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vrev32q_u8 (uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vrev32.8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vrev32q_s8 (int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vrev32.8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>poly16x8_t vrev32q_p16 (poly16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrev32.16 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>poly8x16_t vrev32q_p8 (poly8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vrev32.8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x8_t vrev16_u8 (uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrev16.8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vrev16_s8 (int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrev16.8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>poly8x8_t vrev16_p8 (poly8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vrev16.8 </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x16_t vrev16q_u8 (uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vrev16.8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vrev16q_s8 (int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vrev16.8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>poly8x16_t vrev16q_p8 (poly8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vrev16.8 </code><var>q0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.64 Bit selection</h5>

     <ul>
<li>uint32x2_t vbsl_u32 (uint32x2_t, uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbit </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbif </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vbsl_u16 (uint16x4_t, uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbit </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbif </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vbsl_u8 (uint8x8_t, uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbit </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbif </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vbsl_s32 (uint32x2_t, int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbit </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbif </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vbsl_s16 (uint16x4_t, int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbit </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbif </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vbsl_s8 (uint8x8_t, int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbit </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbif </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint64x1_t vbsl_u64 (uint64x1_t, uint64x1_t, uint64x1_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbit </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbif </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int64x1_t vbsl_s64 (uint64x1_t, int64x1_t, int64x1_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbit </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbif </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>float32x2_t vbsl_f32 (uint32x2_t, float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbit </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbif </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>poly16x4_t vbsl_p16 (uint16x4_t, poly16x4_t, poly16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbit </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbif </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>poly8x8_t vbsl_p8 (uint8x8_t, poly8x8_t, poly8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbit </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var> <em>or</em> <code>vbif </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint32x4_t vbslq_u32 (uint32x4_t, uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbit </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbif </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vbslq_u16 (uint16x8_t, uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbit </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbif </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vbslq_u8 (uint8x16_t, uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbit </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbif </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x4_t vbslq_s32 (uint32x4_t, int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbit </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbif </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vbslq_s16 (uint16x8_t, int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbit </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbif </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vbslq_s8 (uint8x16_t, int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbit </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbif </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint64x2_t vbslq_u64 (uint64x2_t, uint64x2_t, uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbit </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbif </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int64x2_t vbslq_s64 (uint64x2_t, int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbit </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbif </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>float32x4_t vbslq_f32 (uint32x4_t, float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbit </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbif </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>poly16x8_t vbslq_p16 (uint16x8_t, poly16x8_t, poly16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbit </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbif </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>poly8x16_t vbslq_p8 (uint8x16_t, poly8x16_t, poly8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vbsl </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbit </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var> <em>or</em> <code>vbif </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.65 Transpose elements</h5>

     <ul>
<li>uint32x2x2_t vtrn_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.32 </code><var>d0</var><code>, </code><var>d1</var>
</ul>

     <ul>
<li>uint16x4x2_t vtrn_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.16 </code><var>d0</var><code>, </code><var>d1</var>
</ul>

     <ul>
<li>uint8x8x2_t vtrn_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.8 </code><var>d0</var><code>, </code><var>d1</var>
</ul>

     <ul>
<li>int32x2x2_t vtrn_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.32 </code><var>d0</var><code>, </code><var>d1</var>
</ul>

     <ul>
<li>int16x4x2_t vtrn_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.16 </code><var>d0</var><code>, </code><var>d1</var>
</ul>

     <ul>
<li>int8x8x2_t vtrn_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.8 </code><var>d0</var><code>, </code><var>d1</var>
</ul>

     <ul>
<li>float32x2x2_t vtrn_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.32 </code><var>d0</var><code>, </code><var>d1</var>
</ul>

     <ul>
<li>poly16x4x2_t vtrn_p16 (poly16x4_t, poly16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.16 </code><var>d0</var><code>, </code><var>d1</var>
</ul>

     <ul>
<li>poly8x8x2_t vtrn_p8 (poly8x8_t, poly8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.8 </code><var>d0</var><code>, </code><var>d1</var>
</ul>

     <ul>
<li>uint32x4x2_t vtrnq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.32 </code><var>q0</var><code>, </code><var>q1</var>
</ul>

     <ul>
<li>uint16x8x2_t vtrnq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.16 </code><var>q0</var><code>, </code><var>q1</var>
</ul>

     <ul>
<li>uint8x16x2_t vtrnq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.8 </code><var>q0</var><code>, </code><var>q1</var>
</ul>

     <ul>
<li>int32x4x2_t vtrnq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.32 </code><var>q0</var><code>, </code><var>q1</var>
</ul>

     <ul>
<li>int16x8x2_t vtrnq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.16 </code><var>q0</var><code>, </code><var>q1</var>
</ul>

     <ul>
<li>int8x16x2_t vtrnq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.8 </code><var>q0</var><code>, </code><var>q1</var>
</ul>

     <ul>
<li>float32x4x2_t vtrnq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.32 </code><var>q0</var><code>, </code><var>q1</var>
</ul>

     <ul>
<li>poly16x8x2_t vtrnq_p16 (poly16x8_t, poly16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.16 </code><var>q0</var><code>, </code><var>q1</var>
</ul>

     <ul>
<li>poly8x16x2_t vtrnq_p8 (poly8x16_t, poly8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vtrn.8 </code><var>q0</var><code>, </code><var>q1</var>
</ul>

<h5 class="subsubsection">6.54.3.66 Zip elements</h5>

     <ul>
<li>uint32x2x2_t vzip_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.32 </code><var>d0</var><code>, </code><var>d1</var>
</ul>

     <ul>
<li>uint16x4x2_t vzip_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.16 </code><var>d0</var><code>, </code><var>d1</var>
</ul>

     <ul>
<li>uint8x8x2_t vzip_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.8 </code><var>d0</var><code>, </code><var>d1</var>
</ul>

     <ul>
<li>int32x2x2_t vzip_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.32 </code><var>d0</var><code>, </code><var>d1</var>
</ul>

     <ul>
<li>int16x4x2_t vzip_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.16 </code><var>d0</var><code>, </code><var>d1</var>
</ul>

     <ul>
<li>int8x8x2_t vzip_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.8 </code><var>d0</var><code>, </code><var>d1</var>
</ul>

     <ul>
<li>float32x2x2_t vzip_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.32 </code><var>d0</var><code>, </code><var>d1</var>
</ul>

     <ul>
<li>poly16x4x2_t vzip_p16 (poly16x4_t, poly16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.16 </code><var>d0</var><code>, </code><var>d1</var>
</ul>

     <ul>
<li>poly8x8x2_t vzip_p8 (poly8x8_t, poly8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.8 </code><var>d0</var><code>, </code><var>d1</var>
</ul>

     <ul>
<li>uint32x4x2_t vzipq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.32 </code><var>q0</var><code>, </code><var>q1</var>
</ul>

     <ul>
<li>uint16x8x2_t vzipq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.16 </code><var>q0</var><code>, </code><var>q1</var>
</ul>

     <ul>
<li>uint8x16x2_t vzipq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.8 </code><var>q0</var><code>, </code><var>q1</var>
</ul>

     <ul>
<li>int32x4x2_t vzipq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.32 </code><var>q0</var><code>, </code><var>q1</var>
</ul>

     <ul>
<li>int16x8x2_t vzipq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.16 </code><var>q0</var><code>, </code><var>q1</var>
</ul>

     <ul>
<li>int8x16x2_t vzipq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.8 </code><var>q0</var><code>, </code><var>q1</var>
</ul>

     <ul>
<li>float32x4x2_t vzipq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.32 </code><var>q0</var><code>, </code><var>q1</var>
</ul>

     <ul>
<li>poly16x8x2_t vzipq_p16 (poly16x8_t, poly16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.16 </code><var>q0</var><code>, </code><var>q1</var>
</ul>

     <ul>
<li>poly8x16x2_t vzipq_p8 (poly8x16_t, poly8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vzip.8 </code><var>q0</var><code>, </code><var>q1</var>
</ul>

<h5 class="subsubsection">6.54.3.67 Unzip elements</h5>

     <ul>
<li>uint32x2x2_t vuzp_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.32 </code><var>d0</var><code>, </code><var>d1</var>
</ul>

     <ul>
<li>uint16x4x2_t vuzp_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.16 </code><var>d0</var><code>, </code><var>d1</var>
</ul>

     <ul>
<li>uint8x8x2_t vuzp_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.8 </code><var>d0</var><code>, </code><var>d1</var>
</ul>

     <ul>
<li>int32x2x2_t vuzp_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.32 </code><var>d0</var><code>, </code><var>d1</var>
</ul>

     <ul>
<li>int16x4x2_t vuzp_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.16 </code><var>d0</var><code>, </code><var>d1</var>
</ul>

     <ul>
<li>int8x8x2_t vuzp_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.8 </code><var>d0</var><code>, </code><var>d1</var>
</ul>

     <ul>
<li>float32x2x2_t vuzp_f32 (float32x2_t, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.32 </code><var>d0</var><code>, </code><var>d1</var>
</ul>

     <ul>
<li>poly16x4x2_t vuzp_p16 (poly16x4_t, poly16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.16 </code><var>d0</var><code>, </code><var>d1</var>
</ul>

     <ul>
<li>poly8x8x2_t vuzp_p8 (poly8x8_t, poly8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.8 </code><var>d0</var><code>, </code><var>d1</var>
</ul>

     <ul>
<li>uint32x4x2_t vuzpq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.32 </code><var>q0</var><code>, </code><var>q1</var>
</ul>

     <ul>
<li>uint16x8x2_t vuzpq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.16 </code><var>q0</var><code>, </code><var>q1</var>
</ul>

     <ul>
<li>uint8x16x2_t vuzpq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.8 </code><var>q0</var><code>, </code><var>q1</var>
</ul>

     <ul>
<li>int32x4x2_t vuzpq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.32 </code><var>q0</var><code>, </code><var>q1</var>
</ul>

     <ul>
<li>int16x8x2_t vuzpq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.16 </code><var>q0</var><code>, </code><var>q1</var>
</ul>

     <ul>
<li>int8x16x2_t vuzpq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.8 </code><var>q0</var><code>, </code><var>q1</var>
</ul>

     <ul>
<li>float32x4x2_t vuzpq_f32 (float32x4_t, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.32 </code><var>q0</var><code>, </code><var>q1</var>
</ul>

     <ul>
<li>poly16x8x2_t vuzpq_p16 (poly16x8_t, poly16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.16 </code><var>q0</var><code>, </code><var>q1</var>
</ul>

     <ul>
<li>poly8x16x2_t vuzpq_p8 (poly8x16_t, poly8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vuzp.8 </code><var>q0</var><code>, </code><var>q1</var>
</ul>

<h5 class="subsubsection">6.54.3.68 Element/structure loads, VLD1 variants</h5>

     <ul>
<li>uint32x2_t vld1_u32 (const uint32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint16x4_t vld1_u16 (const uint16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint8x8_t vld1_u8 (const uint8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int32x2_t vld1_s32 (const int32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int16x4_t vld1_s16 (const int16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int8x8_t vld1_s8 (const int8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint64x1_t vld1_u64 (const uint64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int64x1_t vld1_s64 (const int64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>float32x2_t vld1_f32 (const float32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly16x4_t vld1_p16 (const poly16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly8x8_t vld1_p8 (const poly8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint32x4_t vld1q_u32 (const uint32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint16x8_t vld1q_u16 (const uint16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint8x16_t vld1q_u8 (const uint8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int32x4_t vld1q_s32 (const int32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int16x8_t vld1q_s16 (const int16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int8x16_t vld1q_s8 (const int8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint64x2_t vld1q_u64 (const uint64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int64x2_t vld1q_s64 (const int64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>float32x4_t vld1q_f32 (const float32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly16x8_t vld1q_p16 (const poly16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly8x16_t vld1q_p8 (const poly8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint32x2_t vld1_lane_u32 (const uint32_t *, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint16x4_t vld1_lane_u16 (const uint16_t *, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint8x8_t vld1_lane_u8 (const uint8_t *, uint8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int32x2_t vld1_lane_s32 (const int32_t *, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int16x4_t vld1_lane_s16 (const int16_t *, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int8x8_t vld1_lane_s8 (const int8_t *, int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>float32x2_t vld1_lane_f32 (const float32_t *, float32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly16x4_t vld1_lane_p16 (const poly16_t *, poly16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly8x8_t vld1_lane_p8 (const poly8_t *, poly8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint64x1_t vld1_lane_u64 (const uint64_t *, uint64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int64x1_t vld1_lane_s64 (const int64_t *, int64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint32x4_t vld1q_lane_u32 (const uint32_t *, uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint16x8_t vld1q_lane_u16 (const uint16_t *, uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint8x16_t vld1q_lane_u8 (const uint8_t *, uint8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int32x4_t vld1q_lane_s32 (const int32_t *, int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int16x8_t vld1q_lane_s16 (const int16_t *, int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int8x16_t vld1q_lane_s8 (const int8_t *, int8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>float32x4_t vld1q_lane_f32 (const float32_t *, float32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly16x8_t vld1q_lane_p16 (const poly16_t *, poly16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly8x16_t vld1q_lane_p8 (const poly8_t *, poly8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint64x2_t vld1q_lane_u64 (const uint64_t *, uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int64x2_t vld1q_lane_s64 (const int64_t *, int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint32x2_t vld1_dup_u32 (const uint32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint16x4_t vld1_dup_u16 (const uint16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint8x8_t vld1_dup_u8 (const uint8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int32x2_t vld1_dup_s32 (const int32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int16x4_t vld1_dup_s16 (const int16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int8x8_t vld1_dup_s8 (const int8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>float32x2_t vld1_dup_f32 (const float32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly16x4_t vld1_dup_p16 (const poly16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly8x8_t vld1_dup_p8 (const poly8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint64x1_t vld1_dup_u64 (const uint64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int64x1_t vld1_dup_s64 (const int64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint32x4_t vld1q_dup_u32 (const uint32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint16x8_t vld1q_dup_u16 (const uint16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint8x16_t vld1q_dup_u8 (const uint8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int32x4_t vld1q_dup_s32 (const int32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int16x8_t vld1q_dup_s16 (const int16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int8x16_t vld1q_dup_s8 (const int8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>float32x4_t vld1q_dup_f32 (const float32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.32 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly16x8_t vld1q_dup_p16 (const poly16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.16 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly8x16_t vld1q_dup_p8 (const poly8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.8 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint64x2_t vld1q_dup_u64 (const uint64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int64x2_t vld1q_dup_s64 (const int64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

<h5 class="subsubsection">6.54.3.69 Element/structure stores, VST1 variants</h5>

     <ul>
<li>void vst1_u32 (uint32_t *, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.32 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1_u16 (uint16_t *, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.16 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1_u8 (uint8_t *, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.8 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1_s32 (int32_t *, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.32 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1_s16 (int16_t *, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.16 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1_s8 (int8_t *, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.8 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1_u64 (uint64_t *, uint64x1_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.64 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1_s64 (int64_t *, int64x1_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.64 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1_f32 (float32_t *, float32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.32 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1_p16 (poly16_t *, poly16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.16 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1_p8 (poly8_t *, poly8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.8 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1q_u32 (uint32_t *, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1q_u16 (uint16_t *, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1q_u8 (uint8_t *, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1q_s32 (int32_t *, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1q_s16 (int16_t *, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1q_s8 (int8_t *, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1q_u64 (uint64_t *, uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1q_s64 (int64_t *, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1q_f32 (float32_t *, float32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1q_p16 (poly16_t *, poly16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1q_p8 (poly8_t *, poly8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1_lane_u32 (uint32_t *, uint32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.32 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1_lane_u16 (uint16_t *, uint16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.16 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1_lane_u8 (uint8_t *, uint8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.8 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1_lane_s32 (int32_t *, int32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.32 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1_lane_s16 (int16_t *, int16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.16 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1_lane_s8 (int8_t *, int8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.8 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1_lane_f32 (float32_t *, float32x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.32 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1_lane_p16 (poly16_t *, poly16x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.16 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1_lane_p8 (poly8_t *, poly8x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.8 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1_lane_s64 (int64_t *, int64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.64 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1_lane_u64 (uint64_t *, uint64x1_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.64 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1q_lane_u32 (uint32_t *, uint32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.32 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1q_lane_u16 (uint16_t *, uint16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.16 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1q_lane_u8 (uint8_t *, uint8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.8 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1q_lane_s32 (int32_t *, int32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.32 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1q_lane_s16 (int16_t *, int16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.16 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1q_lane_s8 (int8_t *, int8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.8 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1q_lane_f32 (float32_t *, float32x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.32 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1q_lane_p16 (poly16_t *, poly16x8_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.16 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1q_lane_p8 (poly8_t *, poly8x16_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.8 {</code><var>d0</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1q_lane_s64 (int64_t *, int64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.64 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst1q_lane_u64 (uint64_t *, uint64x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst1.64 {</code><var>d0</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

<h5 class="subsubsection">6.54.3.70 Element/structure loads, VLD2 variants</h5>

     <ul>
<li>uint32x2x2_t vld2_u32 (const uint32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint16x4x2_t vld2_u16 (const uint16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint8x8x2_t vld2_u8 (const uint8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int32x2x2_t vld2_s32 (const int32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int16x4x2_t vld2_s16 (const int16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int8x8x2_t vld2_s8 (const int8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>float32x2x2_t vld2_f32 (const float32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly16x4x2_t vld2_p16 (const poly16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly8x8x2_t vld2_p8 (const poly8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint64x1x2_t vld2_u64 (const uint64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int64x1x2_t vld2_s64 (const int64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint32x4x2_t vld2q_u32 (const uint32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint16x8x2_t vld2q_u16 (const uint16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint8x16x2_t vld2q_u8 (const uint8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int32x4x2_t vld2q_s32 (const int32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int16x8x2_t vld2q_s16 (const int16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int8x16x2_t vld2q_s8 (const int8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>float32x4x2_t vld2q_f32 (const float32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly16x8x2_t vld2q_p16 (const poly16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly8x16x2_t vld2q_p8 (const poly8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint32x2x2_t vld2_lane_u32 (const uint32_t *, uint32x2x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld2.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint16x4x2_t vld2_lane_u16 (const uint16_t *, uint16x4x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld2.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint8x8x2_t vld2_lane_u8 (const uint8_t *, uint8x8x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld2.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int32x2x2_t vld2_lane_s32 (const int32_t *, int32x2x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld2.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int16x4x2_t vld2_lane_s16 (const int16_t *, int16x4x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld2.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int8x8x2_t vld2_lane_s8 (const int8_t *, int8x8x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld2.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>float32x2x2_t vld2_lane_f32 (const float32_t *, float32x2x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld2.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly16x4x2_t vld2_lane_p16 (const poly16_t *, poly16x4x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld2.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly8x8x2_t vld2_lane_p8 (const poly8_t *, poly8x8x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld2.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int32x4x2_t vld2q_lane_s32 (const int32_t *, int32x4x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld2.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int16x8x2_t vld2q_lane_s16 (const int16_t *, int16x8x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld2.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint32x4x2_t vld2q_lane_u32 (const uint32_t *, uint32x4x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld2.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint16x8x2_t vld2q_lane_u16 (const uint16_t *, uint16x8x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld2.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>float32x4x2_t vld2q_lane_f32 (const float32_t *, float32x4x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld2.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly16x8x2_t vld2q_lane_p16 (const poly16_t *, poly16x8x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld2.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint32x2x2_t vld2_dup_u32 (const uint32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.32 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint16x4x2_t vld2_dup_u16 (const uint16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.16 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint8x8x2_t vld2_dup_u8 (const uint8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.8 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int32x2x2_t vld2_dup_s32 (const int32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.32 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int16x4x2_t vld2_dup_s16 (const int16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.16 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int8x8x2_t vld2_dup_s8 (const int8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.8 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>float32x2x2_t vld2_dup_f32 (const float32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.32 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly16x4x2_t vld2_dup_p16 (const poly16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.16 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly8x8x2_t vld2_dup_p8 (const poly8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld2.8 {</code><var>d0</var><code>[], </code><var>d1</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint64x1x2_t vld2_dup_u64 (const uint64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int64x1x2_t vld2_dup_s64 (const int64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

<h5 class="subsubsection">6.54.3.71 Element/structure stores, VST2 variants</h5>

     <ul>
<li>void vst2_u32 (uint32_t *, uint32x2x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2_u16 (uint16_t *, uint16x4x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2_u8 (uint8_t *, uint8x8x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2_s32 (int32_t *, int32x2x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2_s16 (int16_t *, int16x4x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2_s8 (int8_t *, int8x8x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2_f32 (float32_t *, float32x2x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2_p16 (poly16_t *, poly16x4x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2_p8 (poly8_t *, poly8x8x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2_u64 (uint64_t *, uint64x1x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2_s64 (int64_t *, int64x1x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2q_u32 (uint32_t *, uint32x4x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2q_u16 (uint16_t *, uint16x8x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2q_u8 (uint8_t *, uint8x16x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2q_s32 (int32_t *, int32x4x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2q_s16 (int16_t *, int16x8x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2q_s8 (int8_t *, int8x16x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2q_f32 (float32_t *, float32x4x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.32 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2q_p16 (poly16_t *, poly16x8x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.16 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2q_p8 (poly8_t *, poly8x16x2_t)
<br><em>Form of expected instruction(s):</em> <code>vst2.8 {</code><var>d0</var><code>, </code><var>d1</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2_lane_u32 (uint32_t *, uint32x2x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst2.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2_lane_u16 (uint16_t *, uint16x4x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst2.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2_lane_u8 (uint8_t *, uint8x8x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst2.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2_lane_s32 (int32_t *, int32x2x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst2.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2_lane_s16 (int16_t *, int16x4x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst2.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2_lane_s8 (int8_t *, int8x8x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst2.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2_lane_f32 (float32_t *, float32x2x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst2.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2_lane_p16 (poly16_t *, poly16x4x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst2.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2_lane_p8 (poly8_t *, poly8x8x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst2.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2q_lane_s32 (int32_t *, int32x4x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst2.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2q_lane_s16 (int16_t *, int16x8x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst2.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2q_lane_u32 (uint32_t *, uint32x4x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst2.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2q_lane_u16 (uint16_t *, uint16x8x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst2.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2q_lane_f32 (float32_t *, float32x4x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst2.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst2q_lane_p16 (poly16_t *, poly16x8x2_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst2.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

<h5 class="subsubsection">6.54.3.72 Element/structure loads, VLD3 variants</h5>

     <ul>
<li>uint32x2x3_t vld3_u32 (const uint32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint16x4x3_t vld3_u16 (const uint16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint8x8x3_t vld3_u8 (const uint8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int32x2x3_t vld3_s32 (const int32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int16x4x3_t vld3_s16 (const int16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int8x8x3_t vld3_s8 (const int8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>float32x2x3_t vld3_f32 (const float32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly16x4x3_t vld3_p16 (const poly16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly8x8x3_t vld3_p8 (const poly8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint64x1x3_t vld3_u64 (const uint64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int64x1x3_t vld3_s64 (const int64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint32x4x3_t vld3q_u32 (const uint32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint16x8x3_t vld3q_u16 (const uint16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint8x16x3_t vld3q_u8 (const uint8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int32x4x3_t vld3q_s32 (const int32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int16x8x3_t vld3q_s16 (const int16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int8x16x3_t vld3q_s8 (const int8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>float32x4x3_t vld3q_f32 (const float32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly16x8x3_t vld3q_p16 (const poly16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly8x16x3_t vld3q_p8 (const poly8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint32x2x3_t vld3_lane_u32 (const uint32_t *, uint32x2x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld3.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint16x4x3_t vld3_lane_u16 (const uint16_t *, uint16x4x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld3.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint8x8x3_t vld3_lane_u8 (const uint8_t *, uint8x8x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld3.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int32x2x3_t vld3_lane_s32 (const int32_t *, int32x2x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld3.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int16x4x3_t vld3_lane_s16 (const int16_t *, int16x4x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld3.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int8x8x3_t vld3_lane_s8 (const int8_t *, int8x8x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld3.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>float32x2x3_t vld3_lane_f32 (const float32_t *, float32x2x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld3.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly16x4x3_t vld3_lane_p16 (const poly16_t *, poly16x4x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld3.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly8x8x3_t vld3_lane_p8 (const poly8_t *, poly8x8x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld3.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int32x4x3_t vld3q_lane_s32 (const int32_t *, int32x4x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld3.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int16x8x3_t vld3q_lane_s16 (const int16_t *, int16x8x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld3.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint32x4x3_t vld3q_lane_u32 (const uint32_t *, uint32x4x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld3.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint16x8x3_t vld3q_lane_u16 (const uint16_t *, uint16x8x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld3.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>float32x4x3_t vld3q_lane_f32 (const float32_t *, float32x4x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld3.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly16x8x3_t vld3q_lane_p16 (const poly16_t *, poly16x8x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld3.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint32x2x3_t vld3_dup_u32 (const uint32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.32 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint16x4x3_t vld3_dup_u16 (const uint16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.16 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint8x8x3_t vld3_dup_u8 (const uint8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.8 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int32x2x3_t vld3_dup_s32 (const int32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.32 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int16x4x3_t vld3_dup_s16 (const int16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.16 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int8x8x3_t vld3_dup_s8 (const int8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.8 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>float32x2x3_t vld3_dup_f32 (const float32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.32 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly16x4x3_t vld3_dup_p16 (const poly16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.16 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly8x8x3_t vld3_dup_p8 (const poly8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld3.8 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint64x1x3_t vld3_dup_u64 (const uint64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int64x1x3_t vld3_dup_s64 (const int64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

<h5 class="subsubsection">6.54.3.73 Element/structure stores, VST3 variants</h5>

     <ul>
<li>void vst3_u32 (uint32_t *, uint32x2x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3_u16 (uint16_t *, uint16x4x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3_u8 (uint8_t *, uint8x8x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3_s32 (int32_t *, int32x2x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3_s16 (int16_t *, int16x4x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3_s8 (int8_t *, int8x8x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3_f32 (float32_t *, float32x2x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3_p16 (poly16_t *, poly16x4x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3_p8 (poly8_t *, poly8x8x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3_u64 (uint64_t *, uint64x1x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3_s64 (int64_t *, int64x1x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3q_u32 (uint32_t *, uint32x4x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3q_u16 (uint16_t *, uint16x8x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3q_u8 (uint8_t *, uint8x16x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3q_s32 (int32_t *, int32x4x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3q_s16 (int16_t *, int16x8x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3q_s8 (int8_t *, int8x16x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3q_f32 (float32_t *, float32x4x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3q_p16 (poly16_t *, poly16x8x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3q_p8 (poly8_t *, poly8x16x3_t)
<br><em>Form of expected instruction(s):</em> <code>vst3.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3_lane_u32 (uint32_t *, uint32x2x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst3.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3_lane_u16 (uint16_t *, uint16x4x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst3.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3_lane_u8 (uint8_t *, uint8x8x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst3.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3_lane_s32 (int32_t *, int32x2x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst3.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3_lane_s16 (int16_t *, int16x4x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst3.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3_lane_s8 (int8_t *, int8x8x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst3.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3_lane_f32 (float32_t *, float32x2x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst3.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3_lane_p16 (poly16_t *, poly16x4x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst3.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3_lane_p8 (poly8_t *, poly8x8x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst3.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3q_lane_s32 (int32_t *, int32x4x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst3.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3q_lane_s16 (int16_t *, int16x8x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst3.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3q_lane_u32 (uint32_t *, uint32x4x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst3.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3q_lane_u16 (uint16_t *, uint16x8x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst3.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3q_lane_f32 (float32_t *, float32x4x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst3.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst3q_lane_p16 (poly16_t *, poly16x8x3_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst3.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

<h5 class="subsubsection">6.54.3.74 Element/structure loads, VLD4 variants</h5>

     <ul>
<li>uint32x2x4_t vld4_u32 (const uint32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint16x4x4_t vld4_u16 (const uint16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint8x8x4_t vld4_u8 (const uint8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int32x2x4_t vld4_s32 (const int32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int16x4x4_t vld4_s16 (const int16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int8x8x4_t vld4_s8 (const int8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>float32x2x4_t vld4_f32 (const float32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly16x4x4_t vld4_p16 (const poly16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly8x8x4_t vld4_p8 (const poly8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint64x1x4_t vld4_u64 (const uint64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int64x1x4_t vld4_s64 (const int64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint32x4x4_t vld4q_u32 (const uint32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint16x8x4_t vld4q_u16 (const uint16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint8x16x4_t vld4q_u8 (const uint8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int32x4x4_t vld4q_s32 (const int32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int16x8x4_t vld4q_s16 (const int16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int8x16x4_t vld4q_s8 (const int8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>float32x4x4_t vld4q_f32 (const float32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly16x8x4_t vld4q_p16 (const poly16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly8x16x4_t vld4q_p8 (const poly8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint32x2x4_t vld4_lane_u32 (const uint32_t *, uint32x2x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld4.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint16x4x4_t vld4_lane_u16 (const uint16_t *, uint16x4x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld4.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint8x8x4_t vld4_lane_u8 (const uint8_t *, uint8x8x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld4.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int32x2x4_t vld4_lane_s32 (const int32_t *, int32x2x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld4.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int16x4x4_t vld4_lane_s16 (const int16_t *, int16x4x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld4.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int8x8x4_t vld4_lane_s8 (const int8_t *, int8x8x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld4.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>float32x2x4_t vld4_lane_f32 (const float32_t *, float32x2x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld4.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly16x4x4_t vld4_lane_p16 (const poly16_t *, poly16x4x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld4.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly8x8x4_t vld4_lane_p8 (const poly8_t *, poly8x8x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld4.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int32x4x4_t vld4q_lane_s32 (const int32_t *, int32x4x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld4.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int16x8x4_t vld4q_lane_s16 (const int16_t *, int16x8x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld4.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint32x4x4_t vld4q_lane_u32 (const uint32_t *, uint32x4x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld4.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint16x8x4_t vld4q_lane_u16 (const uint16_t *, uint16x8x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld4.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>float32x4x4_t vld4q_lane_f32 (const float32_t *, float32x4x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld4.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly16x8x4_t vld4q_lane_p16 (const poly16_t *, poly16x8x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vld4.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint32x2x4_t vld4_dup_u32 (const uint32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.32 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[], </code><var>d3</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint16x4x4_t vld4_dup_u16 (const uint16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.16 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[], </code><var>d3</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint8x8x4_t vld4_dup_u8 (const uint8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.8 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[], </code><var>d3</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int32x2x4_t vld4_dup_s32 (const int32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.32 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[], </code><var>d3</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int16x4x4_t vld4_dup_s16 (const int16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.16 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[], </code><var>d3</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int8x8x4_t vld4_dup_s8 (const int8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.8 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[], </code><var>d3</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>float32x2x4_t vld4_dup_f32 (const float32_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.32 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[], </code><var>d3</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly16x4x4_t vld4_dup_p16 (const poly16_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.16 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[], </code><var>d3</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>poly8x8x4_t vld4_dup_p8 (const poly8_t *)
<br><em>Form of expected instruction(s):</em> <code>vld4.8 {</code><var>d0</var><code>[], </code><var>d1</var><code>[], </code><var>d2</var><code>[], </code><var>d3</var><code>[]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>uint64x1x4_t vld4_dup_u64 (const uint64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>int64x1x4_t vld4_dup_s64 (const int64_t *)
<br><em>Form of expected instruction(s):</em> <code>vld1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

<h5 class="subsubsection">6.54.3.75 Element/structure stores, VST4 variants</h5>

     <ul>
<li>void vst4_u32 (uint32_t *, uint32x2x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4_u16 (uint16_t *, uint16x4x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4_u8 (uint8_t *, uint8x8x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4_s32 (int32_t *, int32x2x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4_s16 (int16_t *, int16x4x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4_s8 (int8_t *, int8x8x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4_f32 (float32_t *, float32x2x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4_p16 (poly16_t *, poly16x4x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4_p8 (poly8_t *, poly8x8x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4_u64 (uint64_t *, uint64x1x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4_s64 (int64_t *, int64x1x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst1.64 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4q_u32 (uint32_t *, uint32x4x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4q_u16 (uint16_t *, uint16x8x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4q_u8 (uint8_t *, uint8x16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4q_s32 (int32_t *, int32x4x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4q_s16 (int16_t *, int16x8x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4q_s8 (int8_t *, int8x16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4q_f32 (float32_t *, float32x4x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.32 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4q_p16 (poly16_t *, poly16x8x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.16 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4q_p8 (poly8_t *, poly8x16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vst4.8 {</code><var>d0</var><code>, </code><var>d1</var><code>, </code><var>d2</var><code>, </code><var>d3</var><code>}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4_lane_u32 (uint32_t *, uint32x2x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst4.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4_lane_u16 (uint16_t *, uint16x4x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst4.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4_lane_u8 (uint8_t *, uint8x8x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst4.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4_lane_s32 (int32_t *, int32x2x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst4.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4_lane_s16 (int16_t *, int16x4x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst4.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4_lane_s8 (int8_t *, int8x8x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst4.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4_lane_f32 (float32_t *, float32x2x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst4.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4_lane_p16 (poly16_t *, poly16x4x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst4.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4_lane_p8 (poly8_t *, poly8x8x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst4.8 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4q_lane_s32 (int32_t *, int32x4x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst4.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4q_lane_s16 (int16_t *, int16x8x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst4.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4q_lane_u32 (uint32_t *, uint32x4x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst4.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4q_lane_u16 (uint16_t *, uint16x8x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst4.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4q_lane_f32 (float32_t *, float32x4x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst4.32 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

     <ul>
<li>void vst4q_lane_p16 (poly16_t *, poly16x8x4_t, const int)
<br><em>Form of expected instruction(s):</em> <code>vst4.16 {</code><var>d0</var><code>[</code><var>0</var><code>], </code><var>d1</var><code>[</code><var>0</var><code>], </code><var>d2</var><code>[</code><var>0</var><code>], </code><var>d3</var><code>[</code><var>0</var><code>]}, [</code><var>r0</var><code>]</code>
</ul>

<h5 class="subsubsection">6.54.3.76 Logical operations (AND)</h5>

     <ul>
<li>uint32x2_t vand_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vand </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vand_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vand </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vand_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vand </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vand_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vand </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vand_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vand </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vand_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vand </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint64x1_t vand_u64 (uint64x1_t, uint64x1_t)
</ul>

     <ul>
<li>int64x1_t vand_s64 (int64x1_t, int64x1_t)
</ul>

     <ul>
<li>uint32x4_t vandq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vand </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vandq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vand </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vandq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vand </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x4_t vandq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vand </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vandq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vand </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vandq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vand </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint64x2_t vandq_u64 (uint64x2_t, uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vand </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int64x2_t vandq_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vand </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.77 Logical operations (OR)</h5>

     <ul>
<li>uint32x2_t vorr_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vorr </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vorr_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vorr </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vorr_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vorr </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vorr_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vorr </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vorr_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vorr </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vorr_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vorr </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint64x1_t vorr_u64 (uint64x1_t, uint64x1_t)
</ul>

     <ul>
<li>int64x1_t vorr_s64 (int64x1_t, int64x1_t)
</ul>

     <ul>
<li>uint32x4_t vorrq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vorr </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vorrq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vorr </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vorrq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vorr </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x4_t vorrq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vorr </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vorrq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vorr </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vorrq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vorr </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint64x2_t vorrq_u64 (uint64x2_t, uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vorr </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int64x2_t vorrq_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vorr </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.78 Logical operations (exclusive OR)</h5>

     <ul>
<li>uint32x2_t veor_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>veor </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t veor_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>veor </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t veor_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>veor </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t veor_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>veor </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t veor_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>veor </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t veor_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>veor </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint64x1_t veor_u64 (uint64x1_t, uint64x1_t)
</ul>

     <ul>
<li>int64x1_t veor_s64 (int64x1_t, int64x1_t)
</ul>

     <ul>
<li>uint32x4_t veorq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>veor </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t veorq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>veor </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t veorq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>veor </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x4_t veorq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>veor </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t veorq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>veor </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t veorq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>veor </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint64x2_t veorq_u64 (uint64x2_t, uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>veor </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int64x2_t veorq_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>veor </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.79 Logical operations (AND-NOT)</h5>

     <ul>
<li>uint32x2_t vbic_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vbic </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vbic_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vbic </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vbic_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vbic </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vbic_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vbic </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vbic_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vbic </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vbic_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vbic </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint64x1_t vbic_u64 (uint64x1_t, uint64x1_t)
</ul>

     <ul>
<li>int64x1_t vbic_s64 (int64x1_t, int64x1_t)
</ul>

     <ul>
<li>uint32x4_t vbicq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vbic </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vbicq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vbic </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vbicq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vbic </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x4_t vbicq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vbic </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vbicq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vbic </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vbicq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vbic </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint64x2_t vbicq_u64 (uint64x2_t, uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vbic </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int64x2_t vbicq_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vbic </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.80 Logical operations (OR-NOT)</h5>

     <ul>
<li>uint32x2_t vorn_u32 (uint32x2_t, uint32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vorn </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint16x4_t vorn_u16 (uint16x4_t, uint16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vorn </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint8x8_t vorn_u8 (uint8x8_t, uint8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vorn </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int32x2_t vorn_s32 (int32x2_t, int32x2_t)
<br><em>Form of expected instruction(s):</em> <code>vorn </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int16x4_t vorn_s16 (int16x4_t, int16x4_t)
<br><em>Form of expected instruction(s):</em> <code>vorn </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>int8x8_t vorn_s8 (int8x8_t, int8x8_t)
<br><em>Form of expected instruction(s):</em> <code>vorn </code><var>d0</var><code>, </code><var>d0</var><code>, </code><var>d0</var>
</ul>

     <ul>
<li>uint64x1_t vorn_u64 (uint64x1_t, uint64x1_t)
</ul>

     <ul>
<li>int64x1_t vorn_s64 (int64x1_t, int64x1_t)
</ul>

     <ul>
<li>uint32x4_t vornq_u32 (uint32x4_t, uint32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vorn </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint16x8_t vornq_u16 (uint16x8_t, uint16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vorn </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint8x16_t vornq_u8 (uint8x16_t, uint8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vorn </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int32x4_t vornq_s32 (int32x4_t, int32x4_t)
<br><em>Form of expected instruction(s):</em> <code>vorn </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int16x8_t vornq_s16 (int16x8_t, int16x8_t)
<br><em>Form of expected instruction(s):</em> <code>vorn </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int8x16_t vornq_s8 (int8x16_t, int8x16_t)
<br><em>Form of expected instruction(s):</em> <code>vorn </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>uint64x2_t vornq_u64 (uint64x2_t, uint64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vorn </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

     <ul>
<li>int64x2_t vornq_s64 (int64x2_t, int64x2_t)
<br><em>Form of expected instruction(s):</em> <code>vorn </code><var>q0</var><code>, </code><var>q0</var><code>, </code><var>q0</var>
</ul>

<h5 class="subsubsection">6.54.3.81 Reinterpret casts</h5>

     <ul>
<li>poly8x8_t vreinterpret_p8_u32 (uint32x2_t)
</ul>

     <ul>
<li>poly8x8_t vreinterpret_p8_u16 (uint16x4_t)
</ul>

     <ul>
<li>poly8x8_t vreinterpret_p8_u8 (uint8x8_t)
</ul>

     <ul>
<li>poly8x8_t vreinterpret_p8_s32 (int32x2_t)
</ul>

     <ul>
<li>poly8x8_t vreinterpret_p8_s16 (int16x4_t)
</ul>

     <ul>
<li>poly8x8_t vreinterpret_p8_s8 (int8x8_t)
</ul>

     <ul>
<li>poly8x8_t vreinterpret_p8_u64 (uint64x1_t)
</ul>

     <ul>
<li>poly8x8_t vreinterpret_p8_s64 (int64x1_t)
</ul>

     <ul>
<li>poly8x8_t vreinterpret_p8_f32 (float32x2_t)
</ul>

     <ul>
<li>poly8x8_t vreinterpret_p8_p16 (poly16x4_t)
</ul>

     <ul>
<li>poly8x16_t vreinterpretq_p8_u32 (uint32x4_t)
</ul>

     <ul>
<li>poly8x16_t vreinterpretq_p8_u16 (uint16x8_t)
</ul>

     <ul>
<li>poly8x16_t vreinterpretq_p8_u8 (uint8x16_t)
</ul>

     <ul>
<li>poly8x16_t vreinterpretq_p8_s32 (int32x4_t)
</ul>

     <ul>
<li>poly8x16_t vreinterpretq_p8_s16 (int16x8_t)
</ul>

     <ul>
<li>poly8x16_t vreinterpretq_p8_s8 (int8x16_t)
</ul>

     <ul>
<li>poly8x16_t vreinterpretq_p8_u64 (uint64x2_t)
</ul>

     <ul>
<li>poly8x16_t vreinterpretq_p8_s64 (int64x2_t)
</ul>

     <ul>
<li>poly8x16_t vreinterpretq_p8_f32 (float32x4_t)
</ul>

     <ul>
<li>poly8x16_t vreinterpretq_p8_p16 (poly16x8_t)
</ul>

     <ul>
<li>poly16x4_t vreinterpret_p16_u32 (uint32x2_t)
</ul>

     <ul>
<li>poly16x4_t vreinterpret_p16_u16 (uint16x4_t)
</ul>

     <ul>
<li>poly16x4_t vreinterpret_p16_u8 (uint8x8_t)
</ul>

     <ul>
<li>poly16x4_t vreinterpret_p16_s32 (int32x2_t)
</ul>

     <ul>
<li>poly16x4_t vreinterpret_p16_s16 (int16x4_t)
</ul>

     <ul>
<li>poly16x4_t vreinterpret_p16_s8 (int8x8_t)
</ul>

     <ul>
<li>poly16x4_t vreinterpret_p16_u64 (uint64x1_t)
</ul>

     <ul>
<li>poly16x4_t vreinterpret_p16_s64 (int64x1_t)
</ul>

     <ul>
<li>poly16x4_t vreinterpret_p16_f32 (float32x2_t)
</ul>

     <ul>
<li>poly16x4_t vreinterpret_p16_p8 (poly8x8_t)
</ul>

     <ul>
<li>poly16x8_t vreinterpretq_p16_u32 (uint32x4_t)
</ul>

     <ul>
<li>poly16x8_t vreinterpretq_p16_u16 (uint16x8_t)
</ul>

     <ul>
<li>poly16x8_t vreinterpretq_p16_u8 (uint8x16_t)
</ul>

     <ul>
<li>poly16x8_t vreinterpretq_p16_s32 (int32x4_t)
</ul>

     <ul>
<li>poly16x8_t vreinterpretq_p16_s16 (int16x8_t)
</ul>

     <ul>
<li>poly16x8_t vreinterpretq_p16_s8 (int8x16_t)
</ul>

     <ul>
<li>poly16x8_t vreinterpretq_p16_u64 (uint64x2_t)
</ul>

     <ul>
<li>poly16x8_t vreinterpretq_p16_s64 (int64x2_t)
</ul>

     <ul>
<li>poly16x8_t vreinterpretq_p16_f32 (float32x4_t)
</ul>

     <ul>
<li>poly16x8_t vreinterpretq_p16_p8 (poly8x16_t)
</ul>

     <ul>
<li>float32x2_t vreinterpret_f32_u32 (uint32x2_t)
</ul>

     <ul>
<li>float32x2_t vreinterpret_f32_u16 (uint16x4_t)
</ul>

     <ul>
<li>float32x2_t vreinterpret_f32_u8 (uint8x8_t)
</ul>

     <ul>
<li>float32x2_t vreinterpret_f32_s32 (int32x2_t)
</ul>

     <ul>
<li>float32x2_t vreinterpret_f32_s16 (int16x4_t)
</ul>

     <ul>
<li>float32x2_t vreinterpret_f32_s8 (int8x8_t)
</ul>

     <ul>
<li>float32x2_t vreinterpret_f32_u64 (uint64x1_t)
</ul>

     <ul>
<li>float32x2_t vreinterpret_f32_s64 (int64x1_t)
</ul>

     <ul>
<li>float32x2_t vreinterpret_f32_p16 (poly16x4_t)
</ul>

     <ul>
<li>float32x2_t vreinterpret_f32_p8 (poly8x8_t)
</ul>

     <ul>
<li>float32x4_t vreinterpretq_f32_u32 (uint32x4_t)
</ul>

     <ul>
<li>float32x4_t vreinterpretq_f32_u16 (uint16x8_t)
</ul>

     <ul>
<li>float32x4_t vreinterpretq_f32_u8 (uint8x16_t)
</ul>

     <ul>
<li>float32x4_t vreinterpretq_f32_s32 (int32x4_t)
</ul>

     <ul>
<li>float32x4_t vreinterpretq_f32_s16 (int16x8_t)
</ul>

     <ul>
<li>float32x4_t vreinterpretq_f32_s8 (int8x16_t)
</ul>

     <ul>
<li>float32x4_t vreinterpretq_f32_u64 (uint64x2_t)
</ul>

     <ul>
<li>float32x4_t vreinterpretq_f32_s64 (int64x2_t)
</ul>

     <ul>
<li>float32x4_t vreinterpretq_f32_p16 (poly16x8_t)
</ul>

     <ul>
<li>float32x4_t vreinterpretq_f32_p8 (poly8x16_t)
</ul>

     <ul>
<li>int64x1_t vreinterpret_s64_u32 (uint32x2_t)
</ul>

     <ul>
<li>int64x1_t vreinterpret_s64_u16 (uint16x4_t)
</ul>

     <ul>
<li>int64x1_t vreinterpret_s64_u8 (uint8x8_t)
</ul>

     <ul>
<li>int64x1_t vreinterpret_s64_s32 (int32x2_t)
</ul>

     <ul>
<li>int64x1_t vreinterpret_s64_s16 (int16x4_t)
</ul>

     <ul>
<li>int64x1_t vreinterpret_s64_s8 (int8x8_t)
</ul>

     <ul>
<li>int64x1_t vreinterpret_s64_u64 (uint64x1_t)
</ul>

     <ul>
<li>int64x1_t vreinterpret_s64_f32 (float32x2_t)
</ul>

     <ul>
<li>int64x1_t vreinterpret_s64_p16 (poly16x4_t)
</ul>

     <ul>
<li>int64x1_t vreinterpret_s64_p8 (poly8x8_t)
</ul>

     <ul>
<li>int64x2_t vreinterpretq_s64_u32 (uint32x4_t)
</ul>

     <ul>
<li>int64x2_t vreinterpretq_s64_u16 (uint16x8_t)
</ul>

     <ul>
<li>int64x2_t vreinterpretq_s64_u8 (uint8x16_t)
</ul>

     <ul>
<li>int64x2_t vreinterpretq_s64_s32 (int32x4_t)
</ul>

     <ul>
<li>int64x2_t vreinterpretq_s64_s16 (int16x8_t)
</ul>

     <ul>
<li>int64x2_t vreinterpretq_s64_s8 (int8x16_t)
</ul>

     <ul>
<li>int64x2_t vreinterpretq_s64_u64 (uint64x2_t)
</ul>

     <ul>
<li>int64x2_t vreinterpretq_s64_f32 (float32x4_t)
</ul>

     <ul>
<li>int64x2_t vreinterpretq_s64_p16 (poly16x8_t)
</ul>

     <ul>
<li>int64x2_t vreinterpretq_s64_p8 (poly8x16_t)
</ul>

     <ul>
<li>uint64x1_t vreinterpret_u64_u32 (uint32x2_t)
</ul>

     <ul>
<li>uint64x1_t vreinterpret_u64_u16 (uint16x4_t)
</ul>

     <ul>
<li>uint64x1_t vreinterpret_u64_u8 (uint8x8_t)
</ul>

     <ul>
<li>uint64x1_t vreinterpret_u64_s32 (int32x2_t)
</ul>

     <ul>
<li>uint64x1_t vreinterpret_u64_s16 (int16x4_t)
</ul>

     <ul>
<li>uint64x1_t vreinterpret_u64_s8 (int8x8_t)
</ul>

     <ul>
<li>uint64x1_t vreinterpret_u64_s64 (int64x1_t)
</ul>

     <ul>
<li>uint64x1_t vreinterpret_u64_f32 (float32x2_t)
</ul>

     <ul>
<li>uint64x1_t vreinterpret_u64_p16 (poly16x4_t)
</ul>

     <ul>
<li>uint64x1_t vreinterpret_u64_p8 (poly8x8_t)
</ul>

     <ul>
<li>uint64x2_t vreinterpretq_u64_u32 (uint32x4_t)
</ul>

     <ul>
<li>uint64x2_t vreinterpretq_u64_u16 (uint16x8_t)
</ul>

     <ul>
<li>uint64x2_t vreinterpretq_u64_u8 (uint8x16_t)
</ul>

     <ul>
<li>uint64x2_t vreinterpretq_u64_s32 (int32x4_t)
</ul>

     <ul>
<li>uint64x2_t vreinterpretq_u64_s16 (int16x8_t)
</ul>

     <ul>
<li>uint64x2_t vreinterpretq_u64_s8 (int8x16_t)
</ul>

     <ul>
<li>uint64x2_t vreinterpretq_u64_s64 (int64x2_t)
</ul>

     <ul>
<li>uint64x2_t vreinterpretq_u64_f32 (float32x4_t)
</ul>

     <ul>
<li>uint64x2_t vreinterpretq_u64_p16 (poly16x8_t)
</ul>

     <ul>
<li>uint64x2_t vreinterpretq_u64_p8 (poly8x16_t)
</ul>

     <ul>
<li>int8x8_t vreinterpret_s8_u32 (uint32x2_t)
</ul>

     <ul>
<li>int8x8_t vreinterpret_s8_u16 (uint16x4_t)
</ul>

     <ul>
<li>int8x8_t vreinterpret_s8_u8 (uint8x8_t)
</ul>

     <ul>
<li>int8x8_t vreinterpret_s8_s32 (int32x2_t)
</ul>

     <ul>
<li>int8x8_t vreinterpret_s8_s16 (int16x4_t)
</ul>

     <ul>
<li>int8x8_t vreinterpret_s8_u64 (uint64x1_t)
</ul>

     <ul>
<li>int8x8_t vreinterpret_s8_s64 (int64x1_t)
</ul>

     <ul>
<li>int8x8_t vreinterpret_s8_f32 (float32x2_t)
</ul>

     <ul>
<li>int8x8_t vreinterpret_s8_p16 (poly16x4_t)
</ul>

     <ul>
<li>int8x8_t vreinterpret_s8_p8 (poly8x8_t)
</ul>

     <ul>
<li>int8x16_t vreinterpretq_s8_u32 (uint32x4_t)
</ul>

     <ul>
<li>int8x16_t vreinterpretq_s8_u16 (uint16x8_t)
</ul>

     <ul>
<li>int8x16_t vreinterpretq_s8_u8 (uint8x16_t)
</ul>

     <ul>
<li>int8x16_t vreinterpretq_s8_s32 (int32x4_t)
</ul>

     <ul>
<li>int8x16_t vreinterpretq_s8_s16 (int16x8_t)
</ul>

     <ul>
<li>int8x16_t vreinterpretq_s8_u64 (uint64x2_t)
</ul>

     <ul>
<li>int8x16_t vreinterpretq_s8_s64 (int64x2_t)
</ul>

     <ul>
<li>int8x16_t vreinterpretq_s8_f32 (float32x4_t)
</ul>

     <ul>
<li>int8x16_t vreinterpretq_s8_p16 (poly16x8_t)
</ul>

     <ul>
<li>int8x16_t vreinterpretq_s8_p8 (poly8x16_t)
</ul>

     <ul>
<li>int16x4_t vreinterpret_s16_u32 (uint32x2_t)
</ul>

     <ul>
<li>int16x4_t vreinterpret_s16_u16 (uint16x4_t)
</ul>

     <ul>
<li>int16x4_t vreinterpret_s16_u8 (uint8x8_t)
</ul>

     <ul>
<li>int16x4_t vreinterpret_s16_s32 (int32x2_t)
</ul>

     <ul>
<li>int16x4_t vreinterpret_s16_s8 (int8x8_t)
</ul>

     <ul>
<li>int16x4_t vreinterpret_s16_u64 (uint64x1_t)
</ul>

     <ul>
<li>int16x4_t vreinterpret_s16_s64 (int64x1_t)
</ul>

     <ul>
<li>int16x4_t vreinterpret_s16_f32 (float32x2_t)
</ul>

     <ul>
<li>int16x4_t vreinterpret_s16_p16 (poly16x4_t)
</ul>

     <ul>
<li>int16x4_t vreinterpret_s16_p8 (poly8x8_t)
</ul>

     <ul>
<li>int16x8_t vreinterpretq_s16_u32 (uint32x4_t)
</ul>

     <ul>
<li>int16x8_t vreinterpretq_s16_u16 (uint16x8_t)
</ul>

     <ul>
<li>int16x8_t vreinterpretq_s16_u8 (uint8x16_t)
</ul>

     <ul>
<li>int16x8_t vreinterpretq_s16_s32 (int32x4_t)
</ul>

     <ul>
<li>int16x8_t vreinterpretq_s16_s8 (int8x16_t)
</ul>

     <ul>
<li>int16x8_t vreinterpretq_s16_u64 (uint64x2_t)
</ul>

     <ul>
<li>int16x8_t vreinterpretq_s16_s64 (int64x2_t)
</ul>

     <ul>
<li>int16x8_t vreinterpretq_s16_f32 (float32x4_t)
</ul>

     <ul>
<li>int16x8_t vreinterpretq_s16_p16 (poly16x8_t)
</ul>

     <ul>
<li>int16x8_t vreinterpretq_s16_p8 (poly8x16_t)
</ul>

     <ul>
<li>int32x2_t vreinterpret_s32_u32 (uint32x2_t)
</ul>

     <ul>
<li>int32x2_t vreinterpret_s32_u16 (uint16x4_t)
</ul>

     <ul>
<li>int32x2_t vreinterpret_s32_u8 (uint8x8_t)
</ul>

     <ul>
<li>int32x2_t vreinterpret_s32_s16 (int16x4_t)
</ul>

     <ul>
<li>int32x2_t vreinterpret_s32_s8 (int8x8_t)
</ul>

     <ul>
<li>int32x2_t vreinterpret_s32_u64 (uint64x1_t)
</ul>

     <ul>
<li>int32x2_t vreinterpret_s32_s64 (int64x1_t)
</ul>

     <ul>
<li>int32x2_t vreinterpret_s32_f32 (float32x2_t)
</ul>

     <ul>
<li>int32x2_t vreinterpret_s32_p16 (poly16x4_t)
</ul>

     <ul>
<li>int32x2_t vreinterpret_s32_p8 (poly8x8_t)
</ul>

     <ul>
<li>int32x4_t vreinterpretq_s32_u32 (uint32x4_t)
</ul>

     <ul>
<li>int32x4_t vreinterpretq_s32_u16 (uint16x8_t)
</ul>

     <ul>
<li>int32x4_t vreinterpretq_s32_u8 (uint8x16_t)
</ul>

     <ul>
<li>int32x4_t vreinterpretq_s32_s16 (int16x8_t)
</ul>

     <ul>
<li>int32x4_t vreinterpretq_s32_s8 (int8x16_t)
</ul>

     <ul>
<li>int32x4_t vreinterpretq_s32_u64 (uint64x2_t)
</ul>

     <ul>
<li>int32x4_t vreinterpretq_s32_s64 (int64x2_t)
</ul>

     <ul>
<li>int32x4_t vreinterpretq_s32_f32 (float32x4_t)
</ul>

     <ul>
<li>int32x4_t vreinterpretq_s32_p16 (poly16x8_t)
</ul>

     <ul>
<li>int32x4_t vreinterpretq_s32_p8 (poly8x16_t)
</ul>

     <ul>
<li>uint8x8_t vreinterpret_u8_u32 (uint32x2_t)
</ul>

     <ul>
<li>uint8x8_t vreinterpret_u8_u16 (uint16x4_t)
</ul>

     <ul>
<li>uint8x8_t vreinterpret_u8_s32 (int32x2_t)
</ul>

     <ul>
<li>uint8x8_t vreinterpret_u8_s16 (int16x4_t)
</ul>

     <ul>
<li>uint8x8_t vreinterpret_u8_s8 (int8x8_t)
</ul>

     <ul>
<li>uint8x8_t vreinterpret_u8_u64 (uint64x1_t)
</ul>

     <ul>
<li>uint8x8_t vreinterpret_u8_s64 (int64x1_t)
</ul>

     <ul>
<li>uint8x8_t vreinterpret_u8_f32 (float32x2_t)
</ul>

     <ul>
<li>uint8x8_t vreinterpret_u8_p16 (poly16x4_t)
</ul>

     <ul>
<li>uint8x8_t vreinterpret_u8_p8 (poly8x8_t)
</ul>

     <ul>
<li>uint8x16_t vreinterpretq_u8_u32 (uint32x4_t)
</ul>

     <ul>
<li>uint8x16_t vreinterpretq_u8_u16 (uint16x8_t)
</ul>

     <ul>
<li>uint8x16_t vreinterpretq_u8_s32 (int32x4_t)
</ul>

     <ul>
<li>uint8x16_t vreinterpretq_u8_s16 (int16x8_t)
</ul>

     <ul>
<li>uint8x16_t vreinterpretq_u8_s8 (int8x16_t)
</ul>

     <ul>
<li>uint8x16_t vreinterpretq_u8_u64 (uint64x2_t)
</ul>

     <ul>
<li>uint8x16_t vreinterpretq_u8_s64 (int64x2_t)
</ul>

     <ul>
<li>uint8x16_t vreinterpretq_u8_f32 (float32x4_t)
</ul>

     <ul>
<li>uint8x16_t vreinterpretq_u8_p16 (poly16x8_t)
</ul>

     <ul>
<li>uint8x16_t vreinterpretq_u8_p8 (poly8x16_t)
</ul>

     <ul>
<li>uint16x4_t vreinterpret_u16_u32 (uint32x2_t)
</ul>

     <ul>
<li>uint16x4_t vreinterpret_u16_u8 (uint8x8_t)
</ul>

     <ul>
<li>uint16x4_t vreinterpret_u16_s32 (int32x2_t)
</ul>

     <ul>
<li>uint16x4_t vreinterpret_u16_s16 (int16x4_t)
</ul>

     <ul>
<li>uint16x4_t vreinterpret_u16_s8 (int8x8_t)
</ul>

     <ul>
<li>uint16x4_t vreinterpret_u16_u64 (uint64x1_t)
</ul>

     <ul>
<li>uint16x4_t vreinterpret_u16_s64 (int64x1_t)
</ul>

     <ul>
<li>uint16x4_t vreinterpret_u16_f32 (float32x2_t)
</ul>

     <ul>
<li>uint16x4_t vreinterpret_u16_p16 (poly16x4_t)
</ul>

     <ul>
<li>uint16x4_t vreinterpret_u16_p8 (poly8x8_t)
</ul>

     <ul>
<li>uint16x8_t vreinterpretq_u16_u32 (uint32x4_t)
</ul>

     <ul>
<li>uint16x8_t vreinterpretq_u16_u8 (uint8x16_t)
</ul>

     <ul>
<li>uint16x8_t vreinterpretq_u16_s32 (int32x4_t)
</ul>

     <ul>
<li>uint16x8_t vreinterpretq_u16_s16 (int16x8_t)
</ul>

     <ul>
<li>uint16x8_t vreinterpretq_u16_s8 (int8x16_t)
</ul>

     <ul>
<li>uint16x8_t vreinterpretq_u16_u64 (uint64x2_t)
</ul>

     <ul>
<li>uint16x8_t vreinterpretq_u16_s64 (int64x2_t)
</ul>

     <ul>
<li>uint16x8_t vreinterpretq_u16_f32 (float32x4_t)
</ul>

     <ul>
<li>uint16x8_t vreinterpretq_u16_p16 (poly16x8_t)
</ul>

     <ul>
<li>uint16x8_t vreinterpretq_u16_p8 (poly8x16_t)
</ul>

     <ul>
<li>uint32x2_t vreinterpret_u32_u16 (uint16x4_t)
</ul>

     <ul>
<li>uint32x2_t vreinterpret_u32_u8 (uint8x8_t)
</ul>

     <ul>
<li>uint32x2_t vreinterpret_u32_s32 (int32x2_t)
</ul>

     <ul>
<li>uint32x2_t vreinterpret_u32_s16 (int16x4_t)
</ul>

     <ul>
<li>uint32x2_t vreinterpret_u32_s8 (int8x8_t)
</ul>

     <ul>
<li>uint32x2_t vreinterpret_u32_u64 (uint64x1_t)
</ul>

     <ul>
<li>uint32x2_t vreinterpret_u32_s64 (int64x1_t)
</ul>

     <ul>
<li>uint32x2_t vreinterpret_u32_f32 (float32x2_t)
</ul>

     <ul>
<li>uint32x2_t vreinterpret_u32_p16 (poly16x4_t)
</ul>

     <ul>
<li>uint32x2_t vreinterpret_u32_p8 (poly8x8_t)
</ul>

     <ul>
<li>uint32x4_t vreinterpretq_u32_u16 (uint16x8_t)
</ul>

     <ul>
<li>uint32x4_t vreinterpretq_u32_u8 (uint8x16_t)
</ul>

     <ul>
<li>uint32x4_t vreinterpretq_u32_s32 (int32x4_t)
</ul>

     <ul>
<li>uint32x4_t vreinterpretq_u32_s16 (int16x8_t)
</ul>

     <ul>
<li>uint32x4_t vreinterpretq_u32_s8 (int8x16_t)
</ul>

     <ul>
<li>uint32x4_t vreinterpretq_u32_u64 (uint64x2_t)
</ul>

     <ul>
<li>uint32x4_t vreinterpretq_u32_s64 (int64x2_t)
</ul>

     <ul>
<li>uint32x4_t vreinterpretq_u32_f32 (float32x4_t)
</ul>

     <ul>
<li>uint32x4_t vreinterpretq_u32_p16 (poly16x8_t)
</ul>

     <ul>
<li>uint32x4_t vreinterpretq_u32_p8 (poly8x16_t)
</ul>

<div class="node">
<a name="Blackfin-Built-in-Functions"></a>
<a name="Blackfin-Built_002din-Functions"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#FR_002dV-Built_002din-Functions">FR-V Built-in Functions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#ARM-NEON-Intrinsics">ARM NEON Intrinsics</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Target-Builtins">Target Builtins</a>

</div>

<h4 class="subsection">6.54.4 Blackfin Built-in Functions</h4>

<p>Currently, there are two Blackfin-specific built-in functions.  These are
used for generating <code>CSYNC</code> and <code>SSYNC</code> machine insns without
using inline assembly; by using these built-in functions the compiler can
automatically add workarounds for hardware errata involving these
instructions.  These functions are named as follows:

<pre class="smallexample">     void __builtin_bfin_csync (void)
     void __builtin_bfin_ssync (void)
</pre>
 <div class="node">
<a name="FR-V-Built-in-Functions"></a>
<a name="FR_002dV-Built_002din-Functions"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#X86-Built_002din-Functions">X86 Built-in Functions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Blackfin-Built_002din-Functions">Blackfin Built-in Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Target-Builtins">Target Builtins</a>

</div>

<h4 class="subsection">6.54.5 FR-V Built-in Functions</h4>

<p>GCC provides many FR-V-specific built-in functions.  In general,
these functions are intended to be compatible with those described
by <cite>FR-V Family, Softune C/C++ Compiler Manual (V6), Fujitsu
Semiconductor</cite>.  The two exceptions are <code>__MDUNPACKH</code> and
<code>__MBTOHE</code>, the gcc forms of which pass 128-bit values by
pointer rather than by value.

 <p>Most of the functions are named after specific FR-V instructions. 
Such functions are said to be &ldquo;directly mapped&rdquo; and are summarized
here in tabular form.

<ul class="menu">
<li><a accesskey="1" href="#Argument-Types">Argument Types</a>
<li><a accesskey="2" href="#Directly_002dmapped-Integer-Functions">Directly-mapped Integer Functions</a>
<li><a accesskey="3" href="#Directly_002dmapped-Media-Functions">Directly-mapped Media Functions</a>
<li><a accesskey="4" href="#Raw-read_002fwrite-Functions">Raw read/write Functions</a>
<li><a accesskey="5" href="#Other-Built_002din-Functions">Other Built-in Functions</a>
</ul>

<div class="node">
<a name="Argument-Types"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Directly_002dmapped-Integer-Functions">Directly-mapped Integer Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#FR_002dV-Built_002din-Functions">FR-V Built-in Functions</a>

</div>

<h5 class="subsubsection">6.54.5.1 Argument Types</h5>

<p>The arguments to the built-in functions can be divided into three groups:
register numbers, compile-time constants and run-time values.  In order
to make this classification clear at a glance, the arguments and return
values are given the following pseudo types:

 <p><table summary=""><tr align="left"><td valign="top" width="20%">Pseudo type </td><td valign="top" width="30%">Real C type </td><td valign="top" width="15%">Constant? </td><td valign="top" width="35%">Description
<br></td></tr><tr align="left"><td valign="top" width="20%"><code>uh</code> </td><td valign="top" width="30%"><code>unsigned short</code> </td><td valign="top" width="15%">No </td><td valign="top" width="35%">an unsigned halfword
<br></td></tr><tr align="left"><td valign="top" width="20%"><code>uw1</code> </td><td valign="top" width="30%"><code>unsigned int</code> </td><td valign="top" width="15%">No </td><td valign="top" width="35%">an unsigned word
<br></td></tr><tr align="left"><td valign="top" width="20%"><code>sw1</code> </td><td valign="top" width="30%"><code>int</code> </td><td valign="top" width="15%">No </td><td valign="top" width="35%">a signed word
<br></td></tr><tr align="left"><td valign="top" width="20%"><code>uw2</code> </td><td valign="top" width="30%"><code>unsigned long long</code> </td><td valign="top" width="15%">No
</td><td valign="top" width="35%">an unsigned doubleword
<br></td></tr><tr align="left"><td valign="top" width="20%"><code>sw2</code> </td><td valign="top" width="30%"><code>long long</code> </td><td valign="top" width="15%">No </td><td valign="top" width="35%">a signed doubleword
<br></td></tr><tr align="left"><td valign="top" width="20%"><code>const</code> </td><td valign="top" width="30%"><code>int</code> </td><td valign="top" width="15%">Yes </td><td valign="top" width="35%">an integer constant
<br></td></tr><tr align="left"><td valign="top" width="20%"><code>acc</code> </td><td valign="top" width="30%"><code>int</code> </td><td valign="top" width="15%">Yes </td><td valign="top" width="35%">an ACC register number
<br></td></tr><tr align="left"><td valign="top" width="20%"><code>iacc</code> </td><td valign="top" width="30%"><code>int</code> </td><td valign="top" width="15%">Yes </td><td valign="top" width="35%">an IACC register number
 <br></td></tr></table>

 <p>These pseudo types are not defined by GCC, they are simply a notational
convenience used in this manual.

 <p>Arguments of type <code>uh</code>, <code>uw1</code>, <code>sw1</code>, <code>uw2</code>
and <code>sw2</code> are evaluated at run time.  They correspond to
register operands in the underlying FR-V instructions.

 <p><code>const</code> arguments represent immediate operands in the underlying
FR-V instructions.  They must be compile-time constants.

 <p><code>acc</code> arguments are evaluated at compile time and specify the number
of an accumulator register.  For example, an <code>acc</code> argument of 2
will select the ACC2 register.

 <p><code>iacc</code> arguments are similar to <code>acc</code> arguments but specify the
number of an IACC register.  See see <a href="#Other-Built_002din-Functions">Other Built-in Functions</a>
for more details.

<div class="node">
<a name="Directly-mapped-Integer-Functions"></a>
<a name="Directly_002dmapped-Integer-Functions"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Directly_002dmapped-Media-Functions">Directly-mapped Media Functions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Argument-Types">Argument Types</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#FR_002dV-Built_002din-Functions">FR-V Built-in Functions</a>

</div>

<h5 class="subsubsection">6.54.5.2 Directly-mapped Integer Functions</h5>

<p>The functions listed below map directly to FR-V I-type instructions.

 <p><table summary=""><tr align="left"><td valign="top" width="45%">Function prototype </td><td valign="top" width="32%">Example usage </td><td valign="top" width="23%">Assembly output
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw1 __ADDSS (sw1, sw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __ADDSS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>ADDSS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw1 __SCAN (sw1, sw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __SCAN (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>SCAN </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw1 __SCUTSS (sw1)</code>
</td><td valign="top" width="32%"><var>b</var><code> = __SCUTSS (</code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>SCUTSS </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw1 __SLASS (sw1, sw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __SLASS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>SLASS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __SMASS (sw1, sw1)</code>
</td><td valign="top" width="32%"><code>__SMASS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>SMASS </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __SMSSS (sw1, sw1)</code>
</td><td valign="top" width="32%"><code>__SMSSS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>SMSSS </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __SMU (sw1, sw1)</code>
</td><td valign="top" width="32%"><code>__SMU (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>SMU </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw2 __SMUL (sw1, sw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __SMUL (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>SMUL </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw1 __SUBSS (sw1, sw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __SUBSS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>SUBSS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw2 __UMUL (uw1, uw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __UMUL (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>UMUL </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
 <br></td></tr></table>

<div class="node">
<a name="Directly-mapped-Media-Functions"></a>
<a name="Directly_002dmapped-Media-Functions"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Raw-read_002fwrite-Functions">Raw read/write Functions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Directly_002dmapped-Integer-Functions">Directly-mapped Integer Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#FR_002dV-Built_002din-Functions">FR-V Built-in Functions</a>

</div>

<h5 class="subsubsection">6.54.5.3 Directly-mapped Media Functions</h5>

<p>The functions listed below map directly to FR-V M-type instructions.

 <p><table summary=""><tr align="left"><td valign="top" width="45%">Function prototype </td><td valign="top" width="32%">Example usage </td><td valign="top" width="23%">Assembly output
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MABSHS (sw1)</code>
</td><td valign="top" width="32%"><var>b</var><code> = __MABSHS (</code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MABSHS </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MADDACCS (acc, acc)</code>
</td><td valign="top" width="32%"><code>__MADDACCS (</code><var>b</var><code>, </code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MADDACCS </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw1 __MADDHSS (sw1, sw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MADDHSS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MADDHSS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MADDHUS (uw1, uw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MADDHUS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MADDHUS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MAND (uw1, uw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MAND (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MAND </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MASACCS (acc, acc)</code>
</td><td valign="top" width="32%"><code>__MASACCS (</code><var>b</var><code>, </code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MASACCS </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MAVEH (uw1, uw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MAVEH (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MAVEH </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw2 __MBTOH (uw1)</code>
</td><td valign="top" width="32%"><var>b</var><code> = __MBTOH (</code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MBTOH </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MBTOHE (uw1 *, uw1)</code>
</td><td valign="top" width="32%"><code>__MBTOHE (&amp;</code><var>b</var><code>, </code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MBTOHE </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MCLRACC (acc)</code>
</td><td valign="top" width="32%"><code>__MCLRACC (</code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MCLRACC </code><var>a</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MCLRACCA (void)</code>
</td><td valign="top" width="32%"><code>__MCLRACCA ()</code>
</td><td valign="top" width="23%"><code>MCLRACCA</code>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __Mcop1 (uw1, uw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __Mcop1 (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>Mcop1 </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __Mcop2 (uw1, uw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __Mcop2 (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>Mcop2 </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MCPLHI (uw2, const)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MCPLHI (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MCPLHI </code><var>a</var><code>,#</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MCPLI (uw2, const)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MCPLI (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MCPLI </code><var>a</var><code>,#</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MCPXIS (acc, sw1, sw1)</code>
</td><td valign="top" width="32%"><code>__MCPXIS (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MCPXIS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MCPXIU (acc, uw1, uw1)</code>
</td><td valign="top" width="32%"><code>__MCPXIU (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MCPXIU </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MCPXRS (acc, sw1, sw1)</code>
</td><td valign="top" width="32%"><code>__MCPXRS (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MCPXRS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MCPXRU (acc, uw1, uw1)</code>
</td><td valign="top" width="32%"><code>__MCPXRU (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MCPXRU </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MCUT (acc, uw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MCUT (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MCUT </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MCUTSS (acc, sw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MCUTSS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MCUTSS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MDADDACCS (acc, acc)</code>
</td><td valign="top" width="32%"><code>__MDADDACCS (</code><var>b</var><code>, </code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MDADDACCS </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MDASACCS (acc, acc)</code>
</td><td valign="top" width="32%"><code>__MDASACCS (</code><var>b</var><code>, </code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MDASACCS </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw2 __MDCUTSSI (acc, const)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MDCUTSSI (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MDCUTSSI </code><var>a</var><code>,#</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw2 __MDPACKH (uw2, uw2)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MDPACKH (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MDPACKH </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw2 __MDROTLI (uw2, const)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MDROTLI (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MDROTLI </code><var>a</var><code>,#</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MDSUBACCS (acc, acc)</code>
</td><td valign="top" width="32%"><code>__MDSUBACCS (</code><var>b</var><code>, </code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MDSUBACCS </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MDUNPACKH (uw1 *, uw2)</code>
</td><td valign="top" width="32%"><code>__MDUNPACKH (&amp;</code><var>b</var><code>, </code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MDUNPACKH </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw2 __MEXPDHD (uw1, const)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MEXPDHD (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MEXPDHD </code><var>a</var><code>,#</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MEXPDHW (uw1, const)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MEXPDHW (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MEXPDHW </code><var>a</var><code>,#</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MHDSETH (uw1, const)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MHDSETH (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MHDSETH </code><var>a</var><code>,#</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw1 __MHDSETS (const)</code>
</td><td valign="top" width="32%"><var>b</var><code> = __MHDSETS (</code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MHDSETS #</code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MHSETHIH (uw1, const)</code>
</td><td valign="top" width="32%"><var>b</var><code> = __MHSETHIH (</code><var>b</var><code>, </code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MHSETHIH #</code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw1 __MHSETHIS (sw1, const)</code>
</td><td valign="top" width="32%"><var>b</var><code> = __MHSETHIS (</code><var>b</var><code>, </code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MHSETHIS #</code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MHSETLOH (uw1, const)</code>
</td><td valign="top" width="32%"><var>b</var><code> = __MHSETLOH (</code><var>b</var><code>, </code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MHSETLOH #</code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw1 __MHSETLOS (sw1, const)</code>
</td><td valign="top" width="32%"><var>b</var><code> = __MHSETLOS (</code><var>b</var><code>, </code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MHSETLOS #</code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MHTOB (uw2)</code>
</td><td valign="top" width="32%"><var>b</var><code> = __MHTOB (</code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MHTOB </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MMACHS (acc, sw1, sw1)</code>
</td><td valign="top" width="32%"><code>__MMACHS (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MMACHS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MMACHU (acc, uw1, uw1)</code>
</td><td valign="top" width="32%"><code>__MMACHU (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MMACHU </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MMRDHS (acc, sw1, sw1)</code>
</td><td valign="top" width="32%"><code>__MMRDHS (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MMRDHS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MMRDHU (acc, uw1, uw1)</code>
</td><td valign="top" width="32%"><code>__MMRDHU (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MMRDHU </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MMULHS (acc, sw1, sw1)</code>
</td><td valign="top" width="32%"><code>__MMULHS (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MMULHS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MMULHU (acc, uw1, uw1)</code>
</td><td valign="top" width="32%"><code>__MMULHU (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MMULHU </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MMULXHS (acc, sw1, sw1)</code>
</td><td valign="top" width="32%"><code>__MMULXHS (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MMULXHS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MMULXHU (acc, uw1, uw1)</code>
</td><td valign="top" width="32%"><code>__MMULXHU (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MMULXHU </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MNOT (uw1)</code>
</td><td valign="top" width="32%"><var>b</var><code> = __MNOT (</code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MNOT </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MOR (uw1, uw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MOR (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MOR </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MPACKH (uh, uh)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MPACKH (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MPACKH </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw2 __MQADDHSS (sw2, sw2)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MQADDHSS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQADDHSS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw2 __MQADDHUS (uw2, uw2)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MQADDHUS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQADDHUS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MQCPXIS (acc, sw2, sw2)</code>
</td><td valign="top" width="32%"><code>__MQCPXIS (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQCPXIS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MQCPXIU (acc, uw2, uw2)</code>
</td><td valign="top" width="32%"><code>__MQCPXIU (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQCPXIU </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MQCPXRS (acc, sw2, sw2)</code>
</td><td valign="top" width="32%"><code>__MQCPXRS (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQCPXRS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MQCPXRU (acc, uw2, uw2)</code>
</td><td valign="top" width="32%"><code>__MQCPXRU (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQCPXRU </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw2 __MQLCLRHS (sw2, sw2)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MQLCLRHS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQLCLRHS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw2 __MQLMTHS (sw2, sw2)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MQLMTHS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQLMTHS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MQMACHS (acc, sw2, sw2)</code>
</td><td valign="top" width="32%"><code>__MQMACHS (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQMACHS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MQMACHU (acc, uw2, uw2)</code>
</td><td valign="top" width="32%"><code>__MQMACHU (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQMACHU </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MQMACXHS (acc, sw2, sw2)</code>
</td><td valign="top" width="32%"><code>__MQMACXHS (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQMACXHS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MQMULHS (acc, sw2, sw2)</code>
</td><td valign="top" width="32%"><code>__MQMULHS (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQMULHS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MQMULHU (acc, uw2, uw2)</code>
</td><td valign="top" width="32%"><code>__MQMULHU (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQMULHU </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MQMULXHS (acc, sw2, sw2)</code>
</td><td valign="top" width="32%"><code>__MQMULXHS (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQMULXHS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MQMULXHU (acc, uw2, uw2)</code>
</td><td valign="top" width="32%"><code>__MQMULXHU (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQMULXHU </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw2 __MQSATHS (sw2, sw2)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MQSATHS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQSATHS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw2 __MQSLLHI (uw2, int)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MQSLLHI (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQSLLHI </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw2 __MQSRAHI (sw2, int)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MQSRAHI (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQSRAHI </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw2 __MQSUBHSS (sw2, sw2)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MQSUBHSS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQSUBHSS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw2 __MQSUBHUS (uw2, uw2)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MQSUBHUS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQSUBHUS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MQXMACHS (acc, sw2, sw2)</code>
</td><td valign="top" width="32%"><code>__MQXMACHS (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQXMACHS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MQXMACXHS (acc, sw2, sw2)</code>
</td><td valign="top" width="32%"><code>__MQXMACXHS (</code><var>c</var><code>, </code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MQXMACXHS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MRDACC (acc)</code>
</td><td valign="top" width="32%"><var>b</var><code> = __MRDACC (</code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MRDACC </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MRDACCG (acc)</code>
</td><td valign="top" width="32%"><var>b</var><code> = __MRDACCG (</code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MRDACCG </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MROTLI (uw1, const)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MROTLI (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MROTLI </code><var>a</var><code>,#</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MROTRI (uw1, const)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MROTRI (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MROTRI </code><var>a</var><code>,#</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw1 __MSATHS (sw1, sw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MSATHS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MSATHS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MSATHU (uw1, uw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MSATHU (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MSATHU </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MSLLHI (uw1, const)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MSLLHI (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MSLLHI </code><var>a</var><code>,#</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw1 __MSRAHI (sw1, const)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MSRAHI (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MSRAHI </code><var>a</var><code>,#</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MSRLHI (uw1, const)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MSRLHI (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MSRLHI </code><var>a</var><code>,#</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MSUBACCS (acc, acc)</code>
</td><td valign="top" width="32%"><code>__MSUBACCS (</code><var>b</var><code>, </code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MSUBACCS </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>sw1 __MSUBHSS (sw1, sw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MSUBHSS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MSUBHSS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MSUBHUS (uw1, uw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MSUBHUS (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MSUBHUS </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MTRAP (void)</code>
</td><td valign="top" width="32%"><code>__MTRAP ()</code>
</td><td valign="top" width="23%"><code>MTRAP</code>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw2 __MUNPACKH (uw1)</code>
</td><td valign="top" width="32%"><var>b</var><code> = __MUNPACKH (</code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MUNPACKH </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MWCUT (uw2, uw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MWCUT (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MWCUT </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MWTACC (acc, uw1)</code>
</td><td valign="top" width="32%"><code>__MWTACC (</code><var>b</var><code>, </code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MWTACC </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>void __MWTACCG (acc, uw1)</code>
</td><td valign="top" width="32%"><code>__MWTACCG (</code><var>b</var><code>, </code><var>a</var><code>)</code>
</td><td valign="top" width="23%"><code>MWTACCG </code><var>a</var><code>,</code><var>b</var>
<br></td></tr><tr align="left"><td valign="top" width="45%"><code>uw1 __MXOR (uw1, uw1)</code>
</td><td valign="top" width="32%"><var>c</var><code> = __MXOR (</code><var>a</var><code>, </code><var>b</var><code>)</code>
</td><td valign="top" width="23%"><code>MXOR </code><var>a</var><code>,</code><var>b</var><code>,</code><var>c</var>
 <br></td></tr></table>

<div class="node">
<a name="Raw-read%2fwrite-Functions"></a>
<a name="Raw-read_002fwrite-Functions"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Other-Built_002din-Functions">Other Built-in Functions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Directly_002dmapped-Media-Functions">Directly-mapped Media Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#FR_002dV-Built_002din-Functions">FR-V Built-in Functions</a>

</div>

<h5 class="subsubsection">6.54.5.4 Raw read/write Functions</h5>

<p>This sections describes built-in functions related to read and write
instructions to access memory.  These functions generate
<code>membar</code> instructions to flush the I/O load and stores where
appropriate, as described in Fujitsu's manual described above.

     <dl>
<dt><code>unsigned char __builtin_read8 (void *</code><var>data</var><code>)</code><br><dt><code>unsigned short __builtin_read16 (void *</code><var>data</var><code>)</code><br><dt><code>unsigned long __builtin_read32 (void *</code><var>data</var><code>)</code><br><dt><code>unsigned long long __builtin_read64 (void *</code><var>data</var><code>)</code>
<br><dt><code>void __builtin_write8 (void *</code><var>data</var><code>, unsigned char </code><var>datum</var><code>)</code><br><dt><code>void __builtin_write16 (void *</code><var>data</var><code>, unsigned short </code><var>datum</var><code>)</code><br><dt><code>void __builtin_write32 (void *</code><var>data</var><code>, unsigned long </code><var>datum</var><code>)</code><br><dt><code>void __builtin_write64 (void *</code><var>data</var><code>, unsigned long long </code><var>datum</var><code>)</code><dd></dl>

<div class="node">
<a name="Other-Built-in-Functions"></a>
<a name="Other-Built_002din-Functions"></a>
<p><hr>
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Raw-read_002fwrite-Functions">Raw read/write Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#FR_002dV-Built_002din-Functions">FR-V Built-in Functions</a>

</div>

<h5 class="subsubsection">6.54.5.5 Other Built-in Functions</h5>

<p>This section describes built-in functions that are not named after
a specific FR-V instruction.

     <dl>
<dt><code>sw2 __IACCreadll (iacc </code><var>reg</var><code>)</code><dd>Return the full 64-bit value of IACC0.  The <var>reg</var> argument is reserved
for future expansion and must be 0.

     <br><dt><code>sw1 __IACCreadl (iacc </code><var>reg</var><code>)</code><dd>Return the value of IACC0H if <var>reg</var> is 0 and IACC0L if <var>reg</var> is 1. 
Other values of <var>reg</var> are rejected as invalid.

     <br><dt><code>void __IACCsetll (iacc </code><var>reg</var><code>, sw2 </code><var>x</var><code>)</code><dd>Set the full 64-bit value of IACC0 to <var>x</var>.  The <var>reg</var> argument
is reserved for future expansion and must be 0.

     <br><dt><code>void __IACCsetl (iacc </code><var>reg</var><code>, sw1 </code><var>x</var><code>)</code><dd>Set IACC0H to <var>x</var> if <var>reg</var> is 0 and IACC0L to <var>x</var> if <var>reg</var>
is 1.  Other values of <var>reg</var> are rejected as invalid.

     <br><dt><code>void __data_prefetch0 (const void *</code><var>x</var><code>)</code><dd>Use the <code>dcpl</code> instruction to load the contents of address <var>x</var>
into the data cache.

     <br><dt><code>void __data_prefetch (const void *</code><var>x</var><code>)</code><dd>Use the <code>nldub</code> instruction to load the contents of address <var>x</var>
into the data cache.  The instruction will be issued in slot I1. 
</dl>

<div class="node">
<a name="X86-Built-in-Functions"></a>
<a name="X86-Built_002din-Functions"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#MIPS-DSP-Built_002din-Functions">MIPS DSP Built-in Functions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#FR_002dV-Built_002din-Functions">FR-V Built-in Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Target-Builtins">Target Builtins</a>

</div>

<h4 class="subsection">6.54.6 X86 Built-in Functions</h4>

<p>These built-in functions are available for the i386 and x86-64 family
of computers, depending on the command-line switches used.

 <p>Note that, if you specify command-line switches such as <samp><span class="option">-msse</span></samp>,
the compiler could use the extended instruction sets even if the built-ins
are not used explicitly in the program.  For this reason, applications
which perform runtime CPU detection must compile separate files for each
supported architecture, using the appropriate flags.  In particular,
the file containing the CPU detection code should be compiled without
these options.

 <p>The following machine modes are available for use with MMX built-in functions
(see <a href="#Vector-Extensions">Vector Extensions</a>): <code>V2SI</code> for a vector of two 32-bit integers,
<code>V4HI</code> for a vector of four 16-bit integers, and <code>V8QI</code> for a
vector of eight 8-bit integers.  Some of the built-in functions operate on
MMX registers as a whole 64-bit entity, these use <code>V1DI</code> as their mode.

 <p>If 3DNow! extensions are enabled, <code>V2SF</code> is used as a mode for a vector
of two 32-bit floating point values.

 <p>If SSE extensions are enabled, <code>V4SF</code> is used for a vector of four 32-bit
floating point values.  Some instructions use a vector of four 32-bit
integers, these use <code>V4SI</code>.  Finally, some instructions operate on an
entire vector register, interpreting it as a 128-bit integer, these use mode
<code>TI</code>.

 <p>In 64-bit mode, the x86-64 family of processors uses additional built-in
functions for efficient use of <code>TF</code> (<code>__float128</code>) 128-bit
floating point and <code>TC</code> 128-bit complex floating point values.

 <p>The following floating point built-in functions are available in 64-bit
mode.  All of them implement the function that is part of the name.

<pre class="smallexample">     __float128 __builtin_fabsq (__float128)
     __float128 __builtin_copysignq (__float128, __float128)
</pre>
 <p>The following floating point built-in functions are made available in the
64-bit mode.

     <dl>
<dt><code>__float128 __builtin_infq (void)</code><dd>Similar to <code>__builtin_inf</code>, except the return type is <code>__float128</code>. 
<a name="index-g_t_005f_005fbuiltin_005finfq-3184"></a>
<br><dt><code>__float128 __builtin_huge_valq (void)</code><dd>Similar to <code>__builtin_huge_val</code>, except the return type is <code>__float128</code>. 
<a name="index-g_t_005f_005fbuiltin_005fhuge_005fvalq-3185"></a></dl>

 <p>The following built-in functions are made available by <samp><span class="option">-mmmx</span></samp>. 
All of them generate the machine instruction that is part of the name.

<pre class="smallexample">     v8qi __builtin_ia32_paddb (v8qi, v8qi)
     v4hi __builtin_ia32_paddw (v4hi, v4hi)
     v2si __builtin_ia32_paddd (v2si, v2si)
     v8qi __builtin_ia32_psubb (v8qi, v8qi)
     v4hi __builtin_ia32_psubw (v4hi, v4hi)
     v2si __builtin_ia32_psubd (v2si, v2si)
     v8qi __builtin_ia32_paddsb (v8qi, v8qi)
     v4hi __builtin_ia32_paddsw (v4hi, v4hi)
     v8qi __builtin_ia32_psubsb (v8qi, v8qi)
     v4hi __builtin_ia32_psubsw (v4hi, v4hi)
     v8qi __builtin_ia32_paddusb (v8qi, v8qi)
     v4hi __builtin_ia32_paddusw (v4hi, v4hi)
     v8qi __builtin_ia32_psubusb (v8qi, v8qi)
     v4hi __builtin_ia32_psubusw (v4hi, v4hi)
     v4hi __builtin_ia32_pmullw (v4hi, v4hi)
     v4hi __builtin_ia32_pmulhw (v4hi, v4hi)
     di __builtin_ia32_pand (di, di)
     di __builtin_ia32_pandn (di,di)
     di __builtin_ia32_por (di, di)
     di __builtin_ia32_pxor (di, di)
     v8qi __builtin_ia32_pcmpeqb (v8qi, v8qi)
     v4hi __builtin_ia32_pcmpeqw (v4hi, v4hi)
     v2si __builtin_ia32_pcmpeqd (v2si, v2si)
     v8qi __builtin_ia32_pcmpgtb (v8qi, v8qi)
     v4hi __builtin_ia32_pcmpgtw (v4hi, v4hi)
     v2si __builtin_ia32_pcmpgtd (v2si, v2si)
     v8qi __builtin_ia32_punpckhbw (v8qi, v8qi)
     v4hi __builtin_ia32_punpckhwd (v4hi, v4hi)
     v2si __builtin_ia32_punpckhdq (v2si, v2si)
     v8qi __builtin_ia32_punpcklbw (v8qi, v8qi)
     v4hi __builtin_ia32_punpcklwd (v4hi, v4hi)
     v2si __builtin_ia32_punpckldq (v2si, v2si)
     v8qi __builtin_ia32_packsswb (v4hi, v4hi)
     v4hi __builtin_ia32_packssdw (v2si, v2si)
     v8qi __builtin_ia32_packuswb (v4hi, v4hi)
     
     v4hi __builtin_ia32_psllw (v4hi, v4hi)
     v2si __builtin_ia32_pslld (v2si, v2si)
     v1di __builtin_ia32_psllq (v1di, v1di)
     v4hi __builtin_ia32_psrlw (v4hi, v4hi)
     v2si __builtin_ia32_psrld (v2si, v2si)
     v1di __builtin_ia32_psrlq (v1di, v1di)
     v4hi __builtin_ia32_psraw (v4hi, v4hi)
     v2si __builtin_ia32_psrad (v2si, v2si)
     v4hi __builtin_ia32_psllwi (v4hi, int)
     v2si __builtin_ia32_pslldi (v2si, int)
     v1di __builtin_ia32_psllqi (v1di, int)
     v4hi __builtin_ia32_psrlwi (v4hi, int)
     v2si __builtin_ia32_psrldi (v2si, int)
     v1di __builtin_ia32_psrlqi (v1di, int)
     v4hi __builtin_ia32_psrawi (v4hi, int)
     v2si __builtin_ia32_psradi (v2si, int)
     
</pre>
 <p>The following built-in functions are made available either with
<samp><span class="option">-msse</span></samp>, or with a combination of <samp><span class="option">-m3dnow</span></samp> and
<samp><span class="option">-march=athlon</span></samp>.  All of them generate the machine
instruction that is part of the name.

<pre class="smallexample">     v4hi __builtin_ia32_pmulhuw (v4hi, v4hi)
     v8qi __builtin_ia32_pavgb (v8qi, v8qi)
     v4hi __builtin_ia32_pavgw (v4hi, v4hi)
     v1di __builtin_ia32_psadbw (v8qi, v8qi)
     v8qi __builtin_ia32_pmaxub (v8qi, v8qi)
     v4hi __builtin_ia32_pmaxsw (v4hi, v4hi)
     v8qi __builtin_ia32_pminub (v8qi, v8qi)
     v4hi __builtin_ia32_pminsw (v4hi, v4hi)
     int __builtin_ia32_pextrw (v4hi, int)
     v4hi __builtin_ia32_pinsrw (v4hi, int, int)
     int __builtin_ia32_pmovmskb (v8qi)
     void __builtin_ia32_maskmovq (v8qi, v8qi, char *)
     void __builtin_ia32_movntq (di *, di)
     void __builtin_ia32_sfence (void)
</pre>
 <p>The following built-in functions are available when <samp><span class="option">-msse</span></samp> is used. 
All of them generate the machine instruction that is part of the name.

<pre class="smallexample">     int __builtin_ia32_comieq (v4sf, v4sf)
     int __builtin_ia32_comineq (v4sf, v4sf)
     int __builtin_ia32_comilt (v4sf, v4sf)
     int __builtin_ia32_comile (v4sf, v4sf)
     int __builtin_ia32_comigt (v4sf, v4sf)
     int __builtin_ia32_comige (v4sf, v4sf)
     int __builtin_ia32_ucomieq (v4sf, v4sf)
     int __builtin_ia32_ucomineq (v4sf, v4sf)
     int __builtin_ia32_ucomilt (v4sf, v4sf)
     int __builtin_ia32_ucomile (v4sf, v4sf)
     int __builtin_ia32_ucomigt (v4sf, v4sf)
     int __builtin_ia32_ucomige (v4sf, v4sf)
     v4sf __builtin_ia32_addps (v4sf, v4sf)
     v4sf __builtin_ia32_subps (v4sf, v4sf)
     v4sf __builtin_ia32_mulps (v4sf, v4sf)
     v4sf __builtin_ia32_divps (v4sf, v4sf)
     v4sf __builtin_ia32_addss (v4sf, v4sf)
     v4sf __builtin_ia32_subss (v4sf, v4sf)
     v4sf __builtin_ia32_mulss (v4sf, v4sf)
     v4sf __builtin_ia32_divss (v4sf, v4sf)
     v4si __builtin_ia32_cmpeqps (v4sf, v4sf)
     v4si __builtin_ia32_cmpltps (v4sf, v4sf)
     v4si __builtin_ia32_cmpleps (v4sf, v4sf)
     v4si __builtin_ia32_cmpgtps (v4sf, v4sf)
     v4si __builtin_ia32_cmpgeps (v4sf, v4sf)
     v4si __builtin_ia32_cmpunordps (v4sf, v4sf)
     v4si __builtin_ia32_cmpneqps (v4sf, v4sf)
     v4si __builtin_ia32_cmpnltps (v4sf, v4sf)
     v4si __builtin_ia32_cmpnleps (v4sf, v4sf)
     v4si __builtin_ia32_cmpngtps (v4sf, v4sf)
     v4si __builtin_ia32_cmpngeps (v4sf, v4sf)
     v4si __builtin_ia32_cmpordps (v4sf, v4sf)
     v4si __builtin_ia32_cmpeqss (v4sf, v4sf)
     v4si __builtin_ia32_cmpltss (v4sf, v4sf)
     v4si __builtin_ia32_cmpless (v4sf, v4sf)
     v4si __builtin_ia32_cmpunordss (v4sf, v4sf)
     v4si __builtin_ia32_cmpneqss (v4sf, v4sf)
     v4si __builtin_ia32_cmpnlts (v4sf, v4sf)
     v4si __builtin_ia32_cmpnless (v4sf, v4sf)
     v4si __builtin_ia32_cmpordss (v4sf, v4sf)
     v4sf __builtin_ia32_maxps (v4sf, v4sf)
     v4sf __builtin_ia32_maxss (v4sf, v4sf)
     v4sf __builtin_ia32_minps (v4sf, v4sf)
     v4sf __builtin_ia32_minss (v4sf, v4sf)
     v4sf __builtin_ia32_andps (v4sf, v4sf)
     v4sf __builtin_ia32_andnps (v4sf, v4sf)
     v4sf __builtin_ia32_orps (v4sf, v4sf)
     v4sf __builtin_ia32_xorps (v4sf, v4sf)
     v4sf __builtin_ia32_movss (v4sf, v4sf)
     v4sf __builtin_ia32_movhlps (v4sf, v4sf)
     v4sf __builtin_ia32_movlhps (v4sf, v4sf)
     v4sf __builtin_ia32_unpckhps (v4sf, v4sf)
     v4sf __builtin_ia32_unpcklps (v4sf, v4sf)
     v4sf __builtin_ia32_cvtpi2ps (v4sf, v2si)
     v4sf __builtin_ia32_cvtsi2ss (v4sf, int)
     v2si __builtin_ia32_cvtps2pi (v4sf)
     int __builtin_ia32_cvtss2si (v4sf)
     v2si __builtin_ia32_cvttps2pi (v4sf)
     int __builtin_ia32_cvttss2si (v4sf)
     v4sf __builtin_ia32_rcpps (v4sf)
     v4sf __builtin_ia32_rsqrtps (v4sf)
     v4sf __builtin_ia32_sqrtps (v4sf)
     v4sf __builtin_ia32_rcpss (v4sf)
     v4sf __builtin_ia32_rsqrtss (v4sf)
     v4sf __builtin_ia32_sqrtss (v4sf)
     v4sf __builtin_ia32_shufps (v4sf, v4sf, int)
     void __builtin_ia32_movntps (float *, v4sf)
     int __builtin_ia32_movmskps (v4sf)
</pre>
 <p>The following built-in functions are available when <samp><span class="option">-msse</span></samp> is used.

     <dl>
<dt><code>v4sf __builtin_ia32_loadaps (float *)</code><dd>Generates the <code>movaps</code> machine instruction as a load from memory. 
<br><dt><code>void __builtin_ia32_storeaps (float *, v4sf)</code><dd>Generates the <code>movaps</code> machine instruction as a store to memory. 
<br><dt><code>v4sf __builtin_ia32_loadups (float *)</code><dd>Generates the <code>movups</code> machine instruction as a load from memory. 
<br><dt><code>void __builtin_ia32_storeups (float *, v4sf)</code><dd>Generates the <code>movups</code> machine instruction as a store to memory. 
<br><dt><code>v4sf __builtin_ia32_loadsss (float *)</code><dd>Generates the <code>movss</code> machine instruction as a load from memory. 
<br><dt><code>void __builtin_ia32_storess (float *, v4sf)</code><dd>Generates the <code>movss</code> machine instruction as a store to memory. 
<br><dt><code>v4sf __builtin_ia32_loadhps (v4sf, const v2sf *)</code><dd>Generates the <code>movhps</code> machine instruction as a load from memory. 
<br><dt><code>v4sf __builtin_ia32_loadlps (v4sf, const v2sf *)</code><dd>Generates the <code>movlps</code> machine instruction as a load from memory
<br><dt><code>void __builtin_ia32_storehps (v2sf *, v4sf)</code><dd>Generates the <code>movhps</code> machine instruction as a store to memory. 
<br><dt><code>void __builtin_ia32_storelps (v2sf *, v4sf)</code><dd>Generates the <code>movlps</code> machine instruction as a store to memory. 
</dl>

 <p>The following built-in functions are available when <samp><span class="option">-msse2</span></samp> is used. 
All of them generate the machine instruction that is part of the name.

<pre class="smallexample">     int __builtin_ia32_comisdeq (v2df, v2df)
     int __builtin_ia32_comisdlt (v2df, v2df)
     int __builtin_ia32_comisdle (v2df, v2df)
     int __builtin_ia32_comisdgt (v2df, v2df)
     int __builtin_ia32_comisdge (v2df, v2df)
     int __builtin_ia32_comisdneq (v2df, v2df)
     int __builtin_ia32_ucomisdeq (v2df, v2df)
     int __builtin_ia32_ucomisdlt (v2df, v2df)
     int __builtin_ia32_ucomisdle (v2df, v2df)
     int __builtin_ia32_ucomisdgt (v2df, v2df)
     int __builtin_ia32_ucomisdge (v2df, v2df)
     int __builtin_ia32_ucomisdneq (v2df, v2df)
     v2df __builtin_ia32_cmpeqpd (v2df, v2df)
     v2df __builtin_ia32_cmpltpd (v2df, v2df)
     v2df __builtin_ia32_cmplepd (v2df, v2df)
     v2df __builtin_ia32_cmpgtpd (v2df, v2df)
     v2df __builtin_ia32_cmpgepd (v2df, v2df)
     v2df __builtin_ia32_cmpunordpd (v2df, v2df)
     v2df __builtin_ia32_cmpneqpd (v2df, v2df)
     v2df __builtin_ia32_cmpnltpd (v2df, v2df)
     v2df __builtin_ia32_cmpnlepd (v2df, v2df)
     v2df __builtin_ia32_cmpngtpd (v2df, v2df)
     v2df __builtin_ia32_cmpngepd (v2df, v2df)
     v2df __builtin_ia32_cmpordpd (v2df, v2df)
     v2df __builtin_ia32_cmpeqsd (v2df, v2df)
     v2df __builtin_ia32_cmpltsd (v2df, v2df)
     v2df __builtin_ia32_cmplesd (v2df, v2df)
     v2df __builtin_ia32_cmpunordsd (v2df, v2df)
     v2df __builtin_ia32_cmpneqsd (v2df, v2df)
     v2df __builtin_ia32_cmpnltsd (v2df, v2df)
     v2df __builtin_ia32_cmpnlesd (v2df, v2df)
     v2df __builtin_ia32_cmpordsd (v2df, v2df)
     v2di __builtin_ia32_paddq (v2di, v2di)
     v2di __builtin_ia32_psubq (v2di, v2di)
     v2df __builtin_ia32_addpd (v2df, v2df)
     v2df __builtin_ia32_subpd (v2df, v2df)
     v2df __builtin_ia32_mulpd (v2df, v2df)
     v2df __builtin_ia32_divpd (v2df, v2df)
     v2df __builtin_ia32_addsd (v2df, v2df)
     v2df __builtin_ia32_subsd (v2df, v2df)
     v2df __builtin_ia32_mulsd (v2df, v2df)
     v2df __builtin_ia32_divsd (v2df, v2df)
     v2df __builtin_ia32_minpd (v2df, v2df)
     v2df __builtin_ia32_maxpd (v2df, v2df)
     v2df __builtin_ia32_minsd (v2df, v2df)
     v2df __builtin_ia32_maxsd (v2df, v2df)
     v2df __builtin_ia32_andpd (v2df, v2df)
     v2df __builtin_ia32_andnpd (v2df, v2df)
     v2df __builtin_ia32_orpd (v2df, v2df)
     v2df __builtin_ia32_xorpd (v2df, v2df)
     v2df __builtin_ia32_movsd (v2df, v2df)
     v2df __builtin_ia32_unpckhpd (v2df, v2df)
     v2df __builtin_ia32_unpcklpd (v2df, v2df)
     v16qi __builtin_ia32_paddb128 (v16qi, v16qi)
     v8hi __builtin_ia32_paddw128 (v8hi, v8hi)
     v4si __builtin_ia32_paddd128 (v4si, v4si)
     v2di __builtin_ia32_paddq128 (v2di, v2di)
     v16qi __builtin_ia32_psubb128 (v16qi, v16qi)
     v8hi __builtin_ia32_psubw128 (v8hi, v8hi)
     v4si __builtin_ia32_psubd128 (v4si, v4si)
     v2di __builtin_ia32_psubq128 (v2di, v2di)
     v8hi __builtin_ia32_pmullw128 (v8hi, v8hi)
     v8hi __builtin_ia32_pmulhw128 (v8hi, v8hi)
     v2di __builtin_ia32_pand128 (v2di, v2di)
     v2di __builtin_ia32_pandn128 (v2di, v2di)
     v2di __builtin_ia32_por128 (v2di, v2di)
     v2di __builtin_ia32_pxor128 (v2di, v2di)
     v16qi __builtin_ia32_pavgb128 (v16qi, v16qi)
     v8hi __builtin_ia32_pavgw128 (v8hi, v8hi)
     v16qi __builtin_ia32_pcmpeqb128 (v16qi, v16qi)
     v8hi __builtin_ia32_pcmpeqw128 (v8hi, v8hi)
     v4si __builtin_ia32_pcmpeqd128 (v4si, v4si)
     v16qi __builtin_ia32_pcmpgtb128 (v16qi, v16qi)
     v8hi __builtin_ia32_pcmpgtw128 (v8hi, v8hi)
     v4si __builtin_ia32_pcmpgtd128 (v4si, v4si)
     v16qi __builtin_ia32_pmaxub128 (v16qi, v16qi)
     v8hi __builtin_ia32_pmaxsw128 (v8hi, v8hi)
     v16qi __builtin_ia32_pminub128 (v16qi, v16qi)
     v8hi __builtin_ia32_pminsw128 (v8hi, v8hi)
     v16qi __builtin_ia32_punpckhbw128 (v16qi, v16qi)
     v8hi __builtin_ia32_punpckhwd128 (v8hi, v8hi)
     v4si __builtin_ia32_punpckhdq128 (v4si, v4si)
     v2di __builtin_ia32_punpckhqdq128 (v2di, v2di)
     v16qi __builtin_ia32_punpcklbw128 (v16qi, v16qi)
     v8hi __builtin_ia32_punpcklwd128 (v8hi, v8hi)
     v4si __builtin_ia32_punpckldq128 (v4si, v4si)
     v2di __builtin_ia32_punpcklqdq128 (v2di, v2di)
     v16qi __builtin_ia32_packsswb128 (v8hi, v8hi)
     v8hi __builtin_ia32_packssdw128 (v4si, v4si)
     v16qi __builtin_ia32_packuswb128 (v8hi, v8hi)
     v8hi __builtin_ia32_pmulhuw128 (v8hi, v8hi)
     void __builtin_ia32_maskmovdqu (v16qi, v16qi)
     v2df __builtin_ia32_loadupd (double *)
     void __builtin_ia32_storeupd (double *, v2df)
     v2df __builtin_ia32_loadhpd (v2df, double const *)
     v2df __builtin_ia32_loadlpd (v2df, double const *)
     int __builtin_ia32_movmskpd (v2df)
     int __builtin_ia32_pmovmskb128 (v16qi)
     void __builtin_ia32_movnti (int *, int)
     void __builtin_ia32_movntpd (double *, v2df)
     void __builtin_ia32_movntdq (v2df *, v2df)
     v4si __builtin_ia32_pshufd (v4si, int)
     v8hi __builtin_ia32_pshuflw (v8hi, int)
     v8hi __builtin_ia32_pshufhw (v8hi, int)
     v2di __builtin_ia32_psadbw128 (v16qi, v16qi)
     v2df __builtin_ia32_sqrtpd (v2df)
     v2df __builtin_ia32_sqrtsd (v2df)
     v2df __builtin_ia32_shufpd (v2df, v2df, int)
     v2df __builtin_ia32_cvtdq2pd (v4si)
     v4sf __builtin_ia32_cvtdq2ps (v4si)
     v4si __builtin_ia32_cvtpd2dq (v2df)
     v2si __builtin_ia32_cvtpd2pi (v2df)
     v4sf __builtin_ia32_cvtpd2ps (v2df)
     v4si __builtin_ia32_cvttpd2dq (v2df)
     v2si __builtin_ia32_cvttpd2pi (v2df)
     v2df __builtin_ia32_cvtpi2pd (v2si)
     int __builtin_ia32_cvtsd2si (v2df)
     int __builtin_ia32_cvttsd2si (v2df)
     long long __builtin_ia32_cvtsd2si64 (v2df)
     long long __builtin_ia32_cvttsd2si64 (v2df)
     v4si __builtin_ia32_cvtps2dq (v4sf)
     v2df __builtin_ia32_cvtps2pd (v4sf)
     v4si __builtin_ia32_cvttps2dq (v4sf)
     v2df __builtin_ia32_cvtsi2sd (v2df, int)
     v2df __builtin_ia32_cvtsi642sd (v2df, long long)
     v4sf __builtin_ia32_cvtsd2ss (v4sf, v2df)
     v2df __builtin_ia32_cvtss2sd (v2df, v4sf)
     void __builtin_ia32_clflush (const void *)
     void __builtin_ia32_lfence (void)
     void __builtin_ia32_mfence (void)
     v16qi __builtin_ia32_loaddqu (const char *)
     void __builtin_ia32_storedqu (char *, v16qi)
     v1di __builtin_ia32_pmuludq (v2si, v2si)
     v2di __builtin_ia32_pmuludq128 (v4si, v4si)
     v8hi __builtin_ia32_psllw128 (v8hi, v8hi)
     v4si __builtin_ia32_pslld128 (v4si, v4si)
     v2di __builtin_ia32_psllq128 (v2di, v2di)
     v8hi __builtin_ia32_psrlw128 (v8hi, v8hi)
     v4si __builtin_ia32_psrld128 (v4si, v4si)
     v2di __builtin_ia32_psrlq128 (v2di, v2di)
     v8hi __builtin_ia32_psraw128 (v8hi, v8hi)
     v4si __builtin_ia32_psrad128 (v4si, v4si)
     v2di __builtin_ia32_pslldqi128 (v2di, int)
     v8hi __builtin_ia32_psllwi128 (v8hi, int)
     v4si __builtin_ia32_pslldi128 (v4si, int)
     v2di __builtin_ia32_psllqi128 (v2di, int)
     v2di __builtin_ia32_psrldqi128 (v2di, int)
     v8hi __builtin_ia32_psrlwi128 (v8hi, int)
     v4si __builtin_ia32_psrldi128 (v4si, int)
     v2di __builtin_ia32_psrlqi128 (v2di, int)
     v8hi __builtin_ia32_psrawi128 (v8hi, int)
     v4si __builtin_ia32_psradi128 (v4si, int)
     v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi)
     v2di __builtin_ia32_movq128 (v2di)
</pre>
 <p>The following built-in functions are available when <samp><span class="option">-msse3</span></samp> is used. 
All of them generate the machine instruction that is part of the name.

<pre class="smallexample">     v2df __builtin_ia32_addsubpd (v2df, v2df)
     v4sf __builtin_ia32_addsubps (v4sf, v4sf)
     v2df __builtin_ia32_haddpd (v2df, v2df)
     v4sf __builtin_ia32_haddps (v4sf, v4sf)
     v2df __builtin_ia32_hsubpd (v2df, v2df)
     v4sf __builtin_ia32_hsubps (v4sf, v4sf)
     v16qi __builtin_ia32_lddqu (char const *)
     void __builtin_ia32_monitor (void *, unsigned int, unsigned int)
     v2df __builtin_ia32_movddup (v2df)
     v4sf __builtin_ia32_movshdup (v4sf)
     v4sf __builtin_ia32_movsldup (v4sf)
     void __builtin_ia32_mwait (unsigned int, unsigned int)
</pre>
 <p>The following built-in functions are available when <samp><span class="option">-msse3</span></samp> is used.

     <dl>
<dt><code>v2df __builtin_ia32_loadddup (double const *)</code><dd>Generates the <code>movddup</code> machine instruction as a load from memory. 
</dl>

 <p>The following built-in functions are available when <samp><span class="option">-mssse3</span></samp> is used. 
All of them generate the machine instruction that is part of the name
with MMX registers.

<pre class="smallexample">     v2si __builtin_ia32_phaddd (v2si, v2si)
     v4hi __builtin_ia32_phaddw (v4hi, v4hi)
     v4hi __builtin_ia32_phaddsw (v4hi, v4hi)
     v2si __builtin_ia32_phsubd (v2si, v2si)
     v4hi __builtin_ia32_phsubw (v4hi, v4hi)
     v4hi __builtin_ia32_phsubsw (v4hi, v4hi)
     v4hi __builtin_ia32_pmaddubsw (v8qi, v8qi)
     v4hi __builtin_ia32_pmulhrsw (v4hi, v4hi)
     v8qi __builtin_ia32_pshufb (v8qi, v8qi)
     v8qi __builtin_ia32_psignb (v8qi, v8qi)
     v2si __builtin_ia32_psignd (v2si, v2si)
     v4hi __builtin_ia32_psignw (v4hi, v4hi)
     v1di __builtin_ia32_palignr (v1di, v1di, int)
     v8qi __builtin_ia32_pabsb (v8qi)
     v2si __builtin_ia32_pabsd (v2si)
     v4hi __builtin_ia32_pabsw (v4hi)
</pre>
 <p>The following built-in functions are available when <samp><span class="option">-mssse3</span></samp> is used. 
All of them generate the machine instruction that is part of the name
with SSE registers.

<pre class="smallexample">     v4si __builtin_ia32_phaddd128 (v4si, v4si)
     v8hi __builtin_ia32_phaddw128 (v8hi, v8hi)
     v8hi __builtin_ia32_phaddsw128 (v8hi, v8hi)
     v4si __builtin_ia32_phsubd128 (v4si, v4si)
     v8hi __builtin_ia32_phsubw128 (v8hi, v8hi)
     v8hi __builtin_ia32_phsubsw128 (v8hi, v8hi)
     v8hi __builtin_ia32_pmaddubsw128 (v16qi, v16qi)
     v8hi __builtin_ia32_pmulhrsw128 (v8hi, v8hi)
     v16qi __builtin_ia32_pshufb128 (v16qi, v16qi)
     v16qi __builtin_ia32_psignb128 (v16qi, v16qi)
     v4si __builtin_ia32_psignd128 (v4si, v4si)
     v8hi __builtin_ia32_psignw128 (v8hi, v8hi)
     v2di __builtin_ia32_palignr128 (v2di, v2di, int)
     v16qi __builtin_ia32_pabsb128 (v16qi)
     v4si __builtin_ia32_pabsd128 (v4si)
     v8hi __builtin_ia32_pabsw128 (v8hi)
</pre>
 <p>The following built-in functions are available when <samp><span class="option">-msse4.1</span></samp> is
used.  All of them generate the machine instruction that is part of the
name.

<pre class="smallexample">     v2df __builtin_ia32_blendpd (v2df, v2df, const int)
     v4sf __builtin_ia32_blendps (v4sf, v4sf, const int)
     v2df __builtin_ia32_blendvpd (v2df, v2df, v2df)
     v4sf __builtin_ia32_blendvps (v4sf, v4sf, v4sf)
     v2df __builtin_ia32_dppd (v2df, v2df, const int)
     v4sf __builtin_ia32_dpps (v4sf, v4sf, const int)
     v4sf __builtin_ia32_insertps128 (v4sf, v4sf, const int)
     v2di __builtin_ia32_movntdqa (v2di *);
     v16qi __builtin_ia32_mpsadbw128 (v16qi, v16qi, const int)
     v8hi __builtin_ia32_packusdw128 (v4si, v4si)
     v16qi __builtin_ia32_pblendvb128 (v16qi, v16qi, v16qi)
     v8hi __builtin_ia32_pblendw128 (v8hi, v8hi, const int)
     v2di __builtin_ia32_pcmpeqq (v2di, v2di)
     v8hi __builtin_ia32_phminposuw128 (v8hi)
     v16qi __builtin_ia32_pmaxsb128 (v16qi, v16qi)
     v4si __builtin_ia32_pmaxsd128 (v4si, v4si)
     v4si __builtin_ia32_pmaxud128 (v4si, v4si)
     v8hi __builtin_ia32_pmaxuw128 (v8hi, v8hi)
     v16qi __builtin_ia32_pminsb128 (v16qi, v16qi)
     v4si __builtin_ia32_pminsd128 (v4si, v4si)
     v4si __builtin_ia32_pminud128 (v4si, v4si)
     v8hi __builtin_ia32_pminuw128 (v8hi, v8hi)
     v4si __builtin_ia32_pmovsxbd128 (v16qi)
     v2di __builtin_ia32_pmovsxbq128 (v16qi)
     v8hi __builtin_ia32_pmovsxbw128 (v16qi)
     v2di __builtin_ia32_pmovsxdq128 (v4si)
     v4si __builtin_ia32_pmovsxwd128 (v8hi)
     v2di __builtin_ia32_pmovsxwq128 (v8hi)
     v4si __builtin_ia32_pmovzxbd128 (v16qi)
     v2di __builtin_ia32_pmovzxbq128 (v16qi)
     v8hi __builtin_ia32_pmovzxbw128 (v16qi)
     v2di __builtin_ia32_pmovzxdq128 (v4si)
     v4si __builtin_ia32_pmovzxwd128 (v8hi)
     v2di __builtin_ia32_pmovzxwq128 (v8hi)
     v2di __builtin_ia32_pmuldq128 (v4si, v4si)
     v4si __builtin_ia32_pmulld128 (v4si, v4si)
     int __builtin_ia32_ptestc128 (v2di, v2di)
     int __builtin_ia32_ptestnzc128 (v2di, v2di)
     int __builtin_ia32_ptestz128 (v2di, v2di)
     v2df __builtin_ia32_roundpd (v2df, const int)
     v4sf __builtin_ia32_roundps (v4sf, const int)
     v2df __builtin_ia32_roundsd (v2df, v2df, const int)
     v4sf __builtin_ia32_roundss (v4sf, v4sf, const int)
</pre>
 <p>The following built-in functions are available when <samp><span class="option">-msse4.1</span></samp> is
used.

     <dl>
<dt><code>v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)</code><dd>Generates the <code>insertps</code> machine instruction. 
<br><dt><code>int __builtin_ia32_vec_ext_v16qi (v16qi, const int)</code><dd>Generates the <code>pextrb</code> machine instruction. 
<br><dt><code>v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)</code><dd>Generates the <code>pinsrb</code> machine instruction. 
<br><dt><code>v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)</code><dd>Generates the <code>pinsrd</code> machine instruction. 
<br><dt><code>v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)</code><dd>Generates the <code>pinsrq</code> machine instruction in 64bit mode. 
</dl>

 <p>The following built-in functions are changed to generate new SSE4.1
instructions when <samp><span class="option">-msse4.1</span></samp> is used.

     <dl>
<dt><code>float __builtin_ia32_vec_ext_v4sf (v4sf, const int)</code><dd>Generates the <code>extractps</code> machine instruction. 
<br><dt><code>int __builtin_ia32_vec_ext_v4si (v4si, const int)</code><dd>Generates the <code>pextrd</code> machine instruction. 
<br><dt><code>long long __builtin_ia32_vec_ext_v2di (v2di, const int)</code><dd>Generates the <code>pextrq</code> machine instruction in 64bit mode. 
</dl>

 <p>The following built-in functions are available when <samp><span class="option">-msse4.2</span></samp> is
used.  All of them generate the machine instruction that is part of the
name.

<pre class="smallexample">     v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int)
     int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int)
     int __builtin_ia32_pcmpestria128 (v16qi, int, v16qi, int, const int)
     int __builtin_ia32_pcmpestric128 (v16qi, int, v16qi, int, const int)
     int __builtin_ia32_pcmpestrio128 (v16qi, int, v16qi, int, const int)
     int __builtin_ia32_pcmpestris128 (v16qi, int, v16qi, int, const int)
     int __builtin_ia32_pcmpestriz128 (v16qi, int, v16qi, int, const int)
     v16qi __builtin_ia32_pcmpistrm128 (v16qi, v16qi, const int)
     int __builtin_ia32_pcmpistri128 (v16qi, v16qi, const int)
     int __builtin_ia32_pcmpistria128 (v16qi, v16qi, const int)
     int __builtin_ia32_pcmpistric128 (v16qi, v16qi, const int)
     int __builtin_ia32_pcmpistrio128 (v16qi, v16qi, const int)
     int __builtin_ia32_pcmpistris128 (v16qi, v16qi, const int)
     int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int)
     v2di __builtin_ia32_pcmpgtq (v2di, v2di)
</pre>
 <p>The following built-in functions are available when <samp><span class="option">-msse4.2</span></samp> is
used.

     <dl>
<dt><code>unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)</code><dd>Generates the <code>crc32b</code> machine instruction. 
<br><dt><code>unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)</code><dd>Generates the <code>crc32w</code> machine instruction. 
<br><dt><code>unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)</code><dd>Generates the <code>crc32l</code> machine instruction. 
<br><dt><code>unsigned long long __builtin_ia32_crc32di (unsigned long long, unsigned long long)</code><dd>Generates the <code>crc32q</code> machine instruction. 
</dl>

 <p>The following built-in functions are changed to generate new SSE4.2
instructions when <samp><span class="option">-msse4.2</span></samp> is used.

     <dl>
<dt><code>int __builtin_popcount (unsigned int)</code><dd>Generates the <code>popcntl</code> machine instruction. 
<br><dt><code>int __builtin_popcountl (unsigned long)</code><dd>Generates the <code>popcntl</code> or <code>popcntq</code> machine instruction,
depending on the size of <code>unsigned long</code>. 
<br><dt><code>int __builtin_popcountll (unsigned long long)</code><dd>Generates the <code>popcntq</code> machine instruction. 
</dl>

 <p>The following built-in functions are available when <samp><span class="option">-mavx</span></samp> is
used. All of them generate the machine instruction that is part of the
name.

<pre class="smallexample">     v4df __builtin_ia32_addpd256 (v4df,v4df)
     v8sf __builtin_ia32_addps256 (v8sf,v8sf)
     v4df __builtin_ia32_addsubpd256 (v4df,v4df)
     v8sf __builtin_ia32_addsubps256 (v8sf,v8sf)
     v4df __builtin_ia32_andnpd256 (v4df,v4df)
     v8sf __builtin_ia32_andnps256 (v8sf,v8sf)
     v4df __builtin_ia32_andpd256 (v4df,v4df)
     v8sf __builtin_ia32_andps256 (v8sf,v8sf)
     v4df __builtin_ia32_blendpd256 (v4df,v4df,int)
     v8sf __builtin_ia32_blendps256 (v8sf,v8sf,int)
     v4df __builtin_ia32_blendvpd256 (v4df,v4df,v4df)
     v8sf __builtin_ia32_blendvps256 (v8sf,v8sf,v8sf)
     v2df __builtin_ia32_cmppd (v2df,v2df,int)
     v4df __builtin_ia32_cmppd256 (v4df,v4df,int)
     v4sf __builtin_ia32_cmpps (v4sf,v4sf,int)
     v8sf __builtin_ia32_cmpps256 (v8sf,v8sf,int)
     v2df __builtin_ia32_cmpsd (v2df,v2df,int)
     v4sf __builtin_ia32_cmpss (v4sf,v4sf,int)
     v4df __builtin_ia32_cvtdq2pd256 (v4si)
     v8sf __builtin_ia32_cvtdq2ps256 (v8si)
     v4si __builtin_ia32_cvtpd2dq256 (v4df)
     v4sf __builtin_ia32_cvtpd2ps256 (v4df)
     v8si __builtin_ia32_cvtps2dq256 (v8sf)
     v4df __builtin_ia32_cvtps2pd256 (v4sf)
     v4si __builtin_ia32_cvttpd2dq256 (v4df)
     v8si __builtin_ia32_cvttps2dq256 (v8sf)
     v4df __builtin_ia32_divpd256 (v4df,v4df)
     v8sf __builtin_ia32_divps256 (v8sf,v8sf)
     v8sf __builtin_ia32_dpps256 (v8sf,v8sf,int)
     v4df __builtin_ia32_haddpd256 (v4df,v4df)
     v8sf __builtin_ia32_haddps256 (v8sf,v8sf)
     v4df __builtin_ia32_hsubpd256 (v4df,v4df)
     v8sf __builtin_ia32_hsubps256 (v8sf,v8sf)
     v32qi __builtin_ia32_lddqu256 (pcchar)
     v32qi __builtin_ia32_loaddqu256 (pcchar)
     v4df __builtin_ia32_loadupd256 (pcdouble)
     v8sf __builtin_ia32_loadups256 (pcfloat)
     v2df __builtin_ia32_maskloadpd (pcv2df,v2df)
     v4df __builtin_ia32_maskloadpd256 (pcv4df,v4df)
     v4sf __builtin_ia32_maskloadps (pcv4sf,v4sf)
     v8sf __builtin_ia32_maskloadps256 (pcv8sf,v8sf)
     void __builtin_ia32_maskstorepd (pv2df,v2df,v2df)
     void __builtin_ia32_maskstorepd256 (pv4df,v4df,v4df)
     void __builtin_ia32_maskstoreps (pv4sf,v4sf,v4sf)
     void __builtin_ia32_maskstoreps256 (pv8sf,v8sf,v8sf)
     v4df __builtin_ia32_maxpd256 (v4df,v4df)
     v8sf __builtin_ia32_maxps256 (v8sf,v8sf)
     v4df __builtin_ia32_minpd256 (v4df,v4df)
     v8sf __builtin_ia32_minps256 (v8sf,v8sf)
     v4df __builtin_ia32_movddup256 (v4df)
     int __builtin_ia32_movmskpd256 (v4df)
     int __builtin_ia32_movmskps256 (v8sf)
     v8sf __builtin_ia32_movshdup256 (v8sf)
     v8sf __builtin_ia32_movsldup256 (v8sf)
     v4df __builtin_ia32_mulpd256 (v4df,v4df)
     v8sf __builtin_ia32_mulps256 (v8sf,v8sf)
     v4df __builtin_ia32_orpd256 (v4df,v4df)
     v8sf __builtin_ia32_orps256 (v8sf,v8sf)
     v2df __builtin_ia32_pd_pd256 (v4df)
     v4df __builtin_ia32_pd256_pd (v2df)
     v4sf __builtin_ia32_ps_ps256 (v8sf)
     v8sf __builtin_ia32_ps256_ps (v4sf)
     int __builtin_ia32_ptestc256 (v4di,v4di,ptest)
     int __builtin_ia32_ptestnzc256 (v4di,v4di,ptest)
     int __builtin_ia32_ptestz256 (v4di,v4di,ptest)
     v8sf __builtin_ia32_rcpps256 (v8sf)
     v4df __builtin_ia32_roundpd256 (v4df,int)
     v8sf __builtin_ia32_roundps256 (v8sf,int)
     v8sf __builtin_ia32_rsqrtps_nr256 (v8sf)
     v8sf __builtin_ia32_rsqrtps256 (v8sf)
     v4df __builtin_ia32_shufpd256 (v4df,v4df,int)
     v8sf __builtin_ia32_shufps256 (v8sf,v8sf,int)
     v4si __builtin_ia32_si_si256 (v8si)
     v8si __builtin_ia32_si256_si (v4si)
     v4df __builtin_ia32_sqrtpd256 (v4df)
     v8sf __builtin_ia32_sqrtps_nr256 (v8sf)
     v8sf __builtin_ia32_sqrtps256 (v8sf)
     void __builtin_ia32_storedqu256 (pchar,v32qi)
     void __builtin_ia32_storeupd256 (pdouble,v4df)
     void __builtin_ia32_storeups256 (pfloat,v8sf)
     v4df __builtin_ia32_subpd256 (v4df,v4df)
     v8sf __builtin_ia32_subps256 (v8sf,v8sf)
     v4df __builtin_ia32_unpckhpd256 (v4df,v4df)
     v8sf __builtin_ia32_unpckhps256 (v8sf,v8sf)
     v4df __builtin_ia32_unpcklpd256 (v4df,v4df)
     v8sf __builtin_ia32_unpcklps256 (v8sf,v8sf)
     v4df __builtin_ia32_vbroadcastf128_pd256 (pcv2df)
     v8sf __builtin_ia32_vbroadcastf128_ps256 (pcv4sf)
     v4df __builtin_ia32_vbroadcastsd256 (pcdouble)
     v4sf __builtin_ia32_vbroadcastss (pcfloat)
     v8sf __builtin_ia32_vbroadcastss256 (pcfloat)
     v2df __builtin_ia32_vextractf128_pd256 (v4df,int)
     v4sf __builtin_ia32_vextractf128_ps256 (v8sf,int)
     v4si __builtin_ia32_vextractf128_si256 (v8si,int)
     v4df __builtin_ia32_vinsertf128_pd256 (v4df,v2df,int)
     v8sf __builtin_ia32_vinsertf128_ps256 (v8sf,v4sf,int)
     v8si __builtin_ia32_vinsertf128_si256 (v8si,v4si,int)
     v4df __builtin_ia32_vperm2f128_pd256 (v4df,v4df,int)
     v8sf __builtin_ia32_vperm2f128_ps256 (v8sf,v8sf,int)
     v8si __builtin_ia32_vperm2f128_si256 (v8si,v8si,int)
     v2df __builtin_ia32_vpermil2pd (v2df,v2df,v2di,int)
     v4df __builtin_ia32_vpermil2pd256 (v4df,v4df,v4di,int)
     v4sf __builtin_ia32_vpermil2ps (v4sf,v4sf,v4si,int)
     v8sf __builtin_ia32_vpermil2ps256 (v8sf,v8sf,v8si,int)
     v2df __builtin_ia32_vpermilpd (v2df,int)
     v4df __builtin_ia32_vpermilpd256 (v4df,int)
     v4sf __builtin_ia32_vpermilps (v4sf,int)
     v8sf __builtin_ia32_vpermilps256 (v8sf,int)
     v2df __builtin_ia32_vpermilvarpd (v2df,v2di)
     v4df __builtin_ia32_vpermilvarpd256 (v4df,v4di)
     v4sf __builtin_ia32_vpermilvarps (v4sf,v4si)
     v8sf __builtin_ia32_vpermilvarps256 (v8sf,v8si)
     int __builtin_ia32_vtestcpd (v2df,v2df,ptest)
     int __builtin_ia32_vtestcpd256 (v4df,v4df,ptest)
     int __builtin_ia32_vtestcps (v4sf,v4sf,ptest)
     int __builtin_ia32_vtestcps256 (v8sf,v8sf,ptest)
     int __builtin_ia32_vtestnzcpd (v2df,v2df,ptest)
     int __builtin_ia32_vtestnzcpd256 (v4df,v4df,ptest)
     int __builtin_ia32_vtestnzcps (v4sf,v4sf,ptest)
     int __builtin_ia32_vtestnzcps256 (v8sf,v8sf,ptest)
     int __builtin_ia32_vtestzpd (v2df,v2df,ptest)
     int __builtin_ia32_vtestzpd256 (v4df,v4df,ptest)
     int __builtin_ia32_vtestzps (v4sf,v4sf,ptest)
     int __builtin_ia32_vtestzps256 (v8sf,v8sf,ptest)
     void __builtin_ia32_vzeroall (void)
     void __builtin_ia32_vzeroupper (void)
     v4df __builtin_ia32_xorpd256 (v4df,v4df)
     v8sf __builtin_ia32_xorps256 (v8sf,v8sf)
</pre>
 <p>The following built-in functions are available when <samp><span class="option">-maes</span></samp> is
used.  All of them generate the machine instruction that is part of the
name.

<pre class="smallexample">     v2di __builtin_ia32_aesenc128 (v2di, v2di)
     v2di __builtin_ia32_aesenclast128 (v2di, v2di)
     v2di __builtin_ia32_aesdec128 (v2di, v2di)
     v2di __builtin_ia32_aesdeclast128 (v2di, v2di)
     v2di __builtin_ia32_aeskeygenassist128 (v2di, const int)
     v2di __builtin_ia32_aesimc128 (v2di)
</pre>
 <p>The following built-in function is available when <samp><span class="option">-mpclmul</span></samp> is
used.

     <dl>
<dt><code>v2di __builtin_ia32_pclmulqdq128 (v2di, v2di, const int)</code><dd>Generates the <code>pclmulqdq</code> machine instruction. 
</dl>

 <p>The following built-in function is available when <samp><span class="option">-mfsgsbase</span></samp> is
used.  All of them generate the machine instruction that is part of the
name.

<pre class="smallexample">     unsigned int __builtin_ia32_rdfsbase32 (void)
     unsigned long long __builtin_ia32_rdfsbase64 (void)
     unsigned int __builtin_ia32_rdgsbase32 (void)
     unsigned long long __builtin_ia32_rdgsbase64 (void)
     void _writefsbase_u32 (unsigned int)
     void _writefsbase_u64 (unsigned long long)
     void _writegsbase_u32 (unsigned int)
     void _writegsbase_u64 (unsigned long long)
</pre>
 <p>The following built-in function is available when <samp><span class="option">-mrdrnd</span></samp> is
used.  All of them generate the machine instruction that is part of the
name.

<pre class="smallexample">     unsigned int __builtin_ia32_rdrand16_step (unsigned short *)
     unsigned int __builtin_ia32_rdrand32_step (unsigned int *)
     unsigned int __builtin_ia32_rdrand64_step (unsigned long long *)
</pre>
 <p>The following built-in functions are available when <samp><span class="option">-msse4a</span></samp> is used. 
All of them generate the machine instruction that is part of the name.

<pre class="smallexample">     void __builtin_ia32_movntsd (double *, v2df)
     void __builtin_ia32_movntss (float *, v4sf)
     v2di __builtin_ia32_extrq  (v2di, v16qi)
     v2di __builtin_ia32_extrqi (v2di, const unsigned int, const unsigned int)
     v2di __builtin_ia32_insertq (v2di, v2di)
     v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int)
</pre>
 <p>The following built-in functions are available when <samp><span class="option">-mxop</span></samp> is used.
<pre class="smallexample">     v2df __builtin_ia32_vfrczpd (v2df)
     v4sf __builtin_ia32_vfrczps (v4sf)
     v2df __builtin_ia32_vfrczsd (v2df, v2df)
     v4sf __builtin_ia32_vfrczss (v4sf, v4sf)
     v4df __builtin_ia32_vfrczpd256 (v4df)
     v8sf __builtin_ia32_vfrczps256 (v8sf)
     v2di __builtin_ia32_vpcmov (v2di, v2di, v2di)
     v2di __builtin_ia32_vpcmov_v2di (v2di, v2di, v2di)
     v4si __builtin_ia32_vpcmov_v4si (v4si, v4si, v4si)
     v8hi __builtin_ia32_vpcmov_v8hi (v8hi, v8hi, v8hi)
     v16qi __builtin_ia32_vpcmov_v16qi (v16qi, v16qi, v16qi)
     v2df __builtin_ia32_vpcmov_v2df (v2df, v2df, v2df)
     v4sf __builtin_ia32_vpcmov_v4sf (v4sf, v4sf, v4sf)
     v4di __builtin_ia32_vpcmov_v4di256 (v4di, v4di, v4di)
     v8si __builtin_ia32_vpcmov_v8si256 (v8si, v8si, v8si)
     v16hi __builtin_ia32_vpcmov_v16hi256 (v16hi, v16hi, v16hi)
     v32qi __builtin_ia32_vpcmov_v32qi256 (v32qi, v32qi, v32qi)
     v4df __builtin_ia32_vpcmov_v4df256 (v4df, v4df, v4df)
     v8sf __builtin_ia32_vpcmov_v8sf256 (v8sf, v8sf, v8sf)
     v16qi __builtin_ia32_vpcomeqb (v16qi, v16qi)
     v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
     v4si __builtin_ia32_vpcomeqd (v4si, v4si)
     v2di __builtin_ia32_vpcomeqq (v2di, v2di)
     v16qi __builtin_ia32_vpcomequb (v16qi, v16qi)
     v4si __builtin_ia32_vpcomequd (v4si, v4si)
     v2di __builtin_ia32_vpcomequq (v2di, v2di)
     v8hi __builtin_ia32_vpcomequw (v8hi, v8hi)
     v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
     v16qi __builtin_ia32_vpcomfalseb (v16qi, v16qi)
     v4si __builtin_ia32_vpcomfalsed (v4si, v4si)
     v2di __builtin_ia32_vpcomfalseq (v2di, v2di)
     v16qi __builtin_ia32_vpcomfalseub (v16qi, v16qi)
     v4si __builtin_ia32_vpcomfalseud (v4si, v4si)
     v2di __builtin_ia32_vpcomfalseuq (v2di, v2di)
     v8hi __builtin_ia32_vpcomfalseuw (v8hi, v8hi)
     v8hi __builtin_ia32_vpcomfalsew (v8hi, v8hi)
     v16qi __builtin_ia32_vpcomgeb (v16qi, v16qi)
     v4si __builtin_ia32_vpcomged (v4si, v4si)
     v2di __builtin_ia32_vpcomgeq (v2di, v2di)
     v16qi __builtin_ia32_vpcomgeub (v16qi, v16qi)
     v4si __builtin_ia32_vpcomgeud (v4si, v4si)
     v2di __builtin_ia32_vpcomgeuq (v2di, v2di)
     v8hi __builtin_ia32_vpcomgeuw (v8hi, v8hi)
     v8hi __builtin_ia32_vpcomgew (v8hi, v8hi)
     v16qi __builtin_ia32_vpcomgtb (v16qi, v16qi)
     v4si __builtin_ia32_vpcomgtd (v4si, v4si)
     v2di __builtin_ia32_vpcomgtq (v2di, v2di)
     v16qi __builtin_ia32_vpcomgtub (v16qi, v16qi)
     v4si __builtin_ia32_vpcomgtud (v4si, v4si)
     v2di __builtin_ia32_vpcomgtuq (v2di, v2di)
     v8hi __builtin_ia32_vpcomgtuw (v8hi, v8hi)
     v8hi __builtin_ia32_vpcomgtw (v8hi, v8hi)
     v16qi __builtin_ia32_vpcomleb (v16qi, v16qi)
     v4si __builtin_ia32_vpcomled (v4si, v4si)
     v2di __builtin_ia32_vpcomleq (v2di, v2di)
     v16qi __builtin_ia32_vpcomleub (v16qi, v16qi)
     v4si __builtin_ia32_vpcomleud (v4si, v4si)
     v2di __builtin_ia32_vpcomleuq (v2di, v2di)
     v8hi __builtin_ia32_vpcomleuw (v8hi, v8hi)
     v8hi __builtin_ia32_vpcomlew (v8hi, v8hi)
     v16qi __builtin_ia32_vpcomltb (v16qi, v16qi)
     v4si __builtin_ia32_vpcomltd (v4si, v4si)
     v2di __builtin_ia32_vpcomltq (v2di, v2di)
     v16qi __builtin_ia32_vpcomltub (v16qi, v16qi)
     v4si __builtin_ia32_vpcomltud (v4si, v4si)
     v2di __builtin_ia32_vpcomltuq (v2di, v2di)
     v8hi __builtin_ia32_vpcomltuw (v8hi, v8hi)
     v8hi __builtin_ia32_vpcomltw (v8hi, v8hi)
     v16qi __builtin_ia32_vpcomneb (v16qi, v16qi)
     v4si __builtin_ia32_vpcomned (v4si, v4si)
     v2di __builtin_ia32_vpcomneq (v2di, v2di)
     v16qi __builtin_ia32_vpcomneub (v16qi, v16qi)
     v4si __builtin_ia32_vpcomneud (v4si, v4si)
     v2di __builtin_ia32_vpcomneuq (v2di, v2di)
     v8hi __builtin_ia32_vpcomneuw (v8hi, v8hi)
     v8hi __builtin_ia32_vpcomnew (v8hi, v8hi)
     v16qi __builtin_ia32_vpcomtrueb (v16qi, v16qi)
     v4si __builtin_ia32_vpcomtrued (v4si, v4si)
     v2di __builtin_ia32_vpcomtrueq (v2di, v2di)
     v16qi __builtin_ia32_vpcomtrueub (v16qi, v16qi)
     v4si __builtin_ia32_vpcomtrueud (v4si, v4si)
     v2di __builtin_ia32_vpcomtrueuq (v2di, v2di)
     v8hi __builtin_ia32_vpcomtrueuw (v8hi, v8hi)
     v8hi __builtin_ia32_vpcomtruew (v8hi, v8hi)
     v4si __builtin_ia32_vphaddbd (v16qi)
     v2di __builtin_ia32_vphaddbq (v16qi)
     v8hi __builtin_ia32_vphaddbw (v16qi)
     v2di __builtin_ia32_vphadddq (v4si)
     v4si __builtin_ia32_vphaddubd (v16qi)
     v2di __builtin_ia32_vphaddubq (v16qi)
     v8hi __builtin_ia32_vphaddubw (v16qi)
     v2di __builtin_ia32_vphaddudq (v4si)
     v4si __builtin_ia32_vphadduwd (v8hi)
     v2di __builtin_ia32_vphadduwq (v8hi)
     v4si __builtin_ia32_vphaddwd (v8hi)
     v2di __builtin_ia32_vphaddwq (v8hi)
     v8hi __builtin_ia32_vphsubbw (v16qi)
     v2di __builtin_ia32_vphsubdq (v4si)
     v4si __builtin_ia32_vphsubwd (v8hi)
     v4si __builtin_ia32_vpmacsdd (v4si, v4si, v4si)
     v2di __builtin_ia32_vpmacsdqh (v4si, v4si, v2di)
     v2di __builtin_ia32_vpmacsdql (v4si, v4si, v2di)
     v4si __builtin_ia32_vpmacssdd (v4si, v4si, v4si)
     v2di __builtin_ia32_vpmacssdqh (v4si, v4si, v2di)
     v2di __builtin_ia32_vpmacssdql (v4si, v4si, v2di)
     v4si __builtin_ia32_vpmacsswd (v8hi, v8hi, v4si)
     v8hi __builtin_ia32_vpmacssww (v8hi, v8hi, v8hi)
     v4si __builtin_ia32_vpmacswd (v8hi, v8hi, v4si)
     v8hi __builtin_ia32_vpmacsww (v8hi, v8hi, v8hi)
     v4si __builtin_ia32_vpmadcsswd (v8hi, v8hi, v4si)
     v4si __builtin_ia32_vpmadcswd (v8hi, v8hi, v4si)
     v16qi __builtin_ia32_vpperm (v16qi, v16qi, v16qi)
     v16qi __builtin_ia32_vprotb (v16qi, v16qi)
     v4si __builtin_ia32_vprotd (v4si, v4si)
     v2di __builtin_ia32_vprotq (v2di, v2di)
     v8hi __builtin_ia32_vprotw (v8hi, v8hi)
     v16qi __builtin_ia32_vpshab (v16qi, v16qi)
     v4si __builtin_ia32_vpshad (v4si, v4si)
     v2di __builtin_ia32_vpshaq (v2di, v2di)
     v8hi __builtin_ia32_vpshaw (v8hi, v8hi)
     v16qi __builtin_ia32_vpshlb (v16qi, v16qi)
     v4si __builtin_ia32_vpshld (v4si, v4si)
     v2di __builtin_ia32_vpshlq (v2di, v2di)
     v8hi __builtin_ia32_vpshlw (v8hi, v8hi)
</pre>
 <p>The following built-in functions are available when <samp><span class="option">-mfma4</span></samp> is used. 
All of them generate the machine instruction that is part of the name
with MMX registers.

<pre class="smallexample">     v2df __builtin_ia32_fmaddpd (v2df, v2df, v2df)
     v4sf __builtin_ia32_fmaddps (v4sf, v4sf, v4sf)
     v2df __builtin_ia32_fmaddsd (v2df, v2df, v2df)
     v4sf __builtin_ia32_fmaddss (v4sf, v4sf, v4sf)
     v2df __builtin_ia32_fmsubpd (v2df, v2df, v2df)
     v4sf __builtin_ia32_fmsubps (v4sf, v4sf, v4sf)
     v2df __builtin_ia32_fmsubsd (v2df, v2df, v2df)
     v4sf __builtin_ia32_fmsubss (v4sf, v4sf, v4sf)
     v2df __builtin_ia32_fnmaddpd (v2df, v2df, v2df)
     v4sf __builtin_ia32_fnmaddps (v4sf, v4sf, v4sf)
     v2df __builtin_ia32_fnmaddsd (v2df, v2df, v2df)
     v4sf __builtin_ia32_fnmaddss (v4sf, v4sf, v4sf)
     v2df __builtin_ia32_fnmsubpd (v2df, v2df, v2df)
     v4sf __builtin_ia32_fnmsubps (v4sf, v4sf, v4sf)
     v2df __builtin_ia32_fnmsubsd (v2df, v2df, v2df)
     v4sf __builtin_ia32_fnmsubss (v4sf, v4sf, v4sf)
     v2df __builtin_ia32_fmaddsubpd  (v2df, v2df, v2df)
     v4sf __builtin_ia32_fmaddsubps  (v4sf, v4sf, v4sf)
     v2df __builtin_ia32_fmsubaddpd  (v2df, v2df, v2df)
     v4sf __builtin_ia32_fmsubaddps  (v4sf, v4sf, v4sf)
     v4df __builtin_ia32_fmaddpd256 (v4df, v4df, v4df)
     v8sf __builtin_ia32_fmaddps256 (v8sf, v8sf, v8sf)
     v4df __builtin_ia32_fmsubpd256 (v4df, v4df, v4df)
     v8sf __builtin_ia32_fmsubps256 (v8sf, v8sf, v8sf)
     v4df __builtin_ia32_fnmaddpd256 (v4df, v4df, v4df)
     v8sf __builtin_ia32_fnmaddps256 (v8sf, v8sf, v8sf)
     v4df __builtin_ia32_fnmsubpd256 (v4df, v4df, v4df)
     v8sf __builtin_ia32_fnmsubps256 (v8sf, v8sf, v8sf)
     v4df __builtin_ia32_fmaddsubpd256 (v4df, v4df, v4df)
     v8sf __builtin_ia32_fmaddsubps256 (v8sf, v8sf, v8sf)
     v4df __builtin_ia32_fmsubaddpd256 (v4df, v4df, v4df)
     v8sf __builtin_ia32_fmsubaddps256 (v8sf, v8sf, v8sf)
     
</pre>
 <p>The following built-in functions are available when <samp><span class="option">-mlwp</span></samp> is used.

<pre class="smallexample">     void __builtin_ia32_llwpcb16 (void *);
     void __builtin_ia32_llwpcb32 (void *);
     void __builtin_ia32_llwpcb64 (void *);
     void * __builtin_ia32_llwpcb16 (void);
     void * __builtin_ia32_llwpcb32 (void);
     void * __builtin_ia32_llwpcb64 (void);
     void __builtin_ia32_lwpval16 (unsigned short, unsigned int, unsigned short)
     void __builtin_ia32_lwpval32 (unsigned int, unsigned int, unsigned int)
     void __builtin_ia32_lwpval64 (unsigned __int64, unsigned int, unsigned int)
     unsigned char __builtin_ia32_lwpins16 (unsigned short, unsigned int, unsigned short)
     unsigned char __builtin_ia32_lwpins32 (unsigned int, unsigned int, unsigned int)
     unsigned char __builtin_ia32_lwpins64 (unsigned __int64, unsigned int, unsigned int)
</pre>
 <p>The following built-in functions are available when <samp><span class="option">-mbmi</span></samp> is used. 
All of them generate the machine instruction that is part of the name.
<pre class="smallexample">     unsigned int __builtin_ia32_bextr_u32(unsigned int, unsigned int);
     unsigned long long __builtin_ia32_bextr_u64 (unsigned long long, unsigned long long);
     unsigned short __builtin_ia32_lzcnt_16(unsigned short);
     unsigned int __builtin_ia32_lzcnt_u32(unsigned int);
     unsigned long long __builtin_ia32_lzcnt_u64 (unsigned long long);
</pre>
 <p>The following built-in functions are available when <samp><span class="option">-mtbm</span></samp> is used. 
Both of them generate the immediate form of the bextr machine instruction.
<pre class="smallexample">     unsigned int __builtin_ia32_bextri_u32 (unsigned int, const unsigned int);
     unsigned long long __builtin_ia32_bextri_u64 (unsigned long long, const unsigned long long);
</pre>
 <p>The following built-in functions are available when <samp><span class="option">-m3dnow</span></samp> is used. 
All of them generate the machine instruction that is part of the name.

<pre class="smallexample">     void __builtin_ia32_femms (void)
     v8qi __builtin_ia32_pavgusb (v8qi, v8qi)
     v2si __builtin_ia32_pf2id (v2sf)
     v2sf __builtin_ia32_pfacc (v2sf, v2sf)
     v2sf __builtin_ia32_pfadd (v2sf, v2sf)
     v2si __builtin_ia32_pfcmpeq (v2sf, v2sf)
     v2si __builtin_ia32_pfcmpge (v2sf, v2sf)
     v2si __builtin_ia32_pfcmpgt (v2sf, v2sf)
     v2sf __builtin_ia32_pfmax (v2sf, v2sf)
     v2sf __builtin_ia32_pfmin (v2sf, v2sf)
     v2sf __builtin_ia32_pfmul (v2sf, v2sf)
     v2sf __builtin_ia32_pfrcp (v2sf)
     v2sf __builtin_ia32_pfrcpit1 (v2sf, v2sf)
     v2sf __builtin_ia32_pfrcpit2 (v2sf, v2sf)
     v2sf __builtin_ia32_pfrsqrt (v2sf)
     v2sf __builtin_ia32_pfrsqrtit1 (v2sf, v2sf)
     v2sf __builtin_ia32_pfsub (v2sf, v2sf)
     v2sf __builtin_ia32_pfsubr (v2sf, v2sf)
     v2sf __builtin_ia32_pi2fd (v2si)
     v4hi __builtin_ia32_pmulhrw (v4hi, v4hi)
</pre>
 <p>The following built-in functions are available when both <samp><span class="option">-m3dnow</span></samp>
and <samp><span class="option">-march=athlon</span></samp> are used.  All of them generate the machine
instruction that is part of the name.

<pre class="smallexample">     v2si __builtin_ia32_pf2iw (v2sf)
     v2sf __builtin_ia32_pfnacc (v2sf, v2sf)
     v2sf __builtin_ia32_pfpnacc (v2sf, v2sf)
     v2sf __builtin_ia32_pi2fw (v2si)
     v2sf __builtin_ia32_pswapdsf (v2sf)
     v2si __builtin_ia32_pswapdsi (v2si)
</pre>
 <div class="node">
<a name="MIPS-DSP-Built-in-Functions"></a>
<a name="MIPS-DSP-Built_002din-Functions"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#MIPS-Paired_002dSingle-Support">MIPS Paired-Single Support</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#X86-Built_002din-Functions">X86 Built-in Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Target-Builtins">Target Builtins</a>

</div>

<h4 class="subsection">6.54.7 MIPS DSP Built-in Functions</h4>

<p>The MIPS DSP Application-Specific Extension (ASE) includes new
instructions that are designed to improve the performance of DSP and
media applications.  It provides instructions that operate on packed
8-bit/16-bit integer data, Q7, Q15 and Q31 fractional data.

 <p>GCC supports MIPS DSP operations using both the generic
vector extensions (see <a href="#Vector-Extensions">Vector Extensions</a>) and a collection of
MIPS-specific built-in functions.  Both kinds of support are
enabled by the <samp><span class="option">-mdsp</span></samp> command-line option.

 <p>Revision 2 of the ASE was introduced in the second half of 2006. 
This revision adds extra instructions to the original ASE, but is
otherwise backwards-compatible with it.  You can select revision 2
using the command-line option <samp><span class="option">-mdspr2</span></samp>; this option implies
<samp><span class="option">-mdsp</span></samp>.

 <p>The SCOUNT and POS bits of the DSP control register are global.  The
WRDSP, EXTPDP, EXTPDPV and MTHLIP instructions modify the SCOUNT and
POS bits.  During optimization, the compiler will not delete these
instructions and it will not delete calls to functions containing
these instructions.

 <p>At present, GCC only provides support for operations on 32-bit
vectors.  The vector type associated with 8-bit integer data is
usually called <code>v4i8</code>, the vector type associated with Q7
is usually called <code>v4q7</code>, the vector type associated with 16-bit
integer data is usually called <code>v2i16</code>, and the vector type
associated with Q15 is usually called <code>v2q15</code>.  They can be
defined in C as follows:

<pre class="smallexample">     typedef signed char v4i8 __attribute__ ((vector_size(4)));
     typedef signed char v4q7 __attribute__ ((vector_size(4)));
     typedef short v2i16 __attribute__ ((vector_size(4)));
     typedef short v2q15 __attribute__ ((vector_size(4)));
</pre>
 <p><code>v4i8</code>, <code>v4q7</code>, <code>v2i16</code> and <code>v2q15</code> values are
initialized in the same way as aggregates.  For example:

<pre class="smallexample">     v4i8 a = {1, 2, 3, 4};
     v4i8 b;
     b = (v4i8) {5, 6, 7, 8};
     
     v2q15 c = {0x0fcb, 0x3a75};
     v2q15 d;
     d = (v2q15) {0.1234 * 0x1.0p15, 0.4567 * 0x1.0p15};
</pre>
 <p><em>Note:</em> The CPU's endianness determines the order in which values
are packed.  On little-endian targets, the first value is the least
significant and the last value is the most significant.  The opposite
order applies to big-endian targets.  For example, the code above will
set the lowest byte of <code>a</code> to <code>1</code> on little-endian targets
and <code>4</code> on big-endian targets.

 <p><em>Note:</em> Q7, Q15 and Q31 values must be initialized with their integer
representation.  As shown in this example, the integer representation
of a Q7 value can be obtained by multiplying the fractional value by
<code>0x1.0p7</code>.  The equivalent for Q15 values is to multiply by
<code>0x1.0p15</code>.  The equivalent for Q31 values is to multiply by
<code>0x1.0p31</code>.

 <p>The table below lists the <code>v4i8</code> and <code>v2q15</code> operations for which
hardware support exists.  <code>a</code> and <code>b</code> are <code>v4i8</code> values,
and <code>c</code> and <code>d</code> are <code>v2q15</code> values.

 <p><table summary=""><tr align="left"><td valign="top" width="50%">C code </td><td valign="top" width="50%">MIPS instruction
<br></td></tr><tr align="left"><td valign="top" width="50%"><code>a + b</code> </td><td valign="top" width="50%"><code>addu.qb</code>
<br></td></tr><tr align="left"><td valign="top" width="50%"><code>c + d</code> </td><td valign="top" width="50%"><code>addq.ph</code>
<br></td></tr><tr align="left"><td valign="top" width="50%"><code>a - b</code> </td><td valign="top" width="50%"><code>subu.qb</code>
<br></td></tr><tr align="left"><td valign="top" width="50%"><code>c - d</code> </td><td valign="top" width="50%"><code>subq.ph</code>
 <br></td></tr></table>

 <p>The table below lists the <code>v2i16</code> operation for which
hardware support exists for the DSP ASE REV 2.  <code>e</code> and <code>f</code> are
<code>v2i16</code> values.

 <p><table summary=""><tr align="left"><td valign="top" width="50%">C code </td><td valign="top" width="50%">MIPS instruction
<br></td></tr><tr align="left"><td valign="top" width="50%"><code>e * f</code> </td><td valign="top" width="50%"><code>mul.ph</code>
 <br></td></tr></table>

 <p>It is easier to describe the DSP built-in functions if we first define
the following types:

<pre class="smallexample">     typedef int q31;
     typedef int i32;
     typedef unsigned int ui32;
     typedef long long a64;
</pre>
 <p><code>q31</code> and <code>i32</code> are actually the same as <code>int</code>, but we
use <code>q31</code> to indicate a Q31 fractional value and <code>i32</code> to
indicate a 32-bit integer value.  Similarly, <code>a64</code> is the same as
<code>long long</code>, but we use <code>a64</code> to indicate values that will
be placed in one of the four DSP accumulators (<code>$ac0</code>,
<code>$ac1</code>, <code>$ac2</code> or <code>$ac3</code>).

 <p>Also, some built-in functions prefer or require immediate numbers as
parameters, because the corresponding DSP instructions accept both immediate
numbers and register operands, or accept immediate numbers only.  The
immediate parameters are listed as follows.

<pre class="smallexample">     imm0_3: 0 to 3.
     imm0_7: 0 to 7.
     imm0_15: 0 to 15.
     imm0_31: 0 to 31.
     imm0_63: 0 to 63.
     imm0_255: 0 to 255.
     imm_n32_31: -32 to 31.
     imm_n512_511: -512 to 511.
</pre>
 <p>The following built-in functions map directly to a particular MIPS DSP
instruction.  Please refer to the architecture specification
for details on what each instruction does.

<pre class="smallexample">     v2q15 __builtin_mips_addq_ph (v2q15, v2q15)
     v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15)
     q31 __builtin_mips_addq_s_w (q31, q31)
     v4i8 __builtin_mips_addu_qb (v4i8, v4i8)
     v4i8 __builtin_mips_addu_s_qb (v4i8, v4i8)
     v2q15 __builtin_mips_subq_ph (v2q15, v2q15)
     v2q15 __builtin_mips_subq_s_ph (v2q15, v2q15)
     q31 __builtin_mips_subq_s_w (q31, q31)
     v4i8 __builtin_mips_subu_qb (v4i8, v4i8)
     v4i8 __builtin_mips_subu_s_qb (v4i8, v4i8)
     i32 __builtin_mips_addsc (i32, i32)
     i32 __builtin_mips_addwc (i32, i32)
     i32 __builtin_mips_modsub (i32, i32)
     i32 __builtin_mips_raddu_w_qb (v4i8)
     v2q15 __builtin_mips_absq_s_ph (v2q15)
     q31 __builtin_mips_absq_s_w (q31)
     v4i8 __builtin_mips_precrq_qb_ph (v2q15, v2q15)
     v2q15 __builtin_mips_precrq_ph_w (q31, q31)
     v2q15 __builtin_mips_precrq_rs_ph_w (q31, q31)
     v4i8 __builtin_mips_precrqu_s_qb_ph (v2q15, v2q15)
     q31 __builtin_mips_preceq_w_phl (v2q15)
     q31 __builtin_mips_preceq_w_phr (v2q15)
     v2q15 __builtin_mips_precequ_ph_qbl (v4i8)
     v2q15 __builtin_mips_precequ_ph_qbr (v4i8)
     v2q15 __builtin_mips_precequ_ph_qbla (v4i8)
     v2q15 __builtin_mips_precequ_ph_qbra (v4i8)
     v2q15 __builtin_mips_preceu_ph_qbl (v4i8)
     v2q15 __builtin_mips_preceu_ph_qbr (v4i8)
     v2q15 __builtin_mips_preceu_ph_qbla (v4i8)
     v2q15 __builtin_mips_preceu_ph_qbra (v4i8)
     v4i8 __builtin_mips_shll_qb (v4i8, imm0_7)
     v4i8 __builtin_mips_shll_qb (v4i8, i32)
     v2q15 __builtin_mips_shll_ph (v2q15, imm0_15)
     v2q15 __builtin_mips_shll_ph (v2q15, i32)
     v2q15 __builtin_mips_shll_s_ph (v2q15, imm0_15)
     v2q15 __builtin_mips_shll_s_ph (v2q15, i32)
     q31 __builtin_mips_shll_s_w (q31, imm0_31)
     q31 __builtin_mips_shll_s_w (q31, i32)
     v4i8 __builtin_mips_shrl_qb (v4i8, imm0_7)
     v4i8 __builtin_mips_shrl_qb (v4i8, i32)
     v2q15 __builtin_mips_shra_ph (v2q15, imm0_15)
     v2q15 __builtin_mips_shra_ph (v2q15, i32)
     v2q15 __builtin_mips_shra_r_ph (v2q15, imm0_15)
     v2q15 __builtin_mips_shra_r_ph (v2q15, i32)
     q31 __builtin_mips_shra_r_w (q31, imm0_31)
     q31 __builtin_mips_shra_r_w (q31, i32)
     v2q15 __builtin_mips_muleu_s_ph_qbl (v4i8, v2q15)
     v2q15 __builtin_mips_muleu_s_ph_qbr (v4i8, v2q15)
     v2q15 __builtin_mips_mulq_rs_ph (v2q15, v2q15)
     q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15)
     q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15)
     a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8)
     a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8)
     a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8)
     a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8)
     a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15)
     a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31)
     a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15)
     a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31)
     a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15)
     a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15)
     a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15)
     a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15)
     a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15)
     i32 __builtin_mips_bitrev (i32)
     i32 __builtin_mips_insv (i32, i32)
     v4i8 __builtin_mips_repl_qb (imm0_255)
     v4i8 __builtin_mips_repl_qb (i32)
     v2q15 __builtin_mips_repl_ph (imm_n512_511)
     v2q15 __builtin_mips_repl_ph (i32)
     void __builtin_mips_cmpu_eq_qb (v4i8, v4i8)
     void __builtin_mips_cmpu_lt_qb (v4i8, v4i8)
     void __builtin_mips_cmpu_le_qb (v4i8, v4i8)
     i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8)
     i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8)
     i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8)
     void __builtin_mips_cmp_eq_ph (v2q15, v2q15)
     void __builtin_mips_cmp_lt_ph (v2q15, v2q15)
     void __builtin_mips_cmp_le_ph (v2q15, v2q15)
     v4i8 __builtin_mips_pick_qb (v4i8, v4i8)
     v2q15 __builtin_mips_pick_ph (v2q15, v2q15)
     v2q15 __builtin_mips_packrl_ph (v2q15, v2q15)
     i32 __builtin_mips_extr_w (a64, imm0_31)
     i32 __builtin_mips_extr_w (a64, i32)
     i32 __builtin_mips_extr_r_w (a64, imm0_31)
     i32 __builtin_mips_extr_s_h (a64, i32)
     i32 __builtin_mips_extr_rs_w (a64, imm0_31)
     i32 __builtin_mips_extr_rs_w (a64, i32)
     i32 __builtin_mips_extr_s_h (a64, imm0_31)
     i32 __builtin_mips_extr_r_w (a64, i32)
     i32 __builtin_mips_extp (a64, imm0_31)
     i32 __builtin_mips_extp (a64, i32)
     i32 __builtin_mips_extpdp (a64, imm0_31)
     i32 __builtin_mips_extpdp (a64, i32)
     a64 __builtin_mips_shilo (a64, imm_n32_31)
     a64 __builtin_mips_shilo (a64, i32)
     a64 __builtin_mips_mthlip (a64, i32)
     void __builtin_mips_wrdsp (i32, imm0_63)
     i32 __builtin_mips_rddsp (imm0_63)
     i32 __builtin_mips_lbux (void *, i32)
     i32 __builtin_mips_lhx (void *, i32)
     i32 __builtin_mips_lwx (void *, i32)
     i32 __builtin_mips_bposge32 (void)
     a64 __builtin_mips_madd (a64, i32, i32);
     a64 __builtin_mips_maddu (a64, ui32, ui32);
     a64 __builtin_mips_msub (a64, i32, i32);
     a64 __builtin_mips_msubu (a64, ui32, ui32);
     a64 __builtin_mips_mult (i32, i32);
     a64 __builtin_mips_multu (ui32, ui32);
</pre>
 <p>The following built-in functions map directly to a particular MIPS DSP REV 2
instruction.  Please refer to the architecture specification
for details on what each instruction does.

<pre class="smallexample">     v4q7 __builtin_mips_absq_s_qb (v4q7);
     v2i16 __builtin_mips_addu_ph (v2i16, v2i16);
     v2i16 __builtin_mips_addu_s_ph (v2i16, v2i16);
     v4i8 __builtin_mips_adduh_qb (v4i8, v4i8);
     v4i8 __builtin_mips_adduh_r_qb (v4i8, v4i8);
     i32 __builtin_mips_append (i32, i32, imm0_31);
     i32 __builtin_mips_balign (i32, i32, imm0_3);
     i32 __builtin_mips_cmpgdu_eq_qb (v4i8, v4i8);
     i32 __builtin_mips_cmpgdu_lt_qb (v4i8, v4i8);
     i32 __builtin_mips_cmpgdu_le_qb (v4i8, v4i8);
     a64 __builtin_mips_dpa_w_ph (a64, v2i16, v2i16);
     a64 __builtin_mips_dps_w_ph (a64, v2i16, v2i16);
     v2i16 __builtin_mips_mul_ph (v2i16, v2i16);
     v2i16 __builtin_mips_mul_s_ph (v2i16, v2i16);
     q31 __builtin_mips_mulq_rs_w (q31, q31);
     v2q15 __builtin_mips_mulq_s_ph (v2q15, v2q15);
     q31 __builtin_mips_mulq_s_w (q31, q31);
     a64 __builtin_mips_mulsa_w_ph (a64, v2i16, v2i16);
     v4i8 __builtin_mips_precr_qb_ph (v2i16, v2i16);
     v2i16 __builtin_mips_precr_sra_ph_w (i32, i32, imm0_31);
     v2i16 __builtin_mips_precr_sra_r_ph_w (i32, i32, imm0_31);
     i32 __builtin_mips_prepend (i32, i32, imm0_31);
     v4i8 __builtin_mips_shra_qb (v4i8, imm0_7);
     v4i8 __builtin_mips_shra_r_qb (v4i8, imm0_7);
     v4i8 __builtin_mips_shra_qb (v4i8, i32);
     v4i8 __builtin_mips_shra_r_qb (v4i8, i32);
     v2i16 __builtin_mips_shrl_ph (v2i16, imm0_15);
     v2i16 __builtin_mips_shrl_ph (v2i16, i32);
     v2i16 __builtin_mips_subu_ph (v2i16, v2i16);
     v2i16 __builtin_mips_subu_s_ph (v2i16, v2i16);
     v4i8 __builtin_mips_subuh_qb (v4i8, v4i8);
     v4i8 __builtin_mips_subuh_r_qb (v4i8, v4i8);
     v2q15 __builtin_mips_addqh_ph (v2q15, v2q15);
     v2q15 __builtin_mips_addqh_r_ph (v2q15, v2q15);
     q31 __builtin_mips_addqh_w (q31, q31);
     q31 __builtin_mips_addqh_r_w (q31, q31);
     v2q15 __builtin_mips_subqh_ph (v2q15, v2q15);
     v2q15 __builtin_mips_subqh_r_ph (v2q15, v2q15);
     q31 __builtin_mips_subqh_w (q31, q31);
     q31 __builtin_mips_subqh_r_w (q31, q31);
     a64 __builtin_mips_dpax_w_ph (a64, v2i16, v2i16);
     a64 __builtin_mips_dpsx_w_ph (a64, v2i16, v2i16);
     a64 __builtin_mips_dpaqx_s_w_ph (a64, v2q15, v2q15);
     a64 __builtin_mips_dpaqx_sa_w_ph (a64, v2q15, v2q15);
     a64 __builtin_mips_dpsqx_s_w_ph (a64, v2q15, v2q15);
     a64 __builtin_mips_dpsqx_sa_w_ph (a64, v2q15, v2q15);
</pre>
 <div class="node">
<a name="MIPS-Paired-Single-Support"></a>
<a name="MIPS-Paired_002dSingle-Support"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#MIPS-Loongson-Built_002din-Functions">MIPS Loongson Built-in Functions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#MIPS-DSP-Built_002din-Functions">MIPS DSP Built-in Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Target-Builtins">Target Builtins</a>

</div>

<h4 class="subsection">6.54.8 MIPS Paired-Single Support</h4>

<p>The MIPS64 architecture includes a number of instructions that
operate on pairs of single-precision floating-point values. 
Each pair is packed into a 64-bit floating-point register,
with one element being designated the &ldquo;upper half&rdquo; and
the other being designated the &ldquo;lower half&rdquo;.

 <p>GCC supports paired-single operations using both the generic
vector extensions (see <a href="#Vector-Extensions">Vector Extensions</a>) and a collection of
MIPS-specific built-in functions.  Both kinds of support are
enabled by the <samp><span class="option">-mpaired-single</span></samp> command-line option.

 <p>The vector type associated with paired-single values is usually
called <code>v2sf</code>.  It can be defined in C as follows:

<pre class="smallexample">     typedef float v2sf __attribute__ ((vector_size (8)));
</pre>
 <p><code>v2sf</code> values are initialized in the same way as aggregates. 
For example:

<pre class="smallexample">     v2sf a = {1.5, 9.1};
     v2sf b;
     float e, f;
     b = (v2sf) {e, f};
</pre>
 <p><em>Note:</em> The CPU's endianness determines which value is stored in
the upper half of a register and which value is stored in the lower half. 
On little-endian targets, the first value is the lower one and the second
value is the upper one.  The opposite order applies to big-endian targets. 
For example, the code above will set the lower half of <code>a</code> to
<code>1.5</code> on little-endian targets and <code>9.1</code> on big-endian targets.

<div class="node">
<a name="MIPS-Loongson-Built-in-Functions"></a>
<a name="MIPS-Loongson-Built_002din-Functions"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Other-MIPS-Built_002din-Functions">Other MIPS Built-in Functions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#MIPS-Paired_002dSingle-Support">MIPS Paired-Single Support</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Target-Builtins">Target Builtins</a>

</div>

<h4 class="subsection">6.54.9 MIPS Loongson Built-in Functions</h4>

<p>GCC provides intrinsics to access the SIMD instructions provided by the
ST Microelectronics Loongson-2E and -2F processors.  These intrinsics,
available after inclusion of the <code>loongson.h</code> header file,
operate on the following 64-bit vector types:

     <ul>
<li><code>uint8x8_t</code>, a vector of eight unsigned 8-bit integers;
<li><code>uint16x4_t</code>, a vector of four unsigned 16-bit integers;
<li><code>uint32x2_t</code>, a vector of two unsigned 32-bit integers;
<li><code>int8x8_t</code>, a vector of eight signed 8-bit integers;
<li><code>int16x4_t</code>, a vector of four signed 16-bit integers;
<li><code>int32x2_t</code>, a vector of two signed 32-bit integers. 
</ul>

 <p>The intrinsics provided are listed below; each is named after the
machine instruction to which it corresponds, with suffixes added as
appropriate to distinguish intrinsics that expand to the same machine
instruction yet have different argument types.  Refer to the architecture
documentation for a description of the functionality of each
instruction.

<pre class="smallexample">     int16x4_t packsswh (int32x2_t s, int32x2_t t);
     int8x8_t packsshb (int16x4_t s, int16x4_t t);
     uint8x8_t packushb (uint16x4_t s, uint16x4_t t);
     uint32x2_t paddw_u (uint32x2_t s, uint32x2_t t);
     uint16x4_t paddh_u (uint16x4_t s, uint16x4_t t);
     uint8x8_t paddb_u (uint8x8_t s, uint8x8_t t);
     int32x2_t paddw_s (int32x2_t s, int32x2_t t);
     int16x4_t paddh_s (int16x4_t s, int16x4_t t);
     int8x8_t paddb_s (int8x8_t s, int8x8_t t);
     uint64_t paddd_u (uint64_t s, uint64_t t);
     int64_t paddd_s (int64_t s, int64_t t);
     int16x4_t paddsh (int16x4_t s, int16x4_t t);
     int8x8_t paddsb (int8x8_t s, int8x8_t t);
     uint16x4_t paddush (uint16x4_t s, uint16x4_t t);
     uint8x8_t paddusb (uint8x8_t s, uint8x8_t t);
     uint64_t pandn_ud (uint64_t s, uint64_t t);
     uint32x2_t pandn_uw (uint32x2_t s, uint32x2_t t);
     uint16x4_t pandn_uh (uint16x4_t s, uint16x4_t t);
     uint8x8_t pandn_ub (uint8x8_t s, uint8x8_t t);
     int64_t pandn_sd (int64_t s, int64_t t);
     int32x2_t pandn_sw (int32x2_t s, int32x2_t t);
     int16x4_t pandn_sh (int16x4_t s, int16x4_t t);
     int8x8_t pandn_sb (int8x8_t s, int8x8_t t);
     uint16x4_t pavgh (uint16x4_t s, uint16x4_t t);
     uint8x8_t pavgb (uint8x8_t s, uint8x8_t t);
     uint32x2_t pcmpeqw_u (uint32x2_t s, uint32x2_t t);
     uint16x4_t pcmpeqh_u (uint16x4_t s, uint16x4_t t);
     uint8x8_t pcmpeqb_u (uint8x8_t s, uint8x8_t t);
     int32x2_t pcmpeqw_s (int32x2_t s, int32x2_t t);
     int16x4_t pcmpeqh_s (int16x4_t s, int16x4_t t);
     int8x8_t pcmpeqb_s (int8x8_t s, int8x8_t t);
     uint32x2_t pcmpgtw_u (uint32x2_t s, uint32x2_t t);
     uint16x4_t pcmpgth_u (uint16x4_t s, uint16x4_t t);
     uint8x8_t pcmpgtb_u (uint8x8_t s, uint8x8_t t);
     int32x2_t pcmpgtw_s (int32x2_t s, int32x2_t t);
     int16x4_t pcmpgth_s (int16x4_t s, int16x4_t t);
     int8x8_t pcmpgtb_s (int8x8_t s, int8x8_t t);
     uint16x4_t pextrh_u (uint16x4_t s, int field);
     int16x4_t pextrh_s (int16x4_t s, int field);
     uint16x4_t pinsrh_0_u (uint16x4_t s, uint16x4_t t);
     uint16x4_t pinsrh_1_u (uint16x4_t s, uint16x4_t t);
     uint16x4_t pinsrh_2_u (uint16x4_t s, uint16x4_t t);
     uint16x4_t pinsrh_3_u (uint16x4_t s, uint16x4_t t);
     int16x4_t pinsrh_0_s (int16x4_t s, int16x4_t t);
     int16x4_t pinsrh_1_s (int16x4_t s, int16x4_t t);
     int16x4_t pinsrh_2_s (int16x4_t s, int16x4_t t);
     int16x4_t pinsrh_3_s (int16x4_t s, int16x4_t t);
     int32x2_t pmaddhw (int16x4_t s, int16x4_t t);
     int16x4_t pmaxsh (int16x4_t s, int16x4_t t);
     uint8x8_t pmaxub (uint8x8_t s, uint8x8_t t);
     int16x4_t pminsh (int16x4_t s, int16x4_t t);
     uint8x8_t pminub (uint8x8_t s, uint8x8_t t);
     uint8x8_t pmovmskb_u (uint8x8_t s);
     int8x8_t pmovmskb_s (int8x8_t s);
     uint16x4_t pmulhuh (uint16x4_t s, uint16x4_t t);
     int16x4_t pmulhh (int16x4_t s, int16x4_t t);
     int16x4_t pmullh (int16x4_t s, int16x4_t t);
     int64_t pmuluw (uint32x2_t s, uint32x2_t t);
     uint8x8_t pasubub (uint8x8_t s, uint8x8_t t);
     uint16x4_t biadd (uint8x8_t s);
     uint16x4_t psadbh (uint8x8_t s, uint8x8_t t);
     uint16x4_t pshufh_u (uint16x4_t dest, uint16x4_t s, uint8_t order);
     int16x4_t pshufh_s (int16x4_t dest, int16x4_t s, uint8_t order);
     uint16x4_t psllh_u (uint16x4_t s, uint8_t amount);
     int16x4_t psllh_s (int16x4_t s, uint8_t amount);
     uint32x2_t psllw_u (uint32x2_t s, uint8_t amount);
     int32x2_t psllw_s (int32x2_t s, uint8_t amount);
     uint16x4_t psrlh_u (uint16x4_t s, uint8_t amount);
     int16x4_t psrlh_s (int16x4_t s, uint8_t amount);
     uint32x2_t psrlw_u (uint32x2_t s, uint8_t amount);
     int32x2_t psrlw_s (int32x2_t s, uint8_t amount);
     uint16x4_t psrah_u (uint16x4_t s, uint8_t amount);
     int16x4_t psrah_s (int16x4_t s, uint8_t amount);
     uint32x2_t psraw_u (uint32x2_t s, uint8_t amount);
     int32x2_t psraw_s (int32x2_t s, uint8_t amount);
     uint32x2_t psubw_u (uint32x2_t s, uint32x2_t t);
     uint16x4_t psubh_u (uint16x4_t s, uint16x4_t t);
     uint8x8_t psubb_u (uint8x8_t s, uint8x8_t t);
     int32x2_t psubw_s (int32x2_t s, int32x2_t t);
     int16x4_t psubh_s (int16x4_t s, int16x4_t t);
     int8x8_t psubb_s (int8x8_t s, int8x8_t t);
     uint64_t psubd_u (uint64_t s, uint64_t t);
     int64_t psubd_s (int64_t s, int64_t t);
     int16x4_t psubsh (int16x4_t s, int16x4_t t);
     int8x8_t psubsb (int8x8_t s, int8x8_t t);
     uint16x4_t psubush (uint16x4_t s, uint16x4_t t);
     uint8x8_t psubusb (uint8x8_t s, uint8x8_t t);
     uint32x2_t punpckhwd_u (uint32x2_t s, uint32x2_t t);
     uint16x4_t punpckhhw_u (uint16x4_t s, uint16x4_t t);
     uint8x8_t punpckhbh_u (uint8x8_t s, uint8x8_t t);
     int32x2_t punpckhwd_s (int32x2_t s, int32x2_t t);
     int16x4_t punpckhhw_s (int16x4_t s, int16x4_t t);
     int8x8_t punpckhbh_s (int8x8_t s, int8x8_t t);
     uint32x2_t punpcklwd_u (uint32x2_t s, uint32x2_t t);
     uint16x4_t punpcklhw_u (uint16x4_t s, uint16x4_t t);
     uint8x8_t punpcklbh_u (uint8x8_t s, uint8x8_t t);
     int32x2_t punpcklwd_s (int32x2_t s, int32x2_t t);
     int16x4_t punpcklhw_s (int16x4_t s, int16x4_t t);
     int8x8_t punpcklbh_s (int8x8_t s, int8x8_t t);
</pre>
 <ul class="menu">
<li><a accesskey="1" href="#Paired_002dSingle-Arithmetic">Paired-Single Arithmetic</a>
<li><a accesskey="2" href="#Paired_002dSingle-Built_002din-Functions">Paired-Single Built-in Functions</a>
<li><a accesskey="3" href="#MIPS_002d3D-Built_002din-Functions">MIPS-3D Built-in Functions</a>
</ul>

<div class="node">
<a name="Paired-Single-Arithmetic"></a>
<a name="Paired_002dSingle-Arithmetic"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Paired_002dSingle-Built_002din-Functions">Paired-Single Built-in Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#MIPS-Loongson-Built_002din-Functions">MIPS Loongson Built-in Functions</a>

</div>

<h5 class="subsubsection">6.54.9.1 Paired-Single Arithmetic</h5>

<p>The table below lists the <code>v2sf</code> operations for which hardware
support exists.  <code>a</code>, <code>b</code> and <code>c</code> are <code>v2sf</code>
values and <code>x</code> is an integral value.

 <p><table summary=""><tr align="left"><td valign="top" width="50%">C code </td><td valign="top" width="50%">MIPS instruction
<br></td></tr><tr align="left"><td valign="top" width="50%"><code>a + b</code> </td><td valign="top" width="50%"><code>add.ps</code>
<br></td></tr><tr align="left"><td valign="top" width="50%"><code>a - b</code> </td><td valign="top" width="50%"><code>sub.ps</code>
<br></td></tr><tr align="left"><td valign="top" width="50%"><code>-a</code> </td><td valign="top" width="50%"><code>neg.ps</code>
<br></td></tr><tr align="left"><td valign="top" width="50%"><code>a * b</code> </td><td valign="top" width="50%"><code>mul.ps</code>
<br></td></tr><tr align="left"><td valign="top" width="50%"><code>a * b + c</code> </td><td valign="top" width="50%"><code>madd.ps</code>
<br></td></tr><tr align="left"><td valign="top" width="50%"><code>a * b - c</code> </td><td valign="top" width="50%"><code>msub.ps</code>
<br></td></tr><tr align="left"><td valign="top" width="50%"><code>-(a * b + c)</code> </td><td valign="top" width="50%"><code>nmadd.ps</code>
<br></td></tr><tr align="left"><td valign="top" width="50%"><code>-(a * b - c)</code> </td><td valign="top" width="50%"><code>nmsub.ps</code>
<br></td></tr><tr align="left"><td valign="top" width="50%"><code>x ? a : b</code> </td><td valign="top" width="50%"><code>movn.ps</code>/<code>movz.ps</code>
 <br></td></tr></table>

 <p>Note that the multiply-accumulate instructions can be disabled
using the command-line option <code>-mno-fused-madd</code>.

<div class="node">
<a name="Paired-Single-Built-in-Functions"></a>
<a name="Paired_002dSingle-Built_002din-Functions"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#MIPS_002d3D-Built_002din-Functions">MIPS-3D Built-in Functions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Paired_002dSingle-Arithmetic">Paired-Single Arithmetic</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#MIPS-Loongson-Built_002din-Functions">MIPS Loongson Built-in Functions</a>

</div>

<h5 class="subsubsection">6.54.9.2 Paired-Single Built-in Functions</h5>

<p>The following paired-single functions map directly to a particular
MIPS instruction.  Please refer to the architecture specification
for details on what each instruction does.

     <dl>
<dt><code>v2sf __builtin_mips_pll_ps (v2sf, v2sf)</code><dd>Pair lower lower (<code>pll.ps</code>).

     <br><dt><code>v2sf __builtin_mips_pul_ps (v2sf, v2sf)</code><dd>Pair upper lower (<code>pul.ps</code>).

     <br><dt><code>v2sf __builtin_mips_plu_ps (v2sf, v2sf)</code><dd>Pair lower upper (<code>plu.ps</code>).

     <br><dt><code>v2sf __builtin_mips_puu_ps (v2sf, v2sf)</code><dd>Pair upper upper (<code>puu.ps</code>).

     <br><dt><code>v2sf __builtin_mips_cvt_ps_s (float, float)</code><dd>Convert pair to paired single (<code>cvt.ps.s</code>).

     <br><dt><code>float __builtin_mips_cvt_s_pl (v2sf)</code><dd>Convert pair lower to single (<code>cvt.s.pl</code>).

     <br><dt><code>float __builtin_mips_cvt_s_pu (v2sf)</code><dd>Convert pair upper to single (<code>cvt.s.pu</code>).

     <br><dt><code>v2sf __builtin_mips_abs_ps (v2sf)</code><dd>Absolute value (<code>abs.ps</code>).

     <br><dt><code>v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)</code><dd>Align variable (<code>alnv.ps</code>).

     <p><em>Note:</em> The value of the third parameter must be 0 or 4
modulo 8, otherwise the result will be unpredictable.  Please read the
instruction description for details. 
</dl>

 <p>The following multi-instruction functions are also available. 
In each case, <var>cond</var> can be any of the 16 floating-point conditions:
<code>f</code>, <code>un</code>, <code>eq</code>, <code>ueq</code>, <code>olt</code>, <code>ult</code>,
<code>ole</code>, <code>ule</code>, <code>sf</code>, <code>ngle</code>, <code>seq</code>, <code>ngl</code>,
<code>lt</code>, <code>nge</code>, <code>le</code> or <code>ngt</code>.

     <dl>
<dt><code>v2sf __builtin_mips_movt_c_</code><var>cond</var><code>_ps (v2sf </code><var>a</var><code>, v2sf </code><var>b</var><code>, v2sf </code><var>c</var><code>, v2sf </code><var>d</var><code>)</code><dt><code>v2sf __builtin_mips_movf_c_</code><var>cond</var><code>_ps (v2sf </code><var>a</var><code>, v2sf </code><var>b</var><code>, v2sf </code><var>c</var><code>, v2sf </code><var>d</var><code>)</code><dd>Conditional move based on floating point comparison (<code>c.</code><var>cond</var><code>.ps</code>,
<code>movt.ps</code>/<code>movf.ps</code>).

     <p>The <code>movt</code> functions return the value <var>x</var> computed by:

     <pre class="smallexample">          c.<var>cond</var>.ps <var>cc</var>,<var>a</var>,<var>b</var>
          mov.ps <var>x</var>,<var>c</var>
          movt.ps <var>x</var>,<var>d</var>,<var>cc</var>
</pre>
     <p>The <code>movf</code> functions are similar but use <code>movf.ps</code> instead
of <code>movt.ps</code>.

     <br><dt><code>int __builtin_mips_upper_c_</code><var>cond</var><code>_ps (v2sf </code><var>a</var><code>, v2sf </code><var>b</var><code>)</code><dt><code>int __builtin_mips_lower_c_</code><var>cond</var><code>_ps (v2sf </code><var>a</var><code>, v2sf </code><var>b</var><code>)</code><dd>Comparison of two paired-single values (<code>c.</code><var>cond</var><code>.ps</code>,
<code>bc1t</code>/<code>bc1f</code>).

     <p>These functions compare <var>a</var> and <var>b</var> using <code>c.</code><var>cond</var><code>.ps</code>
and return either the upper or lower half of the result.  For example:

     <pre class="smallexample">          v2sf a, b;
          if (__builtin_mips_upper_c_eq_ps (a, b))
            upper_halves_are_equal ();
          else
            upper_halves_are_unequal ();
          
          if (__builtin_mips_lower_c_eq_ps (a, b))
            lower_halves_are_equal ();
          else
            lower_halves_are_unequal ();
</pre>
     </dl>

<div class="node">
<a name="MIPS-3D-Built-in-Functions"></a>
<a name="MIPS_002d3D-Built_002din-Functions"></a>
<p><hr>
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Paired_002dSingle-Built_002din-Functions">Paired-Single Built-in Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#MIPS-Loongson-Built_002din-Functions">MIPS Loongson Built-in Functions</a>

</div>

<h5 class="subsubsection">6.54.9.3 MIPS-3D Built-in Functions</h5>

<p>The MIPS-3D Application-Specific Extension (ASE) includes additional
paired-single instructions that are designed to improve the performance
of 3D graphics operations.  Support for these instructions is controlled
by the <samp><span class="option">-mips3d</span></samp> command-line option.

 <p>The functions listed below map directly to a particular MIPS-3D
instruction.  Please refer to the architecture specification for
more details on what each instruction does.

     <dl>
<dt><code>v2sf __builtin_mips_addr_ps (v2sf, v2sf)</code><dd>Reduction add (<code>addr.ps</code>).

     <br><dt><code>v2sf __builtin_mips_mulr_ps (v2sf, v2sf)</code><dd>Reduction multiply (<code>mulr.ps</code>).

     <br><dt><code>v2sf __builtin_mips_cvt_pw_ps (v2sf)</code><dd>Convert paired single to paired word (<code>cvt.pw.ps</code>).

     <br><dt><code>v2sf __builtin_mips_cvt_ps_pw (v2sf)</code><dd>Convert paired word to paired single (<code>cvt.ps.pw</code>).

     <br><dt><code>float __builtin_mips_recip1_s (float)</code><dt><code>double __builtin_mips_recip1_d (double)</code><dt><code>v2sf __builtin_mips_recip1_ps (v2sf)</code><dd>Reduced precision reciprocal (sequence step 1) (<code>recip1.</code><var>fmt</var>).

     <br><dt><code>float __builtin_mips_recip2_s (float, float)</code><dt><code>double __builtin_mips_recip2_d (double, double)</code><dt><code>v2sf __builtin_mips_recip2_ps (v2sf, v2sf)</code><dd>Reduced precision reciprocal (sequence step 2) (<code>recip2.</code><var>fmt</var>).

     <br><dt><code>float __builtin_mips_rsqrt1_s (float)</code><dt><code>double __builtin_mips_rsqrt1_d (double)</code><dt><code>v2sf __builtin_mips_rsqrt1_ps (v2sf)</code><dd>Reduced precision reciprocal square root (sequence step 1)
(<code>rsqrt1.</code><var>fmt</var>).

     <br><dt><code>float __builtin_mips_rsqrt2_s (float, float)</code><dt><code>double __builtin_mips_rsqrt2_d (double, double)</code><dt><code>v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)</code><dd>Reduced precision reciprocal square root (sequence step 2)
(<code>rsqrt2.</code><var>fmt</var>). 
</dl>

 <p>The following multi-instruction functions are also available. 
In each case, <var>cond</var> can be any of the 16 floating-point conditions:
<code>f</code>, <code>un</code>, <code>eq</code>, <code>ueq</code>, <code>olt</code>, <code>ult</code>,
<code>ole</code>, <code>ule</code>, <code>sf</code>, <code>ngle</code>, <code>seq</code>,
<code>ngl</code>, <code>lt</code>, <code>nge</code>, <code>le</code> or <code>ngt</code>.

     <dl>
<dt><code>int __builtin_mips_cabs_</code><var>cond</var><code>_s (float </code><var>a</var><code>, float </code><var>b</var><code>)</code><dt><code>int __builtin_mips_cabs_</code><var>cond</var><code>_d (double </code><var>a</var><code>, double </code><var>b</var><code>)</code><dd>Absolute comparison of two scalar values (<code>cabs.</code><var>cond</var><code>.</code><var>fmt</var>,
<code>bc1t</code>/<code>bc1f</code>).

     <p>These functions compare <var>a</var> and <var>b</var> using <code>cabs.</code><var>cond</var><code>.s</code>
or <code>cabs.</code><var>cond</var><code>.d</code> and return the result as a boolean value. 
For example:

     <pre class="smallexample">          float a, b;
          if (__builtin_mips_cabs_eq_s (a, b))
            true ();
          else
            false ();
</pre>
     <br><dt><code>int __builtin_mips_upper_cabs_</code><var>cond</var><code>_ps (v2sf </code><var>a</var><code>, v2sf </code><var>b</var><code>)</code><dt><code>int __builtin_mips_lower_cabs_</code><var>cond</var><code>_ps (v2sf </code><var>a</var><code>, v2sf </code><var>b</var><code>)</code><dd>Absolute comparison of two paired-single values (<code>cabs.</code><var>cond</var><code>.ps</code>,
<code>bc1t</code>/<code>bc1f</code>).

     <p>These functions compare <var>a</var> and <var>b</var> using <code>cabs.</code><var>cond</var><code>.ps</code>
and return either the upper or lower half of the result.  For example:

     <pre class="smallexample">          v2sf a, b;
          if (__builtin_mips_upper_cabs_eq_ps (a, b))
            upper_halves_are_equal ();
          else
            upper_halves_are_unequal ();
          
          if (__builtin_mips_lower_cabs_eq_ps (a, b))
            lower_halves_are_equal ();
          else
            lower_halves_are_unequal ();
</pre>
     <br><dt><code>v2sf __builtin_mips_movt_cabs_</code><var>cond</var><code>_ps (v2sf </code><var>a</var><code>, v2sf </code><var>b</var><code>, v2sf </code><var>c</var><code>, v2sf </code><var>d</var><code>)</code><dt><code>v2sf __builtin_mips_movf_cabs_</code><var>cond</var><code>_ps (v2sf </code><var>a</var><code>, v2sf </code><var>b</var><code>, v2sf </code><var>c</var><code>, v2sf </code><var>d</var><code>)</code><dd>Conditional move based on absolute comparison (<code>cabs.</code><var>cond</var><code>.ps</code>,
<code>movt.ps</code>/<code>movf.ps</code>).

     <p>The <code>movt</code> functions return the value <var>x</var> computed by:

     <pre class="smallexample">          cabs.<var>cond</var>.ps <var>cc</var>,<var>a</var>,<var>b</var>
          mov.ps <var>x</var>,<var>c</var>
          movt.ps <var>x</var>,<var>d</var>,<var>cc</var>
</pre>
     <p>The <code>movf</code> functions are similar but use <code>movf.ps</code> instead
of <code>movt.ps</code>.

     <br><dt><code>int __builtin_mips_any_c_</code><var>cond</var><code>_ps (v2sf </code><var>a</var><code>, v2sf </code><var>b</var><code>)</code><dt><code>int __builtin_mips_all_c_</code><var>cond</var><code>_ps (v2sf </code><var>a</var><code>, v2sf </code><var>b</var><code>)</code><dt><code>int __builtin_mips_any_cabs_</code><var>cond</var><code>_ps (v2sf </code><var>a</var><code>, v2sf </code><var>b</var><code>)</code><dt><code>int __builtin_mips_all_cabs_</code><var>cond</var><code>_ps (v2sf </code><var>a</var><code>, v2sf </code><var>b</var><code>)</code><dd>Comparison of two paired-single values
(<code>c.</code><var>cond</var><code>.ps</code>/<code>cabs.</code><var>cond</var><code>.ps</code>,
<code>bc1any2t</code>/<code>bc1any2f</code>).

     <p>These functions compare <var>a</var> and <var>b</var> using <code>c.</code><var>cond</var><code>.ps</code>
or <code>cabs.</code><var>cond</var><code>.ps</code>.  The <code>any</code> forms return true if either
result is true and the <code>all</code> forms return true if both results are true. 
For example:

     <pre class="smallexample">          v2sf a, b;
          if (__builtin_mips_any_c_eq_ps (a, b))
            one_is_true ();
          else
            both_are_false ();
          
          if (__builtin_mips_all_c_eq_ps (a, b))
            both_are_true ();
          else
            one_is_false ();
</pre>
     <br><dt><code>int __builtin_mips_any_c_</code><var>cond</var><code>_4s (v2sf </code><var>a</var><code>, v2sf </code><var>b</var><code>, v2sf </code><var>c</var><code>, v2sf </code><var>d</var><code>)</code><dt><code>int __builtin_mips_all_c_</code><var>cond</var><code>_4s (v2sf </code><var>a</var><code>, v2sf </code><var>b</var><code>, v2sf </code><var>c</var><code>, v2sf </code><var>d</var><code>)</code><dt><code>int __builtin_mips_any_cabs_</code><var>cond</var><code>_4s (v2sf </code><var>a</var><code>, v2sf </code><var>b</var><code>, v2sf </code><var>c</var><code>, v2sf </code><var>d</var><code>)</code><dt><code>int __builtin_mips_all_cabs_</code><var>cond</var><code>_4s (v2sf </code><var>a</var><code>, v2sf </code><var>b</var><code>, v2sf </code><var>c</var><code>, v2sf </code><var>d</var><code>)</code><dd>Comparison of four paired-single values
(<code>c.</code><var>cond</var><code>.ps</code>/<code>cabs.</code><var>cond</var><code>.ps</code>,
<code>bc1any4t</code>/<code>bc1any4f</code>).

     <p>These functions use <code>c.</code><var>cond</var><code>.ps</code> or <code>cabs.</code><var>cond</var><code>.ps</code>
to compare <var>a</var> with <var>b</var> and to compare <var>c</var> with <var>d</var>. 
The <code>any</code> forms return true if any of the four results are true
and the <code>all</code> forms return true if all four results are true. 
For example:

     <pre class="smallexample">          v2sf a, b, c, d;
          if (__builtin_mips_any_c_eq_4s (a, b, c, d))
            some_are_true ();
          else
            all_are_false ();
          
          if (__builtin_mips_all_c_eq_4s (a, b, c, d))
            all_are_true ();
          else
            some_are_false ();
</pre>
     </dl>

<div class="node">
<a name="picoChip-Built-in-Functions"></a>
<a name="picoChip-Built_002din-Functions"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#PowerPC-AltiVec_002fVSX-Built_002din-Functions">PowerPC AltiVec/VSX Built-in Functions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Other-MIPS-Built_002din-Functions">Other MIPS Built-in Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Target-Builtins">Target Builtins</a>

</div>

<h4 class="subsection">6.54.10 picoChip Built-in Functions</h4>

<p>GCC provides an interface to selected machine instructions from the
picoChip instruction set.

     <dl>
<dt><code>int __builtin_sbc (int </code><var>value</var><code>)</code><dd>Sign bit count.  Return the number of consecutive bits in <var>value</var>
which have the same value as the sign-bit.  The result is the number of
leading sign bits minus one, giving the number of redundant sign bits in
<var>value</var>.

     <br><dt><code>int __builtin_byteswap (int </code><var>value</var><code>)</code><dd>Byte swap.  Return the result of swapping the upper and lower bytes of
<var>value</var>.

     <br><dt><code>int __builtin_brev (int </code><var>value</var><code>)</code><dd>Bit reversal.  Return the result of reversing the bits in
<var>value</var>.  Bit 15 is swapped with bit 0, bit 14 is swapped with bit 1,
and so on.

     <br><dt><code>int __builtin_adds (int </code><var>x</var><code>, int </code><var>y</var><code>)</code><dd>Saturating addition.  Return the result of adding <var>x</var> and <var>y</var>,
storing the value 32767 if the result overflows.

     <br><dt><code>int __builtin_subs (int </code><var>x</var><code>, int </code><var>y</var><code>)</code><dd>Saturating subtraction.  Return the result of subtracting <var>y</var> from
<var>x</var>, storing the value &minus;32768 if the result overflows.

     <br><dt><code>void __builtin_halt (void)</code><dd>Halt.  The processor will stop execution.  This built-in is useful for
implementing assertions.

 </dl>

<div class="node">
<a name="Other-MIPS-Built-in-Functions"></a>
<a name="Other-MIPS-Built_002din-Functions"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#picoChip-Built_002din-Functions">picoChip Built-in Functions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#MIPS-Loongson-Built_002din-Functions">MIPS Loongson Built-in Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Target-Builtins">Target Builtins</a>

</div>

<h4 class="subsection">6.54.11 Other MIPS Built-in Functions</h4>

<p>GCC provides other MIPS-specific built-in functions:

     <dl>
<dt><code>void __builtin_mips_cache (int </code><var>op</var><code>, const volatile void *</code><var>addr</var><code>)</code><dd>Insert a &lsquo;<samp><span class="samp">cache</span></samp>&rsquo; instruction with operands <var>op</var> and <var>addr</var>. 
GCC defines the preprocessor macro <code>___GCC_HAVE_BUILTIN_MIPS_CACHE</code>
when this function is available. 
</dl>

<div class="node">
<a name="PowerPC-AltiVec%2fVSX-Built-in-Functions"></a>
<a name="PowerPC-AltiVec_002fVSX-Built_002din-Functions"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#RX-Built_002din-Functions">RX Built-in Functions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#picoChip-Built_002din-Functions">picoChip Built-in Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Target-Builtins">Target Builtins</a>

</div>

<h4 class="subsection">6.54.12 PowerPC AltiVec Built-in Functions</h4>

<p>GCC provides an interface for the PowerPC family of processors to access
the AltiVec operations described in Motorola's AltiVec Programming
Interface Manual.  The interface is made available by including
<code>&lt;altivec.h&gt;</code> and using <samp><span class="option">-maltivec</span></samp> and
<samp><span class="option">-mabi=altivec</span></samp>.  The interface supports the following vector
types.

<pre class="smallexample">     vector unsigned char
     vector signed char
     vector bool char
     
     vector unsigned short
     vector signed short
     vector bool short
     vector pixel
     
     vector unsigned int
     vector signed int
     vector bool int
     vector float
</pre>
 <p>If <samp><span class="option">-mvsx</span></samp> is used the following additional vector types are
implemented.

<pre class="smallexample">     vector unsigned long
     vector signed long
     vector double
</pre>
 <p>The long types are only implemented for 64-bit code generation, and
the long type is only used in the floating point/integer conversion
instructions.

 <p>GCC's implementation of the high-level language interface available from
C and C++ code differs from Motorola's documentation in several ways.

     <ul>
<li>A vector constant is a list of constant expressions within curly braces.

     <li>A vector initializer requires no cast if the vector constant is of the
same type as the variable it is initializing.

     <li>If <code>signed</code> or <code>unsigned</code> is omitted, the signedness of the
vector type is the default signedness of the base type.  The default
varies depending on the operating system, so a portable program should
always specify the signedness.

     <li>Compiling with <samp><span class="option">-maltivec</span></samp> adds keywords <code>__vector</code>,
<code>vector</code>, <code>__pixel</code>, <code>pixel</code>, <code>__bool</code> and
<code>bool</code>.  When compiling ISO C, the context-sensitive substitution
of the keywords <code>vector</code>, <code>pixel</code> and <code>bool</code> is
disabled.  To use them, you must include <code>&lt;altivec.h&gt;</code> instead.

     <li>GCC allows using a <code>typedef</code> name as the type specifier for a
vector type.

     <li>For C, overloaded functions are implemented with macros so the following
does not work:

     <pre class="smallexample">            vec_add ((vector signed int){1, 2, 3, 4}, foo);
</pre>
     <p>Since <code>vec_add</code> is a macro, the vector constant in the example
is treated as four separate arguments.  Wrap the entire argument in
parentheses for this to work. 
</ul>

 <p><em>Note:</em> Only the <code>&lt;altivec.h&gt;</code> interface is supported. 
Internally, GCC uses built-in functions to achieve the functionality in
the aforementioned header file, but they are not supported and are
subject to change without notice.

 <p>The following interfaces are supported for the generic and specific
AltiVec operations and the AltiVec predicates.  In cases where there
is a direct mapping between generic and specific operations, only the
generic names are shown here, although the specific operations can also
be used.

 <p>Arguments that are documented as <code>const int</code> require literal
integral values within the range required for that operation.

<pre class="smallexample">     vector signed char vec_abs (vector signed char);
     vector signed short vec_abs (vector signed short);
     vector signed int vec_abs (vector signed int);
     vector float vec_abs (vector float);
     
     vector signed char vec_abss (vector signed char);
     vector signed short vec_abss (vector signed short);
     vector signed int vec_abss (vector signed int);
     
     vector signed char vec_add (vector bool char, vector signed char);
     vector signed char vec_add (vector signed char, vector bool char);
     vector signed char vec_add (vector signed char, vector signed char);
     vector unsigned char vec_add (vector bool char, vector unsigned char);
     vector unsigned char vec_add (vector unsigned char, vector bool char);
     vector unsigned char vec_add (vector unsigned char,
                                   vector unsigned char);
     vector signed short vec_add (vector bool short, vector signed short);
     vector signed short vec_add (vector signed short, vector bool short);
     vector signed short vec_add (vector signed short, vector signed short);
     vector unsigned short vec_add (vector bool short,
                                    vector unsigned short);
     vector unsigned short vec_add (vector unsigned short,
                                    vector bool short);
     vector unsigned short vec_add (vector unsigned short,
                                    vector unsigned short);
     vector signed int vec_add (vector bool int, vector signed int);
     vector signed int vec_add (vector signed int, vector bool int);
     vector signed int vec_add (vector signed int, vector signed int);
     vector unsigned int vec_add (vector bool int, vector unsigned int);
     vector unsigned int vec_add (vector unsigned int, vector bool int);
     vector unsigned int vec_add (vector unsigned int, vector unsigned int);
     vector float vec_add (vector float, vector float);
     
     vector float vec_vaddfp (vector float, vector float);
     
     vector signed int vec_vadduwm (vector bool int, vector signed int);
     vector signed int vec_vadduwm (vector signed int, vector bool int);
     vector signed int vec_vadduwm (vector signed int, vector signed int);
     vector unsigned int vec_vadduwm (vector bool int, vector unsigned int);
     vector unsigned int vec_vadduwm (vector unsigned int, vector bool int);
     vector unsigned int vec_vadduwm (vector unsigned int,
                                      vector unsigned int);
     
     vector signed short vec_vadduhm (vector bool short,
                                      vector signed short);
     vector signed short vec_vadduhm (vector signed short,
                                      vector bool short);
     vector signed short vec_vadduhm (vector signed short,
                                      vector signed short);
     vector unsigned short vec_vadduhm (vector bool short,
                                        vector unsigned short);
     vector unsigned short vec_vadduhm (vector unsigned short,
                                        vector bool short);
     vector unsigned short vec_vadduhm (vector unsigned short,
                                        vector unsigned short);
     
     vector signed char vec_vaddubm (vector bool char, vector signed char);
     vector signed char vec_vaddubm (vector signed char, vector bool char);
     vector signed char vec_vaddubm (vector signed char, vector signed char);
     vector unsigned char vec_vaddubm (vector bool char,
                                       vector unsigned char);
     vector unsigned char vec_vaddubm (vector unsigned char,
                                       vector bool char);
     vector unsigned char vec_vaddubm (vector unsigned char,
                                       vector unsigned char);
     
     vector unsigned int vec_addc (vector unsigned int, vector unsigned int);
     
     vector unsigned char vec_adds (vector bool char, vector unsigned char);
     vector unsigned char vec_adds (vector unsigned char, vector bool char);
     vector unsigned char vec_adds (vector unsigned char,
                                    vector unsigned char);
     vector signed char vec_adds (vector bool char, vector signed char);
     vector signed char vec_adds (vector signed char, vector bool char);
     vector signed char vec_adds (vector signed char, vector signed char);
     vector unsigned short vec_adds (vector bool short,
                                     vector unsigned short);
     vector unsigned short vec_adds (vector unsigned short,
                                     vector bool short);
     vector unsigned short vec_adds (vector unsigned short,
                                     vector unsigned short);
     vector signed short vec_adds (vector bool short, vector signed short);
     vector signed short vec_adds (vector signed short, vector bool short);
     vector signed short vec_adds (vector signed short, vector signed short);
     vector unsigned int vec_adds (vector bool int, vector unsigned int);
     vector unsigned int vec_adds (vector unsigned int, vector bool int);
     vector unsigned int vec_adds (vector unsigned int, vector unsigned int);
     vector signed int vec_adds (vector bool int, vector signed int);
     vector signed int vec_adds (vector signed int, vector bool int);
     vector signed int vec_adds (vector signed int, vector signed int);
     
     vector signed int vec_vaddsws (vector bool int, vector signed int);
     vector signed int vec_vaddsws (vector signed int, vector bool int);
     vector signed int vec_vaddsws (vector signed int, vector signed int);
     
     vector unsigned int vec_vadduws (vector bool int, vector unsigned int);
     vector unsigned int vec_vadduws (vector unsigned int, vector bool int);
     vector unsigned int vec_vadduws (vector unsigned int,
                                      vector unsigned int);
     
     vector signed short vec_vaddshs (vector bool short,
                                      vector signed short);
     vector signed short vec_vaddshs (vector signed short,
                                      vector bool short);
     vector signed short vec_vaddshs (vector signed short,
                                      vector signed short);
     
     vector unsigned short vec_vadduhs (vector bool short,
                                        vector unsigned short);
     vector unsigned short vec_vadduhs (vector unsigned short,
                                        vector bool short);
     vector unsigned short vec_vadduhs (vector unsigned short,
                                        vector unsigned short);
     
     vector signed char vec_vaddsbs (vector bool char, vector signed char);
     vector signed char vec_vaddsbs (vector signed char, vector bool char);
     vector signed char vec_vaddsbs (vector signed char, vector signed char);
     
     vector unsigned char vec_vaddubs (vector bool char,
                                       vector unsigned char);
     vector unsigned char vec_vaddubs (vector unsigned char,
                                       vector bool char);
     vector unsigned char vec_vaddubs (vector unsigned char,
                                       vector unsigned char);
     
     vector float vec_and (vector float, vector float);
     vector float vec_and (vector float, vector bool int);
     vector float vec_and (vector bool int, vector float);
     vector bool int vec_and (vector bool int, vector bool int);
     vector signed int vec_and (vector bool int, vector signed int);
     vector signed int vec_and (vector signed int, vector bool int);
     vector signed int vec_and (vector signed int, vector signed int);
     vector unsigned int vec_and (vector bool int, vector unsigned int);
     vector unsigned int vec_and (vector unsigned int, vector bool int);
     vector unsigned int vec_and (vector unsigned int, vector unsigned int);
     vector bool short vec_and (vector bool short, vector bool short);
     vector signed short vec_and (vector bool short, vector signed short);
     vector signed short vec_and (vector signed short, vector bool short);
     vector signed short vec_and (vector signed short, vector signed short);
     vector unsigned short vec_and (vector bool short,
                                    vector unsigned short);
     vector unsigned short vec_and (vector unsigned short,
                                    vector bool short);
     vector unsigned short vec_and (vector unsigned short,
                                    vector unsigned short);
     vector signed char vec_and (vector bool char, vector signed char);
     vector bool char vec_and (vector bool char, vector bool char);
     vector signed char vec_and (vector signed char, vector bool char);
     vector signed char vec_and (vector signed char, vector signed char);
     vector unsigned char vec_and (vector bool char, vector unsigned char);
     vector unsigned char vec_and (vector unsigned char, vector bool char);
     vector unsigned char vec_and (vector unsigned char,
                                   vector unsigned char);
     
     vector float vec_andc (vector float, vector float);
     vector float vec_andc (vector float, vector bool int);
     vector float vec_andc (vector bool int, vector float);
     vector bool int vec_andc (vector bool int, vector bool int);
     vector signed int vec_andc (vector bool int, vector signed int);
     vector signed int vec_andc (vector signed int, vector bool int);
     vector signed int vec_andc (vector signed int, vector signed int);
     vector unsigned int vec_andc (vector bool int, vector unsigned int);
     vector unsigned int vec_andc (vector unsigned int, vector bool int);
     vector unsigned int vec_andc (vector unsigned int, vector unsigned int);
     vector bool short vec_andc (vector bool short, vector bool short);
     vector signed short vec_andc (vector bool short, vector signed short);
     vector signed short vec_andc (vector signed short, vector bool short);
     vector signed short vec_andc (vector signed short, vector signed short);
     vector unsigned short vec_andc (vector bool short,
                                     vector unsigned short);
     vector unsigned short vec_andc (vector unsigned short,
                                     vector bool short);
     vector unsigned short vec_andc (vector unsigned short,
                                     vector unsigned short);
     vector signed char vec_andc (vector bool char, vector signed char);
     vector bool char vec_andc (vector bool char, vector bool char);
     vector signed char vec_andc (vector signed char, vector bool char);
     vector signed char vec_andc (vector signed char, vector signed char);
     vector unsigned char vec_andc (vector bool char, vector unsigned char);
     vector unsigned char vec_andc (vector unsigned char, vector bool char);
     vector unsigned char vec_andc (vector unsigned char,
                                    vector unsigned char);
     
     vector unsigned char vec_avg (vector unsigned char,
                                   vector unsigned char);
     vector signed char vec_avg (vector signed char, vector signed char);
     vector unsigned short vec_avg (vector unsigned short,
                                    vector unsigned short);
     vector signed short vec_avg (vector signed short, vector signed short);
     vector unsigned int vec_avg (vector unsigned int, vector unsigned int);
     vector signed int vec_avg (vector signed int, vector signed int);
     
     vector signed int vec_vavgsw (vector signed int, vector signed int);
     
     vector unsigned int vec_vavguw (vector unsigned int,
                                     vector unsigned int);
     
     vector signed short vec_vavgsh (vector signed short,
                                     vector signed short);
     
     vector unsigned short vec_vavguh (vector unsigned short,
                                       vector unsigned short);
     
     vector signed char vec_vavgsb (vector signed char, vector signed char);
     
     vector unsigned char vec_vavgub (vector unsigned char,
                                      vector unsigned char);
     
     vector float vec_copysign (vector float);
     
     vector float vec_ceil (vector float);
     
     vector signed int vec_cmpb (vector float, vector float);
     
     vector bool char vec_cmpeq (vector signed char, vector signed char);
     vector bool char vec_cmpeq (vector unsigned char, vector unsigned char);
     vector bool short vec_cmpeq (vector signed short, vector signed short);
     vector bool short vec_cmpeq (vector unsigned short,
                                  vector unsigned short);
     vector bool int vec_cmpeq (vector signed int, vector signed int);
     vector bool int vec_cmpeq (vector unsigned int, vector unsigned int);
     vector bool int vec_cmpeq (vector float, vector float);
     
     vector bool int vec_vcmpeqfp (vector float, vector float);
     
     vector bool int vec_vcmpequw (vector signed int, vector signed int);
     vector bool int vec_vcmpequw (vector unsigned int, vector unsigned int);
     
     vector bool short vec_vcmpequh (vector signed short,
                                     vector signed short);
     vector bool short vec_vcmpequh (vector unsigned short,
                                     vector unsigned short);
     
     vector bool char vec_vcmpequb (vector signed char, vector signed char);
     vector bool char vec_vcmpequb (vector unsigned char,
                                    vector unsigned char);
     
     vector bool int vec_cmpge (vector float, vector float);
     
     vector bool char vec_cmpgt (vector unsigned char, vector unsigned char);
     vector bool char vec_cmpgt (vector signed char, vector signed char);
     vector bool short vec_cmpgt (vector unsigned short,
                                  vector unsigned short);
     vector bool short vec_cmpgt (vector signed short, vector signed short);
     vector bool int vec_cmpgt (vector unsigned int, vector unsigned int);
     vector bool int vec_cmpgt (vector signed int, vector signed int);
     vector bool int vec_cmpgt (vector float, vector float);
     
     vector bool int vec_vcmpgtfp (vector float, vector float);
     
     vector bool int vec_vcmpgtsw (vector signed int, vector signed int);
     
     vector bool int vec_vcmpgtuw (vector unsigned int, vector unsigned int);
     
     vector bool short vec_vcmpgtsh (vector signed short,
                                     vector signed short);
     
     vector bool short vec_vcmpgtuh (vector unsigned short,
                                     vector unsigned short);
     
     vector bool char vec_vcmpgtsb (vector signed char, vector signed char);
     
     vector bool char vec_vcmpgtub (vector unsigned char,
                                    vector unsigned char);
     
     vector bool int vec_cmple (vector float, vector float);
     
     vector bool char vec_cmplt (vector unsigned char, vector unsigned char);
     vector bool char vec_cmplt (vector signed char, vector signed char);
     vector bool short vec_cmplt (vector unsigned short,
                                  vector unsigned short);
     vector bool short vec_cmplt (vector signed short, vector signed short);
     vector bool int vec_cmplt (vector unsigned int, vector unsigned int);
     vector bool int vec_cmplt (vector signed int, vector signed int);
     vector bool int vec_cmplt (vector float, vector float);
     
     vector float vec_ctf (vector unsigned int, const int);
     vector float vec_ctf (vector signed int, const int);
     
     vector float vec_vcfsx (vector signed int, const int);
     
     vector float vec_vcfux (vector unsigned int, const int);
     
     vector signed int vec_cts (vector float, const int);
     
     vector unsigned int vec_ctu (vector float, const int);
     
     void vec_dss (const int);
     
     void vec_dssall (void);
     
     void vec_dst (const vector unsigned char *, int, const int);
     void vec_dst (const vector signed char *, int, const int);
     void vec_dst (const vector bool char *, int, const int);
     void vec_dst (const vector unsigned short *, int, const int);
     void vec_dst (const vector signed short *, int, const int);
     void vec_dst (const vector bool short *, int, const int);
     void vec_dst (const vector pixel *, int, const int);
     void vec_dst (const vector unsigned int *, int, const int);
     void vec_dst (const vector signed int *, int, const int);
     void vec_dst (const vector bool int *, int, const int);
     void vec_dst (const vector float *, int, const int);
     void vec_dst (const unsigned char *, int, const int);
     void vec_dst (const signed char *, int, const int);
     void vec_dst (const unsigned short *, int, const int);
     void vec_dst (const short *, int, const int);
     void vec_dst (const unsigned int *, int, const int);
     void vec_dst (const int *, int, const int);
     void vec_dst (const unsigned long *, int, const int);
     void vec_dst (const long *, int, const int);
     void vec_dst (const float *, int, const int);
     
     void vec_dstst (const vector unsigned char *, int, const int);
     void vec_dstst (const vector signed char *, int, const int);
     void vec_dstst (const vector bool char *, int, const int);
     void vec_dstst (const vector unsigned short *, int, const int);
     void vec_dstst (const vector signed short *, int, const int);
     void vec_dstst (const vector bool short *, int, const int);
     void vec_dstst (const vector pixel *, int, const int);
     void vec_dstst (const vector unsigned int *, int, const int);
     void vec_dstst (const vector signed int *, int, const int);
     void vec_dstst (const vector bool int *, int, const int);
     void vec_dstst (const vector float *, int, const int);
     void vec_dstst (const unsigned char *, int, const int);
     void vec_dstst (const signed char *, int, const int);
     void vec_dstst (const unsigned short *, int, const int);
     void vec_dstst (const short *, int, const int);
     void vec_dstst (const unsigned int *, int, const int);
     void vec_dstst (const int *, int, const int);
     void vec_dstst (const unsigned long *, int, const int);
     void vec_dstst (const long *, int, const int);
     void vec_dstst (const float *, int, const int);
     
     void vec_dststt (const vector unsigned char *, int, const int);
     void vec_dststt (const vector signed char *, int, const int);
     void vec_dststt (const vector bool char *, int, const int);
     void vec_dststt (const vector unsigned short *, int, const int);
     void vec_dststt (const vector signed short *, int, const int);
     void vec_dststt (const vector bool short *, int, const int);
     void vec_dststt (const vector pixel *, int, const int);
     void vec_dststt (const vector unsigned int *, int, const int);
     void vec_dststt (const vector signed int *, int, const int);
     void vec_dststt (const vector bool int *, int, const int);
     void vec_dststt (const vector float *, int, const int);
     void vec_dststt (const unsigned char *, int, const int);
     void vec_dststt (const signed char *, int, const int);
     void vec_dststt (const unsigned short *, int, const int);
     void vec_dststt (const short *, int, const int);
     void vec_dststt (const unsigned int *, int, const int);
     void vec_dststt (const int *, int, const int);
     void vec_dststt (const unsigned long *, int, const int);
     void vec_dststt (const long *, int, const int);
     void vec_dststt (const float *, int, const int);
     
     void vec_dstt (const vector unsigned char *, int, const int);
     void vec_dstt (const vector signed char *, int, const int);
     void vec_dstt (const vector bool char *, int, const int);
     void vec_dstt (const vector unsigned short *, int, const int);
     void vec_dstt (const vector signed short *, int, const int);
     void vec_dstt (const vector bool short *, int, const int);
     void vec_dstt (const vector pixel *, int, const int);
     void vec_dstt (const vector unsigned int *, int, const int);
     void vec_dstt (const vector signed int *, int, const int);
     void vec_dstt (const vector bool int *, int, const int);
     void vec_dstt (const vector float *, int, const int);
     void vec_dstt (const unsigned char *, int, const int);
     void vec_dstt (const signed char *, int, const int);
     void vec_dstt (const unsigned short *, int, const int);
     void vec_dstt (const short *, int, const int);
     void vec_dstt (const unsigned int *, int, const int);
     void vec_dstt (const int *, int, const int);
     void vec_dstt (const unsigned long *, int, const int);
     void vec_dstt (const long *, int, const int);
     void vec_dstt (const float *, int, const int);
     
     vector float vec_expte (vector float);
     
     vector float vec_floor (vector float);
     
     vector float vec_ld (int, const vector float *);
     vector float vec_ld (int, const float *);
     vector bool int vec_ld (int, const vector bool int *);
     vector signed int vec_ld (int, const vector signed int *);
     vector signed int vec_ld (int, const int *);
     vector signed int vec_ld (int, const long *);
     vector unsigned int vec_ld (int, const vector unsigned int *);
     vector unsigned int vec_ld (int, const unsigned int *);
     vector unsigned int vec_ld (int, const unsigned long *);
     vector bool short vec_ld (int, const vector bool short *);
     vector pixel vec_ld (int, const vector pixel *);
     vector signed short vec_ld (int, const vector signed short *);
     vector signed short vec_ld (int, const short *);
     vector unsigned short vec_ld (int, const vector unsigned short *);
     vector unsigned short vec_ld (int, const unsigned short *);
     vector bool char vec_ld (int, const vector bool char *);
     vector signed char vec_ld (int, const vector signed char *);
     vector signed char vec_ld (int, const signed char *);
     vector unsigned char vec_ld (int, const vector unsigned char *);
     vector unsigned char vec_ld (int, const unsigned char *);
     
     vector signed char vec_lde (int, const signed char *);
     vector unsigned char vec_lde (int, const unsigned char *);
     vector signed short vec_lde (int, const short *);
     vector unsigned short vec_lde (int, const unsigned short *);
     vector float vec_lde (int, const float *);
     vector signed int vec_lde (int, const int *);
     vector unsigned int vec_lde (int, const unsigned int *);
     vector signed int vec_lde (int, const long *);
     vector unsigned int vec_lde (int, const unsigned long *);
     
     vector float vec_lvewx (int, float *);
     vector signed int vec_lvewx (int, int *);
     vector unsigned int vec_lvewx (int, unsigned int *);
     vector signed int vec_lvewx (int, long *);
     vector unsigned int vec_lvewx (int, unsigned long *);
     
     vector signed short vec_lvehx (int, short *);
     vector unsigned short vec_lvehx (int, unsigned short *);
     
     vector signed char vec_lvebx (int, char *);
     vector unsigned char vec_lvebx (int, unsigned char *);
     
     vector float vec_ldl (int, const vector float *);
     vector float vec_ldl (int, const float *);
     vector bool int vec_ldl (int, const vector bool int *);
     vector signed int vec_ldl (int, const vector signed int *);
     vector signed int vec_ldl (int, const int *);
     vector signed int vec_ldl (int, const long *);
     vector unsigned int vec_ldl (int, const vector unsigned int *);
     vector unsigned int vec_ldl (int, const unsigned int *);
     vector unsigned int vec_ldl (int, const unsigned long *);
     vector bool short vec_ldl (int, const vector bool short *);
     vector pixel vec_ldl (int, const vector pixel *);
     vector signed short vec_ldl (int, const vector signed short *);
     vector signed short vec_ldl (int, const short *);
     vector unsigned short vec_ldl (int, const vector unsigned short *);
     vector unsigned short vec_ldl (int, const unsigned short *);
     vector bool char vec_ldl (int, const vector bool char *);
     vector signed char vec_ldl (int, const vector signed char *);
     vector signed char vec_ldl (int, const signed char *);
     vector unsigned char vec_ldl (int, const vector unsigned char *);
     vector unsigned char vec_ldl (int, const unsigned char *);
     
     vector float vec_loge (vector float);
     
     vector unsigned char vec_lvsl (int, const volatile unsigned char *);
     vector unsigned char vec_lvsl (int, const volatile signed char *);
     vector unsigned char vec_lvsl (int, const volatile unsigned short *);
     vector unsigned char vec_lvsl (int, const volatile short *);
     vector unsigned char vec_lvsl (int, const volatile unsigned int *);
     vector unsigned char vec_lvsl (int, const volatile int *);
     vector unsigned char vec_lvsl (int, const volatile unsigned long *);
     vector unsigned char vec_lvsl (int, const volatile long *);
     vector unsigned char vec_lvsl (int, const volatile float *);
     
     vector unsigned char vec_lvsr (int, const volatile unsigned char *);
     vector unsigned char vec_lvsr (int, const volatile signed char *);
     vector unsigned char vec_lvsr (int, const volatile unsigned short *);
     vector unsigned char vec_lvsr (int, const volatile short *);
     vector unsigned char vec_lvsr (int, const volatile unsigned int *);
     vector unsigned char vec_lvsr (int, const volatile int *);
     vector unsigned char vec_lvsr (int, const volatile unsigned long *);
     vector unsigned char vec_lvsr (int, const volatile long *);
     vector unsigned char vec_lvsr (int, const volatile float *);
     
     vector float vec_madd (vector float, vector float, vector float);
     
     vector signed short vec_madds (vector signed short,
                                    vector signed short,
                                    vector signed short);
     
     vector unsigned char vec_max (vector bool char, vector unsigned char);
     vector unsigned char vec_max (vector unsigned char, vector bool char);
     vector unsigned char vec_max (vector unsigned char,
                                   vector unsigned char);
     vector signed char vec_max (vector bool char, vector signed char);
     vector signed char vec_max (vector signed char, vector bool char);
     vector signed char vec_max (vector signed char, vector signed char);
     vector unsigned short vec_max (vector bool short,
                                    vector unsigned short);
     vector unsigned short vec_max (vector unsigned short,
                                    vector bool short);
     vector unsigned short vec_max (vector unsigned short,
                                    vector unsigned short);
     vector signed short vec_max (vector bool short, vector signed short);
     vector signed short vec_max (vector signed short, vector bool short);
     vector signed short vec_max (vector signed short, vector signed short);
     vector unsigned int vec_max (vector bool int, vector unsigned int);
     vector unsigned int vec_max (vector unsigned int, vector bool int);
     vector unsigned int vec_max (vector unsigned int, vector unsigned int);
     vector signed int vec_max (vector bool int, vector signed int);
     vector signed int vec_max (vector signed int, vector bool int);
     vector signed int vec_max (vector signed int, vector signed int);
     vector float vec_max (vector float, vector float);
     
     vector float vec_vmaxfp (vector float, vector float);
     
     vector signed int vec_vmaxsw (vector bool int, vector signed int);
     vector signed int vec_vmaxsw (vector signed int, vector bool int);
     vector signed int vec_vmaxsw (vector signed int, vector signed int);
     
     vector unsigned int vec_vmaxuw (vector bool int, vector unsigned int);
     vector unsigned int vec_vmaxuw (vector unsigned int, vector bool int);
     vector unsigned int vec_vmaxuw (vector unsigned int,
                                     vector unsigned int);
     
     vector signed short vec_vmaxsh (vector bool short, vector signed short);
     vector signed short vec_vmaxsh (vector signed short, vector bool short);
     vector signed short vec_vmaxsh (vector signed short,
                                     vector signed short);
     
     vector unsigned short vec_vmaxuh (vector bool short,
                                       vector unsigned short);
     vector unsigned short vec_vmaxuh (vector unsigned short,
                                       vector bool short);
     vector unsigned short vec_vmaxuh (vector unsigned short,
                                       vector unsigned short);
     
     vector signed char vec_vmaxsb (vector bool char, vector signed char);
     vector signed char vec_vmaxsb (vector signed char, vector bool char);
     vector signed char vec_vmaxsb (vector signed char, vector signed char);
     
     vector unsigned char vec_vmaxub (vector bool char,
                                      vector unsigned char);
     vector unsigned char vec_vmaxub (vector unsigned char,
                                      vector bool char);
     vector unsigned char vec_vmaxub (vector unsigned char,
                                      vector unsigned char);
     
     vector bool char vec_mergeh (vector bool char, vector bool char);
     vector signed char vec_mergeh (vector signed char, vector signed char);
     vector unsigned char vec_mergeh (vector unsigned char,
                                      vector unsigned char);
     vector bool short vec_mergeh (vector bool short, vector bool short);
     vector pixel vec_mergeh (vector pixel, vector pixel);
     vector signed short vec_mergeh (vector signed short,
                                     vector signed short);
     vector unsigned short vec_mergeh (vector unsigned short,
                                       vector unsigned short);
     vector float vec_mergeh (vector float, vector float);
     vector bool int vec_mergeh (vector bool int, vector bool int);
     vector signed int vec_mergeh (vector signed int, vector signed int);
     vector unsigned int vec_mergeh (vector unsigned int,
                                     vector unsigned int);
     
     vector float vec_vmrghw (vector float, vector float);
     vector bool int vec_vmrghw (vector bool int, vector bool int);
     vector signed int vec_vmrghw (vector signed int, vector signed int);
     vector unsigned int vec_vmrghw (vector unsigned int,
                                     vector unsigned int);
     
     vector bool short vec_vmrghh (vector bool short, vector bool short);
     vector signed short vec_vmrghh (vector signed short,
                                     vector signed short);
     vector unsigned short vec_vmrghh (vector unsigned short,
                                       vector unsigned short);
     vector pixel vec_vmrghh (vector pixel, vector pixel);
     
     vector bool char vec_vmrghb (vector bool char, vector bool char);
     vector signed char vec_vmrghb (vector signed char, vector signed char);
     vector unsigned char vec_vmrghb (vector unsigned char,
                                      vector unsigned char);
     
     vector bool char vec_mergel (vector bool char, vector bool char);
     vector signed char vec_mergel (vector signed char, vector signed char);
     vector unsigned char vec_mergel (vector unsigned char,
                                      vector unsigned char);
     vector bool short vec_mergel (vector bool short, vector bool short);
     vector pixel vec_mergel (vector pixel, vector pixel);
     vector signed short vec_mergel (vector signed short,
                                     vector signed short);
     vector unsigned short vec_mergel (vector unsigned short,
                                       vector unsigned short);
     vector float vec_mergel (vector float, vector float);
     vector bool int vec_mergel (vector bool int, vector bool int);
     vector signed int vec_mergel (vector signed int, vector signed int);
     vector unsigned int vec_mergel (vector unsigned int,
                                     vector unsigned int);
     
     vector float vec_vmrglw (vector float, vector float);
     vector signed int vec_vmrglw (vector signed int, vector signed int);
     vector unsigned int vec_vmrglw (vector unsigned int,
                                     vector unsigned int);
     vector bool int vec_vmrglw (vector bool int, vector bool int);
     
     vector bool short vec_vmrglh (vector bool short, vector bool short);
     vector signed short vec_vmrglh (vector signed short,
                                     vector signed short);
     vector unsigned short vec_vmrglh (vector unsigned short,
                                       vector unsigned short);
     vector pixel vec_vmrglh (vector pixel, vector pixel);
     
     vector bool char vec_vmrglb (vector bool char, vector bool char);
     vector signed char vec_vmrglb (vector signed char, vector signed char);
     vector unsigned char vec_vmrglb (vector unsigned char,
                                      vector unsigned char);
     
     vector unsigned short vec_mfvscr (void);
     
     vector unsigned char vec_min (vector bool char, vector unsigned char);
     vector unsigned char vec_min (vector unsigned char, vector bool char);
     vector unsigned char vec_min (vector unsigned char,
                                   vector unsigned char);
     vector signed char vec_min (vector bool char, vector signed char);
     vector signed char vec_min (vector signed char, vector bool char);
     vector signed char vec_min (vector signed char, vector signed char);
     vector unsigned short vec_min (vector bool short,
                                    vector unsigned short);
     vector unsigned short vec_min (vector unsigned short,
                                    vector bool short);
     vector unsigned short vec_min (vector unsigned short,
                                    vector unsigned short);
     vector signed short vec_min (vector bool short, vector signed short);
     vector signed short vec_min (vector signed short, vector bool short);
     vector signed short vec_min (vector signed short, vector signed short);
     vector unsigned int vec_min (vector bool int, vector unsigned int);
     vector unsigned int vec_min (vector unsigned int, vector bool int);
     vector unsigned int vec_min (vector unsigned int, vector unsigned int);
     vector signed int vec_min (vector bool int, vector signed int);
     vector signed int vec_min (vector signed int, vector bool int);
     vector signed int vec_min (vector signed int, vector signed int);
     vector float vec_min (vector float, vector float);
     
     vector float vec_vminfp (vector float, vector float);
     
     vector signed int vec_vminsw (vector bool int, vector signed int);
     vector signed int vec_vminsw (vector signed int, vector bool int);
     vector signed int vec_vminsw (vector signed int, vector signed int);
     
     vector unsigned int vec_vminuw (vector bool int, vector unsigned int);
     vector unsigned int vec_vminuw (vector unsigned int, vector bool int);
     vector unsigned int vec_vminuw (vector unsigned int,
                                     vector unsigned int);
     
     vector signed short vec_vminsh (vector bool short, vector signed short);
     vector signed short vec_vminsh (vector signed short, vector bool short);
     vector signed short vec_vminsh (vector signed short,
                                     vector signed short);
     
     vector unsigned short vec_vminuh (vector bool short,
                                       vector unsigned short);
     vector unsigned short vec_vminuh (vector unsigned short,
                                       vector bool short);
     vector unsigned short vec_vminuh (vector unsigned short,
                                       vector unsigned short);
     
     vector signed char vec_vminsb (vector bool char, vector signed char);
     vector signed char vec_vminsb (vector signed char, vector bool char);
     vector signed char vec_vminsb (vector signed char, vector signed char);
     
     vector unsigned char vec_vminub (vector bool char,
                                      vector unsigned char);
     vector unsigned char vec_vminub (vector unsigned char,
                                      vector bool char);
     vector unsigned char vec_vminub (vector unsigned char,
                                      vector unsigned char);
     
     vector signed short vec_mladd (vector signed short,
                                    vector signed short,
                                    vector signed short);
     vector signed short vec_mladd (vector signed short,
                                    vector unsigned short,
                                    vector unsigned short);
     vector signed short vec_mladd (vector unsigned short,
                                    vector signed short,
                                    vector signed short);
     vector unsigned short vec_mladd (vector unsigned short,
                                      vector unsigned short,
                                      vector unsigned short);
     
     vector signed short vec_mradds (vector signed short,
                                     vector signed short,
                                     vector signed short);
     
     vector unsigned int vec_msum (vector unsigned char,
                                   vector unsigned char,
                                   vector unsigned int);
     vector signed int vec_msum (vector signed char,
                                 vector unsigned char,
                                 vector signed int);
     vector unsigned int vec_msum (vector unsigned short,
                                   vector unsigned short,
                                   vector unsigned int);
     vector signed int vec_msum (vector signed short,
                                 vector signed short,
                                 vector signed int);
     
     vector signed int vec_vmsumshm (vector signed short,
                                     vector signed short,
                                     vector signed int);
     
     vector unsigned int vec_vmsumuhm (vector unsigned short,
                                       vector unsigned short,
                                       vector unsigned int);
     
     vector signed int vec_vmsummbm (vector signed char,
                                     vector unsigned char,
                                     vector signed int);
     
     vector unsigned int vec_vmsumubm (vector unsigned char,
                                       vector unsigned char,
                                       vector unsigned int);
     
     vector unsigned int vec_msums (vector unsigned short,
                                    vector unsigned short,
                                    vector unsigned int);
     vector signed int vec_msums (vector signed short,
                                  vector signed short,
                                  vector signed int);
     
     vector signed int vec_vmsumshs (vector signed short,
                                     vector signed short,
                                     vector signed int);
     
     vector unsigned int vec_vmsumuhs (vector unsigned short,
                                       vector unsigned short,
                                       vector unsigned int);
     
     void vec_mtvscr (vector signed int);
     void vec_mtvscr (vector unsigned int);
     void vec_mtvscr (vector bool int);
     void vec_mtvscr (vector signed short);
     void vec_mtvscr (vector unsigned short);
     void vec_mtvscr (vector bool short);
     void vec_mtvscr (vector pixel);
     void vec_mtvscr (vector signed char);
     void vec_mtvscr (vector unsigned char);
     void vec_mtvscr (vector bool char);
     
     vector unsigned short vec_mule (vector unsigned char,
                                     vector unsigned char);
     vector signed short vec_mule (vector signed char,
                                   vector signed char);
     vector unsigned int vec_mule (vector unsigned short,
                                   vector unsigned short);
     vector signed int vec_mule (vector signed short, vector signed short);
     
     vector signed int vec_vmulesh (vector signed short,
                                    vector signed short);
     
     vector unsigned int vec_vmuleuh (vector unsigned short,
                                      vector unsigned short);
     
     vector signed short vec_vmulesb (vector signed char,
                                      vector signed char);
     
     vector unsigned short vec_vmuleub (vector unsigned char,
                                       vector unsigned char);
     
     vector unsigned short vec_mulo (vector unsigned char,
                                     vector unsigned char);
     vector signed short vec_mulo (vector signed char, vector signed char);
     vector unsigned int vec_mulo (vector unsigned short,
                                   vector unsigned short);
     vector signed int vec_mulo (vector signed short, vector signed short);
     
     vector signed int vec_vmulosh (vector signed short,
                                    vector signed short);
     
     vector unsigned int vec_vmulouh (vector unsigned short,
                                      vector unsigned short);
     
     vector signed short vec_vmulosb (vector signed char,
                                      vector signed char);
     
     vector unsigned short vec_vmuloub (vector unsigned char,
                                        vector unsigned char);
     
     vector float vec_nmsub (vector float, vector float, vector float);
     
     vector float vec_nor (vector float, vector float);
     vector signed int vec_nor (vector signed int, vector signed int);
     vector unsigned int vec_nor (vector unsigned int, vector unsigned int);
     vector bool int vec_nor (vector bool int, vector bool int);
     vector signed short vec_nor (vector signed short, vector signed short);
     vector unsigned short vec_nor (vector unsigned short,
                                    vector unsigned short);
     vector bool short vec_nor (vector bool short, vector bool short);
     vector signed char vec_nor (vector signed char, vector signed char);
     vector unsigned char vec_nor (vector unsigned char,
                                   vector unsigned char);
     vector bool char vec_nor (vector bool char, vector bool char);
     
     vector float vec_or (vector float, vector float);
     vector float vec_or (vector float, vector bool int);
     vector float vec_or (vector bool int, vector float);
     vector bool int vec_or (vector bool int, vector bool int);
     vector signed int vec_or (vector bool int, vector signed int);
     vector signed int vec_or (vector signed int, vector bool int);
     vector signed int vec_or (vector signed int, vector signed int);
     vector unsigned int vec_or (vector bool int, vector unsigned int);
     vector unsigned int vec_or (vector unsigned int, vector bool int);
     vector unsigned int vec_or (vector unsigned int, vector unsigned int);
     vector bool short vec_or (vector bool short, vector bool short);
     vector signed short vec_or (vector bool short, vector signed short);
     vector signed short vec_or (vector signed short, vector bool short);
     vector signed short vec_or (vector signed short, vector signed short);
     vector unsigned short vec_or (vector bool short, vector unsigned short);
     vector unsigned short vec_or (vector unsigned short, vector bool short);
     vector unsigned short vec_or (vector unsigned short,
                                   vector unsigned short);
     vector signed char vec_or (vector bool char, vector signed char);
     vector bool char vec_or (vector bool char, vector bool char);
     vector signed char vec_or (vector signed char, vector bool char);
     vector signed char vec_or (vector signed char, vector signed char);
     vector unsigned char vec_or (vector bool char, vector unsigned char);
     vector unsigned char vec_or (vector unsigned char, vector bool char);
     vector unsigned char vec_or (vector unsigned char,
                                  vector unsigned char);
     
     vector signed char vec_pack (vector signed short, vector signed short);
     vector unsigned char vec_pack (vector unsigned short,
                                    vector unsigned short);
     vector bool char vec_pack (vector bool short, vector bool short);
     vector signed short vec_pack (vector signed int, vector signed int);
     vector unsigned short vec_pack (vector unsigned int,
                                     vector unsigned int);
     vector bool short vec_pack (vector bool int, vector bool int);
     
     vector bool short vec_vpkuwum (vector bool int, vector bool int);
     vector signed short vec_vpkuwum (vector signed int, vector signed int);
     vector unsigned short vec_vpkuwum (vector unsigned int,
                                        vector unsigned int);
     
     vector bool char vec_vpkuhum (vector bool short, vector bool short);
     vector signed char vec_vpkuhum (vector signed short,
                                     vector signed short);
     vector unsigned char vec_vpkuhum (vector unsigned short,
                                       vector unsigned short);
     
     vector pixel vec_packpx (vector unsigned int, vector unsigned int);
     
     vector unsigned char vec_packs (vector unsigned short,
                                     vector unsigned short);
     vector signed char vec_packs (vector signed short, vector signed short);
     vector unsigned short vec_packs (vector unsigned int,
                                      vector unsigned int);
     vector signed short vec_packs (vector signed int, vector signed int);
     
     vector signed short vec_vpkswss (vector signed int, vector signed int);
     
     vector unsigned short vec_vpkuwus (vector unsigned int,
                                        vector unsigned int);
     
     vector signed char vec_vpkshss (vector signed short,
                                     vector signed short);
     
     vector unsigned char vec_vpkuhus (vector unsigned short,
                                       vector unsigned short);
     
     vector unsigned char vec_packsu (vector unsigned short,
                                      vector unsigned short);
     vector unsigned char vec_packsu (vector signed short,
                                      vector signed short);
     vector unsigned short vec_packsu (vector unsigned int,
                                       vector unsigned int);
     vector unsigned short vec_packsu (vector signed int, vector signed int);
     
     vector unsigned short vec_vpkswus (vector signed int,
                                        vector signed int);
     
     vector unsigned char vec_vpkshus (vector signed short,
                                       vector signed short);
     
     vector float vec_perm (vector float,
                            vector float,
                            vector unsigned char);
     vector signed int vec_perm (vector signed int,
                                 vector signed int,
                                 vector unsigned char);
     vector unsigned int vec_perm (vector unsigned int,
                                   vector unsigned int,
                                   vector unsigned char);
     vector bool int vec_perm (vector bool int,
                               vector bool int,
                               vector unsigned char);
     vector signed short vec_perm (vector signed short,
                                   vector signed short,
                                   vector unsigned char);
     vector unsigned short vec_perm (vector unsigned short,
                                     vector unsigned short,
                                     vector unsigned char);
     vector bool short vec_perm (vector bool short,
                                 vector bool short,
                                 vector unsigned char);
     vector pixel vec_perm (vector pixel,
                            vector pixel,
                            vector unsigned char);
     vector signed char vec_perm (vector signed char,
                                  vector signed char,
                                  vector unsigned char);
     vector unsigned char vec_perm (vector unsigned char,
                                    vector unsigned char,
                                    vector unsigned char);
     vector bool char vec_perm (vector bool char,
                                vector bool char,
                                vector unsigned char);
     
     vector float vec_re (vector float);
     
     vector signed char vec_rl (vector signed char,
                                vector unsigned char);
     vector unsigned char vec_rl (vector unsigned char,
                                  vector unsigned char);
     vector signed short vec_rl (vector signed short, vector unsigned short);
     vector unsigned short vec_rl (vector unsigned short,
                                   vector unsigned short);
     vector signed int vec_rl (vector signed int, vector unsigned int);
     vector unsigned int vec_rl (vector unsigned int, vector unsigned int);
     
     vector signed int vec_vrlw (vector signed int, vector unsigned int);
     vector unsigned int vec_vrlw (vector unsigned int, vector unsigned int);
     
     vector signed short vec_vrlh (vector signed short,
                                   vector unsigned short);
     vector unsigned short vec_vrlh (vector unsigned short,
                                     vector unsigned short);
     
     vector signed char vec_vrlb (vector signed char, vector unsigned char);
     vector unsigned char vec_vrlb (vector unsigned char,
                                    vector unsigned char);
     
     vector float vec_round (vector float);
     
     vector float vec_recip (vector float, vector float);
     
     vector float vec_rsqrt (vector float);
     
     vector float vec_rsqrte (vector float);
     
     vector float vec_sel (vector float, vector float, vector bool int);
     vector float vec_sel (vector float, vector float, vector unsigned int);
     vector signed int vec_sel (vector signed int,
                                vector signed int,
                                vector bool int);
     vector signed int vec_sel (vector signed int,
                                vector signed int,
                                vector unsigned int);
     vector unsigned int vec_sel (vector unsigned int,
                                  vector unsigned int,
                                  vector bool int);
     vector unsigned int vec_sel (vector unsigned int,
                                  vector unsigned int,
                                  vector unsigned int);
     vector bool int vec_sel (vector bool int,
                              vector bool int,
                              vector bool int);
     vector bool int vec_sel (vector bool int,
                              vector bool int,
                              vector unsigned int);
     vector signed short vec_sel (vector signed short,
                                  vector signed short,
                                  vector bool short);
     vector signed short vec_sel (vector signed short,
                                  vector signed short,
                                  vector unsigned short);
     vector unsigned short vec_sel (vector unsigned short,
                                    vector unsigned short,
                                    vector bool short);
     vector unsigned short vec_sel (vector unsigned short,
                                    vector unsigned short,
                                    vector unsigned short);
     vector bool short vec_sel (vector bool short,
                                vector bool short,
                                vector bool short);
     vector bool short vec_sel (vector bool short,
                                vector bool short,
                                vector unsigned short);
     vector signed char vec_sel (vector signed char,
                                 vector signed char,
                                 vector bool char);
     vector signed char vec_sel (vector signed char,
                                 vector signed char,
                                 vector unsigned char);
     vector unsigned char vec_sel (vector unsigned char,
                                   vector unsigned char,
                                   vector bool char);
     vector unsigned char vec_sel (vector unsigned char,
                                   vector unsigned char,
                                   vector unsigned char);
     vector bool char vec_sel (vector bool char,
                               vector bool char,
                               vector bool char);
     vector bool char vec_sel (vector bool char,
                               vector bool char,
                               vector unsigned char);
     
     vector signed char vec_sl (vector signed char,
                                vector unsigned char);
     vector unsigned char vec_sl (vector unsigned char,
                                  vector unsigned char);
     vector signed short vec_sl (vector signed short, vector unsigned short);
     vector unsigned short vec_sl (vector unsigned short,
                                   vector unsigned short);
     vector signed int vec_sl (vector signed int, vector unsigned int);
     vector unsigned int vec_sl (vector unsigned int, vector unsigned int);
     
     vector signed int vec_vslw (vector signed int, vector unsigned int);
     vector unsigned int vec_vslw (vector unsigned int, vector unsigned int);
     
     vector signed short vec_vslh (vector signed short,
                                   vector unsigned short);
     vector unsigned short vec_vslh (vector unsigned short,
                                     vector unsigned short);
     
     vector signed char vec_vslb (vector signed char, vector unsigned char);
     vector unsigned char vec_vslb (vector unsigned char,
                                    vector unsigned char);
     
     vector float vec_sld (vector float, vector float, const int);
     vector signed int vec_sld (vector signed int,
                                vector signed int,
                                const int);
     vector unsigned int vec_sld (vector unsigned int,
                                  vector unsigned int,
                                  const int);
     vector bool int vec_sld (vector bool int,
                              vector bool int,
                              const int);
     vector signed short vec_sld (vector signed short,
                                  vector signed short,
                                  const int);
     vector unsigned short vec_sld (vector unsigned short,
                                    vector unsigned short,
                                    const int);
     vector bool short vec_sld (vector bool short,
                                vector bool short,
                                const int);
     vector pixel vec_sld (vector pixel,
                           vector pixel,
                           const int);
     vector signed char vec_sld (vector signed char,
                                 vector signed char,
                                 const int);
     vector unsigned char vec_sld (vector unsigned char,
                                   vector unsigned char,
                                   const int);
     vector bool char vec_sld (vector bool char,
                               vector bool char,
                               const int);
     
     vector signed int vec_sll (vector signed int,
                                vector unsigned int);
     vector signed int vec_sll (vector signed int,
                                vector unsigned short);
     vector signed int vec_sll (vector signed int,
                                vector unsigned char);
     vector unsigned int vec_sll (vector unsigned int,
                                  vector unsigned int);
     vector unsigned int vec_sll (vector unsigned int,
                                  vector unsigned short);
     vector unsigned int vec_sll (vector unsigned int,
                                  vector unsigned char);
     vector bool int vec_sll (vector bool int,
                              vector unsigned int);
     vector bool int vec_sll (vector bool int,
                              vector unsigned short);
     vector bool int vec_sll (vector bool int,
                              vector unsigned char);
     vector signed short vec_sll (vector signed short,
                                  vector unsigned int);
     vector signed short vec_sll (vector signed short,
                                  vector unsigned short);
     vector signed short vec_sll (vector signed short,
                                  vector unsigned char);
     vector unsigned short vec_sll (vector unsigned short,
                                    vector unsigned int);
     vector unsigned short vec_sll (vector unsigned short,
                                    vector unsigned short);
     vector unsigned short vec_sll (vector unsigned short,
                                    vector unsigned char);
     vector bool short vec_sll (vector bool short, vector unsigned int);
     vector bool short vec_sll (vector bool short, vector unsigned short);
     vector bool short vec_sll (vector bool short, vector unsigned char);
     vector pixel vec_sll (vector pixel, vector unsigned int);
     vector pixel vec_sll (vector pixel, vector unsigned short);
     vector pixel vec_sll (vector pixel, vector unsigned char);
     vector signed char vec_sll (vector signed char, vector unsigned int);
     vector signed char vec_sll (vector signed char, vector unsigned short);
     vector signed char vec_sll (vector signed char, vector unsigned char);
     vector unsigned char vec_sll (vector unsigned char,
                                   vector unsigned int);
     vector unsigned char vec_sll (vector unsigned char,
                                   vector unsigned short);
     vector unsigned char vec_sll (vector unsigned char,
                                   vector unsigned char);
     vector bool char vec_sll (vector bool char, vector unsigned int);
     vector bool char vec_sll (vector bool char, vector unsigned short);
     vector bool char vec_sll (vector bool char, vector unsigned char);
     
     vector float vec_slo (vector float, vector signed char);
     vector float vec_slo (vector float, vector unsigned char);
     vector signed int vec_slo (vector signed int, vector signed char);
     vector signed int vec_slo (vector signed int, vector unsigned char);
     vector unsigned int vec_slo (vector unsigned int, vector signed char);
     vector unsigned int vec_slo (vector unsigned int, vector unsigned char);
     vector signed short vec_slo (vector signed short, vector signed char);
     vector signed short vec_slo (vector signed short, vector unsigned char);
     vector unsigned short vec_slo (vector unsigned short,
                                    vector signed char);
     vector unsigned short vec_slo (vector unsigned short,
                                    vector unsigned char);
     vector pixel vec_slo (vector pixel, vector signed char);
     vector pixel vec_slo (vector pixel, vector unsigned char);
     vector signed char vec_slo (vector signed char, vector signed char);
     vector signed char vec_slo (vector signed char, vector unsigned char);
     vector unsigned char vec_slo (vector unsigned char, vector signed char);
     vector unsigned char vec_slo (vector unsigned char,
                                   vector unsigned char);
     
     vector signed char vec_splat (vector signed char, const int);
     vector unsigned char vec_splat (vector unsigned char, const int);
     vector bool char vec_splat (vector bool char, const int);
     vector signed short vec_splat (vector signed short, const int);
     vector unsigned short vec_splat (vector unsigned short, const int);
     vector bool short vec_splat (vector bool short, const int);
     vector pixel vec_splat (vector pixel, const int);
     vector float vec_splat (vector float, const int);
     vector signed int vec_splat (vector signed int, const int);
     vector unsigned int vec_splat (vector unsigned int, const int);
     vector bool int vec_splat (vector bool int, const int);
     
     vector float vec_vspltw (vector float, const int);
     vector signed int vec_vspltw (vector signed int, const int);
     vector unsigned int vec_vspltw (vector unsigned int, const int);
     vector bool int vec_vspltw (vector bool int, const int);
     
     vector bool short vec_vsplth (vector bool short, const int);
     vector signed short vec_vsplth (vector signed short, const int);
     vector unsigned short vec_vsplth (vector unsigned short, const int);
     vector pixel vec_vsplth (vector pixel, const int);
     
     vector signed char vec_vspltb (vector signed char, const int);
     vector unsigned char vec_vspltb (vector unsigned char, const int);
     vector bool char vec_vspltb (vector bool char, const int);
     
     vector signed char vec_splat_s8 (const int);
     
     vector signed short vec_splat_s16 (const int);
     
     vector signed int vec_splat_s32 (const int);
     
     vector unsigned char vec_splat_u8 (const int);
     
     vector unsigned short vec_splat_u16 (const int);
     
     vector unsigned int vec_splat_u32 (const int);
     
     vector signed char vec_sr (vector signed char, vector unsigned char);
     vector unsigned char vec_sr (vector unsigned char,
                                  vector unsigned char);
     vector signed short vec_sr (vector signed short,
                                 vector unsigned short);
     vector unsigned short vec_sr (vector unsigned short,
                                   vector unsigned short);
     vector signed int vec_sr (vector signed int, vector unsigned int);
     vector unsigned int vec_sr (vector unsigned int, vector unsigned int);
     
     vector signed int vec_vsrw (vector signed int, vector unsigned int);
     vector unsigned int vec_vsrw (vector unsigned int, vector unsigned int);
     
     vector signed short vec_vsrh (vector signed short,
                                   vector unsigned short);
     vector unsigned short vec_vsrh (vector unsigned short,
                                     vector unsigned short);
     
     vector signed char vec_vsrb (vector signed char, vector unsigned char);
     vector unsigned char vec_vsrb (vector unsigned char,
                                    vector unsigned char);
     
     vector signed char vec_sra (vector signed char, vector unsigned char);
     vector unsigned char vec_sra (vector unsigned char,
                                   vector unsigned char);
     vector signed short vec_sra (vector signed short,
                                  vector unsigned short);
     vector unsigned short vec_sra (vector unsigned short,
                                    vector unsigned short);
     vector signed int vec_sra (vector signed int, vector unsigned int);
     vector unsigned int vec_sra (vector unsigned int, vector unsigned int);
     
     vector signed int vec_vsraw (vector signed int, vector unsigned int);
     vector unsigned int vec_vsraw (vector unsigned int,
                                    vector unsigned int);
     
     vector signed short vec_vsrah (vector signed short,
                                    vector unsigned short);
     vector unsigned short vec_vsrah (vector unsigned short,
                                      vector unsigned short);
     
     vector signed char vec_vsrab (vector signed char, vector unsigned char);
     vector unsigned char vec_vsrab (vector unsigned char,
                                     vector unsigned char);
     
     vector signed int vec_srl (vector signed int, vector unsigned int);
     vector signed int vec_srl (vector signed int, vector unsigned short);
     vector signed int vec_srl (vector signed int, vector unsigned char);
     vector unsigned int vec_srl (vector unsigned int, vector unsigned int);
     vector unsigned int vec_srl (vector unsigned int,
                                  vector unsigned short);
     vector unsigned int vec_srl (vector unsigned int, vector unsigned char);
     vector bool int vec_srl (vector bool int, vector unsigned int);
     vector bool int vec_srl (vector bool int, vector unsigned short);
     vector bool int vec_srl (vector bool int, vector unsigned char);
     vector signed short vec_srl (vector signed short, vector unsigned int);
     vector signed short vec_srl (vector signed short,
                                  vector unsigned short);
     vector signed short vec_srl (vector signed short, vector unsigned char);
     vector unsigned short vec_srl (vector unsigned short,
                                    vector unsigned int);
     vector unsigned short vec_srl (vector unsigned short,
                                    vector unsigned short);
     vector unsigned short vec_srl (vector unsigned short,
                                    vector unsigned char);
     vector bool short vec_srl (vector bool short, vector unsigned int);
     vector bool short vec_srl (vector bool short, vector unsigned short);
     vector bool short vec_srl (vector bool short, vector unsigned char);
     vector pixel vec_srl (vector pixel, vector unsigned int);
     vector pixel vec_srl (vector pixel, vector unsigned short);
     vector pixel vec_srl (vector pixel, vector unsigned char);
     vector signed char vec_srl (vector signed char, vector unsigned int);
     vector signed char vec_srl (vector signed char, vector unsigned short);
     vector signed char vec_srl (vector signed char, vector unsigned char);
     vector unsigned char vec_srl (vector unsigned char,
                                   vector unsigned int);
     vector unsigned char vec_srl (vector unsigned char,
                                   vector unsigned short);
     vector unsigned char vec_srl (vector unsigned char,
                                   vector unsigned char);
     vector bool char vec_srl (vector bool char, vector unsigned int);
     vector bool char vec_srl (vector bool char, vector unsigned short);
     vector bool char vec_srl (vector bool char, vector unsigned char);
     
     vector float vec_sro (vector float, vector signed char);
     vector float vec_sro (vector float, vector unsigned char);
     vector signed int vec_sro (vector signed int, vector signed char);
     vector signed int vec_sro (vector signed int, vector unsigned char);
     vector unsigned int vec_sro (vector unsigned int, vector signed char);
     vector unsigned int vec_sro (vector unsigned int, vector unsigned char);
     vector signed short vec_sro (vector signed short, vector signed char);
     vector signed short vec_sro (vector signed short, vector unsigned char);
     vector unsigned short vec_sro (vector unsigned short,
                                    vector signed char);
     vector unsigned short vec_sro (vector unsigned short,
                                    vector unsigned char);
     vector pixel vec_sro (vector pixel, vector signed char);
     vector pixel vec_sro (vector pixel, vector unsigned char);
     vector signed char vec_sro (vector signed char, vector signed char);
     vector signed char vec_sro (vector signed char, vector unsigned char);
     vector unsigned char vec_sro (vector unsigned char, vector signed char);
     vector unsigned char vec_sro (vector unsigned char,
                                   vector unsigned char);
     
     void vec_st (vector float, int, vector float *);
     void vec_st (vector float, int, float *);
     void vec_st (vector signed int, int, vector signed int *);
     void vec_st (vector signed int, int, int *);
     void vec_st (vector unsigned int, int, vector unsigned int *);
     void vec_st (vector unsigned int, int, unsigned int *);
     void vec_st (vector bool int, int, vector bool int *);
     void vec_st (vector bool int, int, unsigned int *);
     void vec_st (vector bool int, int, int *);
     void vec_st (vector signed short, int, vector signed short *);
     void vec_st (vector signed short, int, short *);
     void vec_st (vector unsigned short, int, vector unsigned short *);
     void vec_st (vector unsigned short, int, unsigned short *);
     void vec_st (vector bool short, int, vector bool short *);
     void vec_st (vector bool short, int, unsigned short *);
     void vec_st (vector pixel, int, vector pixel *);
     void vec_st (vector pixel, int, unsigned short *);
     void vec_st (vector pixel, int, short *);
     void vec_st (vector bool short, int, short *);
     void vec_st (vector signed char, int, vector signed char *);
     void vec_st (vector signed char, int, signed char *);
     void vec_st (vector unsigned char, int, vector unsigned char *);
     void vec_st (vector unsigned char, int, unsigned char *);
     void vec_st (vector bool char, int, vector bool char *);
     void vec_st (vector bool char, int, unsigned char *);
     void vec_st (vector bool char, int, signed char *);
     
     void vec_ste (vector signed char, int, signed char *);
     void vec_ste (vector unsigned char, int, unsigned char *);
     void vec_ste (vector bool char, int, signed char *);
     void vec_ste (vector bool char, int, unsigned char *);
     void vec_ste (vector signed short, int, short *);
     void vec_ste (vector unsigned short, int, unsigned short *);
     void vec_ste (vector bool short, int, short *);
     void vec_ste (vector bool short, int, unsigned short *);
     void vec_ste (vector pixel, int, short *);
     void vec_ste (vector pixel, int, unsigned short *);
     void vec_ste (vector float, int, float *);
     void vec_ste (vector signed int, int, int *);
     void vec_ste (vector unsigned int, int, unsigned int *);
     void vec_ste (vector bool int, int, int *);
     void vec_ste (vector bool int, int, unsigned int *);
     
     void vec_stvewx (vector float, int, float *);
     void vec_stvewx (vector signed int, int, int *);
     void vec_stvewx (vector unsigned int, int, unsigned int *);
     void vec_stvewx (vector bool int, int, int *);
     void vec_stvewx (vector bool int, int, unsigned int *);
     
     void vec_stvehx (vector signed short, int, short *);
     void vec_stvehx (vector unsigned short, int, unsigned short *);
     void vec_stvehx (vector bool short, int, short *);
     void vec_stvehx (vector bool short, int, unsigned short *);
     void vec_stvehx (vector pixel, int, short *);
     void vec_stvehx (vector pixel, int, unsigned short *);
     
     void vec_stvebx (vector signed char, int, signed char *);
     void vec_stvebx (vector unsigned char, int, unsigned char *);
     void vec_stvebx (vector bool char, int, signed char *);
     void vec_stvebx (vector bool char, int, unsigned char *);
     
     void vec_stl (vector float, int, vector float *);
     void vec_stl (vector float, int, float *);
     void vec_stl (vector signed int, int, vector signed int *);
     void vec_stl (vector signed int, int, int *);
     void vec_stl (vector unsigned int, int, vector unsigned int *);
     void vec_stl (vector unsigned int, int, unsigned int *);
     void vec_stl (vector bool int, int, vector bool int *);
     void vec_stl (vector bool int, int, unsigned int *);
     void vec_stl (vector bool int, int, int *);
     void vec_stl (vector signed short, int, vector signed short *);
     void vec_stl (vector signed short, int, short *);
     void vec_stl (vector unsigned short, int, vector unsigned short *);
     void vec_stl (vector unsigned short, int, unsigned short *);
     void vec_stl (vector bool short, int, vector bool short *);
     void vec_stl (vector bool short, int, unsigned short *);
     void vec_stl (vector bool short, int, short *);
     void vec_stl (vector pixel, int, vector pixel *);
     void vec_stl (vector pixel, int, unsigned short *);
     void vec_stl (vector pixel, int, short *);
     void vec_stl (vector signed char, int, vector signed char *);
     void vec_stl (vector signed char, int, signed char *);
     void vec_stl (vector unsigned char, int, vector unsigned char *);
     void vec_stl (vector unsigned char, int, unsigned char *);
     void vec_stl (vector bool char, int, vector bool char *);
     void vec_stl (vector bool char, int, unsigned char *);
     void vec_stl (vector bool char, int, signed char *);
     
     vector signed char vec_sub (vector bool char, vector signed char);
     vector signed char vec_sub (vector signed char, vector bool char);
     vector signed char vec_sub (vector signed char, vector signed char);
     vector unsigned char vec_sub (vector bool char, vector unsigned char);
     vector unsigned char vec_sub (vector unsigned char, vector bool char);
     vector unsigned char vec_sub (vector unsigned char,
                                   vector unsigned char);
     vector signed short vec_sub (vector bool short, vector signed short);
     vector signed short vec_sub (vector signed short, vector bool short);
     vector signed short vec_sub (vector signed short, vector signed short);
     vector unsigned short vec_sub (vector bool short,
                                    vector unsigned short);
     vector unsigned short vec_sub (vector unsigned short,
                                    vector bool short);
     vector unsigned short vec_sub (vector unsigned short,
                                    vector unsigned short);
     vector signed int vec_sub (vector bool int, vector signed int);
     vector signed int vec_sub (vector signed int, vector bool int);
     vector signed int vec_sub (vector signed int, vector signed int);
     vector unsigned int vec_sub (vector bool int, vector unsigned int);
     vector unsigned int vec_sub (vector unsigned int, vector bool int);
     vector unsigned int vec_sub (vector unsigned int, vector unsigned int);
     vector float vec_sub (vector float, vector float);
     
     vector float vec_vsubfp (vector float, vector float);
     
     vector signed int vec_vsubuwm (vector bool int, vector signed int);
     vector signed int vec_vsubuwm (vector signed int, vector bool int);
     vector signed int vec_vsubuwm (vector signed int, vector signed int);
     vector unsigned int vec_vsubuwm (vector bool int, vector unsigned int);
     vector unsigned int vec_vsubuwm (vector unsigned int, vector bool int);
     vector unsigned int vec_vsubuwm (vector unsigned int,
                                      vector unsigned int);
     
     vector signed short vec_vsubuhm (vector bool short,
                                      vector signed short);
     vector signed short vec_vsubuhm (vector signed short,
                                      vector bool short);
     vector signed short vec_vsubuhm (vector signed short,
                                      vector signed short);
     vector unsigned short vec_vsubuhm (vector bool short,
                                        vector unsigned short);
     vector unsigned short vec_vsubuhm (vector unsigned short,
                                        vector bool short);
     vector unsigned short vec_vsubuhm (vector unsigned short,
                                        vector unsigned short);
     
     vector signed char vec_vsububm (vector bool char, vector signed char);
     vector signed char vec_vsububm (vector signed char, vector bool char);
     vector signed char vec_vsububm (vector signed char, vector signed char);
     vector unsigned char vec_vsububm (vector bool char,
                                       vector unsigned char);
     vector unsigned char vec_vsububm (vector unsigned char,
                                       vector bool char);
     vector unsigned char vec_vsububm (vector unsigned char,
                                       vector unsigned char);
     
     vector unsigned int vec_subc (vector unsigned int, vector unsigned int);
     
     vector unsigned char vec_subs (vector bool char, vector unsigned char);
     vector unsigned char vec_subs (vector unsigned char, vector bool char);
     vector unsigned char vec_subs (vector unsigned char,
                                    vector unsigned char);
     vector signed char vec_subs (vector bool char, vector signed char);
     vector signed char vec_subs (vector signed char, vector bool char);
     vector signed char vec_subs (vector signed char, vector signed char);
     vector unsigned short vec_subs (vector bool short,
                                     vector unsigned short);
     vector unsigned short vec_subs (vector unsigned short,
                                     vector bool short);
     vector unsigned short vec_subs (vector unsigned short,
                                     vector unsigned short);
     vector signed short vec_subs (vector bool short, vector signed short);
     vector signed short vec_subs (vector signed short, vector bool short);
     vector signed short vec_subs (vector signed short, vector signed short);
     vector unsigned int vec_subs (vector bool int, vector unsigned int);
     vector unsigned int vec_subs (vector unsigned int, vector bool int);
     vector unsigned int vec_subs (vector unsigned int, vector unsigned int);
     vector signed int vec_subs (vector bool int, vector signed int);
     vector signed int vec_subs (vector signed int, vector bool int);
     vector signed int vec_subs (vector signed int, vector signed int);
     
     vector signed int vec_vsubsws (vector bool int, vector signed int);
     vector signed int vec_vsubsws (vector signed int, vector bool int);
     vector signed int vec_vsubsws (vector signed int, vector signed int);
     
     vector unsigned int vec_vsubuws (vector bool int, vector unsigned int);
     vector unsigned int vec_vsubuws (vector unsigned int, vector bool int);
     vector unsigned int vec_vsubuws (vector unsigned int,
                                      vector unsigned int);
     
     vector signed short vec_vsubshs (vector bool short,
                                      vector signed short);
     vector signed short vec_vsubshs (vector signed short,
                                      vector bool short);
     vector signed short vec_vsubshs (vector signed short,
                                      vector signed short);
     
     vector unsigned short vec_vsubuhs (vector bool short,
                                        vector unsigned short);
     vector unsigned short vec_vsubuhs (vector unsigned short,
                                        vector bool short);
     vector unsigned short vec_vsubuhs (vector unsigned short,
                                        vector unsigned short);
     
     vector signed char vec_vsubsbs (vector bool char, vector signed char);
     vector signed char vec_vsubsbs (vector signed char, vector bool char);
     vector signed char vec_vsubsbs (vector signed char, vector signed char);
     
     vector unsigned char vec_vsububs (vector bool char,
                                       vector unsigned char);
     vector unsigned char vec_vsububs (vector unsigned char,
                                       vector bool char);
     vector unsigned char vec_vsububs (vector unsigned char,
                                       vector unsigned char);
     
     vector unsigned int vec_sum4s (vector unsigned char,
                                    vector unsigned int);
     vector signed int vec_sum4s (vector signed char, vector signed int);
     vector signed int vec_sum4s (vector signed short, vector signed int);
     
     vector signed int vec_vsum4shs (vector signed short, vector signed int);
     
     vector signed int vec_vsum4sbs (vector signed char, vector signed int);
     
     vector unsigned int vec_vsum4ubs (vector unsigned char,
                                       vector unsigned int);
     
     vector signed int vec_sum2s (vector signed int, vector signed int);
     
     vector signed int vec_sums (vector signed int, vector signed int);
     
     vector float vec_trunc (vector float);
     
     vector signed short vec_unpackh (vector signed char);
     vector bool short vec_unpackh (vector bool char);
     vector signed int vec_unpackh (vector signed short);
     vector bool int vec_unpackh (vector bool short);
     vector unsigned int vec_unpackh (vector pixel);
     
     vector bool int vec_vupkhsh (vector bool short);
     vector signed int vec_vupkhsh (vector signed short);
     
     vector unsigned int vec_vupkhpx (vector pixel);
     
     vector bool short vec_vupkhsb (vector bool char);
     vector signed short vec_vupkhsb (vector signed char);
     
     vector signed short vec_unpackl (vector signed char);
     vector bool short vec_unpackl (vector bool char);
     vector unsigned int vec_unpackl (vector pixel);
     vector signed int vec_unpackl (vector signed short);
     vector bool int vec_unpackl (vector bool short);
     
     vector unsigned int vec_vupklpx (vector pixel);
     
     vector bool int vec_vupklsh (vector bool short);
     vector signed int vec_vupklsh (vector signed short);
     
     vector bool short vec_vupklsb (vector bool char);
     vector signed short vec_vupklsb (vector signed char);
     
     vector float vec_xor (vector float, vector float);
     vector float vec_xor (vector float, vector bool int);
     vector float vec_xor (vector bool int, vector float);
     vector bool int vec_xor (vector bool int, vector bool int);
     vector signed int vec_xor (vector bool int, vector signed int);
     vector signed int vec_xor (vector signed int, vector bool int);
     vector signed int vec_xor (vector signed int, vector signed int);
     vector unsigned int vec_xor (vector bool int, vector unsigned int);
     vector unsigned int vec_xor (vector unsigned int, vector bool int);
     vector unsigned int vec_xor (vector unsigned int, vector unsigned int);
     vector bool short vec_xor (vector bool short, vector bool short);
     vector signed short vec_xor (vector bool short, vector signed short);
     vector signed short vec_xor (vector signed short, vector bool short);
     vector signed short vec_xor (vector signed short, vector signed short);
     vector unsigned short vec_xor (vector bool short,
                                    vector unsigned short);
     vector unsigned short vec_xor (vector unsigned short,
                                    vector bool short);
     vector unsigned short vec_xor (vector unsigned short,
                                    vector unsigned short);
     vector signed char vec_xor (vector bool char, vector signed char);
     vector bool char vec_xor (vector bool char, vector bool char);
     vector signed char vec_xor (vector signed char, vector bool char);
     vector signed char vec_xor (vector signed char, vector signed char);
     vector unsigned char vec_xor (vector bool char, vector unsigned char);
     vector unsigned char vec_xor (vector unsigned char, vector bool char);
     vector unsigned char vec_xor (vector unsigned char,
                                   vector unsigned char);
     
     int vec_all_eq (vector signed char, vector bool char);
     int vec_all_eq (vector signed char, vector signed char);
     int vec_all_eq (vector unsigned char, vector bool char);
     int vec_all_eq (vector unsigned char, vector unsigned char);
     int vec_all_eq (vector bool char, vector bool char);
     int vec_all_eq (vector bool char, vector unsigned char);
     int vec_all_eq (vector bool char, vector signed char);
     int vec_all_eq (vector signed short, vector bool short);
     int vec_all_eq (vector signed short, vector signed short);
     int vec_all_eq (vector unsigned short, vector bool short);
     int vec_all_eq (vector unsigned short, vector unsigned short);
     int vec_all_eq (vector bool short, vector bool short);
     int vec_all_eq (vector bool short, vector unsigned short);
     int vec_all_eq (vector bool short, vector signed short);
     int vec_all_eq (vector pixel, vector pixel);
     int vec_all_eq (vector signed int, vector bool int);
     int vec_all_eq (vector signed int, vector signed int);
     int vec_all_eq (vector unsigned int, vector bool int);
     int vec_all_eq (vector unsigned int, vector unsigned int);
     int vec_all_eq (vector bool int, vector bool int);
     int vec_all_eq (vector bool int, vector unsigned int);
     int vec_all_eq (vector bool int, vector signed int);
     int vec_all_eq (vector float, vector float);
     
     int vec_all_ge (vector bool char, vector unsigned char);
     int vec_all_ge (vector unsigned char, vector bool char);
     int vec_all_ge (vector unsigned char, vector unsigned char);
     int vec_all_ge (vector bool char, vector signed char);
     int vec_all_ge (vector signed char, vector bool char);
     int vec_all_ge (vector signed char, vector signed char);
     int vec_all_ge (vector bool short, vector unsigned short);
     int vec_all_ge (vector unsigned short, vector bool short);
     int vec_all_ge (vector unsigned short, vector unsigned short);
     int vec_all_ge (vector signed short, vector signed short);
     int vec_all_ge (vector bool short, vector signed short);
     int vec_all_ge (vector signed short, vector bool short);
     int vec_all_ge (vector bool int, vector unsigned int);
     int vec_all_ge (vector unsigned int, vector bool int);
     int vec_all_ge (vector unsigned int, vector unsigned int);
     int vec_all_ge (vector bool int, vector signed int);
     int vec_all_ge (vector signed int, vector bool int);
     int vec_all_ge (vector signed int, vector signed int);
     int vec_all_ge (vector float, vector float);
     
     int vec_all_gt (vector bool char, vector unsigned char);
     int vec_all_gt (vector unsigned char, vector bool char);
     int vec_all_gt (vector unsigned char, vector unsigned char);
     int vec_all_gt (vector bool char, vector signed char);
     int vec_all_gt (vector signed char, vector bool char);
     int vec_all_gt (vector signed char, vector signed char);
     int vec_all_gt (vector bool short, vector unsigned short);
     int vec_all_gt (vector unsigned short, vector bool short);
     int vec_all_gt (vector unsigned short, vector unsigned short);
     int vec_all_gt (vector bool short, vector signed short);
     int vec_all_gt (vector signed short, vector bool short);
     int vec_all_gt (vector signed short, vector signed short);
     int vec_all_gt (vector bool int, vector unsigned int);
     int vec_all_gt (vector unsigned int, vector bool int);
     int vec_all_gt (vector unsigned int, vector unsigned int);
     int vec_all_gt (vector bool int, vector signed int);
     int vec_all_gt (vector signed int, vector bool int);
     int vec_all_gt (vector signed int, vector signed int);
     int vec_all_gt (vector float, vector float);
     
     int vec_all_in (vector float, vector float);
     
     int vec_all_le (vector bool char, vector unsigned char);
     int vec_all_le (vector unsigned char, vector bool char);
     int vec_all_le (vector unsigned char, vector unsigned char);
     int vec_all_le (vector bool char, vector signed char);
     int vec_all_le (vector signed char, vector bool char);
     int vec_all_le (vector signed char, vector signed char);
     int vec_all_le (vector bool short, vector unsigned short);
     int vec_all_le (vector unsigned short, vector bool short);
     int vec_all_le (vector unsigned short, vector unsigned short);
     int vec_all_le (vector bool short, vector signed short);
     int vec_all_le (vector signed short, vector bool short);
     int vec_all_le (vector signed short, vector signed short);
     int vec_all_le (vector bool int, vector unsigned int);
     int vec_all_le (vector unsigned int, vector bool int);
     int vec_all_le (vector unsigned int, vector unsigned int);
     int vec_all_le (vector bool int, vector signed int);
     int vec_all_le (vector signed int, vector bool int);
     int vec_all_le (vector signed int, vector signed int);
     int vec_all_le (vector float, vector float);
     
     int vec_all_lt (vector bool char, vector unsigned char);
     int vec_all_lt (vector unsigned char, vector bool char);
     int vec_all_lt (vector unsigned char, vector unsigned char);
     int vec_all_lt (vector bool char, vector signed char);
     int vec_all_lt (vector signed char, vector bool char);
     int vec_all_lt (vector signed char, vector signed char);
     int vec_all_lt (vector bool short, vector unsigned short);
     int vec_all_lt (vector unsigned short, vector bool short);
     int vec_all_lt (vector unsigned short, vector unsigned short);
     int vec_all_lt (vector bool short, vector signed short);
     int vec_all_lt (vector signed short, vector bool short);
     int vec_all_lt (vector signed short, vector signed short);
     int vec_all_lt (vector bool int, vector unsigned int);
     int vec_all_lt (vector unsigned int, vector bool int);
     int vec_all_lt (vector unsigned int, vector unsigned int);
     int vec_all_lt (vector bool int, vector signed int);
     int vec_all_lt (vector signed int, vector bool int);
     int vec_all_lt (vector signed int, vector signed int);
     int vec_all_lt (vector float, vector float);
     
     int vec_all_nan (vector float);
     
     int vec_all_ne (vector signed char, vector bool char);
     int vec_all_ne (vector signed char, vector signed char);
     int vec_all_ne (vector unsigned char, vector bool char);
     int vec_all_ne (vector unsigned char, vector unsigned char);
     int vec_all_ne (vector bool char, vector bool char);
     int vec_all_ne (vector bool char, vector unsigned char);
     int vec_all_ne (vector bool char, vector signed char);
     int vec_all_ne (vector signed short, vector bool short);
     int vec_all_ne (vector signed short, vector signed short);
     int vec_all_ne (vector unsigned short, vector bool short);
     int vec_all_ne (vector unsigned short, vector unsigned short);
     int vec_all_ne (vector bool short, vector bool short);
     int vec_all_ne (vector bool short, vector unsigned short);
     int vec_all_ne (vector bool short, vector signed short);
     int vec_all_ne (vector pixel, vector pixel);
     int vec_all_ne (vector signed int, vector bool int);
     int vec_all_ne (vector signed int, vector signed int);
     int vec_all_ne (vector unsigned int, vector bool int);
     int vec_all_ne (vector unsigned int, vector unsigned int);
     int vec_all_ne (vector bool int, vector bool int);
     int vec_all_ne (vector bool int, vector unsigned int);
     int vec_all_ne (vector bool int, vector signed int);
     int vec_all_ne (vector float, vector float);
     
     int vec_all_nge (vector float, vector float);
     
     int vec_all_ngt (vector float, vector float);
     
     int vec_all_nle (vector float, vector float);
     
     int vec_all_nlt (vector float, vector float);
     
     int vec_all_numeric (vector float);
     
     int vec_any_eq (vector signed char, vector bool char);
     int vec_any_eq (vector signed char, vector signed char);
     int vec_any_eq (vector unsigned char, vector bool char);
     int vec_any_eq (vector unsigned char, vector unsigned char);
     int vec_any_eq (vector bool char, vector bool char);
     int vec_any_eq (vector bool char, vector unsigned char);
     int vec_any_eq (vector bool char, vector signed char);
     int vec_any_eq (vector signed short, vector bool short);
     int vec_any_eq (vector signed short, vector signed short);
     int vec_any_eq (vector unsigned short, vector bool short);
     int vec_any_eq (vector unsigned short, vector unsigned short);
     int vec_any_eq (vector bool short, vector bool short);
     int vec_any_eq (vector bool short, vector unsigned short);
     int vec_any_eq (vector bool short, vector signed short);
     int vec_any_eq (vector pixel, vector pixel);
     int vec_any_eq (vector signed int, vector bool int);
     int vec_any_eq (vector signed int, vector signed int);
     int vec_any_eq (vector unsigned int, vector bool int);
     int vec_any_eq (vector unsigned int, vector unsigned int);
     int vec_any_eq (vector bool int, vector bool int);
     int vec_any_eq (vector bool int, vector unsigned int);
     int vec_any_eq (vector bool int, vector signed int);
     int vec_any_eq (vector float, vector float);
     
     int vec_any_ge (vector signed char, vector bool char);
     int vec_any_ge (vector unsigned char, vector bool char);
     int vec_any_ge (vector unsigned char, vector unsigned char);
     int vec_any_ge (vector signed char, vector signed char);
     int vec_any_ge (vector bool char, vector unsigned char);
     int vec_any_ge (vector bool char, vector signed char);
     int vec_any_ge (vector unsigned short, vector bool short);
     int vec_any_ge (vector unsigned short, vector unsigned short);
     int vec_any_ge (vector signed short, vector signed short);
     int vec_any_ge (vector signed short, vector bool short);
     int vec_any_ge (vector bool short, vector unsigned short);
     int vec_any_ge (vector bool short, vector signed short);
     int vec_any_ge (vector signed int, vector bool int);
     int vec_any_ge (vector unsigned int, vector bool int);
     int vec_any_ge (vector unsigned int, vector unsigned int);
     int vec_any_ge (vector signed int, vector signed int);
     int vec_any_ge (vector bool int, vector unsigned int);
     int vec_any_ge (vector bool int, vector signed int);
     int vec_any_ge (vector float, vector float);
     
     int vec_any_gt (vector bool char, vector unsigned char);
     int vec_any_gt (vector unsigned char, vector bool char);
     int vec_any_gt (vector unsigned char, vector unsigned char);
     int vec_any_gt (vector bool char, vector signed char);
     int vec_any_gt (vector signed char, vector bool char);
     int vec_any_gt (vector signed char, vector signed char);
     int vec_any_gt (vector bool short, vector unsigned short);
     int vec_any_gt (vector unsigned short, vector bool short);
     int vec_any_gt (vector unsigned short, vector unsigned short);
     int vec_any_gt (vector bool short, vector signed short);
     int vec_any_gt (vector signed short, vector bool short);
     int vec_any_gt (vector signed short, vector signed short);
     int vec_any_gt (vector bool int, vector unsigned int);
     int vec_any_gt (vector unsigned int, vector bool int);
     int vec_any_gt (vector unsigned int, vector unsigned int);
     int vec_any_gt (vector bool int, vector signed int);
     int vec_any_gt (vector signed int, vector bool int);
     int vec_any_gt (vector signed int, vector signed int);
     int vec_any_gt (vector float, vector float);
     
     int vec_any_le (vector bool char, vector unsigned char);
     int vec_any_le (vector unsigned char, vector bool char);
     int vec_any_le (vector unsigned char, vector unsigned char);
     int vec_any_le (vector bool char, vector signed char);
     int vec_any_le (vector signed char, vector bool char);
     int vec_any_le (vector signed char, vector signed char);
     int vec_any_le (vector bool short, vector unsigned short);
     int vec_any_le (vector unsigned short, vector bool short);
     int vec_any_le (vector unsigned short, vector unsigned short);
     int vec_any_le (vector bool short, vector signed short);
     int vec_any_le (vector signed short, vector bool short);
     int vec_any_le (vector signed short, vector signed short);
     int vec_any_le (vector bool int, vector unsigned int);
     int vec_any_le (vector unsigned int, vector bool int);
     int vec_any_le (vector unsigned int, vector unsigned int);
     int vec_any_le (vector bool int, vector signed int);
     int vec_any_le (vector signed int, vector bool int);
     int vec_any_le (vector signed int, vector signed int);
     int vec_any_le (vector float, vector float);
     
     int vec_any_lt (vector bool char, vector unsigned char);
     int vec_any_lt (vector unsigned char, vector bool char);
     int vec_any_lt (vector unsigned char, vector unsigned char);
     int vec_any_lt (vector bool char, vector signed char);
     int vec_any_lt (vector signed char, vector bool char);
     int vec_any_lt (vector signed char, vector signed char);
     int vec_any_lt (vector bool short, vector unsigned short);
     int vec_any_lt (vector unsigned short, vector bool short);
     int vec_any_lt (vector unsigned short, vector unsigned short);
     int vec_any_lt (vector bool short, vector signed short);
     int vec_any_lt (vector signed short, vector bool short);
     int vec_any_lt (vector signed short, vector signed short);
     int vec_any_lt (vector bool int, vector unsigned int);
     int vec_any_lt (vector unsigned int, vector bool int);
     int vec_any_lt (vector unsigned int, vector unsigned int);
     int vec_any_lt (vector bool int, vector signed int);
     int vec_any_lt (vector signed int, vector bool int);
     int vec_any_lt (vector signed int, vector signed int);
     int vec_any_lt (vector float, vector float);
     
     int vec_any_nan (vector float);
     
     int vec_any_ne (vector signed char, vector bool char);
     int vec_any_ne (vector signed char, vector signed char);
     int vec_any_ne (vector unsigned char, vector bool char);
     int vec_any_ne (vector unsigned char, vector unsigned char);
     int vec_any_ne (vector bool char, vector bool char);
     int vec_any_ne (vector bool char, vector unsigned char);
     int vec_any_ne (vector bool char, vector signed char);
     int vec_any_ne (vector signed short, vector bool short);
     int vec_any_ne (vector signed short, vector signed short);
     int vec_any_ne (vector unsigned short, vector bool short);
     int vec_any_ne (vector unsigned short, vector unsigned short);
     int vec_any_ne (vector bool short, vector bool short);
     int vec_any_ne (vector bool short, vector unsigned short);
     int vec_any_ne (vector bool short, vector signed short);
     int vec_any_ne (vector pixel, vector pixel);
     int vec_any_ne (vector signed int, vector bool int);
     int vec_any_ne (vector signed int, vector signed int);
     int vec_any_ne (vector unsigned int, vector bool int);
     int vec_any_ne (vector unsigned int, vector unsigned int);
     int vec_any_ne (vector bool int, vector bool int);
     int vec_any_ne (vector bool int, vector unsigned int);
     int vec_any_ne (vector bool int, vector signed int);
     int vec_any_ne (vector float, vector float);
     
     int vec_any_nge (vector float, vector float);
     
     int vec_any_ngt (vector float, vector float);
     
     int vec_any_nle (vector float, vector float);
     
     int vec_any_nlt (vector float, vector float);
     
     int vec_any_numeric (vector float);
     
     int vec_any_out (vector float, vector float);
</pre>
 <p>If the vector/scalar (VSX) instruction set is available, the following
additional functions are available:

<pre class="smallexample">     vector double vec_abs (vector double);
     vector double vec_add (vector double, vector double);
     vector double vec_and (vector double, vector double);
     vector double vec_and (vector double, vector bool long);
     vector double vec_and (vector bool long, vector double);
     vector double vec_andc (vector double, vector double);
     vector double vec_andc (vector double, vector bool long);
     vector double vec_andc (vector bool long, vector double);
     vector double vec_ceil (vector double);
     vector bool long vec_cmpeq (vector double, vector double);
     vector bool long vec_cmpge (vector double, vector double);
     vector bool long vec_cmpgt (vector double, vector double);
     vector bool long vec_cmple (vector double, vector double);
     vector bool long vec_cmplt (vector double, vector double);
     vector float vec_div (vector float, vector float);
     vector double vec_div (vector double, vector double);
     vector double vec_floor (vector double);
     vector double vec_ld (int, const vector double *);
     vector double vec_ld (int, const double *);
     vector double vec_ldl (int, const vector double *);
     vector double vec_ldl (int, const double *);
     vector unsigned char vec_lvsl (int, const volatile double *);
     vector unsigned char vec_lvsr (int, const volatile double *);
     vector double vec_madd (vector double, vector double, vector double);
     vector double vec_max (vector double, vector double);
     vector double vec_min (vector double, vector double);
     vector float vec_msub (vector float, vector float, vector float);
     vector double vec_msub (vector double, vector double, vector double);
     vector float vec_mul (vector float, vector float);
     vector double vec_mul (vector double, vector double);
     vector float vec_nearbyint (vector float);
     vector double vec_nearbyint (vector double);
     vector float vec_nmadd (vector float, vector float, vector float);
     vector double vec_nmadd (vector double, vector double, vector double);
     vector double vec_nmsub (vector double, vector double, vector double);
     vector double vec_nor (vector double, vector double);
     vector double vec_or (vector double, vector double);
     vector double vec_or (vector double, vector bool long);
     vector double vec_or (vector bool long, vector double);
     vector double vec_perm (vector double,
                             vector double,
                             vector unsigned char);
     vector double vec_rint (vector double);
     vector double vec_recip (vector double, vector double);
     vector double vec_rsqrt (vector double);
     vector double vec_rsqrte (vector double);
     vector double vec_sel (vector double, vector double, vector bool long);
     vector double vec_sel (vector double, vector double, vector unsigned long);
     vector double vec_sub (vector double, vector double);
     vector float vec_sqrt (vector float);
     vector double vec_sqrt (vector double);
     void vec_st (vector double, int, vector double *);
     void vec_st (vector double, int, double *);
     vector double vec_trunc (vector double);
     vector double vec_xor (vector double, vector double);
     vector double vec_xor (vector double, vector bool long);
     vector double vec_xor (vector bool long, vector double);
     int vec_all_eq (vector double, vector double);
     int vec_all_ge (vector double, vector double);
     int vec_all_gt (vector double, vector double);
     int vec_all_le (vector double, vector double);
     int vec_all_lt (vector double, vector double);
     int vec_all_nan (vector double);
     int vec_all_ne (vector double, vector double);
     int vec_all_nge (vector double, vector double);
     int vec_all_ngt (vector double, vector double);
     int vec_all_nle (vector double, vector double);
     int vec_all_nlt (vector double, vector double);
     int vec_all_numeric (vector double);
     int vec_any_eq (vector double, vector double);
     int vec_any_ge (vector double, vector double);
     int vec_any_gt (vector double, vector double);
     int vec_any_le (vector double, vector double);
     int vec_any_lt (vector double, vector double);
     int vec_any_nan (vector double);
     int vec_any_ne (vector double, vector double);
     int vec_any_nge (vector double, vector double);
     int vec_any_ngt (vector double, vector double);
     int vec_any_nle (vector double, vector double);
     int vec_any_nlt (vector double, vector double);
     int vec_any_numeric (vector double);
     
     vector double vec_vsx_ld (int, const vector double *);
     vector double vec_vsx_ld (int, const double *);
     vector float vec_vsx_ld (int, const vector float *);
     vector float vec_vsx_ld (int, const float *);
     vector bool int vec_vsx_ld (int, const vector bool int *);
     vector signed int vec_vsx_ld (int, const vector signed int *);
     vector signed int vec_vsx_ld (int, const int *);
     vector signed int vec_vsx_ld (int, const long *);
     vector unsigned int vec_vsx_ld (int, const vector unsigned int *);
     vector unsigned int vec_vsx_ld (int, const unsigned int *);
     vector unsigned int vec_vsx_ld (int, const unsigned long *);
     vector bool short vec_vsx_ld (int, const vector bool short *);
     vector pixel vec_vsx_ld (int, const vector pixel *);
     vector signed short vec_vsx_ld (int, const vector signed short *);
     vector signed short vec_vsx_ld (int, const short *);
     vector unsigned short vec_vsx_ld (int, const vector unsigned short *);
     vector unsigned short vec_vsx_ld (int, const unsigned short *);
     vector bool char vec_vsx_ld (int, const vector bool char *);
     vector signed char vec_vsx_ld (int, const vector signed char *);
     vector signed char vec_vsx_ld (int, const signed char *);
     vector unsigned char vec_vsx_ld (int, const vector unsigned char *);
     vector unsigned char vec_vsx_ld (int, const unsigned char *);
     
     void vec_vsx_st (vector double, int, vector double *);
     void vec_vsx_st (vector double, int, double *);
     void vec_vsx_st (vector float, int, vector float *);
     void vec_vsx_st (vector float, int, float *);
     void vec_vsx_st (vector signed int, int, vector signed int *);
     void vec_vsx_st (vector signed int, int, int *);
     void vec_vsx_st (vector unsigned int, int, vector unsigned int *);
     void vec_vsx_st (vector unsigned int, int, unsigned int *);
     void vec_vsx_st (vector bool int, int, vector bool int *);
     void vec_vsx_st (vector bool int, int, unsigned int *);
     void vec_vsx_st (vector bool int, int, int *);
     void vec_vsx_st (vector signed short, int, vector signed short *);
     void vec_vsx_st (vector signed short, int, short *);
     void vec_vsx_st (vector unsigned short, int, vector unsigned short *);
     void vec_vsx_st (vector unsigned short, int, unsigned short *);
     void vec_vsx_st (vector bool short, int, vector bool short *);
     void vec_vsx_st (vector bool short, int, unsigned short *);
     void vec_vsx_st (vector pixel, int, vector pixel *);
     void vec_vsx_st (vector pixel, int, unsigned short *);
     void vec_vsx_st (vector pixel, int, short *);
     void vec_vsx_st (vector bool short, int, short *);
     void vec_vsx_st (vector signed char, int, vector signed char *);
     void vec_vsx_st (vector signed char, int, signed char *);
     void vec_vsx_st (vector unsigned char, int, vector unsigned char *);
     void vec_vsx_st (vector unsigned char, int, unsigned char *);
     void vec_vsx_st (vector bool char, int, vector bool char *);
     void vec_vsx_st (vector bool char, int, unsigned char *);
     void vec_vsx_st (vector bool char, int, signed char *);
</pre>
 <p>Note that the &lsquo;<samp><span class="samp">vec_ld</span></samp>&rsquo; and &lsquo;<samp><span class="samp">vec_st</span></samp>&rsquo; builtins will always
generate the Altivec &lsquo;<samp><span class="samp">LVX</span></samp>&rsquo; and &lsquo;<samp><span class="samp">STVX</span></samp>&rsquo; instructions even
if the VSX instruction set is available.  The &lsquo;<samp><span class="samp">vec_vsx_ld</span></samp>&rsquo; and
&lsquo;<samp><span class="samp">vec_vsx_st</span></samp>&rsquo; builtins will always generate the VSX &lsquo;<samp><span class="samp">LXVD2X</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">LXVW4X</span></samp>&rsquo;, &lsquo;<samp><span class="samp">STXVD2X</span></samp>&rsquo;, and &lsquo;<samp><span class="samp">STXVW4X</span></samp>&rsquo; instructions.

 <p>GCC provides a few other builtins on Powerpc to access certain instructions:
<pre class="smallexample">     float __builtin_recipdivf (float, float);
     float __builtin_rsqrtf (float);
     double __builtin_recipdiv (double, double);
     double __builtin_rsqrt (double);
     long __builtin_bpermd (long, long);
     int __builtin_bswap16 (int);
</pre>
 <p>The <code>vec_rsqrt</code>, <code>__builtin_rsqrt</code>, and
<code>__builtin_rsqrtf</code> functions generate multiple instructions to
implement the reciprocal sqrt functionality using reciprocal sqrt
estimate instructions.

 <p>The <code>__builtin_recipdiv</code>, and <code>__builtin_recipdivf</code>
functions generate multiple instructions to implement division using
the reciprocal estimate instructions.

<div class="node">
<a name="RX-Built-in-Functions"></a>
<a name="RX-Built_002din-Functions"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#SPARC-VIS-Built_002din-Functions">SPARC VIS Built-in Functions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#PowerPC-AltiVec_002fVSX-Built_002din-Functions">PowerPC AltiVec/VSX Built-in Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Target-Builtins">Target Builtins</a>

</div>

<h4 class="subsection">6.54.13 RX Built-in Functions</h4>

<p>GCC supports some of the RX instructions which cannot be expressed in
the C programming language via the use of built-in functions.  The
following functions are supported:

<div class="defun">
&mdash; Built-in Function: void <b>__builtin_rx_brk</b> (<var>void</var>)<var><a name="index-g_t_005f_005fbuiltin_005frx_005fbrk-3186"></a></var><br>
<blockquote><p>Generates the <code>brk</code> machine instruction. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: void <b>__builtin_rx_clrpsw</b> (<var>int</var>)<var><a name="index-g_t_005f_005fbuiltin_005frx_005fclrpsw-3187"></a></var><br>
<blockquote><p>Generates the <code>clrpsw</code> machine instruction to clear the specified
bit in the processor status word. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: void <b>__builtin_rx_int</b> (<var>int</var>)<var><a name="index-g_t_005f_005fbuiltin_005frx_005fint-3188"></a></var><br>
<blockquote><p>Generates the <code>int</code> machine instruction to generate an interrupt
with the specified value. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: void <b>__builtin_rx_machi</b> (<var>int, int</var>)<var><a name="index-g_t_005f_005fbuiltin_005frx_005fmachi-3189"></a></var><br>
<blockquote><p>Generates the <code>machi</code> machine instruction to add the result of
multiplying the top 16-bits of the two arguments into the
accumulator. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: void <b>__builtin_rx_maclo</b> (<var>int, int</var>)<var><a name="index-g_t_005f_005fbuiltin_005frx_005fmaclo-3190"></a></var><br>
<blockquote><p>Generates the <code>maclo</code> machine instruction to add the result of
multiplying the bottom 16-bits of the two arguments into the
accumulator. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: void <b>__builtin_rx_mulhi</b> (<var>int, int</var>)<var><a name="index-g_t_005f_005fbuiltin_005frx_005fmulhi-3191"></a></var><br>
<blockquote><p>Generates the <code>mulhi</code> machine instruction to place the result of
multiplying the top 16-bits of the two arguments into the
accumulator. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: void <b>__builtin_rx_mullo</b> (<var>int, int</var>)<var><a name="index-g_t_005f_005fbuiltin_005frx_005fmullo-3192"></a></var><br>
<blockquote><p>Generates the <code>mullo</code> machine instruction to place the result of
multiplying the bottom 16-bits of the two arguments into the
accumulator. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: int <b>__builtin_rx_mvfachi</b> (<var>void</var>)<var><a name="index-g_t_005f_005fbuiltin_005frx_005fmvfachi-3193"></a></var><br>
<blockquote><p>Generates the <code>mvfachi</code> machine instruction to read the top
32-bits of the accumulator. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: int <b>__builtin_rx_mvfacmi</b> (<var>void</var>)<var><a name="index-g_t_005f_005fbuiltin_005frx_005fmvfacmi-3194"></a></var><br>
<blockquote><p>Generates the <code>mvfacmi</code> machine instruction to read the middle
32-bits of the accumulator. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: int <b>__builtin_rx_mvfc</b> (<var>int</var>)<var><a name="index-g_t_005f_005fbuiltin_005frx_005fmvfc-3195"></a></var><br>
<blockquote><p>Generates the <code>mvfc</code> machine instruction which reads the control
register specified in its argument and returns its value. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: void <b>__builtin_rx_mvtachi</b> (<var>int</var>)<var><a name="index-g_t_005f_005fbuiltin_005frx_005fmvtachi-3196"></a></var><br>
<blockquote><p>Generates the <code>mvtachi</code> machine instruction to set the top
32-bits of the accumulator. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: void <b>__builtin_rx_mvtaclo</b> (<var>int</var>)<var><a name="index-g_t_005f_005fbuiltin_005frx_005fmvtaclo-3197"></a></var><br>
<blockquote><p>Generates the <code>mvtaclo</code> machine instruction to set the bottom
32-bits of the accumulator. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: void <b>__builtin_rx_mvtc</b> (<var>int reg, int val</var>)<var><a name="index-g_t_005f_005fbuiltin_005frx_005fmvtc-3198"></a></var><br>
<blockquote><p>Generates the <code>mvtc</code> machine instruction which sets control
register number <code>reg</code> to <code>val</code>. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: void <b>__builtin_rx_mvtipl</b> (<var>int</var>)<var><a name="index-g_t_005f_005fbuiltin_005frx_005fmvtipl-3199"></a></var><br>
<blockquote><p>Generates the <code>mvtipl</code> machine instruction set the interrupt
priority level. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: void <b>__builtin_rx_racw</b> (<var>int</var>)<var><a name="index-g_t_005f_005fbuiltin_005frx_005fracw-3200"></a></var><br>
<blockquote><p>Generates the <code>racw</code> machine instruction to round the accumulator
according to the specified mode. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: int <b>__builtin_rx_revw</b> (<var>int</var>)<var><a name="index-g_t_005f_005fbuiltin_005frx_005frevw-3201"></a></var><br>
<blockquote><p>Generates the <code>revw</code> machine instruction which swaps the bytes in
the argument so that bits 0&ndash;7 now occupy bits 8&ndash;15 and vice versa,
and also bits 16&ndash;23 occupy bits 24&ndash;31 and vice versa. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: void <b>__builtin_rx_rmpa</b> (<var>void</var>)<var><a name="index-g_t_005f_005fbuiltin_005frx_005frmpa-3202"></a></var><br>
<blockquote><p>Generates the <code>rmpa</code> machine instruction which initiates a
repeated multiply and accumulate sequence. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: void <b>__builtin_rx_round</b> (<var>float</var>)<var><a name="index-g_t_005f_005fbuiltin_005frx_005fround-3203"></a></var><br>
<blockquote><p>Generates the <code>round</code> machine instruction which returns the
floating point argument rounded according to the current rounding mode
set in the floating point status word register. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: int <b>__builtin_rx_sat</b> (<var>int</var>)<var><a name="index-g_t_005f_005fbuiltin_005frx_005fsat-3204"></a></var><br>
<blockquote><p>Generates the <code>sat</code> machine instruction which returns the
saturated value of the argument. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: void <b>__builtin_rx_setpsw</b> (<var>int</var>)<var><a name="index-g_t_005f_005fbuiltin_005frx_005fsetpsw-3205"></a></var><br>
<blockquote><p>Generates the <code>setpsw</code> machine instruction to set the specified
bit in the processor status word. 
</p></blockquote></div>

<div class="defun">
&mdash; Built-in Function: void <b>__builtin_rx_wait</b> (<var>void</var>)<var><a name="index-g_t_005f_005fbuiltin_005frx_005fwait-3206"></a></var><br>
<blockquote><p>Generates the <code>wait</code> machine instruction. 
</p></blockquote></div>

<div class="node">
<a name="SPARC-VIS-Built-in-Functions"></a>
<a name="SPARC-VIS-Built_002din-Functions"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#SPU-Built_002din-Functions">SPU Built-in Functions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#RX-Built_002din-Functions">RX Built-in Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Target-Builtins">Target Builtins</a>

</div>

<h4 class="subsection">6.54.14 SPARC VIS Built-in Functions</h4>

<p>GCC supports SIMD operations on the SPARC using both the generic vector
extensions (see <a href="#Vector-Extensions">Vector Extensions</a>) as well as built-in functions for
the SPARC Visual Instruction Set (VIS).  When you use the <samp><span class="option">-mvis</span></samp>
switch, the VIS extension is exposed as the following built-in functions:

<pre class="smallexample">     typedef int v2si __attribute__ ((vector_size (8)));
     typedef short v4hi __attribute__ ((vector_size (8)));
     typedef short v2hi __attribute__ ((vector_size (4)));
     typedef char v8qi __attribute__ ((vector_size (8)));
     typedef char v4qi __attribute__ ((vector_size (4)));
     
     void * __builtin_vis_alignaddr (void *, long);
     int64_t __builtin_vis_faligndatadi (int64_t, int64_t);
     v2si __builtin_vis_faligndatav2si (v2si, v2si);
     v4hi __builtin_vis_faligndatav4hi (v4si, v4si);
     v8qi __builtin_vis_faligndatav8qi (v8qi, v8qi);
     
     v4hi __builtin_vis_fexpand (v4qi);
     
     v4hi __builtin_vis_fmul8x16 (v4qi, v4hi);
     v4hi __builtin_vis_fmul8x16au (v4qi, v4hi);
     v4hi __builtin_vis_fmul8x16al (v4qi, v4hi);
     v4hi __builtin_vis_fmul8sux16 (v8qi, v4hi);
     v4hi __builtin_vis_fmul8ulx16 (v8qi, v4hi);
     v2si __builtin_vis_fmuld8sux16 (v4qi, v2hi);
     v2si __builtin_vis_fmuld8ulx16 (v4qi, v2hi);
     
     v4qi __builtin_vis_fpack16 (v4hi);
     v8qi __builtin_vis_fpack32 (v2si, v2si);
     v2hi __builtin_vis_fpackfix (v2si);
     v8qi __builtin_vis_fpmerge (v4qi, v4qi);
     
     int64_t __builtin_vis_pdist (v8qi, v8qi, int64_t);
</pre>
 <div class="node">
<a name="SPU-Built-in-Functions"></a>
<a name="SPU-Built_002din-Functions"></a>
<p><hr>
Previous:&nbsp;<a rel="previous" accesskey="p" href="#SPARC-VIS-Built_002din-Functions">SPARC VIS Built-in Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Target-Builtins">Target Builtins</a>

</div>

<h4 class="subsection">6.54.15 SPU Built-in Functions</h4>

<p>GCC provides extensions for the SPU processor as described in the
Sony/Toshiba/IBM SPU Language Extensions Specification, which can be
found at <a href="http://cell.scei.co.jp/">http://cell.scei.co.jp/</a> or
<a href="http://www.ibm.com/developerworks/power/cell/">http://www.ibm.com/developerworks/power/cell/</a>.  GCC's
implementation differs in several ways.

     <ul>
<li>The optional extension of specifying vector constants in parentheses is
not supported.

     <li>A vector initializer requires no cast if the vector constant is of the
same type as the variable it is initializing.

     <li>If <code>signed</code> or <code>unsigned</code> is omitted, the signedness of the
vector type is the default signedness of the base type.  The default
varies depending on the operating system, so a portable program should
always specify the signedness.

     <li>By default, the keyword <code>__vector</code> is added. The macro
<code>vector</code> is defined in <code>&lt;spu_intrinsics.h&gt;</code> and can be
undefined.

     <li>GCC allows using a <code>typedef</code> name as the type specifier for a
vector type.

     <li>For C, overloaded functions are implemented with macros so the following
does not work:

     <pre class="smallexample">            spu_add ((vector signed int){1, 2, 3, 4}, foo);
</pre>
     <p>Since <code>spu_add</code> is a macro, the vector constant in the example
is treated as four separate arguments.  Wrap the entire argument in
parentheses for this to work.

     <li>The extended version of <code>__builtin_expect</code> is not supported.

 </ul>

 <p><em>Note:</em> Only the interface described in the aforementioned
specification is supported. Internally, GCC uses built-in functions to
implement the required functionality, but these are not supported and
are subject to change without notice.

<div class="node">
<a name="Target-Format-Checks"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Pragmas">Pragmas</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Target-Builtins">Target Builtins</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.55 Format Checks Specific to Particular Target Machines</h3>

<p>For some target machines, GCC supports additional options to the
format attribute
(see <a href="#Function-Attributes">Declaring Attributes of Functions</a>).

<ul class="menu">
<li><a accesskey="1" href="#Solaris-Format-Checks">Solaris Format Checks</a>
<li><a accesskey="2" href="#Darwin-Format-Checks">Darwin Format Checks</a>
</ul>

<div class="node">
<a name="Solaris-Format-Checks"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Darwin-Format-Checks">Darwin Format Checks</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Target-Format-Checks">Target Format Checks</a>

</div>

<h4 class="subsection">6.55.1 Solaris Format Checks</h4>

<p>Solaris targets support the <code>cmn_err</code> (or <code>__cmn_err__</code>) format
check.  <code>cmn_err</code> accepts a subset of the standard <code>printf</code>
conversions, and the two-argument <code>%b</code> conversion for displaying
bit-fields.  See the Solaris man page for <code>cmn_err</code> for more information.

<div class="node">
<a name="Darwin-Format-Checks"></a>
<p><hr>
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Solaris-Format-Checks">Solaris Format Checks</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Target-Format-Checks">Target Format Checks</a>

</div>

<h4 class="subsection">6.55.2 Darwin Format Checks</h4>

<p>Darwin targets support the <code>CFString</code> (or <code>__CFString__</code>) in the format
attribute context.  Declarations made with such attribution will be parsed for correct syntax
and format argument types.  However, parsing of the format string itself is currently undefined
and will not be carried out by this version of the compiler.

 <p>Additionally, <code>CFStringRefs</code> (defined by the <code>CoreFoundation</code> headers) may
also be used as format arguments.  Note that the relevant headers are only likely to be
available on Darwin (OSX) installations.  On such installations, the XCode and system
documentation provide descriptions of <code>CFString</code>, <code>CFStringRefs</code> and
associated functions.

<div class="node">
<a name="Pragmas"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Unnamed-Fields">Unnamed Fields</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Target-Format-Checks">Target Format Checks</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.56 Pragmas Accepted by GCC</h3>

<p><a name="index-pragmas-3207"></a><a name="index-g_t_0040code_007b_0023pragma_007d-3208"></a>
GCC supports several types of pragmas, primarily in order to compile
code originally written for other compilers.  Note that in general
we do not recommend the use of pragmas; See <a href="#Function-Attributes">Function Attributes</a>,
for further explanation.

<ul class="menu">
<li><a accesskey="1" href="#ARM-Pragmas">ARM Pragmas</a>
<li><a accesskey="2" href="#M32C-Pragmas">M32C Pragmas</a>
<li><a accesskey="3" href="#MeP-Pragmas">MeP Pragmas</a>
<li><a accesskey="4" href="#RS_002f6000-and-PowerPC-Pragmas">RS/6000 and PowerPC Pragmas</a>
<li><a accesskey="5" href="#Darwin-Pragmas">Darwin Pragmas</a>
<li><a accesskey="6" href="#Solaris-Pragmas">Solaris Pragmas</a>
<li><a accesskey="7" href="#Symbol_002dRenaming-Pragmas">Symbol-Renaming Pragmas</a>
<li><a accesskey="8" href="#Structure_002dPacking-Pragmas">Structure-Packing Pragmas</a>
<li><a accesskey="9" href="#Weak-Pragmas">Weak Pragmas</a>
<li><a href="#Diagnostic-Pragmas">Diagnostic Pragmas</a>
<li><a href="#Visibility-Pragmas">Visibility Pragmas</a>
<li><a href="#Push_002fPop-Macro-Pragmas">Push/Pop Macro Pragmas</a>
<li><a href="#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a>
</ul>

<div class="node">
<a name="ARM-Pragmas"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#M32C-Pragmas">M32C Pragmas</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Pragmas">Pragmas</a>

</div>

<h4 class="subsection">6.56.1 ARM Pragmas</h4>

<p>The ARM target defines pragmas for controlling the default addition of
<code>long_call</code> and <code>short_call</code> attributes to functions. 
See <a href="#Function-Attributes">Function Attributes</a>, for information about the effects of these
attributes.

     <dl>
<dt><code>long_calls</code><dd><a name="index-pragma_002c-long_005fcalls-3209"></a>Set all subsequent functions to have the <code>long_call</code> attribute.

     <br><dt><code>no_long_calls</code><dd><a name="index-pragma_002c-no_005flong_005fcalls-3210"></a>Set all subsequent functions to have the <code>short_call</code> attribute.

     <br><dt><code>long_calls_off</code><dd><a name="index-pragma_002c-long_005fcalls_005foff-3211"></a>Do not affect the <code>long_call</code> or <code>short_call</code> attributes of
subsequent functions. 
</dl>

<div class="node">
<a name="M32C-Pragmas"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#MeP-Pragmas">MeP Pragmas</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#ARM-Pragmas">ARM Pragmas</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Pragmas">Pragmas</a>

</div>

<h4 class="subsection">6.56.2 M32C Pragmas</h4>

     <dl>
<dt><code>GCC memregs </code><var>number</var><dd><a name="index-pragma_002c-memregs-3212"></a>Overrides the command-line option <code>-memregs=</code> for the current
file.  Use with care!  This pragma must be before any function in the
file, and mixing different memregs values in different objects may
make them incompatible.  This pragma is useful when a
performance-critical function uses a memreg for temporary values,
as it may allow you to reduce the number of memregs used.

     <br><dt><code>ADDRESS </code><var>name</var> <var>address</var><dd><a name="index-pragma_002c-address-3213"></a>For any declared symbols matching <var>name</var>, this does three things
to that symbol: it forces the symbol to be located at the given
address (a number), it forces the symbol to be volatile, and it
changes the symbol's scope to be static.  This pragma exists for
compatibility with other compilers, but note that the common
<code>1234H</code> numeric syntax is not supported (use <code>0x1234</code>
instead).  Example:

     <pre class="example">          #pragma ADDRESS port3 0x103
          char port3;
</pre>
     </dl>

<div class="node">
<a name="MeP-Pragmas"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#RS_002f6000-and-PowerPC-Pragmas">RS/6000 and PowerPC Pragmas</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#M32C-Pragmas">M32C Pragmas</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Pragmas">Pragmas</a>

</div>

<h4 class="subsection">6.56.3 MeP Pragmas</h4>

     <dl>
<dt><code>custom io_volatile (on|off)</code><dd><a name="index-pragma_002c-custom-io_005fvolatile-3214"></a>Overrides the command line option <code>-mio-volatile</code> for the current
file.  Note that for compatibility with future GCC releases, this
option should only be used once before any <code>io</code> variables in each
file.

     <br><dt><code>GCC coprocessor available </code><var>registers</var><dd><a name="index-pragma_002c-coprocessor-available-3215"></a>Specifies which coprocessor registers are available to the register
allocator.  <var>registers</var> may be a single register, register range
separated by ellipses, or comma-separated list of those.  Example:

     <pre class="example">          #pragma GCC coprocessor available $c0...$c10, $c28
</pre>
     <br><dt><code>GCC coprocessor call_saved </code><var>registers</var><dd><a name="index-pragma_002c-coprocessor-call_005fsaved-3216"></a>Specifies which coprocessor registers are to be saved and restored by
any function using them.  <var>registers</var> may be a single register,
register range separated by ellipses, or comma-separated list of
those.  Example:

     <pre class="example">          #pragma GCC coprocessor call_saved $c4...$c6, $c31
</pre>
     <br><dt><code>GCC coprocessor subclass '(A|B|C|D)' = </code><var>registers</var><dd><a name="index-pragma_002c-coprocessor-subclass-3217"></a>Creates and defines a register class.  These register classes can be
used by inline <code>asm</code> constructs.  <var>registers</var> may be a single
register, register range separated by ellipses, or comma-separated
list of those.  Example:

     <pre class="example">          #pragma GCC coprocessor subclass 'B' = $c2, $c4, $c6
          
          asm ("cpfoo %0" : "=B" (x));
</pre>
     <br><dt><code>GCC disinterrupt </code><var>name</var><code> , </code><var>name</var><code> ...</code><dd><a name="index-pragma_002c-disinterrupt-3218"></a>For the named functions, the compiler adds code to disable interrupts
for the duration of those functions.  Any functions so named, which
are not encountered in the source, cause a warning that the pragma was
not used.  Examples:

     <pre class="example">          #pragma disinterrupt foo
          #pragma disinterrupt bar, grill
          int foo () { ... }
</pre>
     <br><dt><code>GCC call </code><var>name</var><code> , </code><var>name</var><code> ...</code><dd><a name="index-pragma_002c-call-3219"></a>For the named functions, the compiler always uses a register-indirect
call model when calling the named functions.  Examples:

     <pre class="example">          extern int foo ();
          #pragma call foo
</pre>
     </dl>

<div class="node">
<a name="RS%2f6000-and-PowerPC-Pragmas"></a>
<a name="RS_002f6000-and-PowerPC-Pragmas"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Darwin-Pragmas">Darwin Pragmas</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#MeP-Pragmas">MeP Pragmas</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Pragmas">Pragmas</a>

</div>

<h4 class="subsection">6.56.4 RS/6000 and PowerPC Pragmas</h4>

<p>The RS/6000 and PowerPC targets define one pragma for controlling
whether or not the <code>longcall</code> attribute is added to function
declarations by default.  This pragma overrides the <samp><span class="option">-mlongcall</span></samp>
option, but not the <code>longcall</code> and <code>shortcall</code> attributes. 
See <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a>, for more information about when long
calls are and are not necessary.

     <dl>
<dt><code>longcall (1)</code><dd><a name="index-pragma_002c-longcall-3220"></a>Apply the <code>longcall</code> attribute to all subsequent function
declarations.

     <br><dt><code>longcall (0)</code><dd>Do not apply the <code>longcall</code> attribute to subsequent function
declarations. 
</dl>

<!-- Describe h8300 pragmas here. -->
<!-- Describe sh pragmas here. -->
<!-- Describe v850 pragmas here. -->
<div class="node">
<a name="Darwin-Pragmas"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Solaris-Pragmas">Solaris Pragmas</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#RS_002f6000-and-PowerPC-Pragmas">RS/6000 and PowerPC Pragmas</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Pragmas">Pragmas</a>

</div>

<h4 class="subsection">6.56.5 Darwin Pragmas</h4>

<p>The following pragmas are available for all architectures running the
Darwin operating system.  These are useful for compatibility with other
Mac OS compilers.

     <dl>
<dt><code>mark </code><var>tokens</var><code>...</code><dd><a name="index-pragma_002c-mark-3221"></a>This pragma is accepted, but has no effect.

     <br><dt><code>options align=</code><var>alignment</var><dd><a name="index-pragma_002c-options-align-3222"></a>This pragma sets the alignment of fields in structures.  The values of
<var>alignment</var> may be <code>mac68k</code>, to emulate m68k alignment, or
<code>power</code>, to emulate PowerPC alignment.  Uses of this pragma nest
properly; to restore the previous setting, use <code>reset</code> for the
<var>alignment</var>.

     <br><dt><code>segment </code><var>tokens</var><code>...</code><dd><a name="index-pragma_002c-segment-3223"></a>This pragma is accepted, but has no effect.

     <br><dt><code>unused (</code><var>var</var><code> [, </code><var>var</var><code>]...)</code><dd><a name="index-pragma_002c-unused-3224"></a>This pragma declares variables to be possibly unused.  GCC will not
produce warnings for the listed variables.  The effect is similar to
that of the <code>unused</code> attribute, except that this pragma may appear
anywhere within the variables' scopes. 
</dl>

<div class="node">
<a name="Solaris-Pragmas"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Symbol_002dRenaming-Pragmas">Symbol-Renaming Pragmas</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Darwin-Pragmas">Darwin Pragmas</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Pragmas">Pragmas</a>

</div>

<h4 class="subsection">6.56.6 Solaris Pragmas</h4>

<p>The Solaris target supports <code>#pragma redefine_extname</code>
(see <a href="#Symbol_002dRenaming-Pragmas">Symbol-Renaming Pragmas</a>).  It also supports additional
<code>#pragma</code> directives for compatibility with the system compiler.

     <dl>
<dt><code>align </code><var>alignment</var><code> (</code><var>variable</var><code> [, </code><var>variable</var><code>]...)</code><dd><a name="index-pragma_002c-align-3225"></a>
Increase the minimum alignment of each <var>variable</var> to <var>alignment</var>. 
This is the same as GCC's <code>aligned</code> attribute see <a href="#Variable-Attributes">Variable Attributes</a>).  Macro expansion occurs on the arguments to this pragma
when compiling C and Objective-C.  It does not currently occur when
compiling C++, but this is a bug which may be fixed in a future
release.

     <br><dt><code>fini (</code><var>function</var><code> [, </code><var>function</var><code>]...)</code><dd><a name="index-pragma_002c-fini-3226"></a>
This pragma causes each listed <var>function</var> to be called after
main, or during shared module unloading, by adding a call to the
<code>.fini</code> section.

     <br><dt><code>init (</code><var>function</var><code> [, </code><var>function</var><code>]...)</code><dd><a name="index-pragma_002c-init-3227"></a>
This pragma causes each listed <var>function</var> to be called during
initialization (before <code>main</code>) or during shared module loading, by
adding a call to the <code>.init</code> section.

 </dl>

<div class="node">
<a name="Symbol-Renaming-Pragmas"></a>
<a name="Symbol_002dRenaming-Pragmas"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Structure_002dPacking-Pragmas">Structure-Packing Pragmas</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Solaris-Pragmas">Solaris Pragmas</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Pragmas">Pragmas</a>

</div>

<h4 class="subsection">6.56.7 Symbol-Renaming Pragmas</h4>

<p>For compatibility with the Solaris and Tru64 UNIX system headers, GCC
supports two <code>#pragma</code> directives which change the name used in
assembly for a given declaration.  <code>#pragma extern_prefix</code> is only
available on platforms whose system headers need it. To get this effect
on all platforms supported by GCC, use the asm labels extension (see <a href="#Asm-Labels">Asm Labels</a>).

     <dl>
<dt><code>redefine_extname </code><var>oldname</var> <var>newname</var><dd><a name="index-pragma_002c-redefine_005fextname-3228"></a>
This pragma gives the C function <var>oldname</var> the assembly symbol
<var>newname</var>.  The preprocessor macro <code>__PRAGMA_REDEFINE_EXTNAME</code>
will be defined if this pragma is available (currently on all platforms).

     <br><dt><code>extern_prefix </code><var>string</var><dd><a name="index-pragma_002c-extern_005fprefix-3229"></a>
This pragma causes all subsequent external function and variable
declarations to have <var>string</var> prepended to their assembly symbols. 
This effect may be terminated with another <code>extern_prefix</code> pragma
whose argument is an empty string.  The preprocessor macro
<code>__PRAGMA_EXTERN_PREFIX</code> will be defined if this pragma is
available (currently only on Tru64 UNIX). 
</dl>

 <p>These pragmas and the asm labels extension interact in a complicated
manner.  Here are some corner cases you may want to be aware of.

     <ol type=1 start=1>
<li>Both pragmas silently apply only to declarations with external
linkage.  Asm labels do not have this restriction.

     <li>In C++, both pragmas silently apply only to declarations with
&ldquo;C&rdquo; linkage.  Again, asm labels do not have this restriction.

     <li>If any of the three ways of changing the assembly name of a
declaration is applied to a declaration whose assembly name has
already been determined (either by a previous use of one of these
features, or because the compiler needed the assembly name in order to
generate code), and the new name is different, a warning issues and
the name does not change.

     <li>The <var>oldname</var> used by <code>#pragma redefine_extname</code> is
always the C-language name.

     <li>If <code>#pragma extern_prefix</code> is in effect, and a declaration
occurs with an asm label attached, the prefix is silently ignored for
that declaration.

     <li>If <code>#pragma extern_prefix</code> and <code>#pragma redefine_extname</code>
apply to the same declaration, whichever triggered first wins, and a
warning issues if they contradict each other.  (We would like to have
<code>#pragma redefine_extname</code> always win, for consistency with asm
labels, but if <code>#pragma extern_prefix</code> triggers first we have no
way of knowing that that happened.)
      </ol>

<div class="node">
<a name="Structure-Packing-Pragmas"></a>
<a name="Structure_002dPacking-Pragmas"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Weak-Pragmas">Weak Pragmas</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Symbol_002dRenaming-Pragmas">Symbol-Renaming Pragmas</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Pragmas">Pragmas</a>

</div>

<h4 class="subsection">6.56.8 Structure-Packing Pragmas</h4>

<p>For compatibility with Microsoft Windows compilers, GCC supports a
set of <code>#pragma</code> directives which change the maximum alignment of
members of structures (other than zero-width bitfields), unions, and
classes subsequently defined. The <var>n</var> value below always is required
to be a small power of two and specifies the new alignment in bytes.

     <ol type=1 start=1>
<li><code>#pragma pack(</code><var>n</var><code>)</code> simply sets the new alignment. 
<li><code>#pragma pack()</code> sets the alignment to the one that was in
effect when compilation started (see also command-line option
<samp><span class="option">-fpack-struct[=</span><var>n</var><span class="option">]</span></samp> see <a href="#Code-Gen-Options">Code Gen Options</a>). 
<li><code>#pragma pack(push[,</code><var>n</var><code>])</code> pushes the current alignment
setting on an internal stack and then optionally sets the new alignment. 
<li><code>#pragma pack(pop)</code> restores the alignment setting to the one
saved at the top of the internal stack (and removes that stack entry). 
Note that <code>#pragma pack([</code><var>n</var><code>])</code> does not influence this internal
stack; thus it is possible to have <code>#pragma pack(push)</code> followed by
multiple <code>#pragma pack(</code><var>n</var><code>)</code> instances and finalized by a single
<code>#pragma pack(pop)</code>.
      </ol>

 <p>Some targets, e.g. i386 and powerpc, support the <code>ms_struct</code>
<code>#pragma</code> which lays out a structure as the documented
<code>__attribute__ ((ms_struct))</code>.
     <ol type=1 start=1>
<li><code>#pragma ms_struct on</code> turns on the layout for structures
declared. 
<li><code>#pragma ms_struct off</code> turns off the layout for structures
declared. 
<li><code>#pragma ms_struct reset</code> goes back to the default layout.
      </ol>

<div class="node">
<a name="Weak-Pragmas"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Diagnostic-Pragmas">Diagnostic Pragmas</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Structure_002dPacking-Pragmas">Structure-Packing Pragmas</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Pragmas">Pragmas</a>

</div>

<h4 class="subsection">6.56.9 Weak Pragmas</h4>

<p>For compatibility with SVR4, GCC supports a set of <code>#pragma</code>
directives for declaring symbols to be weak, and defining weak
aliases.

     <dl>
<dt><code>#pragma weak </code><var>symbol</var><dd><a name="index-pragma_002c-weak-3230"></a>This pragma declares <var>symbol</var> to be weak, as if the declaration
had the attribute of the same name.  The pragma may appear before
or after the declaration of <var>symbol</var>.  It is not an error for
<var>symbol</var> to never be defined at all.

     <br><dt><code>#pragma weak </code><var>symbol1</var><code> = </code><var>symbol2</var><dd>This pragma declares <var>symbol1</var> to be a weak alias of <var>symbol2</var>. 
It is an error if <var>symbol2</var> is not defined in the current
translation unit. 
</dl>

<div class="node">
<a name="Diagnostic-Pragmas"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Visibility-Pragmas">Visibility Pragmas</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Weak-Pragmas">Weak Pragmas</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Pragmas">Pragmas</a>

</div>

<h4 class="subsection">6.56.10 Diagnostic Pragmas</h4>

<p>GCC allows the user to selectively enable or disable certain types of
diagnostics, and change the kind of the diagnostic.  For example, a
project's policy might require that all sources compile with
<samp><span class="option">-Werror</span></samp> but certain files might have exceptions allowing
specific types of warnings.  Or, a project might selectively enable
diagnostics and treat them as errors depending on which preprocessor
macros are defined.

     <dl>
<dt><code>#pragma GCC diagnostic </code><var>kind</var> <var>option</var><dd><a name="index-pragma_002c-diagnostic-3231"></a>
Modifies the disposition of a diagnostic.  Note that not all
diagnostics are modifiable; at the moment only warnings (normally
controlled by &lsquo;<samp><span class="samp">-W...</span></samp>&rsquo;) can be controlled, and not all of them. 
Use <samp><span class="option">-fdiagnostics-show-option</span></samp> to determine which diagnostics
are controllable and which option controls them.

     <p><var>kind</var> is &lsquo;<samp><span class="samp">error</span></samp>&rsquo; to treat this diagnostic as an error,
&lsquo;<samp><span class="samp">warning</span></samp>&rsquo; to treat it like a warning (even if <samp><span class="option">-Werror</span></samp> is
in effect), or &lsquo;<samp><span class="samp">ignored</span></samp>&rsquo; if the diagnostic is to be ignored. 
<var>option</var> is a double quoted string which matches the command-line
option.

     <pre class="example">          #pragma GCC diagnostic warning "-Wformat"
          #pragma GCC diagnostic error "-Wformat"
          #pragma GCC diagnostic ignored "-Wformat"
</pre>
     <p>Note that these pragmas override any command-line options.  GCC keeps
track of the location of each pragma, and issues diagnostics according
to the state as of that point in the source file.  Thus, pragmas occurring
after a line do not affect diagnostics caused by that line.

     <br><dt><code>#pragma GCC diagnostic push</code><dt><code>#pragma GCC diagnostic pop</code><dd>
Causes GCC to remember the state of the diagnostics as of each
<code>push</code>, and restore to that point at each <code>pop</code>.  If a
<code>pop</code> has no matching <code>push</code>, the command line options are
restored.

     <pre class="example">          #pragma GCC diagnostic error "-Wuninitialized"
            foo(a);			/* error is given for this one */
          #pragma GCC diagnostic push
          #pragma GCC diagnostic ignored "-Wuninitialized"
            foo(b);			/* no diagnostic for this one */
          #pragma GCC diagnostic pop
            foo(c);			/* error is given for this one */
          #pragma GCC diagnostic pop
            foo(d);			/* depends on command line options */
</pre>
     </dl>

 <p>GCC also offers a simple mechanism for printing messages during
compilation.

     <dl>
<dt><code>#pragma message </code><var>string</var><dd><a name="index-pragma_002c-diagnostic-3232"></a>
Prints <var>string</var> as a compiler message on compilation.  The message
is informational only, and is neither a compilation warning nor an error.

     <pre class="smallexample">          #pragma message "Compiling " __FILE__ "..."
</pre>
     <p><var>string</var> may be parenthesized, and is printed with location
information.  For example,

     <pre class="smallexample">          #define DO_PRAGMA(x) _Pragma (#x)
          #define TODO(x) DO_PRAGMA(message ("TODO - " #x))
          
          TODO(Remember to fix this)
</pre>
     <p>prints &lsquo;<samp><span class="samp">/tmp/file.c:4: note: #pragma message:
TODO - Remember to fix this</span></samp>&rsquo;.

 </dl>

<div class="node">
<a name="Visibility-Pragmas"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Push_002fPop-Macro-Pragmas">Push/Pop Macro Pragmas</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Diagnostic-Pragmas">Diagnostic Pragmas</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Pragmas">Pragmas</a>

</div>

<h4 class="subsection">6.56.11 Visibility Pragmas</h4>

     <dl>
<dt><code>#pragma GCC visibility push(</code><var>visibility</var><code>)</code><dt><code>#pragma GCC visibility pop</code><dd><a name="index-pragma_002c-visibility-3233"></a>
This pragma allows the user to set the visibility for multiple
declarations without having to give each a visibility attribute
See <a href="#Function-Attributes">Function Attributes</a>, for more information about visibility and
the attribute syntax.

     <p>In C++, &lsquo;<samp><span class="samp">#pragma GCC visibility</span></samp>&rsquo; affects only namespace-scope
declarations.  Class members and template specializations are not
affected; if you want to override the visibility for a particular
member or instantiation, you must use an attribute.

</dl>

<div class="node">
<a name="Push%2fPop-Macro-Pragmas"></a>
<a name="Push_002fPop-Macro-Pragmas"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Visibility-Pragmas">Visibility Pragmas</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Pragmas">Pragmas</a>

</div>

<h4 class="subsection">6.56.12 Push/Pop Macro Pragmas</h4>

<p>For compatibility with Microsoft Windows compilers, GCC supports
&lsquo;<samp><span class="samp">#pragma push_macro(</span><var>"macro_name"</var><span class="samp">)</span></samp>&rsquo;
and &lsquo;<samp><span class="samp">#pragma pop_macro(</span><var>"macro_name"</var><span class="samp">)</span></samp>&rsquo;.

     <dl>
<dt><code>#pragma push_macro(</code><var>"macro_name"</var><code>)</code><dd><a name="index-pragma_002c-push_005fmacro-3234"></a>This pragma saves the value of the macro named as <var>macro_name</var> to
the top of the stack for this macro.

     <br><dt><code>#pragma pop_macro(</code><var>"macro_name"</var><code>)</code><dd><a name="index-pragma_002c-pop_005fmacro-3235"></a>This pragma sets the value of the macro named as <var>macro_name</var> to
the value on top of the stack for this macro. If the stack for
<var>macro_name</var> is empty, the value of the macro remains unchanged. 
</dl>

 <p>For example:

<pre class="smallexample">     #define X  1
     #pragma push_macro("X")
     #undef X
     #define X -1
     #pragma pop_macro("X")
     int x [X];
</pre>
 <p>In this example, the definition of X as 1 is saved by <code>#pragma
push_macro</code> and restored by <code>#pragma pop_macro</code>.

<div class="node">
<a name="Function-Specific-Option-Pragmas"></a>
<p><hr>
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Push_002fPop-Macro-Pragmas">Push/Pop Macro Pragmas</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Pragmas">Pragmas</a>

</div>

<h4 class="subsection">6.56.13 Function Specific Option Pragmas</h4>

     <dl>
<dt><code>#pragma GCC target (</code><var>"string"</var><code>...)</code><dd><a name="index-pragma-GCC-target-3236"></a>
This pragma allows you to set target specific options for functions
defined later in the source file.  One or more strings can be
specified.  Each function that is defined after this point will be as
if <code>attribute((target("STRING")))</code> was specified for that
function.  The parenthesis around the options is optional. 
See <a href="#Function-Attributes">Function Attributes</a>, for more information about the
<code>target</code> attribute and the attribute syntax.

     <p>The <code>#pragma GCC target</code> attribute is not implemented in GCC versions earlier
than 4.4 for the i386/x86_64 and 4.6 for the PowerPC backends.  At
present, it is not implemented for other backends. 
</dl>

     <dl>
<dt><code>#pragma GCC optimize (</code><var>"string"</var><code>...)</code><dd><a name="index-pragma-GCC-optimize-3237"></a>
This pragma allows you to set global optimization options for functions
defined later in the source file.  One or more strings can be
specified.  Each function that is defined after this point will be as
if <code>attribute((optimize("STRING")))</code> was specified for that
function.  The parenthesis around the options is optional. 
See <a href="#Function-Attributes">Function Attributes</a>, for more information about the
<code>optimize</code> attribute and the attribute syntax.

     <p>The &lsquo;<samp><span class="samp">#pragma GCC optimize</span></samp>&rsquo; pragma is not implemented in GCC
versions earlier than 4.4. 
</dl>

     <dl>
<dt><code>#pragma GCC push_options</code><dt><code>#pragma GCC pop_options</code><dd><a name="index-pragma-GCC-push_005foptions-3238"></a><a name="index-pragma-GCC-pop_005foptions-3239"></a>
These pragmas maintain a stack of the current target and optimization
options.  It is intended for include files where you temporarily want
to switch to using a different &lsquo;<samp><span class="samp">#pragma GCC target</span></samp>&rsquo; or
&lsquo;<samp><span class="samp">#pragma GCC optimize</span></samp>&rsquo; and then to pop back to the previous
options.

     <p>The &lsquo;<samp><span class="samp">#pragma GCC push_options</span></samp>&rsquo; and &lsquo;<samp><span class="samp">#pragma GCC pop_options</span></samp>&rsquo;
pragmas are not implemented in GCC versions earlier than 4.4. 
</dl>

     <dl>
<dt><code>#pragma GCC reset_options</code><dd><a name="index-pragma-GCC-reset_005foptions-3240"></a>
This pragma clears the current <code>#pragma GCC target</code> and
<code>#pragma GCC optimize</code> to use the default switches as specified
on the command line.

     <p>The &lsquo;<samp><span class="samp">#pragma GCC reset_options</span></samp>&rsquo; pragma is not implemented in GCC
versions earlier than 4.4. 
</dl>

<div class="node">
<a name="Unnamed-Fields"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Thread_002dLocal">Thread-Local</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Pragmas">Pragmas</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.57 Unnamed struct/union fields within structs/unions</h3>

<p><a name="index-g_t_0040code_007bstruct_007d-3241"></a><a name="index-g_t_0040code_007bunion_007d-3242"></a>
As permitted by ISO C1X and for compatibility with other compilers,
GCC allows you to define
a structure or union that contains, as fields, structures and unions
without names.  For example:

<pre class="smallexample">     struct {
       int a;
       union {
         int b;
         float c;
       };
       int d;
     } foo;
</pre>
 <p>In this example, the user would be able to access members of the unnamed
union with code like &lsquo;<samp><span class="samp">foo.b</span></samp>&rsquo;.  Note that only unnamed structs and
unions are allowed, you may not have, for example, an unnamed
<code>int</code>.

 <p>You must never create such structures that cause ambiguous field definitions. 
For example, this structure:

<pre class="smallexample">     struct {
       int a;
       struct {
         int a;
       };
     } foo;
</pre>
 <p>It is ambiguous which <code>a</code> is being referred to with &lsquo;<samp><span class="samp">foo.a</span></samp>&rsquo;. 
The compiler gives errors for such constructs.

 <p><a name="index-fms_002dextensions-3243"></a>Unless <samp><span class="option">-fms-extensions</span></samp> is used, the unnamed field must be a
structure or union definition without a tag (for example, &lsquo;<samp><span class="samp">struct
{ int a; };</span></samp>&rsquo;).  If <samp><span class="option">-fms-extensions</span></samp> is used, the field may
also be a definition with a tag such as &lsquo;<samp><span class="samp">struct foo { int a;
};</span></samp>&rsquo;, a reference to a previously defined structure or union such as
&lsquo;<samp><span class="samp">struct foo;</span></samp>&rsquo;, or a reference to a <code>typedef</code> name for a
previously defined structure or union type.

 <p><a name="index-fplan9_002dextensions-3244"></a>The option <samp><span class="option">-fplan9-extensions</span></samp> enables
<samp><span class="option">-fms-extensions</span></samp> as well as two other extensions.  First, a
pointer to a structure is automatically converted to a pointer to an
anonymous field for assignments and function calls.  For example:

<pre class="smallexample">     struct s1 { int a; };
     struct s2 { struct s1; };
     extern void f1 (struct s1 *);
     void f2 (struct s2 *p) { f1 (p); }
</pre>
 <p>In the call to <code>f1</code> inside <code>f2</code>, the pointer <code>p</code> is
converted into a pointer to the anonymous field.

 <p>Second, when the type of an anonymous field is a <code>typedef</code> for a
<code>struct</code> or <code>union</code>, code may refer to the field using the
name of the <code>typedef</code>.

<pre class="smallexample">     typedef struct { int a; } s1;
     struct s2 { s1; };
     s1 f1 (struct s2 *p) { return p-&gt;s1; }
</pre>
 <p>These usages are only permitted when they are not ambiguous.

<div class="node">
<a name="Thread-Local"></a>
<a name="Thread_002dLocal"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Binary-constants">Binary constants</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Unnamed-Fields">Unnamed Fields</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.58 Thread-Local Storage</h3>

<p><a name="index-Thread_002dLocal-Storage-3245"></a><a name="index-g_t_0040acronym_007bTLS_007d-3246"></a><a name="index-g_t_0040code_007b_005f_005fthread_007d-3247"></a>
Thread-local storage (<acronym>TLS</acronym>) is a mechanism by which variables
are allocated such that there is one instance of the variable per extant
thread.  The run-time model GCC uses to implement this originates
in the IA-64 processor-specific ABI, but has since been migrated
to other processors as well.  It requires significant support from
the linker (<samp><span class="command">ld</span></samp>), dynamic linker (<samp><span class="command">ld.so</span></samp>), and
system libraries (<samp><span class="file">libc.so</span></samp> and <samp><span class="file">libpthread.so</span></samp>), so it
is not available everywhere.

 <p>At the user level, the extension is visible with a new storage
class keyword: <code>__thread</code>.  For example:

<pre class="smallexample">     __thread int i;
     extern __thread struct state s;
     static __thread char *p;
</pre>
 <p>The <code>__thread</code> specifier may be used alone, with the <code>extern</code>
or <code>static</code> specifiers, but with no other storage class specifier. 
When used with <code>extern</code> or <code>static</code>, <code>__thread</code> must appear
immediately after the other storage class specifier.

 <p>The <code>__thread</code> specifier may be applied to any global, file-scoped
static, function-scoped static, or static data member of a class.  It may
not be applied to block-scoped automatic or non-static data member.

 <p>When the address-of operator is applied to a thread-local variable, it is
evaluated at run-time and returns the address of the current thread's
instance of that variable.  An address so obtained may be used by any
thread.  When a thread terminates, any pointers to thread-local variables
in that thread become invalid.

 <p>No static initialization may refer to the address of a thread-local variable.

 <p>In C++, if an initializer is present for a thread-local variable, it must
be a <var>constant-expression</var>, as defined in 5.19.2 of the ANSI/ISO C++
standard.

 <p>See <a href="http://www.akkadia.org/drepper/tls.pdf">ELF Handling For Thread-Local Storage</a> for a detailed explanation of
the four thread-local storage addressing models, and how the run-time
is expected to function.

<ul class="menu">
<li><a accesskey="1" href="#C99-Thread_002dLocal-Edits">C99 Thread-Local Edits</a>
<li><a accesskey="2" href="#C_002b_002b98-Thread_002dLocal-Edits">C++98 Thread-Local Edits</a>
</ul>

<div class="node">
<a name="C99-Thread-Local-Edits"></a>
<a name="C99-Thread_002dLocal-Edits"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#C_002b_002b98-Thread_002dLocal-Edits">C++98 Thread-Local Edits</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Thread_002dLocal">Thread-Local</a>

</div>

<h4 class="subsection">6.58.1 ISO/IEC 9899:1999 Edits for Thread-Local Storage</h4>

<p>The following are a set of changes to ISO/IEC 9899:1999 (aka C99)
that document the exact semantics of the language extension.

     <ul>
<li><cite>5.1.2  Execution environments</cite>

     <p>Add new text after paragraph 1

     <blockquote>
Within either execution environment, a <dfn>thread</dfn> is a flow of
control within a program.  It is implementation defined whether
or not there may be more than one thread associated with a program. 
It is implementation defined how threads beyond the first are
created, the name and type of the function called at thread
startup, and how threads may be terminated.  However, objects
with thread storage duration shall be initialized before thread
startup. 
</blockquote>

     <li><cite>6.2.4  Storage durations of objects</cite>

     <p>Add new text before paragraph 3

     <blockquote>
An object whose identifier is declared with the storage-class
specifier <code>__thread</code><!-- /@w --> has <dfn>thread storage duration</dfn>. 
Its lifetime is the entire execution of the thread, and its
stored value is initialized only once, prior to thread startup. 
</blockquote>

     <li><cite>6.4.1  Keywords</cite>

     <p>Add <code>__thread</code>.

     <li><cite>6.7.1  Storage-class specifiers</cite>

     <p>Add <code>__thread</code> to the list of storage class specifiers in
paragraph 1.

     <p>Change paragraph 2 to

     <blockquote>
With the exception of <code>__thread</code>, at most one storage-class
specifier may be given [<small class="dots">...</small>].  The <code>__thread</code> specifier may
be used alone, or immediately following <code>extern</code> or
<code>static</code>. 
</blockquote>

     <p>Add new text after paragraph 6

     <blockquote>
The declaration of an identifier for a variable that has
block scope that specifies <code>__thread</code> shall also
specify either <code>extern</code> or <code>static</code>.

     <p>The <code>__thread</code> specifier shall be used only with
variables. 
</blockquote>
     </ul>

<div class="node">
<a name="C++98-Thread-Local-Edits"></a>
<a name="C_002b_002b98-Thread_002dLocal-Edits"></a>
<p><hr>
Previous:&nbsp;<a rel="previous" accesskey="p" href="#C99-Thread_002dLocal-Edits">C99 Thread-Local Edits</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Thread_002dLocal">Thread-Local</a>

</div>

<h4 class="subsection">6.58.2 ISO/IEC 14882:1998 Edits for Thread-Local Storage</h4>

<p>The following are a set of changes to ISO/IEC 14882:1998 (aka C++98)
that document the exact semantics of the language extension.

     <ul>
<li><b>[intro.execution]</b>

     <p>New text after paragraph 4

     <blockquote>
A <dfn>thread</dfn> is a flow of control within the abstract machine. 
It is implementation defined whether or not there may be more than
one thread. 
</blockquote>

     <p>New text after paragraph 7

     <blockquote>
It is unspecified whether additional action must be taken to
ensure when and whether side effects are visible to other threads. 
</blockquote>

     <li><b>[lex.key]</b>

     <p>Add <code>__thread</code>.

     <li><b>[basic.start.main]</b>

     <p>Add after paragraph 5

     <blockquote>
The thread that begins execution at the <code>main</code> function is called
the <dfn>main thread</dfn>.  It is implementation defined how functions
beginning threads other than the main thread are designated or typed. 
A function so designated, as well as the <code>main</code> function, is called
a <dfn>thread startup function</dfn>.  It is implementation defined what
happens if a thread startup function returns.  It is implementation
defined what happens to other threads when any thread calls <code>exit</code>. 
</blockquote>

     <li><b>[basic.start.init]</b>

     <p>Add after paragraph 4

     <blockquote>
The storage for an object of thread storage duration shall be
statically initialized before the first statement of the thread startup
function.  An object of thread storage duration shall not require
dynamic initialization. 
</blockquote>

     <li><b>[basic.start.term]</b>

     <p>Add after paragraph 3

     <blockquote>
The type of an object with thread storage duration shall not have a
non-trivial destructor, nor shall it be an array type whose elements
(directly or indirectly) have non-trivial destructors. 
</blockquote>

     <li><b>[basic.stc]</b>

     <p>Add &ldquo;thread storage duration&rdquo; to the list in paragraph 1.

     <p>Change paragraph 2

     <blockquote>
Thread, static, and automatic storage durations are associated with
objects introduced by declarations [<small class="dots">...</small>]. 
</blockquote>

     <p>Add <code>__thread</code> to the list of specifiers in paragraph 3.

     <li><b>[basic.stc.thread]</b>

     <p>New section before <b>[basic.stc.static]</b>

     <blockquote>
The keyword <code>__thread</code> applied to a non-local object gives the
object thread storage duration.

     <p>A local variable or class data member declared both <code>static</code>
and <code>__thread</code> gives the variable or member thread storage
duration. 
</blockquote>

     <li><b>[basic.stc.static]</b>

     <p>Change paragraph 1

     <blockquote>
All objects which have neither thread storage duration, dynamic
storage duration nor are local [<small class="dots">...</small>]. 
</blockquote>

     <li><b>[dcl.stc]</b>

     <p>Add <code>__thread</code> to the list in paragraph 1.

     <p>Change paragraph 1

     <blockquote>
With the exception of <code>__thread</code>, at most one
<var>storage-class-specifier</var> shall appear in a given
<var>decl-specifier-seq</var>.  The <code>__thread</code> specifier may
be used alone, or immediately following the <code>extern</code> or
<code>static</code> specifiers.  [<small class="dots">...</small>]
</blockquote>

     <p>Add after paragraph 5

     <blockquote>
The <code>__thread</code> specifier can be applied only to the names of objects
and to anonymous unions. 
</blockquote>

     <li><b>[class.mem]</b>

     <p>Add after paragraph 6

     <blockquote>
Non-<code>static</code> members shall not be <code>__thread</code>. 
</blockquote>
     </ul>

<div class="node">
<a name="Binary-constants"></a>
<p><hr>
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Thread_002dLocal">Thread-Local</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C-Extensions">C Extensions</a>

</div>

<h3 class="section">6.59 Binary constants using the &lsquo;<samp><span class="samp">0b</span></samp>&rsquo; prefix</h3>

<p><a name="index-Binary-constants-using-the-_0040samp_007b0b_007d-prefix-3248"></a>
Integer constants can be written as binary constants, consisting of a
sequence of &lsquo;<samp><span class="samp">0</span></samp>&rsquo; and &lsquo;<samp><span class="samp">1</span></samp>&rsquo; digits, prefixed by &lsquo;<samp><span class="samp">0b</span></samp>&rsquo; or
&lsquo;<samp><span class="samp">0B</span></samp>&rsquo;.  This is particularly useful in environments that operate a
lot on the bit-level (like microcontrollers).

 <p>The following statements are identical:

<pre class="smallexample">     i =       42;
     i =     0x2a;
     i =      052;
     i = 0b101010;
</pre>
 <p>The type of these constants follows the same rules as for octal or
hexadecimal integer constants, so suffixes like &lsquo;<samp><span class="samp">L</span></samp>&rsquo; or &lsquo;<samp><span class="samp">UL</span></samp>&rsquo;
can be applied.

<div class="node">
<a name="C++-Extensions"></a>
<a name="C_002b_002b-Extensions"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Objective_002dC">Objective-C</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#C_002b_002b-Implementation">C++ Implementation</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Top">Top</a>

</div>

<h2 class="chapter">7 Extensions to the C++ Language</h2>

<p><a name="index-extensions_002c-C_002b_002b-language-3249"></a><a name="index-C_002b_002b-language-extensions-3250"></a>
The GNU compiler provides these extensions to the C++ language (and you
can also use most of the C language extensions in your C++ programs).  If you
want to write code that checks whether these features are available, you can
test for the GNU compiler the same way as for C programs: check for a
predefined macro <code>__GNUC__</code>.  You can also use <code>__GNUG__</code> to
test specifically for GNU C++ (see <a href="{No value for `fncpp'}.html#Common-Predefined-Macros">Predefined Macros</a>).

<ul class="menu">
<li><a accesskey="1" href="#C_002b_002b-Volatiles">C++ Volatiles</a>:        What constitutes an access to a volatile object. 
<li><a accesskey="2" href="#Restricted-Pointers">Restricted Pointers</a>:  C99 restricted pointers and references. 
<li><a accesskey="3" href="#Vague-Linkage">Vague Linkage</a>:        Where G++ puts inlines, vtables and such. 
<li><a accesskey="4" href="#C_002b_002b-Interface">C++ Interface</a>:        You can use a single C++ header file for both
                        declarations and definitions. 
<li><a accesskey="5" href="#Template-Instantiation">Template Instantiation</a>:  Methods for ensuring that exactly one copy of
                        each needed template instantiation is emitted. 
<li><a accesskey="6" href="#Bound-member-functions">Bound member functions</a>:  You can extract a function pointer to the
                        method denoted by a &lsquo;<samp><span class="samp">-&gt;*</span></samp>&rsquo; or &lsquo;<samp><span class="samp">.*</span></samp>&rsquo; expression. 
<li><a accesskey="7" href="#C_002b_002b-Attributes">C++ Attributes</a>:       Variable, function, and type attributes for C++ only. 
<li><a accesskey="8" href="#Namespace-Association">Namespace Association</a>:  Strong using-directives for namespace association. 
<li><a accesskey="9" href="#Type-Traits">Type Traits</a>:          Compiler support for type traits
<li><a href="#Java-Exceptions">Java Exceptions</a>:      Tweaking exception handling to work with Java. 
<li><a href="#Deprecated-Features">Deprecated Features</a>:  Things will disappear from g++. 
<li><a href="#Backwards-Compatibility">Backwards Compatibility</a>:  Compatibilities with earlier definitions of C++. 
</ul>

<div class="node">
<a name="C++-Volatiles"></a>
<a name="C_002b_002b-Volatiles"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Restricted-Pointers">Restricted Pointers</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C_002b_002b-Extensions">C++ Extensions</a>

</div>

<h3 class="section">7.1 When is a Volatile C++ Object Accessed?</h3>

<p><a name="index-accessing-volatiles-3251"></a><a name="index-volatile-read-3252"></a><a name="index-volatile-write-3253"></a><a name="index-volatile-access-3254"></a>
The C++ standard differs from the C standard in its treatment of
volatile objects.  It fails to specify what constitutes a volatile
access, except to say that C++ should behave in a similar manner to C
with respect to volatiles, where possible.  However, the different
lvalueness of expressions between C and C++ complicate the behavior. 
G++ behaves the same as GCC for volatile access, See <a href="#C-Extensions">Volatiles</a>, for a description of GCC's behavior.

 <p>The C and C++ language specifications differ when an object is
accessed in a void context:

<pre class="smallexample">     volatile int *src = <var>somevalue</var>;
     *src;
</pre>
 <p>The C++ standard specifies that such expressions do not undergo lvalue
to rvalue conversion, and that the type of the dereferenced object may
be incomplete.  The C++ standard does not specify explicitly that it
is lvalue to rvalue conversion which is responsible for causing an
access.  There is reason to believe that it is, because otherwise
certain simple expressions become undefined.  However, because it
would surprise most programmers, G++ treats dereferencing a pointer to
volatile object of complete type as GCC would do for an equivalent
type in C.  When the object has incomplete type, G++ issues a
warning; if you wish to force an error, you must force a conversion to
rvalue with, for instance, a static cast.

 <p>When using a reference to volatile, G++ does not treat equivalent
expressions as accesses to volatiles, but instead issues a warning that
no volatile is accessed.  The rationale for this is that otherwise it
becomes difficult to determine where volatile access occur, and not
possible to ignore the return value from functions returning volatile
references.  Again, if you wish to force a read, cast the reference to
an rvalue.

 <p>G++ implements the same behavior as GCC does when assigning to a
volatile object &ndash; there is no reread of the assigned-to object, the
assigned rvalue is reused.  Note that in C++ assignment expressions
are lvalues, and if used as an lvalue, the volatile object will be
referred to.  For instance, <var>vref</var> will refer to <var>vobj</var>, as
expected, in the following example:

<pre class="smallexample">     volatile int vobj;
     volatile int &amp;vref = vobj = <var>something</var>;
</pre>
 <div class="node">
<a name="Restricted-Pointers"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Vague-Linkage">Vague Linkage</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#C_002b_002b-Volatiles">C++ Volatiles</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C_002b_002b-Extensions">C++ Extensions</a>

</div>

<h3 class="section">7.2 Restricting Pointer Aliasing</h3>

<p><a name="index-restricted-pointers-3255"></a><a name="index-restricted-references-3256"></a><a name="index-restricted-this-pointer-3257"></a>
As with the C front end, G++ understands the C99 feature of restricted pointers,
specified with the <code>__restrict__</code>, or <code>__restrict</code> type
qualifier.  Because you cannot compile C++ by specifying the <samp><span class="option">-std=c99</span></samp>
language flag, <code>restrict</code> is not a keyword in C++.

 <p>In addition to allowing restricted pointers, you can specify restricted
references, which indicate that the reference is not aliased in the local
context.

<pre class="smallexample">     void fn (int *__restrict__ rptr, int &amp;__restrict__ rref)
     {
       /* <span class="roman">...</span> */
     }
</pre>
 <p class="noindent">In the body of <code>fn</code>, <var>rptr</var> points to an unaliased integer and
<var>rref</var> refers to a (different) unaliased integer.

 <p>You may also specify whether a member function's <var>this</var> pointer is
unaliased by using <code>__restrict__</code> as a member function qualifier.

<pre class="smallexample">     void T::fn () __restrict__
     {
       /* <span class="roman">...</span> */
     }
</pre>
 <p class="noindent">Within the body of <code>T::fn</code>, <var>this</var> will have the effective
definition <code>T *__restrict__ const this</code>.  Notice that the
interpretation of a <code>__restrict__</code> member function qualifier is
different to that of <code>const</code> or <code>volatile</code> qualifier, in that it
is applied to the pointer rather than the object.  This is consistent with
other compilers which implement restricted pointers.

 <p>As with all outermost parameter qualifiers, <code>__restrict__</code> is
ignored in function definition matching.  This means you only need to
specify <code>__restrict__</code> in a function definition, rather than
in a function prototype as well.

<div class="node">
<a name="Vague-Linkage"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#C_002b_002b-Interface">C++ Interface</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Restricted-Pointers">Restricted Pointers</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C_002b_002b-Extensions">C++ Extensions</a>

</div>

<h3 class="section">7.3 Vague Linkage</h3>

<p><a name="index-vague-linkage-3258"></a>
There are several constructs in C++ which require space in the object
file but are not clearly tied to a single translation unit.  We say that
these constructs have &ldquo;vague linkage&rdquo;.  Typically such constructs are
emitted wherever they are needed, though sometimes we can be more
clever.

     <dl>
<dt>Inline Functions<dd>Inline functions are typically defined in a header file which can be
included in many different compilations.  Hopefully they can usually be
inlined, but sometimes an out-of-line copy is necessary, if the address
of the function is taken or if inlining fails.  In general, we emit an
out-of-line copy in all translation units where one is needed.  As an
exception, we only emit inline virtual functions with the vtable, since
it will always require a copy.

     <p>Local static variables and string constants used in an inline function
are also considered to have vague linkage, since they must be shared
between all inlined and out-of-line instances of the function.

     <br><dt>VTables<dd><a name="index-vtable-3259"></a>C++ virtual functions are implemented in most compilers using a lookup
table, known as a vtable.  The vtable contains pointers to the virtual
functions provided by a class, and each object of the class contains a
pointer to its vtable (or vtables, in some multiple-inheritance
situations).  If the class declares any non-inline, non-pure virtual
functions, the first one is chosen as the &ldquo;key method&rdquo; for the class,
and the vtable is only emitted in the translation unit where the key
method is defined.

     <p><em>Note:</em> If the chosen key method is later defined as inline, the
vtable will still be emitted in every translation unit which defines it. 
Make sure that any inline virtuals are declared inline in the class
body, even if they are not defined there.

     <br><dt><code>type_info</code> objects<dd><a name="index-g_t_0040code_007btype_005finfo_007d-3260"></a><a name="index-RTTI-3261"></a>C++ requires information about types to be written out in order to
implement &lsquo;<samp><span class="samp">dynamic_cast</span></samp>&rsquo;, &lsquo;<samp><span class="samp">typeid</span></samp>&rsquo; and exception handling. 
For polymorphic classes (classes with virtual functions), the &lsquo;<samp><span class="samp">type_info</span></samp>&rsquo;
object is written out along with the vtable so that &lsquo;<samp><span class="samp">dynamic_cast</span></samp>&rsquo;
can determine the dynamic type of a class object at runtime.  For all
other types, we write out the &lsquo;<samp><span class="samp">type_info</span></samp>&rsquo; object when it is used: when
applying &lsquo;<samp><span class="samp">typeid</span></samp>&rsquo; to an expression, throwing an object, or
referring to a type in a catch clause or exception specification.

     <br><dt>Template Instantiations<dd>Most everything in this section also applies to template instantiations,
but there are other options as well. 
See <a href="#Template-Instantiation">Where's the Template?</a>.

 </dl>

 <p>When used with GNU ld version 2.8 or later on an ELF system such as
GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of
these constructs will be discarded at link time.  This is known as
COMDAT support.

 <p>On targets that don't support COMDAT, but do support weak symbols, GCC
will use them.  This way one copy will override all the others, but
the unused copies will still take up space in the executable.

 <p>For targets which do not support either COMDAT or weak symbols,
most entities with vague linkage will be emitted as local symbols to
avoid duplicate definition errors from the linker.  This will not happen
for local statics in inlines, however, as having multiple copies will
almost certainly break things.

 <p>See <a href="#C_002b_002b-Interface">Declarations and Definitions in One Header</a>, for
another way to control placement of these constructs.

<div class="node">
<a name="C++-Interface"></a>
<a name="C_002b_002b-Interface"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Template-Instantiation">Template Instantiation</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Vague-Linkage">Vague Linkage</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C_002b_002b-Extensions">C++ Extensions</a>

</div>

<h3 class="section">7.4 #pragma interface and implementation</h3>

<p><a name="index-interface-and-implementation-headers_002c-C_002b_002b-3262"></a><a name="index-C_002b_002b-interface-and-implementation-headers-3263"></a><a name="index-pragmas_002c-interface-and-implementation-3264"></a>
<code>#pragma interface</code> and <code>#pragma implementation</code> provide the
user with a way of explicitly directing the compiler to emit entities
with vague linkage (and debugging information) in a particular
translation unit.

 <p><em>Note:</em> As of GCC 2.7.2, these <code>#pragma</code>s are not useful in
most cases, because of COMDAT support and the &ldquo;key method&rdquo; heuristic
mentioned in <a href="#Vague-Linkage">Vague Linkage</a>.  Using them can actually cause your
program to grow due to unnecessary out-of-line copies of inline
functions.  Currently (3.4) the only benefit of these
<code>#pragma</code>s is reduced duplication of debugging information, and
that should be addressed soon on DWARF 2 targets with the use of
COMDAT groups.

     <dl>
<dt><code>#pragma interface</code><dt><code>#pragma interface "</code><var>subdir</var><code>/</code><var>objects</var><code>.h"</code><dd><a name="index-g_t_0023pragma-interface-3265"></a>Use this directive in <em>header files</em> that define object classes, to save
space in most of the object files that use those classes.  Normally,
local copies of certain information (backup copies of inline member
functions, debugging information, and the internal tables that implement
virtual functions) must be kept in each object file that includes class
definitions.  You can use this pragma to avoid such duplication.  When a
header file containing &lsquo;<samp><span class="samp">#pragma interface</span></samp>&rsquo; is included in a
compilation, this auxiliary information will not be generated (unless
the main input source file itself uses &lsquo;<samp><span class="samp">#pragma implementation</span></samp>&rsquo;). 
Instead, the object files will contain references to be resolved at link
time.

     <p>The second form of this directive is useful for the case where you have
multiple headers with the same name in different directories.  If you
use this form, you must specify the same string to &lsquo;<samp><span class="samp">#pragma
implementation</span></samp>&rsquo;.

     <br><dt><code>#pragma implementation</code><dt><code>#pragma implementation "</code><var>objects</var><code>.h"</code><dd><a name="index-g_t_0023pragma-implementation-3266"></a>Use this pragma in a <em>main input file</em>, when you want full output from
included header files to be generated (and made globally visible).  The
included header file, in turn, should use &lsquo;<samp><span class="samp">#pragma interface</span></samp>&rsquo;. 
Backup copies of inline member functions, debugging information, and the
internal tables used to implement virtual functions are all generated in
implementation files.

     <p><a name="index-implied-_0040code_007b_0023pragma-implementation_007d-3267"></a><a name="index-g_t_0040code_007b_0023pragma-implementation_007d_002c-implied-3268"></a><a name="index-naming-convention_002c-implementation-headers-3269"></a>If you use &lsquo;<samp><span class="samp">#pragma implementation</span></samp>&rsquo; with no argument, it applies to
an include file with the same basename<a rel="footnote" href="#fn-4" name="fnd-4"><sup>4</sup></a> as your source
file.  For example, in <samp><span class="file">allclass.cc</span></samp>, giving just
&lsquo;<samp><span class="samp">#pragma implementation</span></samp>&rsquo;
by itself is equivalent to &lsquo;<samp><span class="samp">#pragma implementation "allclass.h"</span></samp>&rsquo;.

     <p>In versions of GNU C++ prior to 2.6.0 <samp><span class="file">allclass.h</span></samp> was treated as
an implementation file whenever you would include it from
<samp><span class="file">allclass.cc</span></samp> even if you never specified &lsquo;<samp><span class="samp">#pragma
implementation</span></samp>&rsquo;.  This was deemed to be more trouble than it was worth,
however, and disabled.

     <p>Use the string argument if you want a single implementation file to
include code from multiple header files.  (You must also use
&lsquo;<samp><span class="samp">#include</span></samp>&rsquo; to include the header file; &lsquo;<samp><span class="samp">#pragma
implementation</span></samp>&rsquo; only specifies how to use the file&mdash;it doesn't actually
include it.)

     <p>There is no way to split up the contents of a single header file into
multiple implementation files. 
</dl>

 <p><a name="index-inlining-and-C_002b_002b-pragmas-3270"></a><a name="index-C_002b_002b-pragmas_002c-effect-on-inlining-3271"></a><a name="index-pragmas-in-C_002b_002b_002c-effect-on-inlining-3272"></a>&lsquo;<samp><span class="samp">#pragma implementation</span></samp>&rsquo; and &lsquo;<samp><span class="samp">#pragma interface</span></samp>&rsquo; also have an
effect on function inlining.

 <p>If you define a class in a header file marked with &lsquo;<samp><span class="samp">#pragma
interface</span></samp>&rsquo;, the effect on an inline function defined in that class is
similar to an explicit <code>extern</code> declaration&mdash;the compiler emits
no code at all to define an independent version of the function.  Its
definition is used only for inlining with its callers.

 <p><a name="index-fno_002dimplement_002dinlines-3273"></a>Conversely, when you include the same header file in a main source file
that declares it as &lsquo;<samp><span class="samp">#pragma implementation</span></samp>&rsquo;, the compiler emits
code for the function itself; this defines a version of the function
that can be found via pointers (or by callers compiled without
inlining).  If all calls to the function can be inlined, you can avoid
emitting the function by compiling with <samp><span class="option">-fno-implement-inlines</span></samp>. 
If any calls were not inlined, you will get linker errors.

<div class="node">
<a name="Template-Instantiation"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Bound-member-functions">Bound member functions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#C_002b_002b-Interface">C++ Interface</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C_002b_002b-Extensions">C++ Extensions</a>

</div>

<h3 class="section">7.5 Where's the Template?</h3>

<p><a name="index-template-instantiation-3274"></a>
C++ templates are the first language feature to require more
intelligence from the environment than one usually finds on a UNIX
system.  Somehow the compiler and linker have to make sure that each
template instance occurs exactly once in the executable if it is needed,
and not at all otherwise.  There are two basic approaches to this
problem, which are referred to as the Borland model and the Cfront model.

     <dl>
<dt>Borland model<dd>Borland C++ solved the template instantiation problem by adding the code
equivalent of common blocks to their linker; the compiler emits template
instances in each translation unit that uses them, and the linker
collapses them together.  The advantage of this model is that the linker
only has to consider the object files themselves; there is no external
complexity to worry about.  This disadvantage is that compilation time
is increased because the template code is being compiled repeatedly. 
Code written for this model tends to include definitions of all
templates in the header file, since they must be seen to be
instantiated.

     <br><dt>Cfront model<dd>The AT&amp;T C++ translator, Cfront, solved the template instantiation
problem by creating the notion of a template repository, an
automatically maintained place where template instances are stored.  A
more modern version of the repository works as follows: As individual
object files are built, the compiler places any template definitions and
instantiations encountered in the repository.  At link time, the link
wrapper adds in the objects in the repository and compiles any needed
instances that were not previously emitted.  The advantages of this
model are more optimal compilation speed and the ability to use the
system linker; to implement the Borland model a compiler vendor also
needs to replace the linker.  The disadvantages are vastly increased
complexity, and thus potential for error; for some code this can be
just as transparent, but in practice it can been very difficult to build
multiple programs in one directory and one program in multiple
directories.  Code written for this model tends to separate definitions
of non-inline member templates into a separate file, which should be
compiled separately. 
</dl>

 <p>When used with GNU ld version 2.8 or later on an ELF system such as
GNU/Linux or Solaris 2, or on Microsoft Windows, G++ supports the
Borland model.  On other systems, G++ implements neither automatic
model.

 <p>A future version of G++ will support a hybrid model whereby the compiler
will emit any instantiations for which the template definition is
included in the compile, and store template definitions and
instantiation context information into the object file for the rest. 
The link wrapper will extract that information as necessary and invoke
the compiler to produce the remaining instantiations.  The linker will
then combine duplicate instantiations.

 <p>In the mean time, you have the following options for dealing with
template instantiations:

     <ol type=1 start=1>
<li><a name="index-frepo-3275"></a>Compile your template-using code with <samp><span class="option">-frepo</span></samp>.  The compiler will
generate files with the extension &lsquo;<samp><span class="samp">.rpo</span></samp>&rsquo; listing all of the
template instantiations used in the corresponding object files which
could be instantiated there; the link wrapper, &lsquo;<samp><span class="samp">collect2</span></samp>&rsquo;, will
then update the &lsquo;<samp><span class="samp">.rpo</span></samp>&rsquo; files to tell the compiler where to place
those instantiations and rebuild any affected object files.  The
link-time overhead is negligible after the first pass, as the compiler
will continue to place the instantiations in the same files.

     <p>This is your best option for application code written for the Borland
model, as it will just work.  Code written for the Cfront model will
need to be modified so that the template definitions are available at
one or more points of instantiation; usually this is as simple as adding
<code>#include &lt;tmethods.cc&gt;</code> to the end of each template header.

     <p>For library code, if you want the library to provide all of the template
instantiations it needs, just try to link all of its object files
together; the link will fail, but cause the instantiations to be
generated as a side effect.  Be warned, however, that this may cause
conflicts if multiple libraries try to provide the same instantiations. 
For greater control, use explicit instantiation as described in the next
option.

     <li><a name="index-fno_002dimplicit_002dtemplates-3276"></a>Compile your code with <samp><span class="option">-fno-implicit-templates</span></samp> to disable the
implicit generation of template instances, and explicitly instantiate
all the ones you use.  This approach requires more knowledge of exactly
which instances you need than do the others, but it's less
mysterious and allows greater control.  You can scatter the explicit
instantiations throughout your program, perhaps putting them in the
translation units where the instances are used or the translation units
that define the templates themselves; you can put all of the explicit
instantiations you need into one big file; or you can create small files
like

     <pre class="smallexample">          #include "Foo.h"
          #include "Foo.cc"
          
          template class Foo&lt;int&gt;;
          template ostream&amp; operator &lt;&lt;
                          (ostream&amp;, const Foo&lt;int&gt;&amp;);
</pre>
     <p>for each of the instances you need, and create a template instantiation
library from those.

     <p>If you are using Cfront-model code, you can probably get away with not
using <samp><span class="option">-fno-implicit-templates</span></samp> when compiling files that don't
&lsquo;<samp><span class="samp">#include</span></samp>&rsquo; the member template definitions.

     <p>If you use one big file to do the instantiations, you may want to
compile it without <samp><span class="option">-fno-implicit-templates</span></samp> so you get all of the
instances required by your explicit instantiations (but not by any
other files) without having to specify them as well.

     <p>G++ has extended the template instantiation syntax given in the ISO
standard to allow forward declaration of explicit instantiations
(with <code>extern</code>), instantiation of the compiler support data for a
template class (i.e. the vtable) without instantiating any of its
members (with <code>inline</code>), and instantiation of only the static data
members of a template class, without the support data or member
functions (with (<code>static</code>):

     <pre class="smallexample">          extern template int max (int, int);
          inline template class Foo&lt;int&gt;;
          static template class Foo&lt;int&gt;;
</pre>
     <li>Do nothing.  Pretend G++ does implement automatic instantiation
management.  Code written for the Borland model will work fine, but
each translation unit will contain instances of each of the templates it
uses.  In a large program, this can lead to an unacceptable amount of code
duplication.
      </ol>

<div class="node">
<a name="Bound-member-functions"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#C_002b_002b-Attributes">C++ Attributes</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Template-Instantiation">Template Instantiation</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C_002b_002b-Extensions">C++ Extensions</a>

</div>

<h3 class="section">7.6 Extracting the function pointer from a bound pointer to member function</h3>

<p><a name="index-pmf-3277"></a><a name="index-pointer-to-member-function-3278"></a><a name="index-bound-pointer-to-member-function-3279"></a>
In C++, pointer to member functions (PMFs) are implemented using a wide
pointer of sorts to handle all the possible call mechanisms; the PMF
needs to store information about how to adjust the &lsquo;<samp><span class="samp">this</span></samp>&rsquo; pointer,
and if the function pointed to is virtual, where to find the vtable, and
where in the vtable to look for the member function.  If you are using
PMFs in an inner loop, you should really reconsider that decision.  If
that is not an option, you can extract the pointer to the function that
would be called for a given object/PMF pair and call it directly inside
the inner loop, to save a bit of time.

 <p>Note that you will still be paying the penalty for the call through a
function pointer; on most modern architectures, such a call defeats the
branch prediction features of the CPU.  This is also true of normal
virtual function calls.

 <p>The syntax for this extension is

<pre class="smallexample">     extern A a;
     extern int (A::*fp)();
     typedef int (*fptr)(A *);
     
     fptr p = (fptr)(a.*fp);
</pre>
 <p>For PMF constants (i.e. expressions of the form &lsquo;<samp><span class="samp">&amp;Klasse::Member</span></samp>&rsquo;),
no object is needed to obtain the address of the function.  They can be
converted to function pointers directly:

<pre class="smallexample">     fptr p1 = (fptr)(&amp;A::foo);
</pre>
 <p><a name="index-Wno_002dpmf_002dconversions-3280"></a>You must specify <samp><span class="option">-Wno-pmf-conversions</span></samp> to use this extension.

<div class="node">
<a name="C++-Attributes"></a>
<a name="C_002b_002b-Attributes"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Namespace-Association">Namespace Association</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Bound-member-functions">Bound member functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C_002b_002b-Extensions">C++ Extensions</a>

</div>

<h3 class="section">7.7 C++-Specific Variable, Function, and Type Attributes</h3>

<p>Some attributes only make sense for C++ programs.

     <dl>
<dt><code>init_priority (</code><var>priority</var><code>)</code><dd><a name="index-g_t_0040code_007binit_005fpriority_007d-attribute-3281"></a>

     <p>In Standard C++, objects defined at namespace scope are guaranteed to be
initialized in an order in strict accordance with that of their definitions
<em>in a given translation unit</em>.  No guarantee is made for initializations
across translation units.  However, GNU C++ allows users to control the
order of initialization of objects defined at namespace scope with the
<code>init_priority</code> attribute by specifying a relative <var>priority</var>,
a constant integral expression currently bounded between 101 and 65535
inclusive.  Lower numbers indicate a higher priority.

     <p>In the following example, <code>A</code> would normally be created before
<code>B</code>, but the <code>init_priority</code> attribute has reversed that order:

     <pre class="smallexample">          Some_Class  A  __attribute__ ((init_priority (2000)));
          Some_Class  B  __attribute__ ((init_priority (543)));
</pre>
     <p class="noindent">Note that the particular values of <var>priority</var> do not matter; only their
relative ordering.

     <br><dt><code>java_interface</code><dd><a name="index-g_t_0040code_007bjava_005finterface_007d-attribute-3282"></a>
This type attribute informs C++ that the class is a Java interface.  It may
only be applied to classes declared within an <code>extern "Java"</code> block. 
Calls to methods declared in this interface will be dispatched using GCJ's
interface table mechanism, instead of regular virtual table dispatch.

 </dl>

 <p>See also <a href="#Namespace-Association">Namespace Association</a>.

<div class="node">
<a name="Namespace-Association"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Type-Traits">Type Traits</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#C_002b_002b-Attributes">C++ Attributes</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C_002b_002b-Extensions">C++ Extensions</a>

</div>

<h3 class="section">7.8 Namespace Association</h3>

<p><strong>Caution:</strong> The semantics of this extension are not fully
defined.  Users should refrain from using this extension as its
semantics may change subtly over time.  It is possible that this
extension will be removed in future versions of G++.

 <p>A using-directive with <code>__attribute ((strong))</code> is stronger
than a normal using-directive in two ways:

     <ul>
<li>Templates from the used namespace can be specialized and explicitly
instantiated as though they were members of the using namespace.

     <li>The using namespace is considered an associated namespace of all
templates in the used namespace for purposes of argument-dependent
name lookup. 
</ul>

 <p>The used namespace must be nested within the using namespace so that
normal unqualified lookup works properly.

 <p>This is useful for composing a namespace transparently from
implementation namespaces.  For example:

<pre class="smallexample">     namespace std {
       namespace debug {
         template &lt;class T&gt; struct A { };
       }
       using namespace debug __attribute ((__strong__));
       template &lt;&gt; struct A&lt;int&gt; { };   // <span class="roman">ok to specialize</span>
     
       template &lt;class T&gt; void f (A&lt;T&gt;);
     }
     
     int main()
     {
       f (std::A&lt;float&gt;());             // <span class="roman">lookup finds</span> std::f
       f (std::A&lt;int&gt;());
     }
</pre>
 <div class="node">
<a name="Type-Traits"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Java-Exceptions">Java Exceptions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Namespace-Association">Namespace Association</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C_002b_002b-Extensions">C++ Extensions</a>

</div>

<h3 class="section">7.9 Type Traits</h3>

<p>The C++ front-end implements syntactic extensions that allow to
determine at compile time various characteristics of a type (or of a
pair of types).

     <dl>
<dt><code>__has_nothrow_assign (type)</code><dd>If <code>type</code> is const qualified or is a reference type then the trait is
false.  Otherwise if <code>__has_trivial_assign (type)</code> is true then the trait
is true, else if <code>type</code> is a cv class or union type with copy assignment
operators that are known not to throw an exception then the trait is true,
else it is false.  Requires: <code>type</code> shall be a complete type,
(possibly cv-qualified) <code>void</code>, or an array of unknown bound.

     <br><dt><code>__has_nothrow_copy (type)</code><dd>If <code>__has_trivial_copy (type)</code> is true then the trait is true, else if
<code>type</code> is a cv class or union type with copy constructors that
are known not to throw an exception then the trait is true, else it is false. 
Requires: <code>type</code> shall be a complete type, (possibly cv-qualified)
<code>void</code>, or an array of unknown bound.

     <br><dt><code>__has_nothrow_constructor (type)</code><dd>If <code>__has_trivial_constructor (type)</code> is true then the trait is
true, else if <code>type</code> is a cv class or union type (or array
thereof) with a default constructor that is known not to throw an
exception then the trait is true, else it is false.  Requires:
<code>type</code> shall be a complete type, (possibly cv-qualified)
<code>void</code>, or an array of unknown bound.

     <br><dt><code>__has_trivial_assign (type)</code><dd>If <code>type</code> is const qualified or is a reference type then the trait is
false.  Otherwise if <code>__is_pod (type)</code> is true then the trait is
true, else if <code>type</code> is a cv class or union type with a trivial
copy assignment ([class.copy]) then the trait is true, else it is
false.  Requires: <code>type</code> shall be a complete type, (possibly
cv-qualified) <code>void</code>, or an array of unknown bound.

     <br><dt><code>__has_trivial_copy (type)</code><dd>If <code>__is_pod (type)</code> is true or <code>type</code> is a reference type
then the trait is true, else if <code>type</code> is a cv class or union type
with a trivial copy constructor ([class.copy]) then the trait
is true, else it is false.  Requires: <code>type</code> shall be a complete
type, (possibly cv-qualified) <code>void</code>, or an array of unknown bound.

     <br><dt><code>__has_trivial_constructor (type)</code><dd>If <code>__is_pod (type)</code> is true then the trait is true, else if
<code>type</code> is a cv class or union type (or array thereof) with a
trivial default constructor ([class.ctor]) then the trait is true,
else it is false.  Requires: <code>type</code> shall be a complete
type, (possibly cv-qualified) <code>void</code>, or an array of unknown bound.

     <br><dt><code>__has_trivial_destructor (type)</code><dd>If <code>__is_pod (type)</code> is true or <code>type</code> is a reference type then
the trait is true, else if <code>type</code> is a cv class or union type (or
array thereof) with a trivial destructor ([class.dtor]) then the trait
is true, else it is false.  Requires: <code>type</code> shall be a complete
type, (possibly cv-qualified) <code>void</code>, or an array of unknown bound.

     <br><dt><code>__has_virtual_destructor (type)</code><dd>If <code>type</code> is a class type with a virtual destructor
([class.dtor]) then the trait is true, else it is false.  Requires:
<code>type</code> shall be a complete type, (possibly cv-qualified)
<code>void</code>, or an array of unknown bound.

     <br><dt><code>__is_abstract (type)</code><dd>If <code>type</code> is an abstract class ([class.abstract]) then the trait
is true, else it is false.  Requires: <code>type</code> shall be a complete
type, (possibly cv-qualified) <code>void</code>, or an array of unknown bound.

     <br><dt><code>__is_base_of (base_type, derived_type)</code><dd>If <code>base_type</code> is a base class of <code>derived_type</code>
([class.derived]) then the trait is true, otherwise it is false. 
Top-level cv qualifications of <code>base_type</code> and
<code>derived_type</code> are ignored.  For the purposes of this trait, a
class type is considered is own base.  Requires: if <code>__is_class
(base_type)</code> and <code>__is_class (derived_type)</code> are true and
<code>base_type</code> and <code>derived_type</code> are not the same type
(disregarding cv-qualifiers), <code>derived_type</code> shall be a complete
type.  Diagnostic is produced if this requirement is not met.

     <br><dt><code>__is_class (type)</code><dd>If <code>type</code> is a cv class type, and not a union type
([basic.compound]) the trait is true, else it is false.

     <br><dt><code>__is_empty (type)</code><dd>If <code>__is_class (type)</code> is false then the trait is false. 
Otherwise <code>type</code> is considered empty if and only if: <code>type</code>
has no non-static data members, or all non-static data members, if
any, are bit-fields of length 0, and <code>type</code> has no virtual
members, and <code>type</code> has no virtual base classes, and <code>type</code>
has no base classes <code>base_type</code> for which
<code>__is_empty (base_type)</code> is false.  Requires: <code>type</code> shall
be a complete type, (possibly cv-qualified) <code>void</code>, or an array
of unknown bound.

     <br><dt><code>__is_enum (type)</code><dd>If <code>type</code> is a cv enumeration type ([basic.compound]) the trait is
true, else it is false.

     <br><dt><code>__is_literal_type (type)</code><dd>If <code>type</code> is a literal type ([basic.types]) the trait is
true, else it is false.  Requires: <code>type</code> shall be a complete type,
(possibly cv-qualified) <code>void</code>, or an array of unknown bound.

     <br><dt><code>__is_pod (type)</code><dd>If <code>type</code> is a cv POD type ([basic.types]) then the trait is true,
else it is false.  Requires: <code>type</code> shall be a complete type,
(possibly cv-qualified) <code>void</code>, or an array of unknown bound.

     <br><dt><code>__is_polymorphic (type)</code><dd>If <code>type</code> is a polymorphic class ([class.virtual]) then the trait
is true, else it is false.  Requires: <code>type</code> shall be a complete
type, (possibly cv-qualified) <code>void</code>, or an array of unknown bound.

     <br><dt><code>__is_standard_layout (type)</code><dd>If <code>type</code> is a standard-layout type ([basic.types]) the trait is
true, else it is false.  Requires: <code>type</code> shall be a complete
type, (possibly cv-qualified) <code>void</code>, or an array of unknown bound.

     <br><dt><code>__is_trivial (type)</code><dd>If <code>type</code> is a trivial type ([basic.types]) the trait is
true, else it is false.  Requires: <code>type</code> shall be a complete
type, (possibly cv-qualified) <code>void</code>, or an array of unknown bound.

     <br><dt><code>__is_union (type)</code><dd>If <code>type</code> is a cv union type ([basic.compound]) the trait is
true, else it is false.

 </dl>

<div class="node">
<a name="Java-Exceptions"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Deprecated-Features">Deprecated Features</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Type-Traits">Type Traits</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C_002b_002b-Extensions">C++ Extensions</a>

</div>

<h3 class="section">7.10 Java Exceptions</h3>

<p>The Java language uses a slightly different exception handling model
from C++.  Normally, GNU C++ will automatically detect when you are
writing C++ code that uses Java exceptions, and handle them
appropriately.  However, if C++ code only needs to execute destructors
when Java exceptions are thrown through it, GCC will guess incorrectly. 
Sample problematic code is:

<pre class="smallexample">       struct S { ~S(); };
       extern void bar();    // <span class="roman">is written in Java, and may throw exceptions</span>
       void foo()
       {
         S s;
         bar();
       }
</pre>
 <p class="noindent">The usual effect of an incorrect guess is a link failure, complaining of
a missing routine called &lsquo;<samp><span class="samp">__gxx_personality_v0</span></samp>&rsquo;.

 <p>You can inform the compiler that Java exceptions are to be used in a
translation unit, irrespective of what it might think, by writing
&lsquo;<samp><span class="samp">#pragma&nbsp;GCC&nbsp;java_exceptions<!-- /@w --></span></samp>&rsquo; at the head of the file.  This
&lsquo;<samp><span class="samp">#pragma</span></samp>&rsquo; must appear before any functions that throw or catch
exceptions, or run destructors when exceptions are thrown through them.

 <p>You cannot mix Java and C++ exceptions in the same translation unit.  It
is believed to be safe to throw a C++ exception from one file through
another file compiled for the Java exception model, or vice versa, but
there may be bugs in this area.

<div class="node">
<a name="Deprecated-Features"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Backwards-Compatibility">Backwards Compatibility</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Java-Exceptions">Java Exceptions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C_002b_002b-Extensions">C++ Extensions</a>

</div>

<h3 class="section">7.11 Deprecated Features</h3>

<p>In the past, the GNU C++ compiler was extended to experiment with new
features, at a time when the C++ language was still evolving.  Now that
the C++ standard is complete, some of those features are superseded by
superior alternatives.  Using the old features might cause a warning in
some cases that the feature will be dropped in the future.  In other
cases, the feature might be gone already.

 <p>While the list below is not exhaustive, it documents some of the options
that are now deprecated:

     <dl>
<dt><code>-fexternal-templates</code><dt><code>-falt-external-templates</code><dd>These are two of the many ways for G++ to implement template
instantiation.  See <a href="#Template-Instantiation">Template Instantiation</a>.  The C++ standard clearly
defines how template definitions have to be organized across
implementation units.  G++ has an implicit instantiation mechanism that
should work just fine for standard-conforming code.

     <br><dt><code>-fstrict-prototype</code><dt><code>-fno-strict-prototype</code><dd>Previously it was possible to use an empty prototype parameter list to
indicate an unspecified number of parameters (like C), rather than no
parameters, as C++ demands.  This feature has been removed, except where
it is required for backwards compatibility.   See <a href="#Backwards-Compatibility">Backwards Compatibility</a>. 
</dl>

 <p>G++ allows a virtual function returning &lsquo;<samp><span class="samp">void *</span></samp>&rsquo; to be overridden
by one returning a different pointer type.  This extension to the
covariant return type rules is now deprecated and will be removed from a
future version.

 <p>The G++ minimum and maximum operators (&lsquo;<samp><span class="samp">&lt;?</span></samp>&rsquo; and &lsquo;<samp><span class="samp">&gt;?</span></samp>&rsquo;) and
their compound forms (&lsquo;<samp><span class="samp">&lt;?=</span></samp>&rsquo;) and &lsquo;<samp><span class="samp">&gt;?=</span></samp>&rsquo;) have been deprecated
and are now removed from G++.  Code using these operators should be
modified to use <code>std::min</code> and <code>std::max</code> instead.

 <p>The named return value extension has been deprecated, and is now
removed from G++.

 <p>The use of initializer lists with new expressions has been deprecated,
and is now removed from G++.

 <p>Floating and complex non-type template parameters have been deprecated,
and are now removed from G++.

 <p>The implicit typename extension has been deprecated and is now
removed from G++.

 <p>The use of default arguments in function pointers, function typedefs
and other places where they are not permitted by the standard is
deprecated and will be removed from a future version of G++.

 <p>G++ allows floating-point literals to appear in integral constant expressions,
e.g. &lsquo;<samp><span class="samp"> enum E { e = int(2.2 * 3.7) } </span></samp>&rsquo;
This extension is deprecated and will be removed from a future version.

 <p>G++ allows static data members of const floating-point type to be declared
with an initializer in a class definition. The standard only allows
initializers for static members of const integral types and const
enumeration types so this extension has been deprecated and will be removed
from a future version.

<div class="node">
<a name="Backwards-Compatibility"></a>
<p><hr>
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Deprecated-Features">Deprecated Features</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C_002b_002b-Extensions">C++ Extensions</a>

</div>

<h3 class="section">7.12 Backwards Compatibility</h3>

<p><a name="index-Backwards-Compatibility-3283"></a><a name="index-ARM-_005bAnnotated-C_002b_002b-Reference-Manual_005d-3284"></a>
Now that there is a definitive ISO standard C++, G++ has a specification
to adhere to.  The C++ language evolved over time, and features that
used to be acceptable in previous drafts of the standard, such as the ARM
[Annotated C++ Reference Manual], are no longer accepted.  In order to allow
compilation of C++ written to such drafts, G++ contains some backwards
compatibilities.  <em>All such backwards compatibility features are
liable to disappear in future versions of G++.</em> They should be considered
deprecated.   See <a href="#Deprecated-Features">Deprecated Features</a>.

     <dl>
<dt><code>For scope</code><dd>If a variable is declared at for scope, it used to remain in scope until
the end of the scope which contained the for statement (rather than just
within the for scope).  G++ retains this, but issues a warning, if such a
variable is accessed outside the for scope.

     <br><dt><code>Implicit C language</code><dd>Old C system header files did not contain an <code>extern "C" {...}</code>
scope to set the language.  On such systems, all header files are
implicitly scoped inside a C language scope.  Also, an empty prototype
<code>()</code> will be treated as an unspecified number of arguments, rather
than no arguments, as C++ demands. 
</dl>

<!-- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, -->
<!-- 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2010 -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Objective-C"></a>
<a name="Objective_002dC"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Compatibility">Compatibility</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#C_002b_002b-Extensions">C++ Extensions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Top">Top</a>

</div>

<!-- node-name,  next,  previous,  up -->
<h2 class="chapter">8 GNU Objective-C features</h2>

<p>This document is meant to describe some of the GNU Objective-C
features.  It is not intended to teach you Objective-C.  There are
several resources on the Internet that present the language.

<ul class="menu">
<li><a accesskey="1" href="#GNU-Objective_002dC-runtime-API">GNU Objective-C runtime API</a>
<li><a accesskey="2" href="#Executing-code-before-main">Executing code before main</a>
<li><a accesskey="3" href="#Type-encoding">Type encoding</a>
<li><a accesskey="4" href="#Garbage-Collection">Garbage Collection</a>
<li><a accesskey="5" href="#Constant-string-objects">Constant string objects</a>
<li><a accesskey="6" href="#compatibility_005falias">compatibility_alias</a>
<li><a accesskey="7" href="#Exceptions">Exceptions</a>
<li><a accesskey="8" href="#Synchronization">Synchronization</a>
<li><a accesskey="9" href="#Fast-enumeration">Fast enumeration</a>
<li><a href="#Messaging-with-the-GNU-Objective_002dC-runtime">Messaging with the GNU Objective-C runtime</a>
</ul>

<!-- ========================================================================= -->
<div class="node">
<a name="GNU-Objective-C-runtime-API"></a>
<a name="GNU-Objective_002dC-runtime-API"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Executing-code-before-main">Executing code before main</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Objective_002dC">Objective-C</a>

</div>

<h3 class="section">8.1 GNU Objective-C runtime API</h3>

<p>This section is specific for the GNU Objective-C runtime.  If you are
using a different runtime, you can skip it.

 <p>The GNU Objective-C runtime provides an API that allows you to
interact with the Objective-C runtime system, querying the live
runtime structures and even manipulating them.  This allows you for
example to inspect and navigate classes, methods and protocols; to
define new classes or new methods, and even to modify existing classes
or protocols.

 <p>If you are using a &ldquo;Foundation&rdquo; library such as GNUstep-Base, this
library will provide you with a rich set of functionality to do most
of the inspection tasks, and you probably will only need direct access
to the GNU Objective-C runtime API to define new classes or methods.

<ul class="menu">
<li><a accesskey="1" href="#Modern-GNU-Objective_002dC-runtime-API">Modern GNU Objective-C runtime API</a>
<li><a accesskey="2" href="#Traditional-GNU-Objective_002dC-runtime-API">Traditional GNU Objective-C runtime API</a>
</ul>

<!-- ========================================================================= -->
<div class="node">
<a name="Modern-GNU-Objective-C-runtime-API"></a>
<a name="Modern-GNU-Objective_002dC-runtime-API"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Traditional-GNU-Objective_002dC-runtime-API">Traditional GNU Objective-C runtime API</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#GNU-Objective_002dC-runtime-API">GNU Objective-C runtime API</a>

</div>

<h4 class="subsection">8.1.1 Modern GNU Objective-C runtime API</h4>

<p>The GNU Objective-C runtime provides an API which is similar to the
one provided by the &ldquo;Objective-C 2.0&rdquo; Apple/NeXT Objective-C
runtime.  The API is documented in the public header files of the GNU
Objective-C runtime:

     <ul>
<li><samp><span class="file">objc/objc.h</span></samp>: this is the basic Objective-C header file,
defining the basic Objective-C types such as <code>id</code>, <code>Class</code>
and <code>BOOL</code>.  You have to include this header to do almost
anything with Objective-C.

     <li><samp><span class="file">objc/runtime.h</span></samp>: this header declares most of the public runtime
API functions allowing you to inspect and manipulate the Objective-C
runtime data structures.  These functions are fairly standardized
across Objective-C runtimes and are almost identical to the Apple/NeXT
Objective-C runtime ones.  It does not declare functions in some
specialized areas (constructing and forwarding message invocations,
threading) which are in the other headers below.  You have to include
<samp><span class="file">objc/objc.h</span></samp> and <samp><span class="file">objc/runtime.h</span></samp> to use any of the
functions, such as <code>class_getName()</code>, declared in
<samp><span class="file">objc/runtime.h</span></samp>.

     <li><samp><span class="file">objc/message.h</span></samp>: this header declares public functions used to
construct, deconstruct and forward message invocations.  Because
messaging is done in quite a different way on different runtimes,
functions in this header are specific to the GNU Objective-C runtime
implementation.

     <li><samp><span class="file">objc/objc-exception.h</span></samp>: this header declares some public
functions related to Objective-C exceptions.  For example functions in
this header allow you to throw an Objective-C exception from plain
C/C++ code.

     <li><samp><span class="file">objc/objc-sync.h</span></samp>: this header declares some public functions
related to the Objective-C <code>@synchronized()</code> syntax, allowing
you to emulate an Objective-C <code>@synchronized()</code> block in plain
C/C++ code.

     <li><samp><span class="file">objc/thr.h</span></samp>: this header declares a public runtime API threading
layer that is only provided by the GNU Objective-C runtime.  It
declares functions such as <code>objc_mutex_lock()</code>, which provide a
platform-independent set of threading functions.

 </ul>

 <p>The header files contain detailed documentation for each function in
the GNU Objective-C runtime API.

<!-- ========================================================================= -->
<div class="node">
<a name="Traditional-GNU-Objective-C-runtime-API"></a>
<a name="Traditional-GNU-Objective_002dC-runtime-API"></a>
<p><hr>
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Modern-GNU-Objective_002dC-runtime-API">Modern GNU Objective-C runtime API</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#GNU-Objective_002dC-runtime-API">GNU Objective-C runtime API</a>

</div>

<h4 class="subsection">8.1.2 Traditional GNU Objective-C runtime API</h4>

<p>The GNU Objective-C runtime used to provide a different API, which we
call the &ldquo;traditional&rdquo; GNU Objective-C runtime API.  Functions
belonging to this API are easy to recognize because they use a
different naming convention, such as <code>class_get_super_class()</code>
(traditional API) instead of <code>class_getSuperclass()</code> (modern
API).  Software using this API includes the file
<samp><span class="file">objc/objc-api.h</span></samp> where it is declared.

 <p>The traditional API is deprecated but it is still supported in this
release of the runtime; you can access it as usual by including
<samp><span class="file">objc/objc-api.h</span></samp>.

 <p>If you are using the traditional API you are urged to upgrade your
software to use the modern API because the traditional API requires
access to private runtime internals to do anything serious with it;
for this reason, there is no guarantee that future releases of the GNU
Objective-C runtime library will be able to provide a fully compatible
<samp><span class="file">objc/objc-api.h</span></samp> as the private runtime internals change.  It is
expected that the next release will hide a number of runtime internals
making the traditional API nominally supported but fairly useless
beyond very simple use cases.

 <p>Finally, you can not include both <samp><span class="file">objc/objc-api.h</span></samp> and
<samp><span class="file">objc/runtime.h</span></samp> at the same time.  The traditional and modern
APIs unfortunately have some conflicting declarations (such as the one
for <code>Method</code>) and can not be used at the same time.

<!-- ========================================================================= -->
<div class="node">
<a name="Executing-code-before-main"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Type-encoding">Type encoding</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#GNU-Objective_002dC-runtime-API">GNU Objective-C runtime API</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Objective_002dC">Objective-C</a>

</div>

<h3 class="section">8.2 <code>+load</code>: Executing code before main</h3>

<p>This section is specific for the GNU Objective-C runtime.  If you are
using a different runtime, you can skip it.

 <p>The GNU Objective-C runtime provides a way that allows you to execute
code before the execution of the program enters the <code>main</code>
function.  The code is executed on a per-class and a per-category basis,
through a special class method <code>+load</code>.

 <p>This facility is very useful if you want to initialize global variables
which can be accessed by the program directly, without sending a message
to the class first.  The usual way to initialize global variables, in the
<code>+initialize</code> method, might not be useful because
<code>+initialize</code> is only called when the first message is sent to a
class object, which in some cases could be too late.

 <p>Suppose for example you have a <code>FileStream</code> class that declares
<code>Stdin</code>, <code>Stdout</code> and <code>Stderr</code> as global variables, like
below:

<pre class="smallexample">     
     FileStream *Stdin = nil;
     FileStream *Stdout = nil;
     FileStream *Stderr = nil;
     
     @implementation FileStream
     
     + (void)initialize
     {
         Stdin = [[FileStream new] initWithFd:0];
         Stdout = [[FileStream new] initWithFd:1];
         Stderr = [[FileStream new] initWithFd:2];
     }
     
     /* <span class="roman">Other methods here</span> */
     @end
     
</pre>
 <p>In this example, the initialization of <code>Stdin</code>, <code>Stdout</code> and
<code>Stderr</code> in <code>+initialize</code> occurs too late.  The programmer can
send a message to one of these objects before the variables are actually
initialized, thus sending messages to the <code>nil</code> object.  The
<code>+initialize</code> method which actually initializes the global
variables is not invoked until the first message is sent to the class
object.  The solution would require these variables to be initialized
just before entering <code>main</code>.

 <p>The correct solution of the above problem is to use the <code>+load</code>
method instead of <code>+initialize</code>:

<pre class="smallexample">     
     @implementation FileStream
     
     + (void)load
     {
         Stdin = [[FileStream new] initWithFd:0];
         Stdout = [[FileStream new] initWithFd:1];
         Stderr = [[FileStream new] initWithFd:2];
     }
     
     /* <span class="roman">Other methods here</span> */
     @end
     
</pre>
 <p>The <code>+load</code> is a method that is not overridden by categories.  If a
class and a category of it both implement <code>+load</code>, both methods are
invoked.  This allows some additional initializations to be performed in
a category.

 <p>This mechanism is not intended to be a replacement for <code>+initialize</code>. 
You should be aware of its limitations when you decide to use it
instead of <code>+initialize</code>.

<ul class="menu">
<li><a accesskey="1" href="#What-you-can-and-what-you-cannot-do-in-_002bload">What you can and what you cannot do in +load</a>
</ul>

<div class="node">
<a name="What-you-can-and-what-you-cannot-do-in-+load"></a>
<a name="What-you-can-and-what-you-cannot-do-in-_002bload"></a>
<p><hr>
Up:&nbsp;<a rel="up" accesskey="u" href="#Executing-code-before-main">Executing code before main</a>

</div>

<h4 class="subsection">8.2.1 What you can and what you cannot do in <code>+load</code></h4>

<p><code>+load</code> is to be used only as a last resort.  Because it is
executed very early, most of the Objective-C runtime machinery will
not be ready when <code>+load</code> is executed; hence <code>+load</code> works
best for executing C code that is independent on the Objective-C
runtime.

 <p>The <code>+load</code> implementation in the GNU runtime guarantees you the
following things:

     <ul>
<li>you can write whatever C code you like;

     <li>you can allocate and send messages to objects whose class is implemented
in the same file;

     <li>the <code>+load</code> implementation of all super classes of a class are
executed before the <code>+load</code> of that class is executed;

     <li>the <code>+load</code> implementation of a class is executed before the
<code>+load</code> implementation of any category.

 </ul>

 <p>In particular, the following things, even if they can work in a
particular case, are not guaranteed:

     <ul>
<li>allocation of or sending messages to arbitrary objects;

     <li>allocation of or sending messages to objects whose classes have a
category implemented in the same file;

     <li>sending messages to Objective-C constant strings (<code>@"this is a
constant string"</code>);

 </ul>

 <p>You should make no assumptions about receiving <code>+load</code> in sibling
classes when you write <code>+load</code> of a class.  The order in which
sibling classes receive <code>+load</code> is not guaranteed.

 <p>The order in which <code>+load</code> and <code>+initialize</code> are called could
be problematic if this matters.  If you don't allocate objects inside
<code>+load</code>, it is guaranteed that <code>+load</code> is called before
<code>+initialize</code>.  If you create an object inside <code>+load</code> the
<code>+initialize</code> method of object's class is invoked even if
<code>+load</code> was not invoked.  Note if you explicitly call <code>+load</code>
on a class, <code>+initialize</code> will be called first.  To avoid possible
problems try to implement only one of these methods.

 <p>The <code>+load</code> method is also invoked when a bundle is dynamically
loaded into your running program.  This happens automatically without any
intervening operation from you.  When you write bundles and you need to
write <code>+load</code> you can safely create and send messages to objects whose
classes already exist in the running program.  The same restrictions as
above apply to classes defined in bundle.

<div class="node">
<a name="Type-encoding"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Garbage-Collection">Garbage Collection</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Executing-code-before-main">Executing code before main</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Objective_002dC">Objective-C</a>

</div>

<h3 class="section">8.3 Type encoding</h3>

<p>This is an advanced section.  Type encodings are used extensively by
the compiler and by the runtime, but you generally do not need to know
about them to use Objective-C.

 <p>The Objective-C compiler generates type encodings for all the types. 
These type encodings are used at runtime to find out information about
selectors and methods and about objects and classes.

 <p>The types are encoded in the following way:

<!-- @sp 1 -->
 <p><table summary=""><tr align="left"><td valign="top" width="25%"><code>_Bool</code>
</td><td valign="top" width="75%"><code>B</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>char</code>
</td><td valign="top" width="75%"><code>c</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>unsigned char</code>
</td><td valign="top" width="75%"><code>C</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>short</code>
</td><td valign="top" width="75%"><code>s</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>unsigned short</code>
</td><td valign="top" width="75%"><code>S</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>int</code>
</td><td valign="top" width="75%"><code>i</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>unsigned int</code>
</td><td valign="top" width="75%"><code>I</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>long</code>
</td><td valign="top" width="75%"><code>l</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>unsigned long</code>
</td><td valign="top" width="75%"><code>L</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>long long</code>
</td><td valign="top" width="75%"><code>q</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>unsigned long long</code>
</td><td valign="top" width="75%"><code>Q</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>float</code>
</td><td valign="top" width="75%"><code>f</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>double</code>
</td><td valign="top" width="75%"><code>d</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>long double</code>
</td><td valign="top" width="75%"><code>D</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>void</code>
</td><td valign="top" width="75%"><code>v</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>id</code>
</td><td valign="top" width="75%"><code>@</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>Class</code>
</td><td valign="top" width="75%"><code>#</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>SEL</code>
</td><td valign="top" width="75%"><code>:</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>char*</code>
</td><td valign="top" width="75%"><code>*</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>enum</code>
</td><td valign="top" width="75%">an <code>enum</code> is encoded exactly as the integer type that the compiler uses for it, which depends on the enumeration
values.  Often the compiler users <code>unsigned int</code>, which is then encoded as <code>I</code>. 
<br></td></tr><tr align="left"><td valign="top" width="25%">unknown type
</td><td valign="top" width="75%"><code>?</code>
<br></td></tr><tr align="left"><td valign="top" width="25%">Complex types
</td><td valign="top" width="75%"><code>j</code> followed by the inner type.  For example <code>_Complex double</code> is encoded as "jd". 
<br></td></tr><tr align="left"><td valign="top" width="25%">bit-fields
</td><td valign="top" width="75%"><code>b</code> followed by the starting position of the bit-field, the type of the bit-field and the size of the bit-field (the bit-fields encoding was changed from the NeXT's compiler encoding, see below)
 <br></td></tr></table>

<!-- @sp 1 -->
 <p>The encoding of bit-fields has changed to allow bit-fields to be
properly handled by the runtime functions that compute sizes and
alignments of types that contain bit-fields.  The previous encoding
contained only the size of the bit-field.  Using only this information
it is not possible to reliably compute the size occupied by the
bit-field.  This is very important in the presence of the Boehm's
garbage collector because the objects are allocated using the typed
memory facility available in this collector.  The typed memory
allocation requires information about where the pointers are located
inside the object.

 <p>The position in the bit-field is the position, counting in bits, of the
bit closest to the beginning of the structure.

 <p>The non-atomic types are encoded as follows:

<!-- @sp 1 -->
 <p><table summary=""><tr align="left"><td valign="top" width="20%">pointers
</td><td valign="top" width="80%">&lsquo;<samp><span class="samp">^</span></samp>&rsquo; followed by the pointed type. 
<br></td></tr><tr align="left"><td valign="top" width="20%">arrays
</td><td valign="top" width="80%">&lsquo;<samp><span class="samp">[</span></samp>&rsquo; followed by the number of elements in the array followed by the type of the elements followed by &lsquo;<samp><span class="samp">]</span></samp>&rsquo;
<br></td></tr><tr align="left"><td valign="top" width="20%">structures
</td><td valign="top" width="80%">&lsquo;<samp><span class="samp">{</span></samp>&rsquo; followed by the name of the structure (or &lsquo;<samp><span class="samp">?</span></samp>&rsquo; if the structure is unnamed), the &lsquo;<samp><span class="samp">=</span></samp>&rsquo; sign, the type of the members and by &lsquo;<samp><span class="samp">}</span></samp>&rsquo;
<br></td></tr><tr align="left"><td valign="top" width="20%">unions
</td><td valign="top" width="80%">&lsquo;<samp><span class="samp">(</span></samp>&rsquo; followed by the name of the structure (or &lsquo;<samp><span class="samp">?</span></samp>&rsquo; if the union is unnamed), the &lsquo;<samp><span class="samp">=</span></samp>&rsquo; sign, the type of the members followed by &lsquo;<samp><span class="samp">)</span></samp>&rsquo;
<br></td></tr><tr align="left"><td valign="top" width="20%">vectors
</td><td valign="top" width="80%">&lsquo;<samp><span class="samp">![</span></samp>&rsquo; followed by the vector_size (the number of bytes composing the vector) followed by a comma, followed by the alignment (in bytes) of the vector, followed by the type of the elements followed by &lsquo;<samp><span class="samp">]</span></samp>&rsquo;
 <br></td></tr></table>

 <p>Here are some types and their encodings, as they are generated by the
compiler on an i386 machine:

 <pre class="sp">

</pre>
 <p><table summary=""><tr align="left"><td valign="top" width="25%">Objective-C type
</td><td valign="top" width="75%">Compiler encoding
<br></td></tr><tr align="left"><td valign="top" width="25%">
<pre class="smallexample">     int a[10];
</pre>
 <p></td><td valign="top" width="75%"><code>[10i]</code>
<br></td></tr><tr align="left"><td valign="top" width="25%">
<pre class="smallexample">     struct {
       int i;
       float f[3];
       int a:3;
       int b:2;
       char c;
     }
</pre>
 <p></td><td valign="top" width="75%"><code>{?=i[3f]b128i3b131i2c}</code>
<br></td></tr><tr align="left"><td valign="top" width="25%">
<pre class="smallexample">     int a __attribute__ ((vector_size (16)));
</pre>
 <p></td><td valign="top" width="75%"><code>![16,16i]</code> (alignment would depend on the machine)
 <br></td></tr></table>

 <pre class="sp">

</pre>

In addition to the types the compiler also encodes the type
specifiers.  The table below describes the encoding of the current
Objective-C type specifiers:

 <pre class="sp">

</pre>
 <p><table summary=""><tr align="left"><td valign="top" width="25%">Specifier
</td><td valign="top" width="75%">Encoding
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>const</code>
</td><td valign="top" width="75%"><code>r</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>in</code>
</td><td valign="top" width="75%"><code>n</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>inout</code>
</td><td valign="top" width="75%"><code>N</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>out</code>
</td><td valign="top" width="75%"><code>o</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>bycopy</code>
</td><td valign="top" width="75%"><code>O</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>byref</code>
</td><td valign="top" width="75%"><code>R</code>
<br></td></tr><tr align="left"><td valign="top" width="25%"><code>oneway</code>
</td><td valign="top" width="75%"><code>V</code>
 <br></td></tr></table>

 <pre class="sp">

</pre>

The type specifiers are encoded just before the type.  Unlike types
however, the type specifiers are only encoded when they appear in method
argument types.

 <p>Note how <code>const</code> interacts with pointers:

 <pre class="sp">

</pre>
 <p><table summary=""><tr align="left"><td valign="top" width="25%">Objective-C type
</td><td valign="top" width="75%">Compiler encoding
<br></td></tr><tr align="left"><td valign="top" width="25%">
<pre class="smallexample">     const int
</pre>
 <p></td><td valign="top" width="75%"><code>ri</code>
<br></td></tr><tr align="left"><td valign="top" width="25%">
<pre class="smallexample">     const int*
</pre>
 <p></td><td valign="top" width="75%"><code>^ri</code>
<br></td></tr><tr align="left"><td valign="top" width="25%">
<pre class="smallexample">     int *const
</pre>
 <p></td><td valign="top" width="75%"><code>r^i</code>
 <br></td></tr></table>

 <pre class="sp">

</pre>

<code>const int*</code> is a pointer to a <code>const int</code>, and so is
encoded as <code>^ri</code>.  <code>int* const</code>, instead, is a <code>const</code>
pointer to an <code>int</code>, and so is encoded as <code>r^i</code>.

 <p>Finally, there is a complication when encoding <code>const char *</code>
versus <code>char * const</code>.  Because <code>char *</code> is encoded as
<code>*</code> and not as <code>^c</code>, there is no way to express the fact
that <code>r</code> applies to the pointer or to the pointee.

 <p>Hence, it is assumed as a convention that <code>r*</code> means <code>const
char *</code> (since it is what is most often meant), and there is no way to
encode <code>char *const</code>.  <code>char *const</code> would simply be encoded
as <code>*</code>, and the <code>const</code> is lost.

<ul class="menu">
<li><a accesskey="1" href="#Legacy-type-encoding">Legacy type encoding</a>
<li><a accesskey="2" href="#g_t_0040encode">@encode</a>
<li><a accesskey="3" href="#Method-signatures">Method signatures</a>
</ul>

<div class="node">
<a name="Legacy-type-encoding"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#g_t_0040encode">@encode</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Type-encoding">Type encoding</a>

</div>

<h4 class="subsection">8.3.1 Legacy type encoding</h4>

<p>Unfortunately, historically GCC used to have a number of bugs in its
encoding code.  The NeXT runtime expects GCC to emit type encodings in
this historical format (compatible with GCC-3.3), so when using the
NeXT runtime, GCC will introduce on purpose a number of incorrect
encodings:

     <ul>
<li>the read-only qualifier of the pointee gets emitted before the '^'. 
The read-only qualifier of the pointer itself gets ignored, unless it
is a typedef.  Also, the 'r' is only emitted for the outermost type.

     <li>32-bit longs are encoded as 'l' or 'L', but not always.  For typedefs,
the compiler uses 'i' or 'I' instead if encoding a struct field or a
pointer.

     <li><code>enum</code>s are always encoded as 'i' (int) even if they are actually
unsigned or long.

 </ul>

 <p>In addition to that, the NeXT runtime uses a different encoding for
bitfields.  It encodes them as <code>b</code> followed by the size, without
a bit offset or the underlying field type.

<div class="node">
<a name="%40encode"></a>
<a name="g_t_0040encode"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Method-signatures">Method signatures</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Legacy-type-encoding">Legacy type encoding</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Type-encoding">Type encoding</a>

</div>

<h4 class="subsection">8.3.2 @encode</h4>

<p>GNU Objective-C supports the <code>@encode</code> syntax that allows you to
create a type encoding from a C/Objective-C type.  For example,
<code>@encode(int)</code> is compiled by the compiler into <code>"i"</code>.

 <p><code>@encode</code> does not support type qualifiers other than
<code>const</code>.  For example, <code>@encode(const char*)</code> is valid and
is compiled into <code>"r*"</code>, while <code>@encode(bycopy char *)</code> is
invalid and will cause a compilation error.

<div class="node">
<a name="Method-signatures"></a>
<p><hr>
Previous:&nbsp;<a rel="previous" accesskey="p" href="#g_t_0040encode">@encode</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Type-encoding">Type encoding</a>

</div>

<h4 class="subsection">8.3.3 Method signatures</h4>

<p>This section documents the encoding of method types, which is rarely
needed to use Objective-C.  You should skip it at a first reading; the
runtime provides functions that will work on methods and can walk
through the list of parameters and interpret them for you.  These
functions are part of the public &ldquo;API&rdquo; and are the preferred way to
interact with method signatures from user code.

 <p>But if you need to debug a problem with method signatures and need to
know how they are implemented (i.e., the &ldquo;ABI&rdquo;), read on.

 <p>Methods have their &ldquo;signature&rdquo; encoded and made available to the
runtime.  The &ldquo;signature&rdquo; encodes all the information required to
dynamically build invocations of the method at runtime: return type
and arguments.

 <p>The &ldquo;signature&rdquo; is a null-terminated string, composed of the following:

     <ul>
<li>The return type, including type qualifiers.  For example, a method
returning <code>int</code> would have <code>i</code> here.

     <li>The total size (in bytes) required to pass all the parameters.  This
includes the two hidden parameters (the object <code>self</code> and the
method selector <code>_cmd</code>).

     <li>Each argument, with the type encoding, followed by the offset (in
bytes) of the argument in the list of parameters.

 </ul>

 <p>For example, a method with no arguments and returning <code>int</code> would
have the signature <code>i8@0:4</code> if the size of a pointer is 4.  The
signature is interpreted as follows: the <code>i</code> is the return type
(an <code>int</code>), the <code>8</code> is the total size of the parameters in
bytes (two pointers each of size 4), the <code>@0</code> is the first
parameter (an object at byte offset <code>0</code>) and <code>:4</code> is the
second parameter (a <code>SEL</code> at byte offset <code>4</code>).

 <p>You can easily find more examples by running the &ldquo;strings&rdquo; program
on an Objective-C object file compiled by GCC.  You'll see a lot of
strings that look very much like <code>i8@0:4</code>.  They are signatures
of Objective-C methods.

<div class="node">
<a name="Garbage-Collection"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Constant-string-objects">Constant string objects</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Type-encoding">Type encoding</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Objective_002dC">Objective-C</a>

</div>

<h3 class="section">8.4 Garbage Collection</h3>

<p>This section is specific for the GNU Objective-C runtime.  If you are
using a different runtime, you can skip it.

 <p>Support for garbage collection with the GNU runtime has been added by
using a powerful conservative garbage collector, known as the
Boehm-Demers-Weiser conservative garbage collector.

 <p>To enable the support for it you have to configure the compiler using
an additional argument, <samp><span class="option">--enable-objc-gc</span></samp><!-- /@w -->.  This will
build the boehm-gc library, and build an additional runtime library
which has several enhancements to support the garbage collector.  The
new library has a new name, <samp><span class="file">libobjc_gc.a</span></samp> to not conflict with
the non-garbage-collected library.

 <p>When the garbage collector is used, the objects are allocated using the
so-called typed memory allocation mechanism available in the
Boehm-Demers-Weiser collector.  This mode requires precise information on
where pointers are located inside objects.  This information is computed
once per class, immediately after the class has been initialized.

 <p>There is a new runtime function <code>class_ivar_set_gcinvisible()</code>
which can be used to declare a so-called <dfn>weak pointer</dfn>
reference.  Such a pointer is basically hidden for the garbage collector;
this can be useful in certain situations, especially when you want to
keep track of the allocated objects, yet allow them to be
collected.  This kind of pointers can only be members of objects, you
cannot declare a global pointer as a weak reference.  Every type which is
a pointer type can be declared a weak pointer, including <code>id</code>,
<code>Class</code> and <code>SEL</code>.

 <p>Here is an example of how to use this feature.  Suppose you want to
implement a class whose instances hold a weak pointer reference; the
following class does this:

<pre class="smallexample">     
     @interface WeakPointer : Object
     {
         const void* weakPointer;
     }
     
     - initWithPointer:(const void*)p;
     - (const void*)weakPointer;
     @end
     
     
     @implementation WeakPointer
     
     + (void)initialize
     {
       class_ivar_set_gcinvisible (self, "weakPointer", YES);
     }
     
     - initWithPointer:(const void*)p
     {
       weakPointer = p;
       return self;
     }
     
     - (const void*)weakPointer
     {
       return weakPointer;
     }
     
     @end
     
</pre>
 <p>Weak pointers are supported through a new type character specifier
represented by the &lsquo;<samp><span class="samp">!</span></samp>&rsquo; character.  The
<code>class_ivar_set_gcinvisible()</code> function adds or removes this
specifier to the string type description of the instance variable named
as argument.

<!-- ========================================================================= -->
<div class="node">
<a name="Constant-string-objects"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#compatibility_005falias">compatibility_alias</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Garbage-Collection">Garbage Collection</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Objective_002dC">Objective-C</a>

</div>

<h3 class="section">8.5 Constant string objects</h3>

<p>GNU Objective-C provides constant string objects that are generated
directly by the compiler.  You declare a constant string object by
prefixing a C constant string with the character &lsquo;<samp><span class="samp">@</span></samp>&rsquo;:

<pre class="smallexample">       id myString = @"this is a constant string object";
</pre>
 <p>The constant string objects are by default instances of the
<code>NXConstantString</code> class which is provided by the GNU Objective-C
runtime.  To get the definition of this class you must include the
<samp><span class="file">objc/NXConstStr.h</span></samp> header file.

 <p>User defined libraries may want to implement their own constant string
class.  To be able to support them, the GNU Objective-C compiler provides
a new command line options <samp><span class="option">-fconstant-string-class=</span><var>class-name</var></samp>. 
The provided class should adhere to a strict structure, the same
as <code>NXConstantString</code>'s structure:

<pre class="smallexample">     
     @interface MyConstantStringClass
     {
       Class isa;
       char *c_string;
       unsigned int len;
     }
     @end
     
</pre>
 <p><code>NXConstantString</code> inherits from <code>Object</code>; user class
libraries may choose to inherit the customized constant string class
from a different class than <code>Object</code>.  There is no requirement in
the methods the constant string class has to implement, but the final
ivar layout of the class must be the compatible with the given
structure.

 <p>When the compiler creates the statically allocated constant string
object, the <code>c_string</code> field will be filled by the compiler with
the string; the <code>length</code> field will be filled by the compiler with
the string length; the <code>isa</code> pointer will be filled with
<code>NULL</code> by the compiler, and it will later be fixed up automatically
at runtime by the GNU Objective-C runtime library to point to the class
which was set by the <samp><span class="option">-fconstant-string-class</span></samp> option when the
object file is loaded (if you wonder how it works behind the scenes, the
name of the class to use, and the list of static objects to fixup, are
stored by the compiler in the object file in a place where the GNU
runtime library will find them at runtime).

 <p>As a result, when a file is compiled with the
<samp><span class="option">-fconstant-string-class</span></samp> option, all the constant string objects
will be instances of the class specified as argument to this option.  It
is possible to have multiple compilation units referring to different
constant string classes, neither the compiler nor the linker impose any
restrictions in doing this.

<!-- ========================================================================= -->
<div class="node">
<a name="compatibility_alias"></a>
<a name="compatibility_005falias"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Exceptions">Exceptions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Constant-string-objects">Constant string objects</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Objective_002dC">Objective-C</a>

</div>

<h3 class="section">8.6 compatibility_alias</h3>

<p>The keyword <code>@compatibility_alias</code> allows you to define a class name
as equivalent to another class name.  For example:

<pre class="smallexample">     @compatibility_alias WOApplication GSWApplication;
</pre>
 <p>tells the compiler that each time it encounters <code>WOApplication</code> as
a class name, it should replace it with <code>GSWApplication</code> (that is,
<code>WOApplication</code> is just an alias for <code>GSWApplication</code>).

 <p>There are some constraints on how this can be used&mdash;

     <ul>
<li><code>WOApplication</code> (the alias) must not be an existing class;

     <li><code>GSWApplication</code> (the real class) must be an existing class.

 </ul>

<!-- ========================================================================= -->
<div class="node">
<a name="Exceptions"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Synchronization">Synchronization</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#compatibility_005falias">compatibility_alias</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Objective_002dC">Objective-C</a>

</div>

<h3 class="section">8.7 Exceptions</h3>

<p>GNU Objective-C provides exception support built into the language, as
in the following example:

<pre class="smallexample">       @try {
         ...
            @throw expr;
         ...
       }
       @catch (AnObjCClass *exc) {
         ...
           @throw expr;
         ...
           @throw;
         ...
       }
       @catch (AnotherClass *exc) {
         ...
       }
       @catch (id allOthers) {
         ...
       }
       @finally {
         ...
           @throw expr;
         ...
       }
</pre>
 <p>The <code>@throw</code> statement may appear anywhere in an Objective-C or
Objective-C++ program; when used inside of a <code>@catch</code> block, the
<code>@throw</code> may appear without an argument (as shown above), in
which case the object caught by the <code>@catch</code> will be rethrown.

 <p>Note that only (pointers to) Objective-C objects may be thrown and
caught using this scheme.  When an object is thrown, it will be caught
by the nearest <code>@catch</code> clause capable of handling objects of
that type, analogously to how <code>catch</code> blocks work in C++ and
Java.  A <code>@catch(id ...)</code> clause (as shown above) may also
be provided to catch any and all Objective-C exceptions not caught by
previous <code>@catch</code> clauses (if any).

 <p>The <code>@finally</code> clause, if present, will be executed upon exit
from the immediately preceding <code>@try ... @catch</code> section. 
This will happen regardless of whether any exceptions are thrown,
caught or rethrown inside the <code>@try ... @catch</code> section,
analogously to the behavior of the <code>finally</code> clause in Java.

 <p>There are several caveats to using the new exception mechanism:

     <ul>
<li>The <samp><span class="option">-fobjc-exceptions</span></samp> command line option must be used when
compiling Objective-C files that use exceptions.

     <li>With the GNU runtime, exceptions are always implemented as &ldquo;native&rdquo;
exceptions and it is recommended that the <samp><span class="option">-fexceptions</span></samp> and
<samp><span class="option">-shared-libgcc</span></samp> options are used when linking.

     <li>With the NeXT runtime, although currently designed to be binary
compatible with <code>NS_HANDLER</code>-style idioms provided by the
<code>NSException</code> class, the new exceptions can only be used on Mac
OS X 10.3 (Panther) and later systems, due to additional functionality
needed in the NeXT Objective-C runtime.

     <li>As mentioned above, the new exceptions do not support handling
types other than Objective-C objects.   Furthermore, when used from
Objective-C++, the Objective-C exception model does not interoperate with C++
exceptions at this time.  This means you cannot <code>@throw</code> an exception
from Objective-C and <code>catch</code> it in C++, or vice versa
(i.e., <code>throw ... @catch</code>). 
</ul>

<!-- ========================================================================= -->
<div class="node">
<a name="Synchronization"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Fast-enumeration">Fast enumeration</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Exceptions">Exceptions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Objective_002dC">Objective-C</a>

</div>

<h3 class="section">8.8 Synchronization</h3>

<p>GNU Objective-C provides support for synchronized blocks:

<pre class="smallexample">       @synchronized (ObjCClass *guard) {
         ...
       }
</pre>
 <p>Upon entering the <code>@synchronized</code> block, a thread of execution
shall first check whether a lock has been placed on the corresponding
<code>guard</code> object by another thread.  If it has, the current thread
shall wait until the other thread relinquishes its lock.  Once
<code>guard</code> becomes available, the current thread will place its own
lock on it, execute the code contained in the <code>@synchronized</code>
block, and finally relinquish the lock (thereby making <code>guard</code>
available to other threads).

 <p>Unlike Java, Objective-C does not allow for entire methods to be
marked <code>@synchronized</code>.  Note that throwing exceptions out of
<code>@synchronized</code> blocks is allowed, and will cause the guarding
object to be unlocked properly.

 <p>Because of the interactions between synchronization and exception
handling, you can only use <code>@synchronized</code> when compiling with
exceptions enabled, that is with the command line option
<samp><span class="option">-fobjc-exceptions</span></samp>.

<!-- ========================================================================= -->
<div class="node">
<a name="Fast-enumeration"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Messaging-with-the-GNU-Objective_002dC-runtime">Messaging with the GNU Objective-C runtime</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Synchronization">Synchronization</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Objective_002dC">Objective-C</a>

</div>

<h3 class="section">8.9 Fast enumeration</h3>

<ul class="menu">
<li><a accesskey="1" href="#Using-fast-enumeration">Using fast enumeration</a>
<li><a accesskey="2" href="#c99_002dlike-fast-enumeration-syntax">c99-like fast enumeration syntax</a>
<li><a accesskey="3" href="#Fast-enumeration-details">Fast enumeration details</a>
<li><a accesskey="4" href="#Fast-enumeration-protocol">Fast enumeration protocol</a>
</ul>

<!-- ================================ -->
<div class="node">
<a name="Using-fast-enumeration"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#c99_002dlike-fast-enumeration-syntax">c99-like fast enumeration syntax</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Fast-enumeration">Fast enumeration</a>

</div>

<h4 class="subsection">8.9.1 Using fast enumeration</h4>

<p>GNU Objective-C provides support for the fast enumeration syntax:

<pre class="smallexample">       id array = ...;
       id object;
     
       for (object in array)
       {
         /* Do something with 'object' */
       }
</pre>
 <p><code>array</code> needs to be an Objective-C object (usually a collection
object, for example an array, a dictionary or a set) which implements
the &ldquo;Fast Enumeration Protocol&rdquo; (see below).  If you are using a
Foundation library such as GNUstep Base or Apple Cocoa Foundation, all
collection objects in the library implement this protocol and can be
used in this way.

 <p>The code above would iterate over all objects in <code>array</code>.  For
each of them, it assigns it to <code>object</code>, then executes the
<code>Do something with 'object'</code> statements.

 <p>Here is a fully worked-out example using a Foundation library (which
provides the implementation of <code>NSArray</code>, <code>NSString</code> and
<code>NSLog</code>):

<pre class="smallexample">       NSArray *array = [NSArray arrayWithObjects: @"1", @"2", @"3", nil];
       NSString *object;
     
       for (object in array)
         NSLog (@"Iterating over %@", object);
</pre>
 <!-- ================================ -->
<div class="node">
<a name="c99-like-fast-enumeration-syntax"></a>
<a name="c99_002dlike-fast-enumeration-syntax"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Fast-enumeration-details">Fast enumeration details</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Using-fast-enumeration">Using fast enumeration</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Fast-enumeration">Fast enumeration</a>

</div>

<h4 class="subsection">8.9.2 c99-like fast enumeration syntax</h4>

<p>A c99-like declaration syntax is also allowed:

<pre class="smallexample">       id array = ...;
     
       for (id object in array)
       {
         /* Do something with 'object'  */
       }
</pre>
 <p>this is completely equivalent to:

<pre class="smallexample">       id array = ...;
     
       {
         id object;
         for (object in array)
         {
           /* Do something with 'object'  */
         }
       }
</pre>
 <p>but can save some typing.

 <p>Note that the option <samp><span class="option">-std=c99</span></samp> is not required to allow this
syntax in Objective-C.

<!-- ================================ -->
<div class="node">
<a name="Fast-enumeration-details"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Fast-enumeration-protocol">Fast enumeration protocol</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#c99_002dlike-fast-enumeration-syntax">c99-like fast enumeration syntax</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Fast-enumeration">Fast enumeration</a>

</div>

<h4 class="subsection">8.9.3 Fast enumeration details</h4>

<p>Here is a more technical description with the gory details.  Consider the code

<pre class="smallexample">       for (<var>object expression</var> in <var>collection expression</var>)
       {
         <var>statements</var>
       }
</pre>
 <p>here is what happens when you run it:

     <ul>
<li><var>collection expression</var> is evaluated exactly once and the
result is used as the collection object to iterate over.  This means
it is safe to write code such as <code>for (object in [NSDictionary
keyEnumerator]) ...</code>.

     <li>the iteration is implemented by the compiler by repeatedly getting
batches of objects from the collection object using the fast
enumeration protocol (see below), then iterating over all objects in
the batch.  This is faster than a normal enumeration where objects are
retrieved one by one (hence the name &ldquo;fast enumeration&rdquo;).

     <li>if there are no objects in the collection, then
<var>object expression</var> is set to <code>nil</code> and the loop
immediately terminates.

     <li>if there are objects in the collection, then for each object in the
collection (in the order they are returned) <var>object expression</var>
is set to the object, then <var>statements</var> are executed.

     <li><var>statements</var> can contain <code>break</code> and <code>continue</code>
commands, which will abort the iteration or skip to the next loop
iteration as expected.

     <li>when the iteration ends because there are no more objects to iterate
over, <var>object expression</var> is set to <code>nil</code>.  This allows
you to determine whether the iteration finished because a <code>break</code>
command was used (in which case <var>object expression</var> will remain
set to the last object that was iterated over) or because it iterated
over all the objects (in which case <var>object expression</var> will be
set to <code>nil</code>).

     <li><var>statements</var> must not make any changes to the collection
object; if they do, it is a hard error and the fast enumeration
terminates by invoking <code>objc_enumerationMutation</code>, a runtime
function that normally aborts the program but which can be customized
by Foundation libraries via <code>objc_set_mutation_handler</code> to do
something different, such as raising an exception.

 </ul>

<!-- ================================ -->
<div class="node">
<a name="Fast-enumeration-protocol"></a>
<p><hr>
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Fast-enumeration-details">Fast enumeration details</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Fast-enumeration">Fast enumeration</a>

</div>

<h4 class="subsection">8.9.4 Fast enumeration protocol</h4>

<p>If you want your own collection object to be usable with fast
enumeration, you need to have it implement the method

<pre class="smallexample">     - (unsigned long) countByEnumeratingWithState: (NSFastEnumerationState *)state
                                           objects: (id *)objects
                                             count: (unsigned long)len;
</pre>
 <p>where <code>NSFastEnumerationState</code> must be defined in your code as follows:

<pre class="smallexample">     typedef struct
     {
       unsigned long state;
       id            *itemsPtr;
       unsigned long *mutationsPtr;
       unsigned long extra[5];
     } NSFastEnumerationState;
</pre>
 <p>If no <code>NSFastEnumerationState</code> is defined in your code, the
compiler will automatically replace <code>NSFastEnumerationState *</code>
with <code>struct __objcFastEnumerationState *</code>, where that type is
silently defined by the compiler in an identical way.  This can be
confusing and we recommend that you define
<code>NSFastEnumerationState</code> (as shown above) instead.

 <p>The method is called repeatedly during a fast enumeration to retrieve
batches of objects.  Each invocation of the method should retrieve the
next batch of objects.

 <p>The return value of the method is the number of objects in the current
batch; this should not exceed <code>len</code>, which is the maximum size of
a batch as requested by the caller.  The batch itself is returned in
the <code>itemsPtr</code> field of the <code>NSFastEnumerationState</code> struct.

 <p>To help with returning the objects, the <code>objects</code> array is a C
array preallocated by the caller (on the stack) of size <code>len</code>. 
In many cases you can put the objects you want to return in that
<code>objects</code> array, then do <code>itemsPtr = objects</code>.  But you
don't have to; if your collection already has the objects to return in
some form of C array, it could return them from there instead.

 <p>The <code>state</code> and <code>extra</code> fields of the
<code>NSFastEnumerationState</code> structure allows your collection object
to keep track of the state of the enumeration.  In a simple array
implementation, <code>state</code> may keep track of the index of the last
object that was returned, and <code>extra</code> may be unused.

 <p>The <code>mutationsPtr</code> field of the <code>NSFastEnumerationState</code> is
used to keep track of mutations.  It should point to a number; before
working on each object, the fast enumeration loop will check that this
number has not changed.  If it has, a mutation has happened and the
fast enumeration will abort.  So, <code>mutationsPtr</code> could be set to
point to some sort of version number of your collection, which is
increased by one every time there is a change (for example when an
object is added or removed).  Or, if you are content with less strict
mutation checks, it could point to the number of objects in your
collection or some other value that can be checked to perform an
approximate check that the collection has not been mutated.

 <p>Finally, note how we declared the <code>len</code> argument and the return
value to be of type <code>unsigned long</code>.  They could also be declared
to be of type <code>unsigned int</code> and everything would still work.

<!-- ========================================================================= -->
<div class="node">
<a name="Messaging-with-the-GNU-Objective-C-runtime"></a>
<a name="Messaging-with-the-GNU-Objective_002dC-runtime"></a>
<p><hr>
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Fast-enumeration">Fast enumeration</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Objective_002dC">Objective-C</a>

</div>

<h3 class="section">8.10 Messaging with the GNU Objective-C runtime</h3>

<p>This section is specific for the GNU Objective-C runtime.  If you are
using a different runtime, you can skip it.

 <p>The implementation of messaging in the GNU Objective-C runtime is
designed to be portable, and so is based on standard C.

 <p>Sending a message in the GNU Objective-C runtime is composed of two
separate steps.  First, there is a call to the lookup function,
<code>objc_msg_lookup ()</code> (or, in the case of messages to super,
<code>objc_msg_lookup_super ()</code>).  This runtime function takes as
argument the receiver and the selector of the method to be called; it
returns the <code>IMP</code>, that is a pointer to the function implementing
the method.  The second step of method invocation consists of casting
this pointer function to the appropriate function pointer type, and
calling the function pointed to it with the right arguments.

 <p>For example, when the compiler encounters a method invocation such as
<code>[object init]</code>, it compiles it into a call to
<code>objc_msg_lookup (object, @selector(init))</code> followed by a cast
of the returned value to the appropriate function pointer type, and
then it calls it.

<ul class="menu">
<li><a accesskey="1" href="#Dynamically-registering-methods">Dynamically registering methods</a>
<li><a accesskey="2" href="#Forwarding-hook">Forwarding hook</a>
</ul>

<!-- ========================================================================= -->
<div class="node">
<a name="Dynamically-registering-methods"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Forwarding-hook">Forwarding hook</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Messaging-with-the-GNU-Objective_002dC-runtime">Messaging with the GNU Objective-C runtime</a>

</div>

<h4 class="subsection">8.10.1 Dynamically registering methods</h4>

<p>If <code>objc_msg_lookup()</code> does not find a suitable method
implementation, because the receiver does not implement the required
method, it tries to see if the class can dynamically register the
method.

 <p>To do so, the runtime checks if the class of the receiver implements
the method

<pre class="smallexample">     + (BOOL) resolveInstanceMethod: (SEL)selector;
</pre>
 <p>in the case of an instance method, or

<pre class="smallexample">     + (BOOL) resolveClassMethod: (SEL)selector;
</pre>
 <p>in the case of a class method.  If the class implements it, the
runtime invokes it, passing as argument the selector of the original
method, and if it returns <code>YES</code>, the runtime tries the lookup
again, which could now succeed if a matching method was added
dynamically by <code>+resolveInstanceMethod:</code> or
<code>+resolveClassMethod:</code>.

 <p>This allows classes to dynamically register methods (by adding them to
the class using <code>class_addMethod</code>) when they are first called. 
To do so, a class should implement <code>+resolveInstanceMethod:</code> (or,
depending on the case, <code>+resolveClassMethod:</code>) and have it
recognize the selectors of methods that can be registered dynamically
at runtime, register them, and return <code>YES</code>.  It should return
<code>NO</code> for methods that it does not dynamically registered at
runtime.

 <p>If <code>+resolveInstanceMethod:</code> (or <code>+resolveClassMethod:</code>) is
not implemented or returns <code>NO</code>, the runtime then tries the
forwarding hook.

 <p>Support for <code>+resolveInstanceMethod:</code> and
<code>resolveClassMethod:</code> was added to the GNU Objective-C runtime in
GCC version 4.6.

<!-- ========================================================================= -->
<div class="node">
<a name="Forwarding-hook"></a>
<p><hr>
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Dynamically-registering-methods">Dynamically registering methods</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Messaging-with-the-GNU-Objective_002dC-runtime">Messaging with the GNU Objective-C runtime</a>

</div>

<h4 class="subsection">8.10.2 Forwarding hook</h4>

<p>The GNU Objective-C runtime provides a hook, called
<code>__objc_msg_forward2</code>, which is called by
<code>objc_msg_lookup()</code> when it can't find a method implementation in
the runtime tables and after calling <code>+resolveInstanceMethod:</code>
and <code>+resolveClassMethod:</code> has been attempted and did not succeed
in dynamically registering the method.

 <p>To configure the hook, you set the global variable
<code>__objc_msg_foward2</code> to a function with the same argument and
return types of <code>objc_msg_lookup()</code>.  When
<code>objc_msg_lookup()</code> can not find a method implementation, it
invokes the hook function you provided to get a method implementation
to return.  So, in practice <code>__objc_msg_forward2</code> allows you to
extend <code>objc_msg_lookup()</code> by adding some custom code that is
called to do a further lookup when no standard method implementation
can be found using the normal lookup.

 <p>This hook is generally reserved for &ldquo;Foundation&rdquo; libraries such as
GNUstep Base, which use it to implement their high-level method
forwarding API, typically based around the <code>forwardInvocation:</code>
method.  So, unless you are implementing your own &ldquo;Foundation&rdquo;
library, you should not set this hook.

 <p>In a typical forwarding implementation, the <code>__objc_msg_forward2</code>
hook function determines the argument and return type of the method
that is being looked up, and then creates a function that takes these
arguments and has that return type, and returns it to the caller. 
Creating this function is non-trivial and is typically performed using
a dedicated library such as <code>libffi</code>.

 <p>The forwarding method implementation thus created is returned by
<code>objc_msg_lookup()</code> and is executed as if it was a normal method
implementation.  When the forwarding method implementation is called,
it is usually expected to pack all arguments into some sort of object
(typically, an <code>NSInvocation</code> in a &ldquo;Foundation&rdquo; library), and
hand it over to the programmer (<code>forwardInvocation:</code>) who is then
allowed to manipulate the method invocation using a high-level API
provided by the &ldquo;Foundation&rdquo; library.  For example, the programmer
may want to examine the method invocation arguments and name and
potentially change them before forwarding the method invocation to one
or more local objects (<code>performInvocation:</code>) or even to remote
objects (by using Distributed Objects or some other mechanism).  When
all this completes, the return value is passed back and must be
returned correctly to the original caller.

 <p>Note that the GNU Objective-C runtime currently provides no support
for method forwarding or method invocations other than the
<code>__objc_msg_forward2</code> hook.

 <p>If the forwarding hook does not exist or returns <code>NULL</code>, the
runtime currently attempts forwarding using an older, deprecated API,
and if that fails, it aborts the program.  In future versions of the
GNU Objective-C runtime, the runtime will immediately abort.

<!-- Copyright (C) 2002, 2004 Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Compatibility"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Gcov">Gcov</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Objective_002dC">Objective-C</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Top">Top</a>

</div>

<h2 class="chapter">9 Binary Compatibility</h2>

<p><a name="index-binary-compatibility-3285"></a><a name="index-ABI-3286"></a><a name="index-application-binary-interface-3287"></a>
Binary compatibility encompasses several related concepts:

     <dl>
<dt><dfn>application binary interface (ABI)</dfn><dd>The set of runtime conventions followed by all of the tools that deal
with binary representations of a program, including compilers, assemblers,
linkers, and language runtime support. 
Some ABIs are formal with a written specification, possibly designed
by multiple interested parties.  Others are simply the way things are
actually done by a particular set of tools.

     <br><dt><dfn>ABI conformance</dfn><dd>A compiler conforms to an ABI if it generates code that follows all of
the specifications enumerated by that ABI. 
A library conforms to an ABI if it is implemented according to that ABI. 
An application conforms to an ABI if it is built using tools that conform
to that ABI and does not contain source code that specifically changes
behavior specified by the ABI.

     <br><dt><dfn>calling conventions</dfn><dd>Calling conventions are a subset of an ABI that specify of how arguments
are passed and function results are returned.

     <br><dt><dfn>interoperability</dfn><dd>Different sets of tools are interoperable if they generate files that
can be used in the same program.  The set of tools includes compilers,
assemblers, linkers, libraries, header files, startup files, and debuggers. 
Binaries produced by different sets of tools are not interoperable unless
they implement the same ABI.  This applies to different versions of the
same tools as well as tools from different vendors.

     <br><dt><dfn>intercallability</dfn><dd>Whether a function in a binary built by one set of tools can call a
function in a binary built by a different set of tools is a subset
of interoperability.

     <br><dt><dfn>implementation-defined features</dfn><dd>Language standards include lists of implementation-defined features whose
behavior can vary from one implementation to another.  Some of these
features are normally covered by a platform's ABI and others are not. 
The features that are not covered by an ABI generally affect how a
program behaves, but not intercallability.

     <br><dt><dfn>compatibility</dfn><dd>Conformance to the same ABI and the same behavior of implementation-defined
features are both relevant for compatibility. 
</dl>

 <p>The application binary interface implemented by a C or C++ compiler
affects code generation and runtime support for:

     <ul>
<li>size and alignment of data types
<li>layout of structured types
<li>calling conventions
<li>register usage conventions
<li>interfaces for runtime arithmetic support
<li>object file formats
</ul>

 <p>In addition, the application binary interface implemented by a C++ compiler
affects code generation and runtime support for:
     <ul>
<li>name mangling
<li>exception handling
<li>invoking constructors and destructors
<li>layout, alignment, and padding of classes
<li>layout and alignment of virtual tables
</ul>

 <p>Some GCC compilation options cause the compiler to generate code that
does not conform to the platform's default ABI.  Other options cause
different program behavior for implementation-defined features that are
not covered by an ABI.  These options are provided for consistency with
other compilers that do not follow the platform's default ABI or the
usual behavior of implementation-defined features for the platform. 
Be very careful about using such options.

 <p>Most platforms have a well-defined ABI that covers C code, but ABIs
that cover C++ functionality are not yet common.

 <p>Starting with GCC 3.2, GCC binary conventions for C++ are based on a
written, vendor-neutral C++ ABI that was designed to be specific to
64-bit Itanium but also includes generic specifications that apply to
any platform. 
This C++ ABI is also implemented by other compiler vendors on some
platforms, notably GNU/Linux and BSD systems. 
We have tried hard to provide a stable ABI that will be compatible with
future GCC releases, but it is possible that we will encounter problems
that make this difficult.  Such problems could include different
interpretations of the C++ ABI by different vendors, bugs in the ABI, or
bugs in the implementation of the ABI in different compilers. 
GCC's <samp><span class="option">-Wabi</span></samp> switch warns when G++ generates code that is
probably not compatible with the C++ ABI.

 <p>The C++ library used with a C++ compiler includes the Standard C++
Library, with functionality defined in the C++ Standard, plus language
runtime support.  The runtime support is included in a C++ ABI, but there
is no formal ABI for the Standard C++ Library.  Two implementations
of that library are interoperable if one follows the de-facto ABI of the
other and if they are both built with the same compiler, or with compilers
that conform to the same ABI for C++ compiler and runtime support.

 <p>When G++ and another C++ compiler conform to the same C++ ABI, but the
implementations of the Standard C++ Library that they normally use do not
follow the same ABI for the Standard C++ Library, object files built with
those compilers can be used in the same program only if they use the same
C++ library.  This requires specifying the location of the C++ library
header files when invoking the compiler whose usual library is not being
used.  The location of GCC's C++ header files depends on how the GCC
build was configured, but can be seen by using the G++ <samp><span class="option">-v</span></samp> option. 
With default configuration options for G++ 3.3 the compile line for a
different C++ compiler needs to include

<pre class="smallexample">         -I<var>gcc_install_directory</var>/include/c++/3.3
</pre>
 <p>Similarly, compiling code with G++ that must use a C++ library other
than the GNU C++ library requires specifying the location of the header
files for that other library.

 <p>The most straightforward way to link a program to use a particular
C++ library is to use a C++ driver that specifies that C++ library by
default.  The <samp><span class="command">g++</span></samp> driver, for example, tells the linker where
to find GCC's C++ library (<samp><span class="file">libstdc++</span></samp>) plus the other libraries
and startup files it needs, in the proper order.

 <p>If a program must use a different C++ library and it's not possible
to do the final link using a C++ driver that uses that library by default,
it is necessary to tell <samp><span class="command">g++</span></samp> the location and name of that
library.  It might also be necessary to specify different startup files
and other runtime support libraries, and to suppress the use of GCC's
support libraries with one or more of the options <samp><span class="option">-nostdlib</span></samp>,
<samp><span class="option">-nostartfiles</span></samp>, and <samp><span class="option">-nodefaultlibs</span></samp>.

<!-- Copyright (C) 1996, 1997, 1999, 2000, 2001, 2002, 2003, 2004, 2005, -->
<!-- 2008, 2010 Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Gcov"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Trouble">Trouble</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Compatibility">Compatibility</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Top">Top</a>

</div>

<h2 class="chapter">10 <samp><span class="command">gcov</span></samp>&mdash;a Test Coverage Program</h2>

<p><samp><span class="command">gcov</span></samp> is a tool you can use in conjunction with GCC to
test code coverage in your programs.

<ul class="menu">
<li><a accesskey="1" href="#Gcov-Intro">Gcov Intro</a>:                   Introduction to gcov. 
<li><a accesskey="2" href="#Invoking-Gcov">Invoking Gcov</a>:                How to use gcov. 
<li><a accesskey="3" href="#Gcov-and-Optimization">Gcov and Optimization</a>:        Using gcov with GCC optimization. 
<li><a accesskey="4" href="#Gcov-Data-Files">Gcov Data Files</a>:              The files used by gcov. 
<li><a accesskey="5" href="#Cross_002dprofiling">Cross-profiling</a>:              Data file relocation. 
</ul>

<div class="node">
<a name="Gcov-Intro"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Invoking-Gcov">Invoking Gcov</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Gcov">Gcov</a>

</div>

<h3 class="section">10.1 Introduction to <samp><span class="command">gcov</span></samp></h3>

<!-- man begin DESCRIPTION -->
<p><samp><span class="command">gcov</span></samp> is a test coverage program.  Use it in concert with GCC
to analyze your programs to help create more efficient, faster running
code and to discover untested parts of your program.  You can use
<samp><span class="command">gcov</span></samp> as a profiling tool to help discover where your
optimization efforts will best affect your code.  You can also use
<samp><span class="command">gcov</span></samp> along with the other profiling tool, <samp><span class="command">gprof</span></samp>, to
assess which parts of your code use the greatest amount of computing
time.

 <p>Profiling tools help you analyze your code's performance.  Using a
profiler such as <samp><span class="command">gcov</span></samp> or <samp><span class="command">gprof</span></samp>, you can find out some
basic performance statistics, such as:

     <ul>
<li>how often each line of code executes

     <li>what lines of code are actually executed

     <li>how much computing time each section of code uses
</ul>

 <p>Once you know these things about how your code works when compiled, you
can look at each module to see which modules should be optimized. 
<samp><span class="command">gcov</span></samp> helps you determine where to work on optimization.

 <p>Software developers also use coverage testing in concert with
testsuites, to make sure software is actually good enough for a release. 
Testsuites can verify that a program works as expected; a coverage
program tests to see how much of the program is exercised by the
testsuite.  Developers can then determine what kinds of test cases need
to be added to the testsuites to create both better testing and a better
final product.

 <p>You should compile your code without optimization if you plan to use
<samp><span class="command">gcov</span></samp> because the optimization, by combining some lines of code
into one function, may not give you as much information as you need to
look for `hot spots' where the code is using a great deal of computer
time.  Likewise, because <samp><span class="command">gcov</span></samp> accumulates statistics by line (at
the lowest resolution), it works best with a programming style that
places only one statement on each line.  If you use complicated macros
that expand to loops or to other control structures, the statistics are
less helpful&mdash;they only report on the line where the macro call
appears.  If your complex macros behave like functions, you can replace
them with inline functions to solve this problem.

 <p><samp><span class="command">gcov</span></samp> creates a logfile called <samp><var>sourcefile</var><span class="file">.gcov</span></samp> which
indicates how many times each line of a source file <samp><var>sourcefile</var><span class="file">.c</span></samp>
has executed.  You can use these logfiles along with <samp><span class="command">gprof</span></samp> to aid
in fine-tuning the performance of your programs.  <samp><span class="command">gprof</span></samp> gives
timing information you can use along with the information you get from
<samp><span class="command">gcov</span></samp>.

 <p><samp><span class="command">gcov</span></samp> works only on code compiled with GCC.  It is not
compatible with any other profiling or test coverage mechanism.

<!-- man end -->
<div class="node">
<a name="Invoking-Gcov"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Gcov-and-Optimization">Gcov and Optimization</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Gcov-Intro">Gcov Intro</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Gcov">Gcov</a>

</div>

<h3 class="section">10.2 Invoking <samp><span class="command">gcov</span></samp></h3>

<pre class="smallexample">     gcov <span class="roman">[</span><var>options</var><span class="roman">]</span> <var>sourcefiles</var>
</pre>
 <p><samp><span class="command">gcov</span></samp> accepts the following options:

<!-- man begin OPTIONS -->
     <dl>
<dt><code>-h</code><dt><code>--help</code><dd>Display help about using <samp><span class="command">gcov</span></samp> (on the standard output), and
exit without doing any further processing.

     <br><dt><code>-v</code><dt><code>--version</code><dd>Display the <samp><span class="command">gcov</span></samp> version number (on the standard output),
and exit without doing any further processing.

     <br><dt><code>-a</code><dt><code>--all-blocks</code><dd>Write individual execution counts for every basic block.  Normally gcov
outputs execution counts only for the main blocks of a line.  With this
option you can determine if blocks within a single line are not being
executed.

     <br><dt><code>-b</code><dt><code>--branch-probabilities</code><dd>Write branch frequencies to the output file, and write branch summary
info to the standard output.  This option allows you to see how often
each branch in your program was taken.  Unconditional branches will not
be shown, unless the <samp><span class="option">-u</span></samp> option is given.

     <br><dt><code>-c</code><dt><code>--branch-counts</code><dd>Write branch frequencies as the number of branches taken, rather than
the percentage of branches taken.

     <br><dt><code>-n</code><dt><code>--no-output</code><dd>Do not create the <samp><span class="command">gcov</span></samp> output file.

     <br><dt><code>-l</code><dt><code>--long-file-names</code><dd>Create long file names for included source files.  For example, if the
header file <samp><span class="file">x.h</span></samp> contains code, and was included in the file
<samp><span class="file">a.c</span></samp>, then running <samp><span class="command">gcov</span></samp> on the file <samp><span class="file">a.c</span></samp> will produce
an output file called <samp><span class="file">a.c##x.h.gcov</span></samp> instead of <samp><span class="file">x.h.gcov</span></samp>. 
This can be useful if <samp><span class="file">x.h</span></samp> is included in multiple source
files.  If you use the &lsquo;<samp><span class="samp">-p</span></samp>&rsquo; option, both the including and
included file names will be complete path names.

     <br><dt><code>-p</code><dt><code>--preserve-paths</code><dd>Preserve complete path information in the names of generated
<samp><span class="file">.gcov</span></samp> files.  Without this option, just the filename component is
used.  With this option, all directories are used, with &lsquo;<samp><span class="samp">/</span></samp>&rsquo; characters
translated to &lsquo;<samp><span class="samp">#</span></samp>&rsquo; characters, <samp><span class="file">.</span></samp> directory components
removed and <samp><span class="file">..</span></samp>
components renamed to &lsquo;<samp><span class="samp">^</span></samp>&rsquo;.  This is useful if sourcefiles are in several
different directories.  It also affects the &lsquo;<samp><span class="samp">-l</span></samp>&rsquo; option.

     <br><dt><code>-f</code><dt><code>--function-summaries</code><dd>Output summaries for each function in addition to the file level summary.

     <br><dt><code>-o </code><var>directory|file</var><dt><code>--object-directory </code><var>directory</var><dt><code>--object-file </code><var>file</var><dd>Specify either the directory containing the gcov data files, or the
object path name.  The <samp><span class="file">.gcno</span></samp>, and
<samp><span class="file">.gcda</span></samp> data files are searched for using this option.  If a directory
is specified, the data files are in that directory and named after the
source file name, without its extension.  If a file is specified here,
the data files are named after that file, without its extension.  If this
option is not supplied, it defaults to the current directory.

     <br><dt><code>-u</code><dt><code>--unconditional-branches</code><dd>When branch probabilities are given, include those of unconditional branches. 
Unconditional branches are normally not interesting.

     <br><dt><code>-d</code><dt><code>--display-progress</code><dd>Display the progress on the standard output.

 </dl>

 <p><samp><span class="command">gcov</span></samp> should be run with the current directory the same as that
when you invoked the compiler.  Otherwise it will not be able to locate
the source files.  <samp><span class="command">gcov</span></samp> produces files called
<samp><var>mangledname</var><span class="file">.gcov</span></samp> in the current directory.  These contain
the coverage information of the source file they correspond to. 
One <samp><span class="file">.gcov</span></samp> file is produced for each source file containing code,
which was compiled to produce the data files.  The <var>mangledname</var> part
of the output file name is usually simply the source file name, but can
be something more complicated if the &lsquo;<samp><span class="samp">-l</span></samp>&rsquo; or &lsquo;<samp><span class="samp">-p</span></samp>&rsquo; options are
given.  Refer to those options for details.

 <p>The <samp><span class="file">.gcov</span></samp> files contain the &lsquo;<samp><span class="samp">:</span></samp>&rsquo; separated fields along with
program source code.  The format is

<pre class="smallexample">     <var>execution_count</var>:<var>line_number</var>:<var>source line text</var>
</pre>
 <p>Additional block information may succeed each line, when requested by
command line option.  The <var>execution_count</var> is &lsquo;<samp><span class="samp">-</span></samp>&rsquo; for lines
containing no code and &lsquo;<samp><span class="samp">#####</span></samp>&rsquo; for lines which were never executed. 
Some lines of information at the start have <var>line_number</var> of zero.

 <p>The preamble lines are of the form

<pre class="smallexample">     -:0:<var>tag</var>:<var>value</var>
</pre>
 <p>The ordering and number of these preamble lines will be augmented as
<samp><span class="command">gcov</span></samp> development progresses &mdash; do not rely on them remaining
unchanged.  Use <var>tag</var> to locate a particular preamble line.

 <p>The additional block information is of the form

<pre class="smallexample">     <var>tag</var> <var>information</var>
</pre>
 <p>The <var>information</var> is human readable, but designed to be simple
enough for machine parsing too.

 <p>When printing percentages, 0% and 100% are only printed when the values
are <em>exactly</em> 0% and 100% respectively.  Other values which would
conventionally be rounded to 0% or 100% are instead printed as the
nearest non-boundary value.

 <p>When using <samp><span class="command">gcov</span></samp>, you must first compile your program with two
special GCC options: &lsquo;<samp><span class="samp">-fprofile-arcs -ftest-coverage</span></samp>&rsquo;. 
This tells the compiler to generate additional information needed by
gcov (basically a flow graph of the program) and also includes
additional code in the object files for generating the extra profiling
information needed by gcov.  These additional files are placed in the
directory where the object file is located.

 <p>Running the program will cause profile output to be generated.  For each
source file compiled with <samp><span class="option">-fprofile-arcs</span></samp>, an accompanying
<samp><span class="file">.gcda</span></samp> file will be placed in the object file directory.

 <p>Running <samp><span class="command">gcov</span></samp> with your program's source file names as arguments
will now produce a listing of the code along with frequency of execution
for each line.  For example, if your program is called <samp><span class="file">tmp.c</span></samp>, this
is what you see when you use the basic <samp><span class="command">gcov</span></samp> facility:

<pre class="smallexample">     $ gcc -fprofile-arcs -ftest-coverage tmp.c
     $ a.out
     $ gcov tmp.c
     90.00% of 10 source lines executed in file tmp.c
     Creating tmp.c.gcov.
</pre>
 <p>The file <samp><span class="file">tmp.c.gcov</span></samp> contains output from <samp><span class="command">gcov</span></samp>. 
Here is a sample:

<pre class="smallexample">             -:    0:Source:tmp.c
             -:    0:Graph:tmp.gcno
             -:    0:Data:tmp.gcda
             -:    0:Runs:1
             -:    0:Programs:1
             -:    1:#include &lt;stdio.h&gt;
             -:    2:
             -:    3:int main (void)
             1:    4:{
             1:    5:  int i, total;
             -:    6:
             1:    7:  total = 0;
             -:    8:
            11:    9:  for (i = 0; i &lt; 10; i++)
            10:   10:    total += i;
             -:   11:
             1:   12:  if (total != 45)
         #####:   13:    printf ("Failure\n");
             -:   14:  else
             1:   15:    printf ("Success\n");
             1:   16:  return 0;
             -:   17:}
</pre>
 <p>When you use the <samp><span class="option">-a</span></samp> option, you will get individual block
counts, and the output looks like this:

<pre class="smallexample">             -:    0:Source:tmp.c
             -:    0:Graph:tmp.gcno
             -:    0:Data:tmp.gcda
             -:    0:Runs:1
             -:    0:Programs:1
             -:    1:#include &lt;stdio.h&gt;
             -:    2:
             -:    3:int main (void)
             1:    4:{
             1:    4-block  0
             1:    5:  int i, total;
             -:    6:
             1:    7:  total = 0;
             -:    8:
            11:    9:  for (i = 0; i &lt; 10; i++)
            11:    9-block  0
            10:   10:    total += i;
            10:   10-block  0
             -:   11:
             1:   12:  if (total != 45)
             1:   12-block  0
         #####:   13:    printf ("Failure\n");
         $$$$$:   13-block  0
             -:   14:  else
             1:   15:    printf ("Success\n");
             1:   15-block  0
             1:   16:  return 0;
             1:   16-block  0
             -:   17:}
</pre>
 <p>In this mode, each basic block is only shown on one line &ndash; the last
line of the block.  A multi-line block will only contribute to the
execution count of that last line, and other lines will not be shown
to contain code, unless previous blocks end on those lines. 
The total execution count of a line is shown and subsequent lines show
the execution counts for individual blocks that end on that line.  After each
block, the branch and call counts of the block will be shown, if the
<samp><span class="option">-b</span></samp> option is given.

 <p>Because of the way GCC instruments calls, a call count can be shown
after a line with no individual blocks. 
As you can see, line 13 contains a basic block that was not executed.

 <p>When you use the <samp><span class="option">-b</span></samp> option, your output looks like this:

<pre class="smallexample">     $ gcov -b tmp.c
     90.00% of 10 source lines executed in file tmp.c
     80.00% of 5 branches executed in file tmp.c
     80.00% of 5 branches taken at least once in file tmp.c
     50.00% of 2 calls executed in file tmp.c
     Creating tmp.c.gcov.
</pre>
 <p>Here is a sample of a resulting <samp><span class="file">tmp.c.gcov</span></samp> file:

<pre class="smallexample">             -:    0:Source:tmp.c
             -:    0:Graph:tmp.gcno
             -:    0:Data:tmp.gcda
             -:    0:Runs:1
             -:    0:Programs:1
             -:    1:#include &lt;stdio.h&gt;
             -:    2:
             -:    3:int main (void)
     function main called 1 returned 1 blocks executed 75%
             1:    4:{
             1:    5:  int i, total;
             -:    6:
             1:    7:  total = 0;
             -:    8:
            11:    9:  for (i = 0; i &lt; 10; i++)
     branch  0 taken 91% (fallthrough)
     branch  1 taken 9%
            10:   10:    total += i;
             -:   11:
             1:   12:  if (total != 45)
     branch  0 taken 0% (fallthrough)
     branch  1 taken 100%
         #####:   13:    printf ("Failure\n");
     call    0 never executed
             -:   14:  else
             1:   15:    printf ("Success\n");
     call    0 called 1 returned 100%
             1:   16:  return 0;
             -:   17:}
</pre>
 <p>For each function, a line is printed showing how many times the function
is called, how many times it returns and what percentage of the
function's blocks were executed.

 <p>For each basic block, a line is printed after the last line of the basic
block describing the branch or call that ends the basic block.  There can
be multiple branches and calls listed for a single source line if there
are multiple basic blocks that end on that line.  In this case, the
branches and calls are each given a number.  There is no simple way to map
these branches and calls back to source constructs.  In general, though,
the lowest numbered branch or call will correspond to the leftmost construct
on the source line.

 <p>For a branch, if it was executed at least once, then a percentage
indicating the number of times the branch was taken divided by the
number of times the branch was executed will be printed.  Otherwise, the
message &ldquo;never executed&rdquo; is printed.

 <p>For a call, if it was executed at least once, then a percentage
indicating the number of times the call returned divided by the number
of times the call was executed will be printed.  This will usually be
100%, but may be less for functions that call <code>exit</code> or <code>longjmp</code>,
and thus may not return every time they are called.

 <p>The execution counts are cumulative.  If the example program were
executed again without removing the <samp><span class="file">.gcda</span></samp> file, the count for the
number of times each line in the source was executed would be added to
the results of the previous run(s).  This is potentially useful in
several ways.  For example, it could be used to accumulate data over a
number of program runs as part of a test verification suite, or to
provide more accurate long-term information over a large number of
program runs.

 <p>The data in the <samp><span class="file">.gcda</span></samp> files is saved immediately before the program
exits.  For each source file compiled with <samp><span class="option">-fprofile-arcs</span></samp>, the
profiling code first attempts to read in an existing <samp><span class="file">.gcda</span></samp> file; if
the file doesn't match the executable (differing number of basic block
counts) it will ignore the contents of the file.  It then adds in the
new execution counts and finally writes the data to the file.

<div class="node">
<a name="Gcov-and-Optimization"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Gcov-Data-Files">Gcov Data Files</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Invoking-Gcov">Invoking Gcov</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Gcov">Gcov</a>

</div>

<h3 class="section">10.3 Using <samp><span class="command">gcov</span></samp> with GCC Optimization</h3>

<p>If you plan to use <samp><span class="command">gcov</span></samp> to help optimize your code, you must
first compile your program with two special GCC options:
&lsquo;<samp><span class="samp">-fprofile-arcs -ftest-coverage</span></samp>&rsquo;.  Aside from that, you can use any
other GCC options; but if you want to prove that every single line
in your program was executed, you should not compile with optimization
at the same time.  On some machines the optimizer can eliminate some
simple code lines by combining them with other lines.  For example, code
like this:

<pre class="smallexample">     if (a != b)
       c = 1;
     else
       c = 0;
</pre>
 <p class="noindent">can be compiled into one instruction on some machines.  In this case,
there is no way for <samp><span class="command">gcov</span></samp> to calculate separate execution counts
for each line because there isn't separate code for each line.  Hence
the <samp><span class="command">gcov</span></samp> output looks like this if you compiled the program with
optimization:

<pre class="smallexample">           100:   12:if (a != b)
           100:   13:  c = 1;
           100:   14:else
           100:   15:  c = 0;
</pre>
 <p>The output shows that this block of code, combined by optimization,
executed 100 times.  In one sense this result is correct, because there
was only one instruction representing all four of these lines.  However,
the output does not indicate how many times the result was 0 and how
many times the result was 1.

 <p>Inlineable functions can create unexpected line counts.  Line counts are
shown for the source code of the inlineable function, but what is shown
depends on where the function is inlined, or if it is not inlined at all.

 <p>If the function is not inlined, the compiler must emit an out of line
copy of the function, in any object file that needs it.  If
<samp><span class="file">fileA.o</span></samp> and <samp><span class="file">fileB.o</span></samp> both contain out of line bodies of a
particular inlineable function, they will also both contain coverage
counts for that function.  When <samp><span class="file">fileA.o</span></samp> and <samp><span class="file">fileB.o</span></samp> are
linked together, the linker will, on many systems, select one of those
out of line bodies for all calls to that function, and remove or ignore
the other.  Unfortunately, it will not remove the coverage counters for
the unused function body.  Hence when instrumented, all but one use of
that function will show zero counts.

 <p>If the function is inlined in several places, the block structure in
each location might not be the same.  For instance, a condition might
now be calculable at compile time in some instances.  Because the
coverage of all the uses of the inline function will be shown for the
same source lines, the line counts themselves might seem inconsistent.

<!-- man end -->
<div class="node">
<a name="Gcov-Data-Files"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Cross_002dprofiling">Cross-profiling</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Gcov-and-Optimization">Gcov and Optimization</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Gcov">Gcov</a>

</div>

<h3 class="section">10.4 Brief description of <samp><span class="command">gcov</span></samp> data files</h3>

<p><samp><span class="command">gcov</span></samp> uses two files for profiling.  The names of these files
are derived from the original <em>object</em> file by substituting the
file suffix with either <samp><span class="file">.gcno</span></samp>, or <samp><span class="file">.gcda</span></samp>.  All of these files
are placed in the same directory as the object file, and contain data
stored in a platform-independent format.

 <p>The <samp><span class="file">.gcno</span></samp> file is generated when the source file is compiled with
the GCC <samp><span class="option">-ftest-coverage</span></samp> option.  It contains information to
reconstruct the basic block graphs and assign source line numbers to
blocks.

 <p>The <samp><span class="file">.gcda</span></samp> file is generated when a program containing object files
built with the GCC <samp><span class="option">-fprofile-arcs</span></samp> option is executed.  A
separate <samp><span class="file">.gcda</span></samp> file is created for each object file compiled with
this option.  It contains arc transition counts, and some summary
information.

 <p>The full details of the file format is specified in <samp><span class="file">gcov-io.h</span></samp>,
and functions provided in that header file should be used to access the
coverage files.

<div class="node">
<a name="Cross-profiling"></a>
<a name="Cross_002dprofiling"></a>
<p><hr>
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Gcov-Data-Files">Gcov Data Files</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Gcov">Gcov</a>

</div>

<h3 class="section">10.5 Data file relocation to support cross-profiling</h3>

<p>Running the program will cause profile output to be generated.  For each
source file compiled with <samp><span class="option">-fprofile-arcs</span></samp>, an accompanying <samp><span class="file">.gcda</span></samp>
file will be placed in the object file directory. That implicitly requires
running the program on the same system as it was built or having the same
absolute directory structure on the target system. The program will try
to create the needed directory structure, if it is not already present.

 <p>To support cross-profiling, a program compiled with <samp><span class="option">-fprofile-arcs</span></samp>
can relocate the data files based on two environment variables:

     <ul>
<li>GCOV_PREFIX contains the prefix to add to the absolute paths
in the object file. Prefix can be absolute, or relative.  The
default is no prefix.

     <li>GCOV_PREFIX_STRIP indicates the how many initial directory names to strip off
the hardwired absolute paths. Default value is 0.

     <p><em>Note:</em> If GCOV_PREFIX_STRIP is set without GCOV_PREFIX is undefined,
 then a relative path is made out of the hardwired absolute paths. 
</ul>

 <p>For example, if the object file <samp><span class="file">/user/build/foo.o</span></samp> was built with
<samp><span class="option">-fprofile-arcs</span></samp>, the final executable will try to create the data file
<samp><span class="file">/user/build/foo.gcda</span></samp> when running on the target system.  This will
fail if the corresponding directory does not exist and it is unable to create
it.  This can be overcome by, for example, setting the environment as
&lsquo;<samp><span class="samp">GCOV_PREFIX=/target/run</span></samp>&rsquo; and &lsquo;<samp><span class="samp">GCOV_PREFIX_STRIP=1</span></samp>&rsquo;.  Such a
setting will name the data file <samp><span class="file">/target/run/build/foo.gcda</span></samp>.

 <p>You must move the data files to the expected directory tree in order to
use them for profile directed optimizations (<samp><span class="option">--use-profile</span></samp>), or to
use the <samp><span class="command">gcov</span></samp> tool.

<!-- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, -->
<!-- 1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Trouble"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Bugs">Bugs</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Gcov">Gcov</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Top">Top</a>

</div>

<h2 class="chapter">11 Known Causes of Trouble with GCC</h2>

<p><a name="index-bugs_002c-known-3288"></a><a name="index-installation-trouble-3289"></a><a name="index-known-causes-of-trouble-3290"></a>
This section describes known problems that affect users of GCC.  Most
of these are not GCC bugs per se&mdash;if they were, we would fix them. 
But the result for a user may be like the result of a bug.

 <p>Some of these problems are due to bugs in other software, some are
missing features that are too much work to add, and some are places
where people's opinions differ as to what is best.

<ul class="menu">
<li><a accesskey="1" href="#Actual-Bugs">Actual Bugs</a>:          Bugs we will fix later. 
<li><a accesskey="2" href="#Cross_002dCompiler-Problems">Cross-Compiler Problems</a>:  Common problems of cross compiling with GCC. 
<li><a accesskey="3" href="#Interoperation">Interoperation</a>:       Problems using GCC with other compilers,
                        and with certain linkers, assemblers and debuggers. 
<li><a accesskey="4" href="#Incompatibilities">Incompatibilities</a>:    GCC is incompatible with traditional C. 
<li><a accesskey="5" href="#Fixed-Headers">Fixed Headers</a>:        GCC uses corrected versions of system header files. 
                        This is necessary, but doesn't always work smoothly. 
<li><a accesskey="6" href="#Standard-Libraries">Standard Libraries</a>:   GCC uses the system C library, which might not be
                        compliant with the ISO C standard. 
<li><a accesskey="7" href="#Disappointments">Disappointments</a>:      Regrettable things we can't change, but not quite bugs. 
<li><a accesskey="8" href="#C_002b_002b-Misunderstandings">C++ Misunderstandings</a>:  Common misunderstandings with GNU C++. 
<li><a accesskey="9" href="#Non_002dbugs">Non-bugs</a>:             Things we think are right, but some others disagree. 
<li><a href="#Warnings-and-Errors">Warnings and Errors</a>:  Which problems in your code get warnings,
                        and which get errors. 
</ul>

<div class="node">
<a name="Actual-Bugs"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Cross_002dCompiler-Problems">Cross-Compiler Problems</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Trouble">Trouble</a>

</div>

<h3 class="section">11.1 Actual Bugs We Haven't Fixed Yet</h3>

     <ul>
<li>The <code>fixincludes</code> script interacts badly with automounters; if the
directory of system header files is automounted, it tends to be
unmounted while <code>fixincludes</code> is running.  This would seem to be a
bug in the automounter.  We don't know any good way to work around it. 
</ul>

<div class="node">
<a name="Cross-Compiler-Problems"></a>
<a name="Cross_002dCompiler-Problems"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Interoperation">Interoperation</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Actual-Bugs">Actual Bugs</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Trouble">Trouble</a>

</div>

<h3 class="section">11.2 Cross-Compiler Problems</h3>

<p>You may run into problems with cross compilation on certain machines,
for several reasons.

     <ul>
<li>At present, the program <samp><span class="file">mips-tfile</span></samp> which adds debug
support to object files on MIPS systems does not work in a cross
compile environment. 
</ul>

<div class="node">
<a name="Interoperation"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Incompatibilities">Incompatibilities</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Cross_002dCompiler-Problems">Cross-Compiler Problems</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Trouble">Trouble</a>

</div>

<h3 class="section">11.3 Interoperation</h3>

<p>This section lists various difficulties encountered in using GCC
together with other compilers or with the assemblers, linkers,
libraries and debuggers on certain systems.

     <ul>
<li>On many platforms, GCC supports a different ABI for C++ than do other
compilers, so the object files compiled by GCC cannot be used with object
files generated by another C++ compiler.

     <p>An area where the difference is most apparent is name mangling.  The use
of different name mangling is intentional, to protect you from more subtle
problems. 
Compilers differ as to many internal details of C++ implementation,
including: how class instances are laid out, how multiple inheritance is
implemented, and how virtual function calls are handled.  If the name
encoding were made the same, your programs would link against libraries
provided from other compilers&mdash;but the programs would then crash when
run.  Incompatible libraries are then detected at link time, rather than
at run time.

     <li>On some BSD systems, including some versions of Ultrix, use of profiling
causes static variable destructors (currently used only in C++) not to
be run.

     <li>On some SGI systems, when you use <samp><span class="option">-lgl_s</span></samp> as an option,
it gets translated magically to &lsquo;<samp><span class="samp">-lgl_s -lX11_s -lc_s</span></samp>&rsquo;. 
Naturally, this does not happen when you use GCC. 
You must specify all three options explicitly.

     <li>On a SPARC, GCC aligns all values of type <code>double</code> on an 8-byte
boundary, and it expects every <code>double</code> to be so aligned.  The Sun
compiler usually gives <code>double</code> values 8-byte alignment, with one
exception: function arguments of type <code>double</code> may not be aligned.

     <p>As a result, if a function compiled with Sun CC takes the address of an
argument of type <code>double</code> and passes this pointer of type
<code>double *</code> to a function compiled with GCC, dereferencing the
pointer may cause a fatal signal.

     <p>One way to solve this problem is to compile your entire program with GCC. 
Another solution is to modify the function that is compiled with
Sun CC to copy the argument into a local variable; local variables
are always properly aligned.  A third solution is to modify the function
that uses the pointer to dereference it via the following function
<code>access_double</code> instead of directly with &lsquo;<samp><span class="samp">*</span></samp>&rsquo;:

     <pre class="smallexample">          inline double
          access_double (double *unaligned_ptr)
          {
            union d2i { double d; int i[2]; };
          
            union d2i *p = (union d2i *) unaligned_ptr;
            union d2i u;
          
            u.i[0] = p-&gt;i[0];
            u.i[1] = p-&gt;i[1];
          
            return u.d;
          }
</pre>
     <p class="noindent">Storing into the pointer can be done likewise with the same union.

     <li>On Solaris, the <code>malloc</code> function in the <samp><span class="file">libmalloc.a</span></samp> library
may allocate memory that is only 4 byte aligned.  Since GCC on the
SPARC assumes that doubles are 8 byte aligned, this may result in a
fatal signal if doubles are stored in memory allocated by the
<samp><span class="file">libmalloc.a</span></samp> library.

     <p>The solution is to not use the <samp><span class="file">libmalloc.a</span></samp> library.  Use instead
<code>malloc</code> and related functions from <samp><span class="file">libc.a</span></samp>; they do not have
this problem.

     <li>On the HP PA machine, ADB sometimes fails to work on functions compiled
with GCC.  Specifically, it fails to work on functions that use
<code>alloca</code> or variable-size arrays.  This is because GCC doesn't
generate HP-UX unwind descriptors for such functions.  It may even be
impossible to generate them.

     <li>Debugging (<samp><span class="option">-g</span></samp>) is not supported on the HP PA machine, unless you use
the preliminary GNU tools.

     <li>Taking the address of a label may generate errors from the HP-UX
PA assembler.  GAS for the PA does not have this problem.

     <li>Using floating point parameters for indirect calls to static functions
will not work when using the HP assembler.  There simply is no way for GCC
to specify what registers hold arguments for static functions when using
the HP assembler.  GAS for the PA does not have this problem.

     <li>In extremely rare cases involving some very large functions you may
receive errors from the HP linker complaining about an out of bounds
unconditional branch offset.  This used to occur more often in previous
versions of GCC, but is now exceptionally rare.  If you should run
into it, you can work around by making your function smaller.

     <li>GCC compiled code sometimes emits warnings from the HP-UX assembler of
the form:

     <pre class="smallexample">          (warning) Use of GR3 when
            frame &gt;= 8192 may cause conflict.
</pre>
     <p>These warnings are harmless and can be safely ignored.

     <li>In extremely rare cases involving some very large functions you may
receive errors from the AIX Assembler complaining about a displacement
that is too large.  If you should run into it, you can work around by
making your function smaller.

     <li>The <samp><span class="file">libstdc++.a</span></samp> library in GCC relies on the SVR4 dynamic
linker semantics which merges global symbols between libraries and
applications, especially necessary for C++ streams functionality. 
This is not the default behavior of AIX shared libraries and dynamic
linking.  <samp><span class="file">libstdc++.a</span></samp> is built on AIX with &ldquo;runtime-linking&rdquo;
enabled so that symbol merging can occur.  To utilize this feature,
the application linked with <samp><span class="file">libstdc++.a</span></samp> must include the
<samp><span class="option">-Wl,-brtl</span></samp> flag on the link line.  G++ cannot impose this
because this option may interfere with the semantics of the user
program and users may not always use &lsquo;<samp><span class="samp">g++</span></samp>&rsquo; to link his or her
application.  Applications are not required to use the
<samp><span class="option">-Wl,-brtl</span></samp> flag on the link line&mdash;the rest of the
<samp><span class="file">libstdc++.a</span></samp> library which is not dependent on the symbol
merging semantics will continue to function correctly.

     <li>An application can interpose its own definition of functions for
functions invoked by <samp><span class="file">libstdc++.a</span></samp> with &ldquo;runtime-linking&rdquo;
enabled on AIX.  To accomplish this the application must be linked
with &ldquo;runtime-linking&rdquo; option and the functions explicitly must be
exported by the application (<samp><span class="option">-Wl,-brtl,-bE:exportfile</span></samp>).

     <li>AIX on the RS/6000 provides support (NLS) for environments outside of
the United States.  Compilers and assemblers use NLS to support
locale-specific representations of various objects including
floating-point numbers (&lsquo;<samp><span class="samp">.</span></samp>&rsquo; vs &lsquo;<samp><span class="samp">,</span></samp>&rsquo; for separating decimal
fractions).  There have been problems reported where the library linked
with GCC does not produce the same floating-point formats that the
assembler accepts.  If you have this problem, set the <samp><span class="env">LANG</span></samp>
environment variable to &lsquo;<samp><span class="samp">C</span></samp>&rsquo; or &lsquo;<samp><span class="samp">En_US</span></samp>&rsquo;.

     <li><a name="index-fdollars_002din_002didentifiers-3291"></a>Even if you specify <samp><span class="option">-fdollars-in-identifiers</span></samp>,
you cannot successfully use &lsquo;<samp><span class="samp">$</span></samp>&rsquo; in identifiers on the RS/6000 due
to a restriction in the IBM assembler.  GAS supports these
identifiers.

 </ul>

<div class="node">
<a name="Incompatibilities"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Fixed-Headers">Fixed Headers</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Interoperation">Interoperation</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Trouble">Trouble</a>

</div>

<h3 class="section">11.4 Incompatibilities of GCC</h3>

<p><a name="index-incompatibilities-of-GCC-3292"></a><a name="index-traditional-3293"></a>
There are several noteworthy incompatibilities between GNU C and K&amp;R
(non-ISO) versions of C.

     
<a name="index-string-constants-3294"></a>
<a name="index-read_002donly-strings-3295"></a>
<a name="index-shared-strings-3296"></a>
<ul><li>GCC normally makes string constants read-only.  If several
identical-looking string constants are used, GCC stores only one
copy of the string.

     <p><a name="index-g_t_0040code_007bmktemp_007d_002c-and-constant-strings-3297"></a>One consequence is that you cannot call <code>mktemp</code> with a string
constant argument.  The function <code>mktemp</code> always alters the
string its argument points to.

     <p><a name="index-g_t_0040code_007bsscanf_007d_002c-and-constant-strings-3298"></a><a name="index-g_t_0040code_007bfscanf_007d_002c-and-constant-strings-3299"></a><a name="index-g_t_0040code_007bscanf_007d_002c-and-constant-strings-3300"></a>Another consequence is that <code>sscanf</code> does not work on some very
old systems when passed a string constant as its format control string
or input.  This is because <code>sscanf</code> incorrectly tries to write
into the string constant.  Likewise <code>fscanf</code> and <code>scanf</code>.

     <p>The solution to these problems is to change the program to use
<code>char</code>-array variables with initialization strings for these
purposes instead of string constants.

     <li><code>-2147483648</code> is positive.

     <p>This is because 2147483648 cannot fit in the type <code>int</code>, so
(following the ISO C rules) its data type is <code>unsigned long int</code>. 
Negating this value yields 2147483648 again.

     <li>GCC does not substitute macro arguments when they appear inside of
string constants.  For example, the following macro in GCC

     <pre class="smallexample">          #define foo(a) "a"
</pre>
     <p class="noindent">will produce output <code>"a"</code> regardless of what the argument <var>a</var> is.

     <p><a name="index-g_t_0040code_007bsetjmp_007d-incompatibilities-3301"></a><a name="index-g_t_0040code_007blongjmp_007d-incompatibilities-3302"></a><li>When you use <code>setjmp</code> and <code>longjmp</code>, the only automatic
variables guaranteed to remain valid are those declared
<code>volatile</code>.  This is a consequence of automatic register
allocation.  Consider this function:

     <pre class="smallexample">          jmp_buf j;
          
          foo ()
          {
            int a, b;
          
            a = fun1 ();
            if (setjmp (j))
              return a;
          
            a = fun2 ();
            /* <code>longjmp (j)</code><span class="roman"> may occur in </span><code>fun3</code><span class="roman">.</span> */
            return a + fun3 ();
          }
</pre>
     <p>Here <code>a</code> may or may not be restored to its first value when the
<code>longjmp</code> occurs.  If <code>a</code> is allocated in a register, then
its first value is restored; otherwise, it keeps the last value stored
in it.

     <p><a name="index-W-3303"></a>If you use the <samp><span class="option">-W</span></samp> option with the <samp><span class="option">-O</span></samp> option, you will
get a warning when GCC thinks such a problem might be possible.

     <li>Programs that use preprocessing directives in the middle of macro
arguments do not work with GCC.  For example, a program like this
will not work:

     <pre class="smallexample">          foobar (
          #define luser
                  hack)
</pre>
     <p>ISO C does not permit such a construct.

     <li>K&amp;R compilers allow comments to cross over an inclusion boundary
(i.e. started in an include file and ended in the including file).

     <p><a name="index-external-declaration-scope-3304"></a><a name="index-scope-of-external-declarations-3305"></a><a name="index-declaration-scope-3306"></a><li>Declarations of external variables and functions within a block apply
only to the block containing the declaration.  In other words, they
have the same scope as any other declaration in the same place.

     <p>In some other C compilers, an <code>extern</code> declaration affects all the
rest of the file even if it happens within a block.

     <li>In traditional C, you can combine <code>long</code>, etc., with a typedef name,
as shown here:

     <pre class="smallexample">          typedef int foo;
          typedef long foo bar;
</pre>
     <p>In ISO C, this is not allowed: <code>long</code> and other type modifiers
require an explicit <code>int</code>.

     <p><a name="index-typedef-names-as-function-parameters-3307"></a><li>PCC allows typedef names to be used as function parameters.

     <li>Traditional C allows the following erroneous pair of declarations to
appear together in a given scope:

     <pre class="smallexample">          typedef int foo;
          typedef foo foo;
</pre>
     <li>GCC treats all characters of identifiers as significant.  According to
K&amp;R-1 (2.2), &ldquo;No more than the first eight characters are significant,
although more may be used.&rdquo;.  Also according to K&amp;R-1 (2.2), &ldquo;An
identifier is a sequence of letters and digits; the first character must
be a letter.  The underscore _ counts as a letter.&rdquo;, but GCC also
allows dollar signs in identifiers.

     <p><a name="index-whitespace-3308"></a><li>PCC allows whitespace in the middle of compound assignment operators
such as &lsquo;<samp><span class="samp">+=</span></samp>&rsquo;.  GCC, following the ISO standard, does not
allow this.

     <p><a name="index-apostrophes-3309"></a><a name="index-g_t_0040code_007b_0027_007d-3310"></a><li>GCC complains about unterminated character constants inside of
preprocessing conditionals that fail.  Some programs have English
comments enclosed in conditionals that are guaranteed to fail; if these
comments contain apostrophes, GCC will probably report an error.  For
example, this code would produce an error:

     <pre class="smallexample">          #if 0
          You can't expect this to work.
          #endif
</pre>
     <p>The best solution to such a problem is to put the text into an actual
C comment delimited by &lsquo;<samp><span class="samp">/*...*/</span></samp>&rsquo;.

     <li>Many user programs contain the declaration &lsquo;<samp><span class="samp">long time ();</span></samp>&rsquo;.  In the
past, the system header files on many systems did not actually declare
<code>time</code>, so it did not matter what type your program declared it to
return.  But in systems with ISO C headers, <code>time</code> is declared to
return <code>time_t</code>, and if that is not the same as <code>long</code>, then
&lsquo;<samp><span class="samp">long time ();</span></samp>&rsquo; is erroneous.

     <p>The solution is to change your program to use appropriate system headers
(<code>&lt;time.h&gt;</code> on systems with ISO C headers) and not to declare
<code>time</code> if the system header files declare it, or failing that to
use <code>time_t</code> as the return type of <code>time</code>.

     <p><a name="index-g_t_0040code_007bfloat_007d-as-function-value-type-3311"></a><li>When compiling functions that return <code>float</code>, PCC converts it to
a double.  GCC actually returns a <code>float</code>.  If you are concerned
with PCC compatibility, you should declare your functions to return
<code>double</code>; you might as well say what you mean.

     <p><a name="index-structures-3312"></a><a name="index-unions-3313"></a><li>When compiling functions that return structures or unions, GCC
output code normally uses a method different from that used on most
versions of Unix.  As a result, code compiled with GCC cannot call
a structure-returning function compiled with PCC, and vice versa.

     <p>The method used by GCC is as follows: a structure or union which is
1, 2, 4 or 8 bytes long is returned like a scalar.  A structure or union
with any other size is stored into an address supplied by the caller
(usually in a special, fixed register, but on some machines it is passed
on the stack).  The target hook <code>TARGET_STRUCT_VALUE_RTX</code>
tells GCC where to pass this address.

     <p>By contrast, PCC on most target machines returns structures and unions
of any size by copying the data into an area of static storage, and then
returning the address of that storage as if it were a pointer value. 
The caller must copy the data from that memory area to the place where
the value is wanted.  GCC does not use this method because it is
slower and nonreentrant.

     <p>On some newer machines, PCC uses a reentrant convention for all
structure and union returning.  GCC on most of these machines uses a
compatible convention when returning structures and unions in memory,
but still returns small structures and unions in registers.

     <p><a name="index-fpcc_002dstruct_002dreturn-3314"></a>You can tell GCC to use a compatible convention for all structure and
union returning with the option <samp><span class="option">-fpcc-struct-return</span></samp>.

     <p><a name="index-preprocessing-tokens-3315"></a><a name="index-preprocessing-numbers-3316"></a><li>GCC complains about program fragments such as &lsquo;<samp><span class="samp">0x74ae-0x4000</span></samp>&rsquo;
which appear to be two hexadecimal constants separated by the minus
operator.  Actually, this string is a single <dfn>preprocessing token</dfn>. 
Each such token must correspond to one token in C.  Since this does not,
GCC prints an error message.  Although it may appear obvious that what
is meant is an operator and two values, the ISO C standard specifically
requires that this be treated as erroneous.

     <p>A <dfn>preprocessing token</dfn> is a <dfn>preprocessing number</dfn> if it
begins with a digit and is followed by letters, underscores, digits,
periods and &lsquo;<samp><span class="samp">e+</span></samp>&rsquo;, &lsquo;<samp><span class="samp">e-</span></samp>&rsquo;, &lsquo;<samp><span class="samp">E+</span></samp>&rsquo;, &lsquo;<samp><span class="samp">E-</span></samp>&rsquo;, &lsquo;<samp><span class="samp">p+</span></samp>&rsquo;,
&lsquo;<samp><span class="samp">p-</span></samp>&rsquo;, &lsquo;<samp><span class="samp">P+</span></samp>&rsquo;, or &lsquo;<samp><span class="samp">P-</span></samp>&rsquo; character sequences.  (In strict C90
mode, the sequences &lsquo;<samp><span class="samp">p+</span></samp>&rsquo;, &lsquo;<samp><span class="samp">p-</span></samp>&rsquo;, &lsquo;<samp><span class="samp">P+</span></samp>&rsquo; and &lsquo;<samp><span class="samp">P-</span></samp>&rsquo; cannot
appear in preprocessing numbers.)

     <p>To make the above program fragment valid, place whitespace in front of
the minus sign.  This whitespace will end the preprocessing number. 
</ul>

<div class="node">
<a name="Fixed-Headers"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Standard-Libraries">Standard Libraries</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Incompatibilities">Incompatibilities</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Trouble">Trouble</a>

</div>

<h3 class="section">11.5 Fixed Header Files</h3>

<p>GCC needs to install corrected versions of some system header files. 
This is because most target systems have some header files that won't
work with GCC unless they are changed.  Some have bugs, some are
incompatible with ISO C, and some depend on special features of other
compilers.

 <p>Installing GCC automatically creates and installs the fixed header
files, by running a program called <code>fixincludes</code>.  Normally, you
don't need to pay attention to this.  But there are cases where it
doesn't do the right thing automatically.

     <ul>
<li>If you update the system's header files, such as by installing a new
system version, the fixed header files of GCC are not automatically
updated.  They can be updated using the <samp><span class="command">mkheaders</span></samp> script
installed in
<samp><var>libexecdir</var><span class="file">/gcc/</span><var>target</var><span class="file">/</span><var>version</var><span class="file">/install-tools/</span></samp>.

     <li>On some systems, header file directories contain
machine-specific symbolic links in certain places.  This makes it
possible to share most of the header files among hosts running the
same version of the system on different machine models.

     <p>The programs that fix the header files do not understand this special
way of using symbolic links; therefore, the directory of fixed header
files is good only for the machine model used to build it.

     <p>It is possible to make separate sets of fixed header files for the
different machine models, and arrange a structure of symbolic links so
as to use the proper set, but you'll have to do this by hand. 
</ul>

<div class="node">
<a name="Standard-Libraries"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Disappointments">Disappointments</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Fixed-Headers">Fixed Headers</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Trouble">Trouble</a>

</div>

<h3 class="section">11.6 Standard Libraries</h3>

<p><a name="index-Wall-3317"></a>GCC by itself attempts to be a conforming freestanding implementation. 
See <a href="#Standards">Language Standards Supported by GCC</a>, for details of
what this means.  Beyond the library facilities required of such an
implementation, the rest of the C library is supplied by the vendor of
the operating system.  If that C library doesn't conform to the C
standards, then your programs might get warnings (especially when using
<samp><span class="option">-Wall</span></samp>) that you don't expect.

 <p>For example, the <code>sprintf</code> function on SunOS 4.1.3 returns
<code>char *</code> while the C standard says that <code>sprintf</code> returns an
<code>int</code>.  The <code>fixincludes</code> program could make the prototype for
this function match the Standard, but that would be wrong, since the
function will still return <code>char *</code>.

 <p>If you need a Standard compliant library, then you need to find one, as
GCC does not provide one.  The GNU C library (called <code>glibc</code>)
provides ISO C, POSIX, BSD, SystemV and X/Open compatibility for
GNU/Linux and HURD-based GNU systems; no recent version of it supports
other systems, though some very old versions did.  Version 2.2 of the
GNU C library includes nearly complete C99 support.  You could also ask
your operating system vendor if newer libraries are available.

<div class="node">
<a name="Disappointments"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#C_002b_002b-Misunderstandings">C++ Misunderstandings</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Standard-Libraries">Standard Libraries</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Trouble">Trouble</a>

</div>

<h3 class="section">11.7 Disappointments and Misunderstandings</h3>

<p>These problems are perhaps regrettable, but we don't know any practical
way around them.

     <ul>
<li>Certain local variables aren't recognized by debuggers when you compile
with optimization.

     <p>This occurs because sometimes GCC optimizes the variable out of
existence.  There is no way to tell the debugger how to compute the
value such a variable &ldquo;would have had&rdquo;, and it is not clear that would
be desirable anyway.  So GCC simply does not mention the eliminated
variable when it writes debugging information.

     <p>You have to expect a certain amount of disagreement between the
executable and your source code, when you use optimization.

     <p><a name="index-conflicting-types-3318"></a><a name="index-scope-of-declaration-3319"></a><li>Users often think it is a bug when GCC reports an error for code
like this:

     <pre class="smallexample">          int foo (struct mumble *);
          
          struct mumble { ... };
          
          int foo (struct mumble *x)
          { ... }
</pre>
     <p>This code really is erroneous, because the scope of <code>struct
mumble</code> in the prototype is limited to the argument list containing it. 
It does not refer to the <code>struct mumble</code> defined with file scope
immediately below&mdash;they are two unrelated types with similar names in
different scopes.

     <p>But in the definition of <code>foo</code>, the file-scope type is used
because that is available to be inherited.  Thus, the definition and
the prototype do not match, and you get an error.

     <p>This behavior may seem silly, but it's what the ISO standard specifies. 
It is easy enough for you to make your code work by moving the
definition of <code>struct mumble</code> above the prototype.  It's not worth
being incompatible with ISO C just to avoid an error for the example
shown above.

     <li>Accesses to bit-fields even in volatile objects works by accessing larger
objects, such as a byte or a word.  You cannot rely on what size of
object is accessed in order to read or write the bit-field; it may even
vary for a given bit-field according to the precise usage.

     <p>If you care about controlling the amount of memory that is accessed, use
volatile but do not use bit-fields.

     <li>GCC comes with shell scripts to fix certain known problems in system
header files.  They install corrected copies of various header files in
a special directory where only GCC will normally look for them.  The
scripts adapt to various systems by searching all the system header
files for the problem cases that we know about.

     <p>If new system header files are installed, nothing automatically arranges
to update the corrected header files.  They can be updated using the
<samp><span class="command">mkheaders</span></samp> script installed in
<samp><var>libexecdir</var><span class="file">/gcc/</span><var>target</var><span class="file">/</span><var>version</var><span class="file">/install-tools/</span></samp>.

     <li><a name="index-floating-point-precision-3320"></a>On 68000 and x86 systems, for instance, you can get paradoxical results
if you test the precise values of floating point numbers.  For example,
you can find that a floating point value which is not a NaN is not equal
to itself.  This results from the fact that the floating point registers
hold a few more bits of precision than fit in a <code>double</code> in memory. 
Compiled code moves values between memory and floating point registers
at its convenience, and moving them into memory truncates them.

     <p><a name="index-ffloat_002dstore-3321"></a>You can partially avoid this problem by using the <samp><span class="option">-ffloat-store</span></samp>
option (see <a href="#Optimize-Options">Optimize Options</a>).

     <li>On AIX and other platforms without weak symbol support, templates
need to be instantiated explicitly and symbols for static members
of templates will not be generated.

     <li>On AIX, GCC scans object files and library archives for static
constructors and destructors when linking an application before the
linker prunes unreferenced symbols.  This is necessary to prevent the
AIX linker from mistakenly assuming that static constructor or
destructor are unused and removing them before the scanning can occur. 
All static constructors and destructors found will be referenced even
though the modules in which they occur may not be used by the program. 
This may lead to both increased executable size and unexpected symbol
references. 
</ul>

<div class="node">
<a name="C++-Misunderstandings"></a>
<a name="C_002b_002b-Misunderstandings"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Non_002dbugs">Non-bugs</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Disappointments">Disappointments</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Trouble">Trouble</a>

</div>

<h3 class="section">11.8 Common Misunderstandings with GNU C++</h3>

<p><a name="index-misunderstandings-in-C_002b_002b-3322"></a><a name="index-surprises-in-C_002b_002b-3323"></a><a name="index-C_002b_002b-misunderstandings-3324"></a>C++ is a complex language and an evolving one, and its standard
definition (the ISO C++ standard) was only recently completed.  As a
result, your C++ compiler may occasionally surprise you, even when its
behavior is correct.  This section discusses some areas that frequently
give rise to questions of this sort.

<ul class="menu">
<li><a accesskey="1" href="#Static-Definitions">Static Definitions</a>:   Static member declarations are not definitions
<li><a accesskey="2" href="#Name-lookup">Name lookup</a>:          Name lookup, templates, and accessing members of base classes
<li><a accesskey="3" href="#Temporaries">Temporaries</a>:          Temporaries may vanish before you expect
<li><a accesskey="4" href="#Copy-Assignment">Copy Assignment</a>:      Copy Assignment operators copy virtual bases twice
</ul>

<div class="node">
<a name="Static-Definitions"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Name-lookup">Name lookup</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C_002b_002b-Misunderstandings">C++ Misunderstandings</a>

</div>

<h4 class="subsection">11.8.1 Declare <em>and</em> Define Static Members</h4>

<p><a name="index-C_002b_002b-static-data_002c-declaring-and-defining-3325"></a><a name="index-static-data-in-C_002b_002b_002c-declaring-and-defining-3326"></a><a name="index-declaring-static-data-in-C_002b_002b-3327"></a><a name="index-defining-static-data-in-C_002b_002b-3328"></a>When a class has static data members, it is not enough to <em>declare</em>
the static member; you must also <em>define</em> it.  For example:

<pre class="smallexample">     class Foo
     {
       ...
       void method();
       static int bar;
     };
</pre>
 <p>This declaration only establishes that the class <code>Foo</code> has an
<code>int</code> named <code>Foo::bar</code>, and a member function named
<code>Foo::method</code>.  But you still need to define <em>both</em>
<code>method</code> and <code>bar</code> elsewhere.  According to the ISO
standard, you must supply an initializer in one (and only one) source
file, such as:

<pre class="smallexample">     int Foo::bar = 0;
</pre>
 <p>Other C++ compilers may not correctly implement the standard behavior. 
As a result, when you switch to <samp><span class="command">g++</span></samp> from one of these compilers,
you may discover that a program that appeared to work correctly in fact
does not conform to the standard: <samp><span class="command">g++</span></samp> reports as undefined
symbols any static data members that lack definitions.

<div class="node">
<a name="Name-lookup"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Temporaries">Temporaries</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Static-Definitions">Static Definitions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C_002b_002b-Misunderstandings">C++ Misunderstandings</a>

</div>

<h4 class="subsection">11.8.2 Name lookup, templates, and accessing members of base classes</h4>

<p><a name="index-base-class-members-3329"></a><a name="index-two_002dstage-name-lookup-3330"></a><a name="index-dependent-name-lookup-3331"></a>
The C++ standard prescribes that all names that are not dependent on
template parameters are bound to their present definitions when parsing
a template function or class.<a rel="footnote" href="#fn-5" name="fnd-5"><sup>5</sup></a>  Only names that are dependent are looked up at the point
of instantiation.  For example, consider

<pre class="smallexample">       void foo(double);
     
       struct A {
         template &lt;typename T&gt;
         void f () {
           foo (1);        // <span class="roman">1</span>
           int i = N;      // <span class="roman">2</span>
           T t;
           t.bar();        // <span class="roman">3</span>
           foo (t);        // <span class="roman">4</span>
         }
     
         static const int N;
       };
</pre>
 <p>Here, the names <code>foo</code> and <code>N</code> appear in a context that does
not depend on the type of <code>T</code>.  The compiler will thus require that
they are defined in the context of use in the template, not only before
the point of instantiation, and will here use <code>::foo(double)</code> and
<code>A::N</code>, respectively.  In particular, it will convert the integer
value to a <code>double</code> when passing it to <code>::foo(double)</code>.

 <p>Conversely, <code>bar</code> and the call to <code>foo</code> in the fourth marked
line are used in contexts that do depend on the type of <code>T</code>, so
they are only looked up at the point of instantiation, and you can
provide declarations for them after declaring the template, but before
instantiating it.  In particular, if you instantiate <code>A::f&lt;int&gt;</code>,
the last line will call an overloaded <code>::foo(int)</code> if one was
provided, even if after the declaration of <code>struct A</code>.

 <p>This distinction between lookup of dependent and non-dependent names is
called two-stage (or dependent) name lookup.  G++ implements it
since version 3.4.

 <p>Two-stage name lookup sometimes leads to situations with behavior
different from non-template codes.  The most common is probably this:

<pre class="smallexample">       template &lt;typename T&gt; struct Base {
         int i;
       };
     
       template &lt;typename T&gt; struct Derived : public Base&lt;T&gt; {
         int get_i() { return i; }
       };
</pre>
 <p>In <code>get_i()</code>, <code>i</code> is not used in a dependent context, so the
compiler will look for a name declared at the enclosing namespace scope
(which is the global scope here).  It will not look into the base class,
since that is dependent and you may declare specializations of
<code>Base</code> even after declaring <code>Derived</code>, so the compiler can't
really know what <code>i</code> would refer to.  If there is no global
variable <code>i</code>, then you will get an error message.

 <p>In order to make it clear that you want the member of the base class,
you need to defer lookup until instantiation time, at which the base
class is known.  For this, you need to access <code>i</code> in a dependent
context, by either using <code>this-&gt;i</code> (remember that <code>this</code> is of
type <code>Derived&lt;T&gt;*</code>, so is obviously dependent), or using
<code>Base&lt;T&gt;::i</code>.  Alternatively, <code>Base&lt;T&gt;::i</code> might be brought
into scope by a <code>using</code>-declaration.

 <p>Another, similar example involves calling member functions of a base
class:

<pre class="smallexample">       template &lt;typename T&gt; struct Base {
           int f();
       };
     
       template &lt;typename T&gt; struct Derived : Base&lt;T&gt; {
           int g() { return f(); };
       };
</pre>
 <p>Again, the call to <code>f()</code> is not dependent on template arguments
(there are no arguments that depend on the type <code>T</code>, and it is also
not otherwise specified that the call should be in a dependent context). 
Thus a global declaration of such a function must be available, since
the one in the base class is not visible until instantiation time.  The
compiler will consequently produce the following error message:

<pre class="smallexample">       x.cc: In member function `int Derived&lt;T&gt;::g()':
       x.cc:6: error: there are no arguments to `f' that depend on a template
          parameter, so a declaration of `f' must be available
       x.cc:6: error: (if you use `-fpermissive', G++ will accept your code, but
          allowing the use of an undeclared name is deprecated)
</pre>
 <p>To make the code valid either use <code>this-&gt;f()</code>, or
<code>Base&lt;T&gt;::f()</code>.  Using the <samp><span class="option">-fpermissive</span></samp> flag will also let
the compiler accept the code, by marking all function calls for which no
declaration is visible at the time of definition of the template for
later lookup at instantiation time, as if it were a dependent call. 
We do not recommend using <samp><span class="option">-fpermissive</span></samp> to work around invalid
code, and it will also only catch cases where functions in base classes
are called, not where variables in base classes are used (as in the
example above).

 <p>Note that some compilers (including G++ versions prior to 3.4) get these
examples wrong and accept above code without an error.  Those compilers
do not implement two-stage name lookup correctly.

<div class="node">
<a name="Temporaries"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Copy-Assignment">Copy Assignment</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Name-lookup">Name lookup</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C_002b_002b-Misunderstandings">C++ Misunderstandings</a>

</div>

<h4 class="subsection">11.8.3 Temporaries May Vanish Before You Expect</h4>

<p><a name="index-temporaries_002c-lifetime-of-3332"></a><a name="index-portions-of-temporary-objects_002c-pointers-to-3333"></a>It is dangerous to use pointers or references to <em>portions</em> of a
temporary object.  The compiler may very well delete the object before
you expect it to, leaving a pointer to garbage.  The most common place
where this problem crops up is in classes like string classes,
especially ones that define a conversion function to type <code>char *</code>
or <code>const char *</code>&mdash;which is one reason why the standard
<code>string</code> class requires you to call the <code>c_str</code> member
function.  However, any class that returns a pointer to some internal
structure is potentially subject to this problem.

 <p>For example, a program may use a function <code>strfunc</code> that returns
<code>string</code> objects, and another function <code>charfunc</code> that
operates on pointers to <code>char</code>:

<pre class="smallexample">     string strfunc ();
     void charfunc (const char *);
     
     void
     f ()
     {
       const char *p = strfunc().c_str();
       ...
       charfunc (p);
       ...
       charfunc (p);
     }
</pre>
 <p class="noindent">In this situation, it may seem reasonable to save a pointer to the C
string returned by the <code>c_str</code> member function and use that rather
than call <code>c_str</code> repeatedly.  However, the temporary string
created by the call to <code>strfunc</code> is destroyed after <code>p</code> is
initialized, at which point <code>p</code> is left pointing to freed memory.

 <p>Code like this may run successfully under some other compilers,
particularly obsolete cfront-based compilers that delete temporaries
along with normal local variables.  However, the GNU C++ behavior is
standard-conforming, so if your program depends on late destruction of
temporaries it is not portable.

 <p>The safe way to write such code is to give the temporary a name, which
forces it to remain until the end of the scope of the name.  For
example:

<pre class="smallexample">     const string&amp; tmp = strfunc ();
     charfunc (tmp.c_str ());
</pre>
 <div class="node">
<a name="Copy-Assignment"></a>
<p><hr>
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Temporaries">Temporaries</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#C_002b_002b-Misunderstandings">C++ Misunderstandings</a>

</div>

<h4 class="subsection">11.8.4 Implicit Copy-Assignment for Virtual Bases</h4>

<p>When a base class is virtual, only one subobject of the base class
belongs to each full object.  Also, the constructors and destructors are
invoked only once, and called from the most-derived class.  However, such
objects behave unspecified when being assigned.  For example:

<pre class="smallexample">     struct Base{
       char *name;
       Base(char *n) : name(strdup(n)){}
       Base&amp; operator= (const Base&amp; other){
        free (name);
        name = strdup (other.name);
       }
     };
     
     struct A:virtual Base{
       int val;
       A():Base("A"){}
     };
     
     struct B:virtual Base{
       int bval;
       B():Base("B"){}
     };
     
     struct Derived:public A, public B{
       Derived():Base("Derived"){}
     };
     
     void func(Derived &amp;d1, Derived &amp;d2)
     {
       d1 = d2;
     }
</pre>
 <p>The C++ standard specifies that &lsquo;<samp><span class="samp">Base::Base</span></samp>&rsquo; is only called once
when constructing or copy-constructing a Derived object.  It is
unspecified whether &lsquo;<samp><span class="samp">Base::operator=</span></samp>&rsquo; is called more than once when
the implicit copy-assignment for Derived objects is invoked (as it is
inside &lsquo;<samp><span class="samp">func</span></samp>&rsquo; in the example).

 <p>G++ implements the &ldquo;intuitive&rdquo; algorithm for copy-assignment: assign all
direct bases, then assign all members.  In that algorithm, the virtual
base subobject can be encountered more than once.  In the example, copying
proceeds in the following order: &lsquo;<samp><span class="samp">val</span></samp>&rsquo;, &lsquo;<samp><span class="samp">name</span></samp>&rsquo; (via
<code>strdup</code>), &lsquo;<samp><span class="samp">bval</span></samp>&rsquo;, and &lsquo;<samp><span class="samp">name</span></samp>&rsquo; again.

 <p>If application code relies on copy-assignment, a user-defined
copy-assignment operator removes any uncertainties.  With such an
operator, the application can define whether and how the virtual base
subobject is assigned.

<div class="node">
<a name="Non-bugs"></a>
<a name="Non_002dbugs"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Warnings-and-Errors">Warnings and Errors</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#C_002b_002b-Misunderstandings">C++ Misunderstandings</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Trouble">Trouble</a>

</div>

<h3 class="section">11.9 Certain Changes We Don't Want to Make</h3>

<p>This section lists changes that people frequently request, but which
we do not make because we think GCC is better without them.

     <ul>
<li>Checking the number and type of arguments to a function which has an
old-fashioned definition and no prototype.

     <p>Such a feature would work only occasionally&mdash;only for calls that appear
in the same file as the called function, following the definition.  The
only way to check all calls reliably is to add a prototype for the
function.  But adding a prototype eliminates the motivation for this
feature.  So the feature is not worthwhile.

     <li>Warning about using an expression whose type is signed as a shift count.

     <p>Shift count operands are probably signed more often than unsigned. 
Warning about this would cause far more annoyance than good.

     <li>Warning about assigning a signed value to an unsigned variable.

     <p>Such assignments must be very common; warning about them would cause
more annoyance than good.

     <li>Warning when a non-void function value is ignored.

     <p>C contains many standard functions that return a value that most
programs choose to ignore.  One obvious example is <code>printf</code>. 
Warning about this practice only leads the defensive programmer to
clutter programs with dozens of casts to <code>void</code>.  Such casts are
required so frequently that they become visual noise.  Writing those
casts becomes so automatic that they no longer convey useful
information about the intentions of the programmer.  For functions
where the return value should never be ignored, use the
<code>warn_unused_result</code> function attribute (see <a href="#Function-Attributes">Function Attributes</a>).

     <li><a name="index-fshort_002denums-3334"></a>Making <samp><span class="option">-fshort-enums</span></samp> the default.

     <p>This would cause storage layout to be incompatible with most other C
compilers.  And it doesn't seem very important, given that you can get
the same result in other ways.  The case where it matters most is when
the enumeration-valued object is inside a structure, and in that case
you can specify a field width explicitly.

     <li>Making bit-fields unsigned by default on particular machines where &ldquo;the
ABI standard&rdquo; says to do so.

     <p>The ISO C standard leaves it up to the implementation whether a bit-field
declared plain <code>int</code> is signed or not.  This in effect creates two
alternative dialects of C.

     <p><a name="index-fsigned_002dbitfields-3335"></a><a name="index-funsigned_002dbitfields-3336"></a>The GNU C compiler supports both dialects; you can specify the signed
dialect with <samp><span class="option">-fsigned-bitfields</span></samp> and the unsigned dialect with
<samp><span class="option">-funsigned-bitfields</span></samp>.  However, this leaves open the question of
which dialect to use by default.

     <p>Currently, the preferred dialect makes plain bit-fields signed, because
this is simplest.  Since <code>int</code> is the same as <code>signed int</code> in
every other context, it is cleanest for them to be the same in bit-fields
as well.

     <p>Some computer manufacturers have published Application Binary Interface
standards which specify that plain bit-fields should be unsigned.  It is
a mistake, however, to say anything about this issue in an ABI.  This is
because the handling of plain bit-fields distinguishes two dialects of C. 
Both dialects are meaningful on every type of machine.  Whether a
particular object file was compiled using signed bit-fields or unsigned
is of no concern to other object files, even if they access the same
bit-fields in the same data structures.

     <p>A given program is written in one or the other of these two dialects. 
The program stands a chance to work on most any machine if it is
compiled with the proper dialect.  It is unlikely to work at all if
compiled with the wrong dialect.

     <p>Many users appreciate the GNU C compiler because it provides an
environment that is uniform across machines.  These users would be
inconvenienced if the compiler treated plain bit-fields differently on
certain machines.

     <p>Occasionally users write programs intended only for a particular machine
type.  On these occasions, the users would benefit if the GNU C compiler
were to support by default the same dialect as the other compilers on
that machine.  But such applications are rare.  And users writing a
program to run on more than one type of machine cannot possibly benefit
from this kind of compatibility.

     <p>This is why GCC does and will treat plain bit-fields in the same
fashion on all types of machines (by default).

     <p>There are some arguments for making bit-fields unsigned by default on all
machines.  If, for example, this becomes a universal de facto standard,
it would make sense for GCC to go along with it.  This is something
to be considered in the future.

     <p>(Of course, users strongly concerned about portability should indicate
explicitly in each bit-field whether it is signed or not.  In this way,
they write programs which have the same meaning in both C dialects.)

     <li><a name="index-ansi-3337"></a><a name="index-std-3338"></a>Undefining <code>__STDC__</code> when <samp><span class="option">-ansi</span></samp> is not used.

     <p>Currently, GCC defines <code>__STDC__</code> unconditionally.  This provides
good results in practice.

     <p>Programmers normally use conditionals on <code>__STDC__</code> to ask whether
it is safe to use certain features of ISO C, such as function
prototypes or ISO token concatenation.  Since plain <samp><span class="command">gcc</span></samp> supports
all the features of ISO C, the correct answer to these questions is
&ldquo;yes&rdquo;.

     <p>Some users try to use <code>__STDC__</code> to check for the availability of
certain library facilities.  This is actually incorrect usage in an ISO
C program, because the ISO C standard says that a conforming
freestanding implementation should define <code>__STDC__</code> even though it
does not have the library facilities.  &lsquo;<samp><span class="samp">gcc -ansi -pedantic</span></samp>&rsquo; is a
conforming freestanding implementation, and it is therefore required to
define <code>__STDC__</code>, even though it does not come with an ISO C
library.

     <p>Sometimes people say that defining <code>__STDC__</code> in a compiler that
does not completely conform to the ISO C standard somehow violates the
standard.  This is illogical.  The standard is a standard for compilers
that claim to support ISO C, such as &lsquo;<samp><span class="samp">gcc -ansi</span></samp>&rsquo;&mdash;not for other
compilers such as plain <samp><span class="command">gcc</span></samp>.  Whatever the ISO C standard says
is relevant to the design of plain <samp><span class="command">gcc</span></samp> without <samp><span class="option">-ansi</span></samp> only
for pragmatic reasons, not as a requirement.

     <p>GCC normally defines <code>__STDC__</code> to be 1, and in addition
defines <code>__STRICT_ANSI__</code> if you specify the <samp><span class="option">-ansi</span></samp> option,
or a <samp><span class="option">-std</span></samp> option for strict conformance to some version of ISO C. 
On some hosts, system include files use a different convention, where
<code>__STDC__</code> is normally 0, but is 1 if the user specifies strict
conformance to the C Standard.  GCC follows the host convention when
processing system include files, but when processing user files it follows
the usual GNU C convention.

     <li>Undefining <code>__STDC__</code> in C++.

     <p>Programs written to compile with C++-to-C translators get the
value of <code>__STDC__</code> that goes with the C compiler that is
subsequently used.  These programs must test <code>__STDC__</code>
to determine what kind of C preprocessor that compiler uses:
whether they should concatenate tokens in the ISO C fashion
or in the traditional fashion.

     <p>These programs work properly with GNU C++ if <code>__STDC__</code> is defined. 
They would not work otherwise.

     <p>In addition, many header files are written to provide prototypes in ISO
C but not in traditional C.  Many of these header files can work without
change in C++ provided <code>__STDC__</code> is defined.  If <code>__STDC__</code>
is not defined, they will all fail, and will all need to be changed to
test explicitly for C++ as well.

     <li>Deleting &ldquo;empty&rdquo; loops.

     <p>Historically, GCC has not deleted &ldquo;empty&rdquo; loops under the
assumption that the most likely reason you would put one in a program is
to have a delay, so deleting them will not make real programs run any
faster.

     <p>However, the rationale here is that optimization of a nonempty loop
cannot produce an empty one. This held for carefully written C compiled
with less powerful optimizers but is not always the case for carefully
written C++ or with more powerful optimizers. 
Thus GCC will remove operations from loops whenever it can determine
those operations are not externally visible (apart from the time taken
to execute them, of course).  In case the loop can be proved to be finite,
GCC will also remove the loop itself.

     <p>Be aware of this when performing timing tests, for instance the
following loop can be completely removed, provided
<code>some_expression</code> can provably not change any global state.

     <pre class="smallexample">          {
             int sum = 0;
             int ix;
          
             for (ix = 0; ix != 10000; ix++)
                sum += some_expression;
          }
</pre>
     <p>Even though <code>sum</code> is accumulated in the loop, no use is made of
that summation, so the accumulation can be removed.

     <li>Making side effects happen in the same order as in some other compiler.

     <p><a name="index-side-effects_002c-order-of-evaluation-3339"></a><a name="index-order-of-evaluation_002c-side-effects-3340"></a>It is never safe to depend on the order of evaluation of side effects. 
For example, a function call like this may very well behave differently
from one compiler to another:

     <pre class="smallexample">          void func (int, int);
          
          int i = 2;
          func (i++, i++);
</pre>
     <p>There is no guarantee (in either the C or the C++ standard language
definitions) that the increments will be evaluated in any particular
order.  Either increment might happen first.  <code>func</code> might get the
arguments &lsquo;<samp><span class="samp">2, 3</span></samp>&rsquo;, or it might get &lsquo;<samp><span class="samp">3, 2</span></samp>&rsquo;, or even &lsquo;<samp><span class="samp">2, 2</span></samp>&rsquo;.

     <li>Making certain warnings into errors by default.

     <p>Some ISO C testsuites report failure when the compiler does not produce
an error message for a certain program.

     <p><a name="index-pedantic_002derrors-3341"></a>ISO C requires a &ldquo;diagnostic&rdquo; message for certain kinds of invalid
programs, but a warning is defined by GCC to count as a diagnostic.  If
GCC produces a warning but not an error, that is correct ISO C support. 
If testsuites call this &ldquo;failure&rdquo;, they should be run with the GCC
option <samp><span class="option">-pedantic-errors</span></samp>, which will turn these warnings into
errors.

 </ul>

<div class="node">
<a name="Warnings-and-Errors"></a>
<p><hr>
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Non_002dbugs">Non-bugs</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Trouble">Trouble</a>

</div>

<h3 class="section">11.10 Warning Messages and Error Messages</h3>

<p><a name="index-error-messages-3342"></a><a name="index-warnings-vs-errors-3343"></a><a name="index-messages_002c-warning-and-error-3344"></a>The GNU compiler can produce two kinds of diagnostics: errors and
warnings.  Each kind has a different purpose:

     <ul>
<li><dfn>Errors</dfn> report problems that make it impossible to compile your
program.  GCC reports errors with the source file name and line
number where the problem is apparent.

     <li><dfn>Warnings</dfn> report other unusual conditions in your code that
<em>may</em> indicate a problem, although compilation can (and does)
proceed.  Warning messages also report the source file name and line
number, but include the text &lsquo;<samp><span class="samp">warning:</span></samp>&rsquo; to distinguish them
from error messages. 
</ul>

 <p>Warnings may indicate danger points where you should check to make sure
that your program really does what you intend; or the use of obsolete
features; or the use of nonstandard features of GNU C or C++.  Many
warnings are issued only if you ask for them, with one of the <samp><span class="option">-W</span></samp>
options (for instance, <samp><span class="option">-Wall</span></samp> requests a variety of useful
warnings).

 <p><a name="index-pedantic-3345"></a><a name="index-pedantic_002derrors-3346"></a>GCC always tries to compile your program if possible; it never
gratuitously rejects a program whose meaning is clear merely because
(for instance) it fails to conform to a standard.  In some cases,
however, the C and C++ standards specify that certain extensions are
forbidden, and a diagnostic <em>must</em> be issued by a conforming
compiler.  The <samp><span class="option">-pedantic</span></samp> option tells GCC to issue warnings in
such cases; <samp><span class="option">-pedantic-errors</span></samp> says to make them errors instead. 
This does not mean that <em>all</em> non-ISO constructs get warnings
or errors.

 <p>See <a href="#Warning-Options">Options to Request or Suppress Warnings</a>, for
more detail on these and related command-line options.

<!-- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, -->
<!-- 1999, 2000, 2001, 2003, 2004, 2007 Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Bugs"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Service">Service</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Trouble">Trouble</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Top">Top</a>

</div>

<h2 class="chapter">12 Reporting Bugs</h2>

<p><a name="index-bugs-3347"></a><a name="index-reporting-bugs-3348"></a>
Your bug reports play an essential role in making GCC reliable.

 <p>When you encounter a problem, the first thing to do is to see if it is
already known.  See <a href="#Trouble">Trouble</a>.  If it isn't known, then you should
report the problem.

<ul class="menu">
<li><a accesskey="1" href="#Bug-Criteria">Criteria</a>:    Have you really found a bug? 
<li><a accesskey="2" href="#Bug-Reporting">Reporting</a>:   How to report a bug effectively. 
<li><a accesskey="3" href="#Trouble">Known</a>:             Known problems. 
<li><a accesskey="4" href="#Service">Help</a>:              Where to ask for help. 
</ul>

<div class="node">
<a name="Bug-Criteria"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Bug-Reporting">Bug Reporting</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Bugs">Bugs</a>

</div>

<h3 class="section">12.1 Have You Found a Bug?</h3>

<p><a name="index-bug-criteria-3349"></a>
If you are not sure whether you have found a bug, here are some guidelines:

     
<a name="index-fatal-signal-3350"></a>
<a name="index-core-dump-3351"></a>
<ul><li>If the compiler gets a fatal signal, for any input whatever, that is a
compiler bug.  Reliable compilers never crash.

     <p><a name="index-invalid-assembly-code-3352"></a><a name="index-assembly-code_002c-invalid-3353"></a><li>If the compiler produces invalid assembly code, for any input whatever
(except an <code>asm</code> statement), that is a compiler bug, unless the
compiler reports errors (not just warnings) which would ordinarily
prevent the assembler from being run.

     <p><a name="index-undefined-behavior-3354"></a><a name="index-undefined-function-value-3355"></a><a name="index-increment-operators-3356"></a><li>If the compiler produces valid assembly code that does not correctly
execute the input source code, that is a compiler bug.

     <p>However, you must double-check to make sure, because you may have a
program whose behavior is undefined, which happened by chance to give
the desired results with another C or C++ compiler.

     <p>For example, in many nonoptimizing compilers, you can write &lsquo;<samp><span class="samp">x;</span></samp>&rsquo;
at the end of a function instead of &lsquo;<samp><span class="samp">return x;</span></samp>&rsquo;, with the same
results.  But the value of the function is undefined if <code>return</code>
is omitted; it is not a bug when GCC produces different results.

     <p>Problems often result from expressions with two increment operators,
as in <code>f (*p++, *p++)</code>.  Your previous compiler might have
interpreted that expression the way you intended; GCC might
interpret it another way.  Neither compiler is wrong.  The bug is
in your code.

     <p>After you have localized the error to a single source line, it should
be easy to check for these things.  If your program is correct and
well defined, you have found a compiler bug.

     <li>If the compiler produces an error message for valid input, that is a
compiler bug.

     <p><a name="index-invalid-input-3357"></a><li>If the compiler does not produce an error message for invalid input,
that is a compiler bug.  However, you should note that your idea of
&ldquo;invalid input&rdquo; might be someone else's idea of &ldquo;an extension&rdquo; or
&ldquo;support for traditional practice&rdquo;.

     <li>If you are an experienced user of one of the languages GCC supports, your
suggestions for improvement of GCC are welcome in any case. 
</ul>

<div class="node">
<a name="Bug-Reporting"></a>
<p><hr>
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Bug-Criteria">Bug Criteria</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Bugs">Bugs</a>

</div>

<h3 class="section">12.2 How and where to Report Bugs</h3>

<p><a name="index-compiler-bugs_002c-reporting-3358"></a>
Bugs should be reported to the bug database at <a href="file:///usr/share/doc/gcc-4.6/README.Bugs">file:///usr/share/doc/gcc-4.6/README.Bugs</a>.

<!-- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, -->
<!-- 1999, 2000, 2001, 2002 Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Service"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Contributing">Contributing</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Bugs">Bugs</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Top">Top</a>

</div>

<h2 class="chapter">13 How To Get Help with GCC</h2>

<p>If you need help installing, using or changing GCC, there are two
ways to find it:

     <ul>
<li>Send a message to a suitable network mailing list.  First try
<a href="mailto:gcc-help@gcc.gnu.org">gcc-help@gcc.gnu.org</a> (for help installing or using GCC), and if
that brings no response, try <a href="mailto:gcc@gcc.gnu.org">gcc@gcc.gnu.org</a>.  For help
changing GCC, ask <a href="mailto:gcc@gcc.gnu.org">gcc@gcc.gnu.org</a>.  If you think you have found
a bug in GCC, please report it following the instructions at
see <a href="#Bug-Reporting">Bug Reporting</a>.

     <li>Look in the service directory for someone who might help you for a fee. 
The service directory is found at
<a href="http://www.fsf.org/resources/service">http://www.fsf.org/resources/service</a>. 
</ul>

 <p>For further information, see
<a href="http://gcc.gnu.org/faq.html#support">http://gcc.gnu.org/faq.html#support</a>.

<!-- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, -->
<!-- 1999, 2000, 2001, 2004, 2006 Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Contributing"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Funding">Funding</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Service">Service</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Top">Top</a>

</div>

<h2 class="chapter">14 Contributing to GCC Development</h2>

<p>If you would like to help pretest GCC releases to assure they work well,
current development sources are available by SVN (see
<a href="http://gcc.gnu.org/svn.html">http://gcc.gnu.org/svn.html</a>).  Source and binary snapshots are
also available for FTP; see <a href="http://gcc.gnu.org/snapshots.html">http://gcc.gnu.org/snapshots.html</a>.

 <p>If you would like to work on improvements to GCC, please read the
advice at these URLs:

<pre class="smallexample">     <a href="http://gcc.gnu.org/contribute.html">http://gcc.gnu.org/contribute.html</a>
     <a href="http://gcc.gnu.org/contributewhy.html">http://gcc.gnu.org/contributewhy.html</a>
</pre>
 <p class="noindent">for information on how to make useful contributions and avoid
duplication of effort.  Suggested projects are listed at
<a href="http://gcc.gnu.org/projects/">http://gcc.gnu.org/projects/</a>.

<div class="node">
<a name="Funding"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#GNU-Project">GNU Project</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Contributing">Contributing</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Top">Top</a>

</div>

<!-- man begin DESCRIPTION -->
<h2 class="unnumbered">Funding Free Software</h2>

<p>If you want to have more free software a few years from now, it makes
sense for you to help encourage people to contribute funds for its
development.  The most effective approach known is to encourage
commercial redistributors to donate.

 <p>Users of free software systems can boost the pace of development by
encouraging for-a-fee distributors to donate part of their selling price
to free software developers&mdash;the Free Software Foundation, and others.

 <p>The way to convince distributors to do this is to demand it and expect
it from them.  So when you compare distributors, judge them partly by
how much they give to free software development.  Show distributors
they must compete to be the one who gives the most.

 <p>To make this approach work, you must insist on numbers that you can
compare, such as, &ldquo;We will donate ten dollars to the Frobnitz project
for each disk sold.&rdquo;  Don't be satisfied with a vague promise, such as
&ldquo;A portion of the profits are donated,&rdquo; since it doesn't give a basis
for comparison.

 <p>Even a precise fraction &ldquo;of the profits from this disk&rdquo; is not very
meaningful, since creative accounting and unrelated business decisions
can greatly alter what fraction of the sales price counts as profit. 
If the price you pay is $50, ten percent of the profit is probably
less than a dollar; it might be a few cents, or nothing at all.

 <p>Some redistributors do development work themselves.  This is useful too;
but to keep everyone honest, you need to inquire how much they do, and
what kind.  Some kinds of development make much more long-term
difference than others.  For example, maintaining a separate version of
a program contributes very little; maintaining the standard version of a
program for the whole community contributes much.  Easy new ports
contribute little, since someone else would surely do them; difficult
ports such as adding a new CPU to the GNU Compiler Collection contribute more;
major new features or packages contribute the most.

 <p>By establishing the idea that supporting further development is &ldquo;the
proper thing to do&rdquo; when distributing free software for a fee, we can
assure a steady flow of resources into making more free software. 
<!-- man end -->

<pre class="display">     <!-- man begin COPYRIGHT -->
     Copyright &copy; 1994 Free Software Foundation, Inc.
     Verbatim copying and redistribution of this section is permitted
     without royalty; alteration is not permitted.
     <!-- man end -->
</pre>
 <!-- Copyright (C) 2001 Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="GNU-Project"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Copying">Copying</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Funding">Funding</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Top">Top</a>

</div>

<h2 class="unnumbered">The GNU Project and GNU/Linux</h2>

<p>The GNU Project was launched in 1984 to develop a complete Unix-like
operating system which is free software: the GNU system.  (GNU is a
recursive acronym for &ldquo;GNU's Not Unix&rdquo;; it is pronounced
&ldquo;guh-NEW&rdquo;.)  Variants of the GNU operating system, which use the
kernel Linux, are now widely used; though these systems are often
referred to as &ldquo;Linux&rdquo;, they are more accurately called GNU/Linux
systems.

 <p>For more information, see:
<pre class="smallexample">     <a href="http://www.gnu.org/">http://www.gnu.org/</a>
     <a href="http://www.gnu.org/gnu/linux-and-gnu.html">http://www.gnu.org/gnu/linux-and-gnu.html</a>
</pre>
 <div class="node">
<a name="Copying"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#GNU-Free-Documentation-License">GNU Free Documentation License</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#GNU-Project">GNU Project</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Top">Top</a>

</div>

<!-- man begin DESCRIPTION -->
<h2 class="unnumbered">GNU General Public License</h2>

<div align="center">Version 3, 29 June 2007</div>

<!-- This file is intended to be included in another file. -->
<pre class="display">     Copyright &copy; 2007 Free Software Foundation, Inc. <a href="http://fsf.org/">http://fsf.org/</a>
     
     Everyone is permitted to copy and distribute verbatim copies of this
     license document, but changing it is not allowed.
</pre>
 <h3 class="heading">Preamble</h3>

<p>The GNU General Public License is a free, copyleft license for
software and other kinds of works.

 <p>The licenses for most software and other practical works are designed
to take away your freedom to share and change the works.  By contrast,
the GNU General Public License is intended to guarantee your freedom
to share and change all versions of a program&ndash;to make sure it remains
free software for all its users.  We, the Free Software Foundation,
use the GNU General Public License for most of our software; it
applies also to any other work released this way by its authors.  You
can apply it to your programs, too.

 <p>When we speak of free software, we are referring to freedom, not
price.  Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

 <p>To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights.  Therefore, you
have certain responsibilities if you distribute copies of the
software, or if you modify it: responsibilities to respect the freedom
of others.

 <p>For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received.  You must make sure that they, too,
receive or can get the source code.  And you must show them these
terms so they know their rights.

 <p>Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

 <p>For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software.  For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

 <p>Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the
manufacturer can do so.  This is fundamentally incompatible with the
aim of protecting users' freedom to change the software.  The
systematic pattern of such abuse occurs in the area of products for
individuals to use, which is precisely where it is most unacceptable. 
Therefore, we have designed this version of the GPL to prohibit the
practice for those products.  If such problems arise substantially in
other domains, we stand ready to extend this provision to those
domains in future versions of the GPL, as needed to protect the
freedom of users.

 <p>Finally, every program is threatened constantly by software patents. 
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish
to avoid the special danger that patents applied to a free program
could make it effectively proprietary.  To prevent this, the GPL
assures that patents cannot be used to render the program non-free.

 <p>The precise terms and conditions for copying, distribution and
modification follow.

<h3 class="heading">TERMS AND CONDITIONS</h3>

     <ol type=1 start=0>
<li>Definitions.

     <p>&ldquo;This License&rdquo; refers to version 3 of the GNU General Public License.

     <p>&ldquo;Copyright&rdquo; also means copyright-like laws that apply to other kinds
of works, such as semiconductor masks.

     <p>&ldquo;The Program&rdquo; refers to any copyrightable work licensed under this
License.  Each licensee is addressed as &ldquo;you&rdquo;.  &ldquo;Licensees&rdquo; and
&ldquo;recipients&rdquo; may be individuals or organizations.

     <p>To &ldquo;modify&rdquo; a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of
an exact copy.  The resulting work is called a &ldquo;modified version&rdquo; of
the earlier work or a work &ldquo;based on&rdquo; the earlier work.

     <p>A &ldquo;covered work&rdquo; means either the unmodified Program or a work based
on the Program.

     <p>To &ldquo;propagate&rdquo; a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy.  Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

     <p>To &ldquo;convey&rdquo; a work means any kind of propagation that enables other
parties to make or receive copies.  Mere interaction with a user
through a computer network, with no transfer of a copy, is not
conveying.

     <p>An interactive user interface displays &ldquo;Appropriate Legal Notices&rdquo; to
the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License.  If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

     <li>Source Code.

     <p>The &ldquo;source code&rdquo; for a work means the preferred form of the work for
making modifications to it.  &ldquo;Object code&rdquo; means any non-source form
of a work.

     <p>A &ldquo;Standard Interface&rdquo; means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

     <p>The &ldquo;System Libraries&rdquo; of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form.  A
&ldquo;Major Component&rdquo;, in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

     <p>The &ldquo;Corresponding Source&rdquo; for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities.  However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work.  For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

     <p>The Corresponding Source need not include anything that users can
regenerate automatically from other parts of the Corresponding Source.

     <p>The Corresponding Source for a work in source code form is that same
work.

     <li>Basic Permissions.

     <p>All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met.  This License explicitly affirms your unlimited
permission to run the unmodified Program.  The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work.  This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

     <p>You may make, run and propagate covered works that you do not convey,
without conditions so long as your license otherwise remains in force. 
You may convey covered works to others for the sole purpose of having
them make modifications exclusively for you, or provide you with
facilities for running those works, provided that you comply with the
terms of this License in conveying all material for which you do not
control copyright.  Those thus making or running the covered works for
you must do so exclusively on your behalf, under your direction and
control, on terms that prohibit them from making any copies of your
copyrighted material outside their relationship with you.

     <p>Conveying under any other circumstances is permitted solely under the
conditions stated below.  Sublicensing is not allowed; section 10
makes it unnecessary.

     <li>Protecting Users' Legal Rights From Anti-Circumvention Law.

     <p>No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

     <p>When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such
circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit
operation or modification of the work as a means of enforcing, against
the work's users, your or third parties' legal rights to forbid
circumvention of technological measures.

     <li>Conveying Verbatim Copies.

     <p>You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

     <p>You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

     <li>Conveying Modified Source Versions.

     <p>You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these
conditions:

          <ol type=a start=1>
<li>The work must carry prominent notices stating that you modified it,
and giving a relevant date.

          <li>The work must carry prominent notices stating that it is released
under this License and any conditions added under section 7.  This
requirement modifies the requirement in section 4 to &ldquo;keep intact all
notices&rdquo;.

          <li>You must license the entire work, as a whole, under this License to
anyone who comes into possession of a copy.  This License will
therefore apply, along with any applicable section 7 additional terms,
to the whole of the work, and all its parts, regardless of how they
are packaged.  This License gives no permission to license the work in
any other way, but it does not invalidate such permission if you have
separately received it.

          <li>If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your work
need not make them do so.
          </ol>

     <p>A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
&ldquo;aggregate&rdquo; if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit.  Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

     <li>Conveying Non-Source Forms.

     <p>You may convey a covered work in object code form under the terms of
sections 4 and 5, provided that you also convey the machine-readable
Corresponding Source under the terms of this License, in one of these
ways:

          <ol type=a start=1>
<li>Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium customarily
used for software interchange.

          <li>Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a written
offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give
anyone who possesses the object code either (1) a copy of the
Corresponding Source for all the software in the product that is
covered by this License, on a durable physical medium customarily used
for software interchange, for a price no more than your reasonable
cost of physically performing this conveying of source, or (2) access
to copy the Corresponding Source from a network server at no charge.

          <li>Convey individual copies of the object code with a copy of the written
offer to provide the Corresponding Source.  This alternative is
allowed only occasionally and noncommercially, and only if you
received the object code with such an offer, in accord with subsection
6b.

          <li>Convey the object code by offering access from a designated place
(gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge.  You need not require recipients to copy the
Corresponding Source along with the object code.  If the place to copy
the object code is a network server, the Corresponding Source may be
on a different server (operated by you or a third party) that supports
equivalent copying facilities, provided you maintain clear directions
next to the object code saying where to find the Corresponding Source. 
Regardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to
satisfy these requirements.

          <li>Convey the object code using peer-to-peer transmission, provided you
inform other peers where the object code and Corresponding Source of
the work are being offered to the general public at no charge under
subsection 6d.

          </ol>

     <p>A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

     <p>A &ldquo;User Product&rdquo; is either (1) a &ldquo;consumer product&rdquo;, which means any
tangible personal property which is normally used for personal,
family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling.  In determining whether a product is a
consumer product, doubtful cases shall be resolved in favor of
coverage.  For a particular product received by a particular user,
&ldquo;normally used&rdquo; refers to a typical or common use of that class of
product, regardless of the status of the particular user or of the way
in which the particular user actually uses, or expects or is expected
to use, the product.  A product is a consumer product regardless of
whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant
mode of use of the product.

     <p>&ldquo;Installation Information&rdquo; for a User Product means any methods,
procedures, authorization keys, or other information required to
install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source.  The
information must suffice to ensure that the continued functioning of
the modified object code is in no case prevented or interfered with
solely because modification has been made.

     <p>If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information.  But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

     <p>The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or
updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified or
installed.  Access to a network may be denied when the modification
itself materially and adversely affects the operation of the network
or violates the rules and protocols for communication across the
network.

     <p>Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

     <li>Additional Terms.

     <p>&ldquo;Additional permissions&rdquo; are terms that supplement the terms of this
License by making exceptions from one or more of its conditions. 
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law.  If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

     <p>When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it.  (Additional permissions may be written to require their own
removal in certain cases when you modify the work.)  You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

     <p>Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders
of that material) supplement the terms of this License with terms:

          <ol type=a start=1>
<li>Disclaiming warranty or limiting liability differently from the terms
of sections 15 and 16 of this License; or

          <li>Requiring preservation of specified reasonable legal notices or author
attributions in that material or in the Appropriate Legal Notices
displayed by works containing it; or

          <li>Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or

          <li>Limiting the use for publicity purposes of names of licensors or
authors of the material; or

          <li>Declining to grant rights under trademark law for use of some trade
names, trademarks, or service marks; or

          <li>Requiring indemnification of licensors and authors of that material by
anyone who conveys the material (or modified versions of it) with
contractual assumptions of liability to the recipient, for any
liability that these contractual assumptions directly impose on those
licensors and authors.
          </ol>

     <p>All other non-permissive additional terms are considered &ldquo;further
restrictions&rdquo; within the meaning of section 10.  If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term.  If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

     <p>If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

     <p>Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions; the
above requirements apply either way.

     <li>Termination.

     <p>You may not propagate or modify a covered work except as expressly
provided under this License.  Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

     <p>However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.

     <p>Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

     <p>Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License.  If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

     <li>Acceptance Not Required for Having Copies.

     <p>You are not required to accept this License in order to receive or run
a copy of the Program.  Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance.  However,
nothing other than this License grants you permission to propagate or
modify any covered work.  These actions infringe copyright if you do
not accept this License.  Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

     <li>Automatic Licensing of Downstream Recipients.

     <p>Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License.  You are not responsible
for enforcing compliance by third parties with this License.

     <p>An &ldquo;entity transaction&rdquo; is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations.  If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

     <p>You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License.  For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

     <li>Patents.

     <p>A &ldquo;contributor&rdquo; is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based.  The
work thus licensed is called the contributor's &ldquo;contributor version&rdquo;.

     <p>A contributor's &ldquo;essential patent claims&rdquo; are all patent claims owned
or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version.  For
purposes of this definition, &ldquo;control&rdquo; includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

     <p>Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

     <p>In the following three paragraphs, a &ldquo;patent license&rdquo; is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement).  To &ldquo;grant&rdquo; such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

     <p>If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients.  &ldquo;Knowingly relying&rdquo; means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

     <p>If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

     <p>A patent license is &ldquo;discriminatory&rdquo; if it does not include within the
scope of its coverage, prohibits the exercise of, or is conditioned on
the non-exercise of one or more of the rights that are specifically
granted under this License.  You may not convey a covered work if you
are a party to an arrangement with a third party that is in the
business of distributing software, under which you make payment to the
third party based on the extent of your activity of conveying the
work, and under which the third party grants, to any of the parties
who would receive the covered work from you, a discriminatory patent
license (a) in connection with copies of the covered work conveyed by
you (or copies made from those copies), or (b) primarily for and in
connection with specific products or compilations that contain the
covered work, unless you entered into that arrangement, or that patent
license was granted, prior to 28 March 2007.

     <p>Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

     <li>No Surrender of Others' Freedom.

     <p>If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License.  If you cannot convey
a covered work so as to satisfy simultaneously your obligations under
this License and any other pertinent obligations, then as a
consequence you may not convey it at all.  For example, if you agree
to terms that obligate you to collect a royalty for further conveying
from those to whom you convey the Program, the only way you could
satisfy both those terms and this License would be to refrain entirely
from conveying the Program.

     <li>Use with the GNU Affero General Public License.

     <p>Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work.  The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

     <li>Revised Versions of this License.

     <p>The Free Software Foundation may publish revised and/or new versions
of the GNU General Public License from time to time.  Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

     <p>Each version is given a distinguishing version number.  If the Program
specifies that a certain numbered version of the GNU General Public
License &ldquo;or any later version&rdquo; applies to it, you have the option of
following the terms and conditions either of that numbered version or
of any later version published by the Free Software Foundation.  If
the Program does not specify a version number of the GNU General
Public License, you may choose any version ever published by the Free
Software Foundation.

     <p>If the Program specifies that a proxy can decide which future versions
of the GNU General Public License can be used, that proxy's public
statement of acceptance of a version permanently authorizes you to
choose that version for the Program.

     <p>Later license versions may give you additional or different
permissions.  However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

     <li>Disclaimer of Warranty.

     <p>THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM &ldquo;AS IS&rdquo; WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU.  SHOULD THE PROGRAM PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

     <li>Limitation of Liability.

     <p>IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR
CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

     <li>Interpretation of Sections 15 and 16.

     <p>If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

     </ol>

<h3 class="heading">END OF TERMS AND CONDITIONS</h3>

<h3 class="heading">How to Apply These Terms to Your New Programs</h3>

<p>If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these
terms.

 <p>To do so, attach the following notices to the program.  It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the &ldquo;copyright&rdquo; line and a pointer to where the full notice is found.

<pre class="smallexample">     <var>one line to give the program's name and a brief idea of what it does.</var>
     Copyright (C) <var>year</var> <var>name of author</var>
     
     This program is free software: you can redistribute it and/or modify
     it under the terms of the GNU General Public License as published by
     the Free Software Foundation, either version 3 of the License, or (at
     your option) any later version.
     
     This program is distributed in the hope that it will be useful, but
     WITHOUT ANY WARRANTY; without even the implied warranty of
     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     General Public License for more details.
     
     You should have received a copy of the GNU General Public License
     along with this program.  If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
</pre>
 <p>Also add information on how to contact you by electronic and paper mail.

 <p>If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

<pre class="smallexample">     <var>program</var> Copyright (C) <var>year</var> <var>name of author</var>
     This program comes with ABSOLUTELY NO WARRANTY; for details type &lsquo;<samp><span class="samp">show w</span></samp>&rsquo;.
     This is free software, and you are welcome to redistribute it
     under certain conditions; type &lsquo;<samp><span class="samp">show c</span></samp>&rsquo; for details.
</pre>
 <p>The hypothetical commands &lsquo;<samp><span class="samp">show w</span></samp>&rsquo; and &lsquo;<samp><span class="samp">show c</span></samp>&rsquo; should show
the appropriate parts of the General Public License.  Of course, your
program's commands might be different; for a GUI interface, you would
use an &ldquo;about box&rdquo;.

 <p>You should also get your employer (if you work as a programmer) or school,
if any, to sign a &ldquo;copyright disclaimer&rdquo; for the program, if necessary. 
For more information on this, and how to apply and follow the GNU GPL, see
<a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.

 <p>The GNU General Public License does not permit incorporating your
program into proprietary programs.  If your program is a subroutine
library, you may consider it more useful to permit linking proprietary
applications with the library.  If this is what you want to do, use
the GNU Lesser General Public License instead of this License.  But
first, please read <a href="http://www.gnu.org/philosophy/why-not-lgpl.html">http://www.gnu.org/philosophy/why-not-lgpl.html</a>. 
<!-- man end -->

<!--  -->
<!-- GFDL -->
<!--  -->
<!-- Special handling for inclusion in the install manual. -->
<!-- man begin DESCRIPTION -->
<div class="node">
<a name="GNU-Free-Documentation-License"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Contributors">Contributors</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Copying">Copying</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Top">Top</a>

</div>

<h2 class="unnumbered">GNU Free Documentation License</h2>

 <p><a name="index-FDL_002c-GNU-Free-Documentation-License-3359"></a><div align="center">Version 1.3, 3 November 2008</div>

<pre class="display">     Copyright &copy; 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
     <a href="http://fsf.org/">http://fsf.org/</a>
     
     Everyone is permitted to copy and distribute verbatim copies
     of this license document, but changing it is not allowed.
</pre>
     <ol type=1 start=0>
<li>PREAMBLE

     <p>The purpose of this License is to make a manual, textbook, or other
functional and useful document <dfn>free</dfn> in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially. 
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for modifications made by others.

     <p>This License is a kind of &ldquo;copyleft&rdquo;, which means that derivative
works of the document must themselves be free in the same sense.  It
complements the GNU General Public License, which is a copyleft
license designed for free software.

     <p>We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does.  But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book.  We recommend this License
principally for works whose purpose is instruction or reference.

     <li>APPLICABILITY AND DEFINITIONS

     <p>This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License.  Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein.  The &ldquo;Document&rdquo;, below,
refers to any such manual or work.  Any member of the public is a
licensee, and is addressed as &ldquo;you&rdquo;.  You accept the license if you
copy, modify or distribute the work in a way requiring permission
under copyright law.

     <p>A &ldquo;Modified Version&rdquo; of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

     <p>A &ldquo;Secondary Section&rdquo; is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject.  (Thus, if the Document is in
part a textbook of mathematics, a Secondary Section may not explain
any mathematics.)  The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.

     <p>The &ldquo;Invariant Sections&rdquo; are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License.  If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant.  The Document may contain zero
Invariant Sections.  If the Document does not identify any Invariant
Sections then there are none.

     <p>The &ldquo;Cover Texts&rdquo; are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License.  A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

     <p>A &ldquo;Transparent&rdquo; copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters.  A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent. 
An image format is not Transparent if used for any substantial amount
of text.  A copy that is not &ldquo;Transparent&rdquo; is called &ldquo;Opaque&rdquo;.

     <p>Examples of suitable formats for Transparent copies include plain
<span class="sc">ascii</span> without markup, Texinfo input format, LaTeX input
format, <acronym>SGML</acronym> or <acronym>XML</acronym> using a publicly available
<acronym>DTD</acronym>, and standard-conforming simple <acronym>HTML</acronym>,
PostScript or <acronym>PDF</acronym> designed for human modification.  Examples
of transparent image formats include <acronym>PNG</acronym>, <acronym>XCF</acronym> and
<acronym>JPG</acronym>.  Opaque formats include proprietary formats that can be
read and edited only by proprietary word processors, <acronym>SGML</acronym> or
<acronym>XML</acronym> for which the <acronym>DTD</acronym> and/or processing tools are
not generally available, and the machine-generated <acronym>HTML</acronym>,
PostScript or <acronym>PDF</acronym> produced by some word processors for
output purposes only.

     <p>The &ldquo;Title Page&rdquo; means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page.  For works in
formats which do not have any title page as such, &ldquo;Title Page&rdquo; means
the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.

     <p>The &ldquo;publisher&rdquo; means any person or entity that distributes copies
of the Document to the public.

     <p>A section &ldquo;Entitled XYZ&rdquo; means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language.  (Here XYZ stands for a
specific section name mentioned below, such as &ldquo;Acknowledgements&rdquo;,
&ldquo;Dedications&rdquo;, &ldquo;Endorsements&rdquo;, or &ldquo;History&rdquo;.)  To &ldquo;Preserve the Title&rdquo;
of such a section when you modify the Document means that it remains a
section &ldquo;Entitled XYZ&rdquo; according to this definition.

     <p>The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document.  These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

     <li>VERBATIM COPYING

     <p>You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License.  You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute.  However, you may accept
compensation in exchange for copies.  If you distribute a large enough
number of copies you must also follow the conditions in section 3.

     <p>You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

     <li>COPYING IN QUANTITY

     <p>If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover.  Both covers must also clearly and legibly identify
you as the publisher of these copies.  The front cover must present
the full title with all words of the title equally prominent and
visible.  You may add other material on the covers in addition. 
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

     <p>If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

     <p>If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material. 
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

     <p>It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

     <li>MODIFICATIONS

     <p>You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it.  In addition, you must do these things in the Modified Version:

          <ol type=A start=1>
<li>Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section
of the Document).  You may use the same title as a previous version
if the original publisher of that version gives permission.

          <li>List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

          <li>State on the Title page the name of the publisher of the
Modified Version, as the publisher.

          <li>Preserve all the copyright notices of the Document.

          <li>Add an appropriate copyright notice for your modifications
adjacent to the other copyright notices.

          <li>Include, immediately after the copyright notices, a license notice
giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

          <li>Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document's license notice.

          <li>Include an unaltered copy of this License.

          <li>Preserve the section Entitled &ldquo;History&rdquo;, Preserve its Title, and add
to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page.  If
there is no section Entitled &ldquo;History&rdquo; in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

          <li>Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on.  These may be placed in the &ldquo;History&rdquo; section. 
You may omit a network location for a work that was published at
least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

          <li>For any section Entitled &ldquo;Acknowledgements&rdquo; or &ldquo;Dedications&rdquo;, Preserve
the Title of the section, and preserve in the section all the
substance and tone of each of the contributor acknowledgements and/or
dedications given therein.

          <li>Preserve all the Invariant Sections of the Document,
unaltered in their text and in their titles.  Section numbers
or the equivalent are not considered part of the section titles.

          <li>Delete any section Entitled &ldquo;Endorsements&rdquo;.  Such a section
may not be included in the Modified Version.

          <li>Do not retitle any existing section to be Entitled &ldquo;Endorsements&rdquo; or
to conflict in title with any Invariant Section.

          <li>Preserve any Warranty Disclaimers.
          </ol>

     <p>If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant.  To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice. 
These titles must be distinct from any other section titles.

     <p>You may add a section Entitled &ldquo;Endorsements&rdquo;, provided it contains
nothing but endorsements of your Modified Version by various
parties&mdash;for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

     <p>You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version.  Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity.  If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

     <p>The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

     <li>COMBINING DOCUMENTS

     <p>You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.

     <p>The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy.  If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number. 
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

     <p>In the combination, you must combine any sections Entitled &ldquo;History&rdquo;
in the various original documents, forming one section Entitled
&ldquo;History&rdquo;; likewise combine any sections Entitled &ldquo;Acknowledgements&rdquo;,
and any sections Entitled &ldquo;Dedications&rdquo;.  You must delete all
sections Entitled &ldquo;Endorsements.&rdquo;

     <li>COLLECTIONS OF DOCUMENTS

     <p>You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

     <p>You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.

     <li>AGGREGATION WITH INDEPENDENT WORKS

     <p>A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an &ldquo;aggregate&rdquo; if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation's users beyond what the individual works permit. 
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

     <p>If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document's Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. 
Otherwise they must appear on printed covers that bracket the whole
aggregate.

     <li>TRANSLATION

     <p>Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4. 
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections.  You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers.  In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.

     <p>If a section in the Document is Entitled &ldquo;Acknowledgements&rdquo;,
&ldquo;Dedications&rdquo;, or &ldquo;History&rdquo;, the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.

     <li>TERMINATION

     <p>You may not copy, modify, sublicense, or distribute the Document
except as expressly provided under this License.  Any attempt
otherwise to copy, modify, sublicense, or distribute it is void, and
will automatically terminate your rights under this License.

     <p>However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.

     <p>Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

     <p>Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License.  If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.

     <li>FUTURE REVISIONS OF THIS LICENSE

     <p>The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time.  Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.  See
<a href="http://www.gnu.org/copyleft/">http://www.gnu.org/copyleft/</a>.

     <p>Each version of the License is given a distinguishing version number. 
If the Document specifies that a particular numbered version of this
License &ldquo;or any later version&rdquo; applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation.  If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.  If the Document
specifies that a proxy can decide which future versions of this
License can be used, that proxy's public statement of acceptance of a
version permanently authorizes you to choose that version for the
Document.

     <li>RELICENSING

     <p>&ldquo;Massive Multiauthor Collaboration Site&rdquo; (or &ldquo;MMC Site&rdquo;) means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works.  A
public wiki that anybody can edit is an example of such a server.  A
&ldquo;Massive Multiauthor Collaboration&rdquo; (or &ldquo;MMC&rdquo;) contained in the
site means any set of copyrightable works thus published on the MMC
site.

     <p>&ldquo;CC-BY-SA&rdquo; means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that license
published by that same organization.

     <p>&ldquo;Incorporate&rdquo; means to publish or republish a Document, in whole or
in part, as part of another Document.

     <p>An MMC is &ldquo;eligible for relicensing&rdquo; if it is licensed under this
License, and if all works that were first published under this License
somewhere other than this MMC, and subsequently incorporated in whole
or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

     <p>The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.

      </ol>

<h3 class="unnumberedsec">ADDENDUM: How to use this License for your documents</h3>

<p>To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:

<pre class="smallexample">       Copyright (C)  <var>year</var>  <var>your name</var>.
       Permission is granted to copy, distribute and/or modify this document
       under the terms of the GNU Free Documentation License, Version 1.3
       or any later version published by the Free Software Foundation;
       with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
       Texts.  A copy of the license is included in the section entitled ``GNU
       Free Documentation License''.
</pre>
 <p>If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the &ldquo;with...Texts.&rdquo; line with this:

<pre class="smallexample">         with the Invariant Sections being <var>list their titles</var>, with
         the Front-Cover Texts being <var>list</var>, and with the Back-Cover Texts
         being <var>list</var>.
</pre>
 <p>If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.

 <p>If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,
to permit their use in free software.

<!-- Local Variables: -->
<!-- ispell-local-pdict: "ispell-dict" -->
<!-- End: -->
<!-- man end -->
<!-- Copyright (C) 1988,1989,1992,1993,1994,1995,1996,1997,1998,1999,2000, -->
<!-- 2001,2002,2003,2004,2005,2006,2007,2008,2009, 2010 -->
<!-- Free Software Foundation, Inc. -->
<!-- This is part of the GCC manual. -->
<!-- For copying conditions, see the file gcc.texi. -->
<div class="node">
<a name="Contributors"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Option-Index">Option Index</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#GNU-Free-Documentation-License">GNU Free Documentation License</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Top">Top</a>

</div>

<h2 class="unnumbered">Contributors to GCC</h2>

<p><a name="index-contributors-3360"></a>
The GCC project would like to thank its many contributors.  Without them the
project would not have been nearly as successful as it has been.  Any omissions
in this list are accidental.  Feel free to contact
<a href="mailto:law@redhat.com">law@redhat.com</a> or <a href="mailto:gerald@pfeifer.com">gerald@pfeifer.com</a> if you have been left
out or some of your contributions are not listed.  Please keep this list in
alphabetical order.

     <ul>
<li>Analog Devices helped implement the support for complex data types
and iterators.

     <li>John David Anglin for threading-related fixes and improvements to
libstdc++-v3, and the HP-UX port.

     <li>James van Artsdalen wrote the code that makes efficient use of
the Intel 80387 register stack.

     <li>Abramo and Roberto Bagnara for the SysV68 Motorola 3300 Delta Series
port.

     <li>Alasdair Baird for various bug fixes.

     <li>Giovanni Bajo for analyzing lots of complicated C++ problem reports.

     <li>Peter Barada for his work to improve code generation for new
ColdFire cores.

     <li>Gerald Baumgartner added the signature extension to the C++ front end.

     <li>Godmar Back for his Java improvements and encouragement.

     <li>Scott Bambrough for help porting the Java compiler.

     <li>Wolfgang Bangerth for processing tons of bug reports.

     <li>Jon Beniston for his Microsoft Windows port of Java and port to Lattice Mico32.

     <li>Daniel Berlin for better DWARF2 support, faster/better optimizations,
improved alias analysis, plus migrating GCC to Bugzilla.

     <li>Geoff Berry for his Java object serialization work and various patches.

     <li>Uros Bizjak for the implementation of x87 math built-in functions and
for various middle end and i386 back end improvements and bug fixes.

     <li>Eric Blake for helping to make GCJ and libgcj conform to the
specifications.

     <li>Janne Blomqvist for contributions to GNU Fortran.

     <li>Segher Boessenkool for various fixes.

     <li>Hans-J. Boehm for his <a href="http://www.hpl.hp.com/personal/Hans_Boehm/gc/">garbage collector</a>, IA-64 libffi port, and other Java work.

     <li>Neil Booth for work on cpplib, lang hooks, debug hooks and other
miscellaneous clean-ups.

     <li>Steven Bosscher for integrating the GNU Fortran front end into GCC and for
contributing to the tree-ssa branch.

     <li>Eric Botcazou for fixing middle- and backend bugs left and right.

     <li>Per Bothner for his direction via the steering committee and various
improvements to the infrastructure for supporting new languages.  Chill
front end implementation.  Initial implementations of
cpplib, fix-header, config.guess, libio, and past C++ library (libg++)
maintainer.  Dreaming up, designing and implementing much of GCJ.

     <li>Devon Bowen helped port GCC to the Tahoe.

     <li>Don Bowman for mips-vxworks contributions.

     <li>Dave Brolley for work on cpplib and Chill.

     <li>Paul Brook for work on the ARM architecture and maintaining GNU Fortran.

     <li>Robert Brown implemented the support for Encore 32000 systems.

     <li>Christian Bruel for improvements to local store elimination.

     <li>Herman A.J. ten Brugge for various fixes.

     <li>Joerg Brunsmann for Java compiler hacking and help with the GCJ FAQ.

     <li>Joe Buck for his direction via the steering committee.

     <li>Craig Burley for leadership of the G77 Fortran effort.

     <li>Stephan Buys for contributing Doxygen notes for libstdc++.

     <li>Paolo Carlini for libstdc++ work: lots of efficiency improvements to
the C++ strings, streambufs and formatted I/O, hard detective work on
the frustrating localization issues, and keeping up with the problem reports.

     <li>John Carr for his alias work, SPARC hacking, infrastructure improvements,
previous contributions to the steering committee, loop optimizations, etc.

     <li>Stephane Carrez for 68HC11 and 68HC12 ports.

     <li>Steve Chamberlain for support for the Renesas SH and H8 processors
and the PicoJava processor, and for GCJ config fixes.

     <li>Glenn Chambers for help with the GCJ FAQ.

     <li>John-Marc Chandonia for various libgcj patches.

     <li>Denis Chertykov for contributing and maintaining the AVR port, the first GCC port
for an 8-bit architecture.

     <li>Scott Christley for his Objective-C contributions.

     <li>Eric Christopher for his Java porting help and clean-ups.

     <li>Branko Cibej for more warning contributions.

     <li>The <a href="http://www.gnu.org/software/classpath/">GNU Classpath project</a>
for all of their merged runtime code.

     <li>Nick Clifton for arm, mcore, fr30, v850, m32r, rx work,
<samp><span class="option">--help</span></samp>, and other random hacking.

     <li>Michael Cook for libstdc++ cleanup patches to reduce warnings.

     <li>R. Kelley Cook for making GCC buildable from a read-only directory as
well as other miscellaneous build process and documentation clean-ups.

     <li>Ralf Corsepius for SH testing and minor bug fixing.

     <li>Stan Cox for care and feeding of the x86 port and lots of behind
the scenes hacking.

     <li>Alex Crain provided changes for the 3b1.

     <li>Ian Dall for major improvements to the NS32k port.

     <li>Paul Dale for his work to add uClinux platform support to the
m68k backend.

     <li>Dario Dariol contributed the four varieties of sample programs
that print a copy of their source.

     <li>Russell Davidson for fstream and stringstream fixes in libstdc++.

     <li>Bud Davis for work on the G77 and GNU Fortran compilers.

     <li>Mo DeJong for GCJ and libgcj bug fixes.

     <li>DJ Delorie for the DJGPP port, build and libiberty maintenance,
various bug fixes, and the M32C and MeP ports.

     <li>Arnaud Desitter for helping to debug GNU Fortran.

     <li>Gabriel Dos Reis for contributions to G++, contributions and
maintenance of GCC diagnostics infrastructure, libstdc++-v3,
including <code>valarray&lt;&gt;</code>, <code>complex&lt;&gt;</code>, maintaining the numerics library
(including that pesky <code>&lt;limits&gt;</code> :-) and keeping up-to-date anything
to do with numbers.

     <li>Ulrich Drepper for his work on glibc, testing of GCC using glibc, ISO C99
support, CFG dumping support, etc., plus support of the C++ runtime
libraries including for all kinds of C interface issues, contributing and
maintaining <code>complex&lt;&gt;</code>, sanity checking and disbursement, configuration
architecture, libio maintenance, and early math work.

     <li>Zdenek Dvorak for a new loop unroller and various fixes.

     <li>Michael Eager for his work on the Xilinx MicroBlaze port.

     <li>Richard Earnshaw for his ongoing work with the ARM.

     <li>David Edelsohn for his direction via the steering committee, ongoing work
with the RS6000/PowerPC port, help cleaning up Haifa loop changes,
doing the entire AIX port of libstdc++ with his bare hands, and for
ensuring GCC properly keeps working on AIX.

     <li>Kevin Ediger for the floating point formatting of num_put::do_put in
libstdc++.

     <li>Phil Edwards for libstdc++ work including configuration hackery,
documentation maintainer, chief breaker of the web pages, the occasional
iostream bug fix, and work on shared library symbol versioning.

     <li>Paul Eggert for random hacking all over GCC.

     <li>Mark Elbrecht for various DJGPP improvements, and for libstdc++
configuration support for locales and fstream-related fixes.

     <li>Vadim Egorov for libstdc++ fixes in strings, streambufs, and iostreams.

     <li>Christian Ehrhardt for dealing with bug reports.

     <li>Ben Elliston for his work to move the Objective-C runtime into its
own subdirectory and for his work on autoconf.

     <li>Revital Eres for work on the PowerPC 750CL port.

     <li>Marc Espie for OpenBSD support.

     <li>Doug Evans for much of the global optimization framework, arc, m32r,
and SPARC work.

     <li>Christopher Faylor for his work on the Cygwin port and for caring and
feeding the gcc.gnu.org box and saving its users tons of spam.

     <li>Fred Fish for BeOS support and Ada fixes.

     <li>Ivan Fontes Garcia for the Portuguese translation of the GCJ FAQ.

     <li>Peter Gerwinski for various bug fixes and the Pascal front end.

     <li>Kaveh R. Ghazi for his direction via the steering committee, amazing
work to make &lsquo;<samp><span class="samp">-W -Wall -W* -Werror</span></samp>&rsquo; useful, and continuously
testing GCC on a plethora of platforms.  Kaveh extends his gratitude to
the <a href="http://www.caip.rutgers.edu">CAIP Center</a> at Rutgers
University for providing him with computing resources to work on Free
Software since the late 1980s.

     <li>John Gilmore for a donation to the FSF earmarked improving GNU Java.

     <li>Judy Goldberg for c++ contributions.

     <li>Torbjorn Granlund for various fixes and the c-torture testsuite,
multiply- and divide-by-constant optimization, improved long long
support, improved leaf function register allocation, and his direction
via the steering committee.

     <li>Anthony Green for his <samp><span class="option">-Os</span></samp> contributions, the moxie port, and
Java front end work.

     <li>Stu Grossman for gdb hacking, allowing GCJ developers to debug Java code.

     <li>Michael K. Gschwind contributed the port to the PDP-11.

     <li>Richard Guenther for his ongoing middle-end contributions and bug fixes
and for release management.

     <li>Ron Guilmette implemented the <samp><span class="command">protoize</span></samp> and <samp><span class="command">unprotoize</span></samp>
tools, the support for Dwarf symbolic debugging information, and much of
the support for System V Release 4.  He has also worked heavily on the
Intel 386 and 860 support.

     <li>Mostafa Hagog for Swing Modulo Scheduling (SMS) and post reload GCSE.

     <li>Bruno Haible for improvements in the runtime overhead for EH, new
warnings and assorted bug fixes.

     <li>Andrew Haley for his amazing Java compiler and library efforts.

     <li>Chris Hanson assisted in making GCC work on HP-UX for the 9000 series 300.

     <li>Michael Hayes for various thankless work he's done trying to get
the c30/c40 ports functional.  Lots of loop and unroll improvements and
fixes.

     <li>Dara Hazeghi for wading through myriads of target-specific bug reports.

     <li>Kate Hedstrom for staking the G77 folks with an initial testsuite.

     <li>Richard Henderson for his ongoing SPARC, alpha, ia32, and ia64 work, loop
opts, and generally fixing lots of old problems we've ignored for
years, flow rewrite and lots of further stuff, including reviewing
tons of patches.

     <li>Aldy Hernandez for working on the PowerPC port, SIMD support, and
various fixes.

     <li>Nobuyuki Hikichi of Software Research Associates, Tokyo, contributed
the support for the Sony NEWS machine.

     <li>Kazu Hirata for caring and feeding the Renesas H8/300 port and various fixes.

     <li>Katherine Holcomb for work on GNU Fortran.

     <li>Manfred Hollstein for his ongoing work to keep the m88k alive, lots
of testing and bug fixing, particularly of GCC configury code.

     <li>Steve Holmgren for MachTen patches.

     <li>Jan Hubicka for his x86 port improvements.

     <li>Falk Hueffner for working on C and optimization bug reports.

     <li>Bernardo Innocenti for his m68k work, including merging of
ColdFire improvements and uClinux support.

     <li>Christian Iseli for various bug fixes.

     <li>Kamil Iskra for general m68k hacking.

     <li>Lee Iverson for random fixes and MIPS testing.

     <li>Andreas Jaeger for testing and benchmarking of GCC and various bug fixes.

     <li>Jakub Jelinek for his SPARC work and sibling call optimizations as well
as lots of bug fixes and test cases, and for improving the Java build
system.

     <li>Janis Johnson for ia64 testing and fixes, her quality improvement
sidetracks, and web page maintenance.

     <li>Kean Johnston for SCO OpenServer support and various fixes.

     <li>Tim Josling for the sample language treelang based originally on Richard
Kenner's &ldquo;toy&rdquo; language.

     <li>Nicolai Josuttis for additional libstdc++ documentation.

     <li>Klaus Kaempf for his ongoing work to make alpha-vms a viable target.

     <li>Steven G. Kargl for work on GNU Fortran.

     <li>David Kashtan of SRI adapted GCC to VMS.

     <li>Ryszard Kabatek for many, many libstdc++ bug fixes and optimizations of
strings, especially member functions, and for auto_ptr fixes.

     <li>Geoffrey Keating for his ongoing work to make the PPC work for GNU/Linux
and his automatic regression tester.

     <li>Brendan Kehoe for his ongoing work with G++ and for a lot of early work
in just about every part of libstdc++.

     <li>Oliver M. Kellogg of Deutsche Aerospace contributed the port to the
MIL-STD-1750A.

     <li>Richard Kenner of the New York University Ultracomputer Research
Laboratory wrote the machine descriptions for the AMD 29000, the DEC
Alpha, the IBM RT PC, and the IBM RS/6000 as well as the support for
instruction attributes.  He also made changes to better support RISC
processors including changes to common subexpression elimination,
strength reduction, function calling sequence handling, and condition
code support, in addition to generalizing the code for frame pointer
elimination and delay slot scheduling.  Richard Kenner was also the
head maintainer of GCC for several years.

     <li>Mumit Khan for various contributions to the Cygwin and Mingw32 ports and
maintaining binary releases for Microsoft Windows hosts, and for massive libstdc++
porting work to Cygwin/Mingw32.

     <li>Robin Kirkham for cpu32 support.

     <li>Mark Klein for PA improvements.

     <li>Thomas Koenig for various bug fixes.

     <li>Bruce Korb for the new and improved fixincludes code.

     <li>Benjamin Kosnik for his G++ work and for leading the libstdc++-v3 effort.

     <li>Charles LaBrec contributed the support for the Integrated Solutions
68020 system.

     <li>Asher Langton and Mike Kumbera for contributing Cray pointer support
to GNU Fortran, and for other GNU Fortran improvements.

     <li>Jeff Law for his direction via the steering committee, coordinating the
entire egcs project and GCC 2.95, rolling out snapshots and releases,
handling merges from GCC2, reviewing tons of patches that might have
fallen through the cracks else, and random but extensive hacking.

     <li>Marc Lehmann for his direction via the steering committee and helping
with analysis and improvements of x86 performance.

     <li>Victor Leikehman for work on GNU Fortran.

     <li>Ted Lemon wrote parts of the RTL reader and printer.

     <li>Kriang Lerdsuwanakij for C++ improvements including template as template
parameter support, and many C++ fixes.

     <li>Warren Levy for tremendous work on libgcj (Java Runtime Library) and
random work on the Java front end.

     <li>Alain Lichnewsky ported GCC to the MIPS CPU.

     <li>Oskar Liljeblad for hacking on AWT and his many Java bug reports and
patches.

     <li>Robert Lipe for OpenServer support, new testsuites, testing, etc.

     <li>Chen Liqin for various S+core related fixes/improvement, and for
maintaining the S+core port.

     <li>Weiwen Liu for testing and various bug fixes.

     <li>Manuel L&oacute;pez-Ib&aacute;&ntilde;ez for improving <samp><span class="option">-Wconversion</span></samp> and
many other diagnostics fixes and improvements.

     <li>Dave Love for his ongoing work with the Fortran front end and
runtime libraries.

     <li>Martin von L&ouml;wis for internal consistency checking infrastructure,
various C++ improvements including namespace support, and tons of
assistance with libstdc++/compiler merges.

     <li>H.J. Lu for his previous contributions to the steering committee, many x86
bug reports, prototype patches, and keeping the GNU/Linux ports working.

     <li>Greg McGary for random fixes and (someday) bounded pointers.

     <li>Andrew MacLeod for his ongoing work in building a real EH system,
various code generation improvements, work on the global optimizer, etc.

     <li>Vladimir Makarov for hacking some ugly i960 problems, PowerPC hacking
improvements to compile-time performance, overall knowledge and
direction in the area of instruction scheduling, and design and
implementation of the automaton based instruction scheduler.

     <li>Bob Manson for his behind the scenes work on dejagnu.

     <li>Philip Martin for lots of libstdc++ string and vector iterator fixes and
improvements, and string clean up and testsuites.

     <li>All of the Mauve project
<a href="http://sourceware.org/cgi-bin/cvsweb.cgi/~checkout~/mauve/THANKS?rev=1.2&amp;cvsroot=mauve&amp;only_with_tag=HEAD">contributors</a>,
for Java test code.

     <li>Bryce McKinlay for numerous GCJ and libgcj fixes and improvements.

     <li>Adam Megacz for his work on the Microsoft Windows port of GCJ.

     <li>Michael Meissner for LRS framework, ia32, m32r, v850, m88k, MIPS,
powerpc, haifa, ECOFF debug support, and other assorted hacking.

     <li>Jason Merrill for his direction via the steering committee and leading
the G++ effort.

     <li>Martin Michlmayr for testing GCC on several architectures using the
entire Debian archive.

     <li>David Miller for his direction via the steering committee, lots of
SPARC work, improvements in jump.c and interfacing with the Linux kernel
developers.

     <li>Gary Miller ported GCC to Charles River Data Systems machines.

     <li>Alfred Minarik for libstdc++ string and ios bug fixes, and turning the
entire libstdc++ testsuite namespace-compatible.

     <li>Mark Mitchell for his direction via the steering committee, mountains of
C++ work, load/store hoisting out of loops, alias analysis improvements,
ISO C <code>restrict</code> support, and serving as release manager for GCC 3.x.

     <li>Alan Modra for various GNU/Linux bits and testing.

     <li>Toon Moene for his direction via the steering committee, Fortran
maintenance, and his ongoing work to make us make Fortran run fast.

     <li>Jason Molenda for major help in the care and feeding of all the services
on the gcc.gnu.org (formerly egcs.cygnus.com) machine&mdash;mail, web
services, ftp services, etc etc.  Doing all this work on scrap paper and
the backs of envelopes would have been<small class="dots">...</small> difficult.

     <li>Catherine Moore for fixing various ugly problems we have sent her
way, including the haifa bug which was killing the Alpha &amp; PowerPC
Linux kernels.

     <li>Mike Moreton for his various Java patches.

     <li>David Mosberger-Tang for various Alpha improvements, and for the initial
IA-64 port.

     <li>Stephen Moshier contributed the floating point emulator that assists in
cross-compilation and permits support for floating point numbers wider
than 64 bits and for ISO C99 support.

     <li>Bill Moyer for his behind the scenes work on various issues.

     <li>Philippe De Muyter for his work on the m68k port.

     <li>Joseph S. Myers for his work on the PDP-11 port, format checking and ISO
C99 support, and continuous emphasis on (and contributions to) documentation.

     <li>Nathan Myers for his work on libstdc++-v3: architecture and authorship
through the first three snapshots, including implementation of locale
infrastructure, string, shadow C headers, and the initial project
documentation (DESIGN, CHECKLIST, and so forth).  Later, more work on
MT-safe string and shadow headers.

     <li>Felix Natter for documentation on porting libstdc++.

     <li>Nathanael Nerode for cleaning up the configuration/build process.

     <li>NeXT, Inc. donated the front end that supports the Objective-C
language.

     <li>Hans-Peter Nilsson for the CRIS and MMIX ports, improvements to the search
engine setup, various documentation fixes and other small fixes.

     <li>Geoff Noer for his work on getting cygwin native builds working.

     <li>Diego Novillo for his work on Tree SSA, OpenMP, SPEC performance
tracking web pages, GIMPLE tuples, and assorted fixes.

     <li>David O'Brien for the FreeBSD/alpha, FreeBSD/AMD x86-64, FreeBSD/ARM,
FreeBSD/PowerPC, and FreeBSD/SPARC64 ports and related infrastructure
improvements.

     <li>Alexandre Oliva for various build infrastructure improvements, scripts and
amazing testing work, including keeping libtool issues sane and happy.

     <li>Stefan Olsson for work on mt_alloc.

     <li>Melissa O'Neill for various NeXT fixes.

     <li>Rainer Orth for random MIPS work, including improvements to GCC's o32
ABI support, improvements to dejagnu's MIPS support, Java configuration
clean-ups and porting work, and maintaining the IRIX, Solaris 2, and
Tru64 UNIX ports.

     <li>Hartmut Penner for work on the s390 port.

     <li>Paul Petersen wrote the machine description for the Alliant FX/8.

     <li>Alexandre Petit-Bianco for implementing much of the Java compiler and
continued Java maintainership.

     <li>Matthias Pfaller for major improvements to the NS32k port.

     <li>Gerald Pfeifer for his direction via the steering committee, pointing
out lots of problems we need to solve, maintenance of the web pages, and
taking care of documentation maintenance in general.

     <li>Andrew Pinski for processing bug reports by the dozen.

     <li>Ovidiu Predescu for his work on the Objective-C front end and runtime
libraries.

     <li>Jerry Quinn for major performance improvements in C++ formatted I/O.

     <li>Ken Raeburn for various improvements to checker, MIPS ports and various
cleanups in the compiler.

     <li>Rolf W. Rasmussen for hacking on AWT.

     <li>David Reese of Sun Microsystems contributed to the Solaris on PowerPC
port.

     <li>Volker Reichelt for keeping up with the problem reports.

     <li>Joern Rennecke for maintaining the sh port, loop, regmove &amp; reload
hacking.

     <li>Loren J. Rittle for improvements to libstdc++-v3 including the FreeBSD
port, threading fixes, thread-related configury changes, critical
threading documentation, and solutions to really tricky I/O problems,
as well as keeping GCC properly working on FreeBSD and continuous testing.

     <li>Craig Rodrigues for processing tons of bug reports.

     <li>Ola R&ouml;nnerup for work on mt_alloc.

     <li>Gavin Romig-Koch for lots of behind the scenes MIPS work.

     <li>David Ronis inspired and encouraged Craig to rewrite the G77
documentation in texinfo format by contributing a first pass at a
translation of the old <samp><span class="file">g77-0.5.16/f/DOC</span></samp> file.

     <li>Ken Rose for fixes to GCC's delay slot filling code.

     <li>Paul Rubin wrote most of the preprocessor.

     <li>P&eacute;tur Run&oacute;lfsson for major performance improvements in C++ formatted I/O and
large file support in C++ filebuf.

     <li>Chip Salzenberg for libstdc++ patches and improvements to locales, traits,
Makefiles, libio, libtool hackery, and &ldquo;long long&rdquo; support.

     <li>Juha Sarlin for improvements to the H8 code generator.

     <li>Greg Satz assisted in making GCC work on HP-UX for the 9000 series 300.

     <li>Roger Sayle for improvements to constant folding and GCC's RTL optimizers
as well as for fixing numerous bugs.

     <li>Bradley Schatz for his work on the GCJ FAQ.

     <li>Peter Schauer wrote the code to allow debugging to work on the Alpha.

     <li>William Schelter did most of the work on the Intel 80386 support.

     <li>Tobias Schl&uuml;ter for work on GNU Fortran.

     <li>Bernd Schmidt for various code generation improvements and major
work in the reload pass as well a serving as release manager for
GCC 2.95.3.

     <li>Peter Schmid for constant testing of libstdc++&mdash;especially application
testing, going above and beyond what was requested for the release
criteria&mdash;and libstdc++ header file tweaks.

     <li>Jason Schroeder for jcf-dump patches.

     <li>Andreas Schwab for his work on the m68k port.

     <li>Lars Segerlund for work on GNU Fortran.

     <li>Dodji Seketeli for numerous C++ bug fixes and debug info improvements.

     <li>Joel Sherrill for his direction via the steering committee, RTEMS
contributions and RTEMS testing.

     <li>Nathan Sidwell for many C++ fixes/improvements.

     <li>Jeffrey Siegal for helping RMS with the original design of GCC, some
code which handles the parse tree and RTL data structures, constant
folding and help with the original VAX &amp; m68k ports.

     <li>Kenny Simpson for prompting libstdc++ fixes due to defect reports from
the LWG (thereby keeping GCC in line with updates from the ISO).

     <li>Franz Sirl for his ongoing work with making the PPC port stable
for GNU/Linux.

     <li>Andrey Slepuhin for assorted AIX hacking.

     <li>Trevor Smigiel for contributing the SPU port.

     <li>Christopher Smith did the port for Convex machines.

     <li>Danny Smith for his major efforts on the Mingw (and Cygwin) ports.

     <li>Randy Smith finished the Sun FPA support.

     <li>Scott Snyder for queue, iterator, istream, and string fixes and libstdc++
testsuite entries.  Also for providing the patch to G77 to add
rudimentary support for <code>INTEGER*1</code>, <code>INTEGER*2</code>, and
<code>LOGICAL*1</code>.

     <li>Brad Spencer for contributions to the GLIBCPP_FORCE_NEW technique.

     <li>Richard Stallman, for writing the original GCC and launching the GNU project.

     <li>Jan Stein of the Chalmers Computer Society provided support for
Genix, as well as part of the 32000 machine description.

     <li>Nigel Stephens for various mips16 related fixes/improvements.

     <li>Jonathan Stone wrote the machine description for the Pyramid computer.

     <li>Graham Stott for various infrastructure improvements.

     <li>John Stracke for his Java HTTP protocol fixes.

     <li>Mike Stump for his Elxsi port, G++ contributions over the years and more
recently his vxworks contributions

     <li>Jeff Sturm for Java porting help, bug fixes, and encouragement.

     <li>Shigeya Suzuki for this fixes for the bsdi platforms.

     <li>Ian Lance Taylor for the Go frontend, the initial mips16 and mips64
support, general configury hacking, fixincludes, etc.

     <li>Holger Teutsch provided the support for the Clipper CPU.

     <li>Gary Thomas for his ongoing work to make the PPC work for GNU/Linux.

     <li>Philipp Thomas for random bug fixes throughout the compiler

     <li>Jason Thorpe for thread support in libstdc++ on NetBSD.

     <li>Kresten Krab Thorup wrote the run time support for the Objective-C
language and the fantastic Java bytecode interpreter.

     <li>Michael Tiemann for random bug fixes, the first instruction scheduler,
initial C++ support, function integration, NS32k, SPARC and M88k
machine description work, delay slot scheduling.

     <li>Andreas Tobler for his work porting libgcj to Darwin.

     <li>Teemu Torma for thread safe exception handling support.

     <li>Leonard Tower wrote parts of the parser, RTL generator, and RTL
definitions, and of the VAX machine description.

     <li>Daniel Towner and Hariharan Sandanagobalane contributed and
maintain the picoChip port.

     <li>Tom Tromey for internationalization support and for his many Java
contributions and libgcj maintainership.

     <li>Lassi Tuura for improvements to config.guess to determine HP processor
types.

     <li>Petter Urkedal for libstdc++ CXXFLAGS, math, and algorithms fixes.

     <li>Andy Vaught for the design and initial implementation of the GNU Fortran
front end.

     <li>Brent Verner for work with the libstdc++ cshadow files and their
associated configure steps.

     <li>Todd Vierling for contributions for NetBSD ports.

     <li>Jonathan Wakely for contributing libstdc++ Doxygen notes and XHTML
guidance.

     <li>Dean Wakerley for converting the install documentation from HTML to texinfo
in time for GCC 3.0.

     <li>Krister Walfridsson for random bug fixes.

     <li>Feng Wang for contributions to GNU Fortran.

     <li>Stephen M. Webb for time and effort on making libstdc++ shadow files
work with the tricky Solaris 8+ headers, and for pushing the build-time
header tree.

     <li>John Wehle for various improvements for the x86 code generator,
related infrastructure improvements to help x86 code generation,
value range propagation and other work, WE32k port.

     <li>Ulrich Weigand for work on the s390 port.

     <li>Zack Weinberg for major work on cpplib and various other bug fixes.

     <li>Matt Welsh for help with Linux Threads support in GCJ.

     <li>Urban Widmark for help fixing java.io.

     <li>Mark Wielaard for new Java library code and his work integrating with
Classpath.

     <li>Dale Wiles helped port GCC to the Tahoe.

     <li>Bob Wilson from Tensilica, Inc. for the Xtensa port.

     <li>Jim Wilson for his direction via the steering committee, tackling hard
problems in various places that nobody else wanted to work on, strength
reduction and other loop optimizations.

     <li>Paul Woegerer and Tal Agmon for the CRX port.

     <li>Carlo Wood for various fixes.

     <li>Tom Wood for work on the m88k port.

     <li>Canqun Yang for work on GNU Fortran.

     <li>Masanobu Yuhara of Fujitsu Laboratories implemented the machine
description for the Tron architecture (specifically, the Gmicro).

     <li>Kevin Zachmann helped port GCC to the Tahoe.

     <li>Ayal Zaks for Swing Modulo Scheduling (SMS).

     <li>Xiaoqiang Zhang for work on GNU Fortran.

     <li>Gilles Zunino for help porting Java to Irix.

 </ul>

 <p>The following people are recognized for their contributions to GNAT,
the Ada front end of GCC:
     <ul>
<li>Bernard Banner

     <li>Romain Berrendonner

     <li>Geert Bosch

     <li>Emmanuel Briot

     <li>Joel Brobecker

     <li>Ben Brosgol

     <li>Vincent Celier

     <li>Arnaud Charlet

     <li>Chien Chieng

     <li>Cyrille Comar

     <li>Cyrille Crozes

     <li>Robert Dewar

     <li>Gary Dismukes

     <li>Robert Duff

     <li>Ed Falis

     <li>Ramon Fernandez

     <li>Sam Figueroa

     <li>Vasiliy Fofanov

     <li>Michael Friess

     <li>Franco Gasperoni

     <li>Ted Giering

     <li>Matthew Gingell

     <li>Laurent Guerby

     <li>Jerome Guitton

     <li>Olivier Hainque

     <li>Jerome Hugues

     <li>Hristian Kirtchev

     <li>Jerome Lambourg

     <li>Bruno Leclerc

     <li>Albert Lee

     <li>Sean McNeil

     <li>Javier Miranda

     <li>Laurent Nana

     <li>Pascal Obry

     <li>Dong-Ik Oh

     <li>Laurent Pautet

     <li>Brett Porter

     <li>Thomas Quinot

     <li>Nicolas Roche

     <li>Pat Rogers

     <li>Jose Ruiz

     <li>Douglas Rupp

     <li>Sergey Rybin

     <li>Gail Schenker

     <li>Ed Schonberg

     <li>Nicolas Setton

     <li>Samuel Tardieu

 </ul>

 <p>The following people are recognized for their contributions of new
features, bug reports, testing and integration of classpath/libgcj for
GCC version 4.1:
     <ul>
<li>Lillian Angel for <code>JTree</code> implementation and lots Free Swing
additions and bug fixes.

     <li>Wolfgang Baer for <code>GapContent</code> bug fixes.

     <li>Anthony Balkissoon for <code>JList</code>, Free Swing 1.5 updates and mouse event
fixes, lots of Free Swing work including <code>JTable</code> editing.

     <li>Stuart Ballard for RMI constant fixes.

     <li>Goffredo Baroncelli for <code>HTTPURLConnection</code> fixes.

     <li>Gary Benson for <code>MessageFormat</code> fixes.

     <li>Daniel Bonniot for <code>Serialization</code> fixes.

     <li>Chris Burdess for lots of gnu.xml and http protocol fixes, <code>StAX</code>
and <code>DOM xml:id</code> support.

     <li>Ka-Hing Cheung for <code>TreePath</code> and <code>TreeSelection</code> fixes.

     <li>Archie Cobbs for build fixes, VM interface updates,
<code>URLClassLoader</code> updates.

     <li>Kelley Cook for build fixes.

     <li>Martin Cordova for Suggestions for better <code>SocketTimeoutException</code>.

     <li>David Daney for <code>BitSet</code> bug fixes, <code>HttpURLConnection</code>
rewrite and improvements.

     <li>Thomas Fitzsimmons for lots of upgrades to the gtk+ AWT and Cairo 2D
support. Lots of imageio framework additions, lots of AWT and Free
Swing bug fixes.

     <li>Jeroen Frijters for <code>ClassLoader</code> and nio cleanups, serialization fixes,
better <code>Proxy</code> support, bug fixes and IKVM integration.

     <li>Santiago Gala for <code>AccessControlContext</code> fixes.

     <li>Nicolas Geoffray for <code>VMClassLoader</code> and <code>AccessController</code>
improvements.

     <li>David Gilbert for <code>basic</code> and <code>metal</code> icon and plaf support
and lots of documenting, Lots of Free Swing and metal theme
additions. <code>MetalIconFactory</code> implementation.

     <li>Anthony Green for <code>MIDI</code> framework, <code>ALSA</code> and <code>DSSI</code>
providers.

     <li>Andrew Haley for <code>Serialization</code> and <code>URLClassLoader</code> fixes,
gcj build speedups.

     <li>Kim Ho for <code>JFileChooser</code> implementation.

     <li>Andrew John Hughes for <code>Locale</code> and net fixes, URI RFC2986
updates, <code>Serialization</code> fixes, <code>Properties</code> XML support and
generic branch work, VMIntegration guide update.

     <li>Bastiaan Huisman for <code>TimeZone</code> bug fixing.

     <li>Andreas Jaeger for mprec updates.

     <li>Paul Jenner for better <samp><span class="option">-Werror</span></samp> support.

     <li>Ito Kazumitsu for <code>NetworkInterface</code> implementation and updates.

     <li>Roman Kennke for <code>BoxLayout</code>, <code>GrayFilter</code> and
<code>SplitPane</code>, plus bug fixes all over. Lots of Free Swing work
including styled text.

     <li>Simon Kitching for <code>String</code> cleanups and optimization suggestions.

     <li>Michael Koch for configuration fixes, <code>Locale</code> updates, bug and
build fixes.

     <li>Guilhem Lavaux for configuration, thread and channel fixes and Kaffe
integration. JCL native <code>Pointer</code> updates. Logger bug fixes.

     <li>David Lichteblau for JCL support library global/local reference
cleanups.

     <li>Aaron Luchko for JDWP updates and documentation fixes.

     <li>Ziga Mahkovec for <code>Graphics2D</code> upgraded to Cairo 0.5 and new regex
features.

     <li>Sven de Marothy for BMP imageio support, CSS and <code>TextLayout</code>
fixes. <code>GtkImage</code> rewrite, 2D, awt, free swing and date/time fixes and
implementing the Qt4 peers.

     <li>Casey Marshall for crypto algorithm fixes, <code>FileChannel</code> lock,
<code>SystemLogger</code> and <code>FileHandler</code> rotate implementations, NIO
<code>FileChannel.map</code> support, security and policy updates.

     <li>Bryce McKinlay for RMI work.

     <li>Audrius Meskauskas for lots of Free Corba, RMI and HTML work plus
testing and documenting.

     <li>Kalle Olavi Niemitalo for build fixes.

     <li>Rainer Orth for build fixes.

     <li>Andrew Overholt for <code>File</code> locking fixes.

     <li>Ingo Proetel for <code>Image</code>, <code>Logger</code> and <code>URLClassLoader</code>
updates.

     <li>Olga Rodimina for <code>MenuSelectionManager</code> implementation.

     <li>Jan Roehrich for <code>BasicTreeUI</code> and <code>JTree</code> fixes.

     <li>Julian Scheid for documentation updates and gjdoc support.

     <li>Christian Schlichtherle for zip fixes and cleanups.

     <li>Robert Schuster for documentation updates and beans fixes,
<code>TreeNode</code> enumerations and <code>ActionCommand</code> and various
fixes, XML and URL, AWT and Free Swing bug fixes.

     <li>Keith Seitz for lots of JDWP work.

     <li>Christian Thalinger for 64-bit cleanups, Configuration and VM
interface fixes and <code>CACAO</code> integration, <code>fdlibm</code> updates.

     <li>Gael Thomas for <code>VMClassLoader</code> boot packages support suggestions.

     <li>Andreas Tobler for Darwin and Solaris testing and fixing, <code>Qt4</code>
support for Darwin/OS X, <code>Graphics2D</code> support, <code>gtk+</code>
updates.

     <li>Dalibor Topic for better <code>DEBUG</code> support, build cleanups and
Kaffe integration. <code>Qt4</code> build infrastructure, <code>SHA1PRNG</code>
and <code>GdkPixbugDecoder</code> updates.

     <li>Tom Tromey for Eclipse integration, generics work, lots of bug fixes
and gcj integration including coordinating The Big Merge.

     <li>Mark Wielaard for bug fixes, packaging and release management,
<code>Clipboard</code> implementation, system call interrupts and network
timeouts and <code>GdkPixpufDecoder</code> fixes.

 </ul>

 <p>In addition to the above, all of which also contributed time and energy in
testing GCC, we would like to thank the following for their contributions
to testing:

     <ul>
<li>Michael Abd-El-Malek

     <li>Thomas Arend

     <li>Bonzo Armstrong

     <li>Steven Ashe

     <li>Chris Baldwin

     <li>David Billinghurst

     <li>Jim Blandy

     <li>Stephane Bortzmeyer

     <li>Horst von Brand

     <li>Frank Braun

     <li>Rodney Brown

     <li>Sidney Cadot

     <li>Bradford Castalia

     <li>Robert Clark

     <li>Jonathan Corbet

     <li>Ralph Doncaster

     <li>Richard Emberson

     <li>Levente Farkas

     <li>Graham Fawcett

     <li>Mark Fernyhough

     <li>Robert A. French

     <li>J&ouml;rgen Freyh

     <li>Mark K. Gardner

     <li>Charles-Antoine Gauthier

     <li>Yung Shing Gene

     <li>David Gilbert

     <li>Simon Gornall

     <li>Fred Gray

     <li>John Griffin

     <li>Patrik Hagglund

     <li>Phil Hargett

     <li>Amancio Hasty

     <li>Takafumi Hayashi

     <li>Bryan W. Headley

     <li>Kevin B. Hendricks

     <li>Joep Jansen

     <li>Christian Joensson

     <li>Michel Kern

     <li>David Kidd

     <li>Tobias Kuipers

     <li>Anand Krishnaswamy

     <li>A. O. V. Le Blanc

     <li>llewelly

     <li>Damon Love

     <li>Brad Lucier

     <li>Matthias Klose

     <li>Martin Knoblauch

     <li>Rick Lutowski

     <li>Jesse Macnish

     <li>Stefan Morrell

     <li>Anon A. Mous

     <li>Matthias Mueller

     <li>Pekka Nikander

     <li>Rick Niles

     <li>Jon Olson

     <li>Magnus Persson

     <li>Chris Pollard

     <li>Richard Polton

     <li>Derk Reefman

     <li>David Rees

     <li>Paul Reilly

     <li>Tom Reilly

     <li>Torsten Rueger

     <li>Danny Sadinoff

     <li>Marc Schifer

     <li>Erik Schnetter

     <li>Wayne K. Schroll

     <li>David Schuler

     <li>Vin Shelton

     <li>Tim Souder

     <li>Adam Sulmicki

     <li>Bill Thorson

     <li>George Talbot

     <li>Pedro A. M. Vazquez

     <li>Gregory Warnes

     <li>Ian Watson

     <li>David E. Young

     <li>And many others
</ul>

 <p>And finally we'd like to thank everyone who uses the compiler, provides
feedback and generally reminds us why we're doing this work in the first
place.

<!--  -->
<!-- Indexes -->
<!--  -->
<div class="node">
<a name="Option-Index"></a>
<p><hr>
Next:&nbsp;<a rel="next" accesskey="n" href="#Keyword-Index">Keyword Index</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Contributors">Contributors</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Top">Top</a>

</div>

<h2 class="unnumbered">Option Index</h2>

<p>GCC's command line options are indexed here without any initial &lsquo;<samp><span class="samp">-</span></samp>&rsquo;
or &lsquo;<samp><span class="samp">--</span></samp>&rsquo;.  Where an option has both positive and negative forms
(such as <samp><span class="option">-f</span><var>option</var></samp> and <samp><span class="option">-fno-</span><var>option</var></samp>),
relevant entries in the manual are indexed under the most appropriate
form; it may sometimes be useful to look up both forms.

<ul class="index-op" compact>
<li><a href="#index-g_t_0023_0023_0023-83"><code>###</code></a>: <a href="#Overall-Options">Overall Options</a></li>
<li><a href="#index-g_t_002dfno_002dkeep_002dinline_002ddllexport-702"><code>-fno-keep-inline-dllexport</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-g_t_002dmcpu-1951"><code>-mcpu</code></a>: <a href="#RX-Options">RX Options</a></li>
<li><a href="#index-g_t8bit_002didiv-1385"><code>8bit-idiv</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-A-945"><code>A</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-all_005fload-1137"><code>all_load</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-allowable_005fclient-1144"><code>allowable_client</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-ansi-3337"><code>ansi</code></a>: <a href="#Non_002dbugs">Non-bugs</a></li>
<li><a href="#index-ansi-3133"><code>ansi</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ansi-916"><code>ansi</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-ansi-100"><code>ansi</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-ansi-59"><code>ansi</code></a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-arch_005ferrors_005ffatal-1138"><code>arch_errors_fatal</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-aux_002dinfo-103"><code>aux-info</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-avx256_002dsplit_002dunaligned_002dload-1386"><code>avx256-split-unaligned-load</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-avx256_002dsplit_002dunaligned_002dstore-1387"><code>avx256-split-unaligned-store</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-B-1000"><code>B</code></a>: <a href="#Directory-Options">Directory Options</a></li>
<li><a href="#index-Bdynamic-2138"><code>Bdynamic</code></a>: <a href="#VxWorks-Options">VxWorks Options</a></li>
<li><a href="#index-bind_005fat_005fload-1139"><code>bind_at_load</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-Bstatic-2137"><code>Bstatic</code></a>: <a href="#VxWorks-Options">VxWorks Options</a></li>
<li><a href="#index-bundle-1140"><code>bundle</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-bundle_005floader-1141"><code>bundle_loader</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-c-966"><code>c</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-C-952"><code>C</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-c-77"><code>c</code></a>: <a href="#Overall-Options">Overall Options</a></li>
<li><a href="#index-client_005fname-1145"><code>client_name</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-compatibility_005fversion-1146"><code>compatibility_version</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-coverage-537"><code>coverage</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-current_005fversion-1147"><code>current_version</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-D-884"><code>D</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-d-541"><code>d</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-dA-610"><code>dA</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-dD-947"><code>dD</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-dD-611"><code>dD</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-dead_005fstrip-1148"><code>dead_strip</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-dependency_002dfile-1149"><code>dependency-file</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-dH-612"><code>dH</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-dI-949"><code>dI</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-dM-946"><code>dM</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-dm-613"><code>dm</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-dN-948"><code>dN</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-dP-615"><code>dP</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-dp-614"><code>dp</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-dU-950"><code>dU</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-dumpmachine-675"><code>dumpmachine</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-dumpspecs-677"><code>dumpspecs</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-dumpversion-676"><code>dumpversion</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-dv-616"><code>dv</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-dx-617"><code>dx</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-dylib_005ffile-1150"><code>dylib_file</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-dylinker_005finstall_005fname-1151"><code>dylinker_install_name</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-dynamic-1152"><code>dynamic</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-dynamiclib-1142"><code>dynamiclib</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-E-968"><code>E</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-E-79"><code>E</code></a>: <a href="#Overall-Options">Overall Options</a></li>
<li><a href="#index-EB-1625"><code>EB</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-EB-1020"><code>EB</code></a>: <a href="#ARC-Options">ARC Options</a></li>
<li><a href="#index-EL-1626"><code>EL</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-EL-1019"><code>EL</code></a>: <a href="#ARC-Options">ARC Options</a></li>
<li><a href="#index-exported_005fsymbols_005flist-1153"><code>exported_symbols_list</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-F-1128"><code>F</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-fabi_002dversion-131"><code>fabi-version</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-falign_002dfunctions-828"><code>falign-functions</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-falign_002djumps-831"><code>falign-jumps</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-falign_002dlabels-829"><code>falign-labels</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-falign_002dloops-830"><code>falign-loops</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fassociative_002dmath-851"><code>fassociative-math</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fasynchronous_002dunwind_002dtables-2168"><code>fasynchronous-unwind-tables</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fauto_002dinc_002ddec-729"><code>fauto-inc-dec</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fbounds_002dcheck-2162"><code>fbounds-check</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fbranch_002dprobabilities-861"><code>fbranch-probabilities</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fbranch_002dtarget_002dload_002doptimize-873"><code>fbranch-target-load-optimize</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fbranch_002dtarget_002dload_002doptimize2-874"><code>fbranch-target-load-optimize2</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fbtr_002dbb_002dexclusive-875"><code>fbtr-bb-exclusive</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fcall_002dsaved-2188"><code>fcall-saved</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fcall_002dused-2187"><code>fcall-used</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fcaller_002dsaves-765"><code>fcaller-saves</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fcheck_002ddata_002ddeps-798"><code>fcheck-data-deps</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fcheck_002dnew-133"><code>fcheck-new</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fcombine_002dstack_002dadjustments-766"><code>fcombine-stack-adjustments</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fcommon-2573"><code>fcommon</code></a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-fcompare_002ddebug-515"><code>fcompare-debug</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fcompare_002ddebug_002dsecond-517"><code>fcompare-debug-second</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fcompare_002delim-838"><code>fcompare-elim</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fcond_002dmismatch-120"><code>fcond-mismatch</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-fconserve_002dspace-134"><code>fconserve-space</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fconserve_002dstack-767"><code>fconserve-stack</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fconstant_002dstring_002dclass-197"><code>fconstant-string-class</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-fconstexpr_002ddepth-135"><code>fconstexpr-depth</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fcprop_002dregisters-839"><code>fcprop-registers</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fcrossjumping-728"><code>fcrossjumping</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fcse_002dfollow_002djumps-719"><code>fcse-follow-jumps</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fcse_002dskip_002dblocks-720"><code>fcse-skip-blocks</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fcx_002dfortran_002drules-860"><code>fcx-fortran-rules</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fcx_002dlimited_002drange-859"><code>fcx-limited-range</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fdata_002dsections-872"><code>fdata-sections</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fdbg_002dcnt-540"><code>fdbg-cnt</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdbg_002dcnt_002dlist-539"><code>fdbg-cnt-list</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdce-730"><code>fdce</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fdebug_002dprefix_002dmap-522"><code>fdebug-prefix-map</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdelayed_002dbranch-743"><code>fdelayed-branch</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fdelete_002dnull_002dpointer_002dchecks-734"><code>fdelete-null-pointer-checks</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fdevirtualize-735"><code>fdevirtualize</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fdiagnostics_002dshow_002dlocation-226"><code>fdiagnostics-show-location</code></a>: <a href="#Language-Independent-Options">Language Independent Options</a></li>
<li><a href="#index-fdiagnostics_002dshow_002doption-228"><code>fdiagnostics-show-option</code></a>: <a href="#Language-Independent-Options">Language Independent Options</a></li>
<li><a href="#index-fdirectives_002donly-931"><code>fdirectives-only</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-fdollars_002din_002didentifiers-3291"><code>fdollars-in-identifiers</code></a>: <a href="#Interoperation">Interoperation</a></li>
<li><a href="#index-fdollars_002din_002didentifiers-932"><code>fdollars-in-identifiers</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-fdse-731"><code>fdse</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fdump_002dclass_002dhierarchy-622"><code>fdump-class-hierarchy</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dfinal_002dinsns-514"><code>fdump-final-insns</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dipa-623"><code>fdump-ipa</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dnoaddr-618"><code>fdump-noaddr</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dalignments-542"><code>fdump-rtl-alignments</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dall-609"><code>fdump-rtl-all</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dasmcons-543"><code>fdump-rtl-asmcons</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dauto_005finc_005fdec-544"><code>fdump-rtl-auto_inc_dec</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dbarriers-545"><code>fdump-rtl-barriers</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dbbpart-546"><code>fdump-rtl-bbpart</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dbbro-547"><code>fdump-rtl-bbro</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dbtl2-548"><code>fdump-rtl-btl2</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dbypass-550"><code>fdump-rtl-bypass</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dce1-553"><code>fdump-rtl-ce1</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dce2-554"><code>fdump-rtl-ce2</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dce3-555"><code>fdump-rtl-ce3</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dcombine-551"><code>fdump-rtl-combine</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dcompgotos-552"><code>fdump-rtl-compgotos</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dcprop_005fhardreg-556"><code>fdump-rtl-cprop_hardreg</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dcsa-557"><code>fdump-rtl-csa</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dcse1-558"><code>fdump-rtl-cse1</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dcse2-559"><code>fdump-rtl-cse2</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002ddbr-561"><code>fdump-rtl-dbr</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002ddce-560"><code>fdump-rtl-dce</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002ddce1-562"><code>fdump-rtl-dce1</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002ddce2-563"><code>fdump-rtl-dce2</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002ddfinish-608"><code>fdump-rtl-dfinish</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002ddfinit-607"><code>fdump-rtl-dfinit</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002deh-564"><code>fdump-rtl-eh</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002deh_005franges-565"><code>fdump-rtl-eh_ranges</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dexpand-566"><code>fdump-rtl-expand</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dfwprop1-567"><code>fdump-rtl-fwprop1</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dfwprop2-568"><code>fdump-rtl-fwprop2</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dgcse1-569"><code>fdump-rtl-gcse1</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dgcse2-570"><code>fdump-rtl-gcse2</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dinit_002dregs-571"><code>fdump-rtl-init-regs</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dinitvals-572"><code>fdump-rtl-initvals</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dinto_005fcfglayout-573"><code>fdump-rtl-into_cfglayout</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dira-574"><code>fdump-rtl-ira</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002djump-575"><code>fdump-rtl-jump</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dloop2-576"><code>fdump-rtl-loop2</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dmach-577"><code>fdump-rtl-mach</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dmode_005fsw-578"><code>fdump-rtl-mode_sw</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002doutof_005fcfglayout-580"><code>fdump-rtl-outof_cfglayout</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dpeephole2-581"><code>fdump-rtl-peephole2</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dpostreload-582"><code>fdump-rtl-postreload</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dpro_005fand_005fepilogue-583"><code>fdump-rtl-pro_and_epilogue</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dregclass-604"><code>fdump-rtl-regclass</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dregmove-584"><code>fdump-rtl-regmove</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002drnreg-579"><code>fdump-rtl-rnreg</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dsched1-585"><code>fdump-rtl-sched1</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dsched2-586"><code>fdump-rtl-sched2</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dsee-587"><code>fdump-rtl-see</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dseqabstr-588"><code>fdump-rtl-seqabstr</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dshorten-589"><code>fdump-rtl-shorten</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dsibling-590"><code>fdump-rtl-sibling</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dsms-596"><code>fdump-rtl-sms</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dsplit1-591"><code>fdump-rtl-split1</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dsplit2-592"><code>fdump-rtl-split2</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dsplit3-593"><code>fdump-rtl-split3</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dsplit4-594"><code>fdump-rtl-split4</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dsplit5-595"><code>fdump-rtl-split5</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dstack-597"><code>fdump-rtl-stack</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dsubreg1-598"><code>fdump-rtl-subreg1</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dsubreg2-599"><code>fdump-rtl-subreg2</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dsubregs_005fof_005fmode_005ffinish-606"><code>fdump-rtl-subregs_of_mode_finish</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dsubregs_005fof_005fmode_005finit-605"><code>fdump-rtl-subregs_of_mode_init</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dunshare-600"><code>fdump-rtl-unshare</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dvartrack-601"><code>fdump-rtl-vartrack</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dvregs-602"><code>fdump-rtl-vregs</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002drtl_002dweb-603"><code>fdump-rtl-web</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dstatistics-624"><code>fdump-statistics</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtranslation_002dunit-621"><code>fdump-translation-unit</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree-625"><code>fdump-tree</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dalias-633"><code>fdump-tree-alias</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dall-653"><code>fdump-tree-all</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dccp-634"><code>fdump-tree-ccp</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dcfg-629"><code>fdump-tree-cfg</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dch-631"><code>fdump-tree-ch</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dcopyprop-638"><code>fdump-tree-copyprop</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dcopyrename-648"><code>fdump-tree-copyrename</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002ddce-640"><code>fdump-tree-dce</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002ddom-644"><code>fdump-tree-dom</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002ddse-645"><code>fdump-tree-dse</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dforwprop-647"><code>fdump-tree-forwprop</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dfre-637"><code>fdump-tree-fre</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dgimple-628"><code>fdump-tree-gimple</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dmudflap-641"><code>fdump-tree-mudflap</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dnrv-649"><code>fdump-tree-nrv</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002doptimized-627"><code>fdump-tree-optimized</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002doriginal-626"><code>fdump-tree-original</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dphiopt-646"><code>fdump-tree-phiopt</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dpre-636"><code>fdump-tree-pre</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dsink-643"><code>fdump-tree-sink</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dslp-651"><code>fdump-tree-slp</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dsra-642"><code>fdump-tree-sra</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dssa-632"><code>fdump-tree-ssa</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dstore_005fcopyprop-639"><code>fdump-tree-store_copyprop</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dstoreccp-635"><code>fdump-tree-storeccp</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dvcg-630"><code>fdump-tree-vcg</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dvect-650"><code>fdump-tree-vect</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dtree_002dvrp-652"><code>fdump-tree-vrp</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dunnumbered-619"><code>fdump-unnumbered</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdump_002dunnumbered_002dlinks-620"><code>fdump-unnumbered-links</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fdwarf2_002dcfi_002dasm-523"><code>fdwarf2-cfi-asm</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fearly_002dinlining-699"><code>fearly-inlining</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-feliminate_002ddwarf2_002ddups-518"><code>feliminate-dwarf2-dups</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-feliminate_002dunused_002ddebug_002dsymbols-504"><code>feliminate-unused-debug-symbols</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-feliminate_002dunused_002ddebug_002dtypes-678"><code>feliminate-unused-debug-types</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fenable_002dicf_002ddebug-519"><code>fenable-icf-debug</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fexceptions-2165"><code>fexceptions</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fexcess_002dprecision-846"><code>fexcess-precision</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fexec_002dcharset-936"><code>fexec-charset</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-fexpensive_002doptimizations-736"><code>fexpensive-optimizations</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fextended_002didentifiers-933"><code>fextended-identifiers</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-ffast_002dmath-848"><code>ffast-math</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ffinite_002dmath_002donly-853"><code>ffinite-math-only</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ffix_002dand_002dcontinue-1135"><code>ffix-and-continue</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-ffixed-2186"><code>ffixed</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-ffloat_002dstore-3321"><code>ffloat-store</code></a>: <a href="#Disappointments">Disappointments</a></li>
<li><a href="#index-ffloat_002dstore-844"><code>ffloat-store</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ffor_002dscope-140"><code>ffor-scope</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fforward_002dpropagate-690"><code>fforward-propagate</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ffp_002dcontract-691"><code>ffp-contract</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ffreestanding-2432"><code>ffreestanding</code></a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-ffreestanding-259"><code>ffreestanding</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-ffreestanding-109"><code>ffreestanding</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-ffreestanding-62"><code>ffreestanding</code></a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-ffriend_002dinjection-137"><code>ffriend-injection</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-ffunction_002dsections-871"><code>ffunction-sections</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fgcse-722"><code>fgcse</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fgcse_002dafter_002dreload-726"><code>fgcse-after-reload</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fgcse_002dlas-725"><code>fgcse-las</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fgcse_002dlm-723"><code>fgcse-lm</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fgcse_002dsm-724"><code>fgcse-sm</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fgnu_002druntime-198"><code>fgnu-runtime</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-fgnu89_002dinline-102"><code>fgnu89-inline</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-fgraphite_002didentity-795"><code>fgraphite-identity</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fhosted-107"><code>fhosted</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-fif_002dconversion-732"><code>fif-conversion</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fif_002dconversion2-733"><code>fif-conversion2</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-filelist-1154"><code>filelist</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-findirect_002ddata-1136"><code>findirect-data</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-findirect_002dinlining-696"><code>findirect-inlining</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-finhibit_002dsize_002ddirective-2176"><code>finhibit-size-directive</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-finline_002dfunctions-697"><code>finline-functions</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-finline_002dfunctions_002dcalled_002donce-698"><code>finline-functions-called-once</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-finline_002dlimit-701"><code>finline-limit</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-finline_002dsmall_002dfunctions-695"><code>finline-small-functions</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-finput_002dcharset-940"><code>finput-charset</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-finstrument_002dfunctions-2466"><code>finstrument-functions</code></a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-finstrument_002dfunctions-2190"><code>finstrument-functions</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-finstrument_002dfunctions_002dexclude_002dfile_002dlist-2191"><code>finstrument-functions-exclude-file-list</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-finstrument_002dfunctions_002dexclude_002dfunction_002dlist-2192"><code>finstrument-functions-exclude-function-list</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fipa_002dcp-779"><code>fipa-cp</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fipa_002dcp_002dclone-780"><code>fipa-cp-clone</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fipa_002dmatrix_002dreorg-781"><code>fipa-matrix-reorg</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fipa_002dprofile-778"><code>fipa-profile</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fipa_002dpta-777"><code>fipa-pta</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fipa_002dpure_002dconst-774"><code>fipa-pure-const</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fipa_002dreference-775"><code>fipa-reference</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fipa_002dsra-700"><code>fipa-sra</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fipa_002dstruct_002dreorg-776"><code>fipa-struct-reorg</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fira_002dloop_002dpressure-739"><code>fira-loop-pressure</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fira_002dverbose-742"><code>fira-verbose</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fivopts-801"><code>fivopts</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fkeep_002dinline_002dfunctions-2604"><code>fkeep-inline-functions</code></a>: <a href="#Inline">Inline</a></li>
<li><a href="#index-fkeep_002dinline_002dfunctions-703"><code>fkeep-inline-functions</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fkeep_002dstatic_002dconsts-704"><code>fkeep-static-consts</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-flat_005fnamespace-1155"><code>flat_namespace</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-flax_002dvector_002dconversions-121"><code>flax-vector-conversions</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-fleading_002dunderscore-2198"><code>fleading-underscore</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-floop_002dblock-794"><code>floop-block</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-floop_002dflatten-796"><code>floop-flatten</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-floop_002dinterchange-792"><code>floop-interchange</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-floop_002dparallelize_002dall-797"><code>floop-parallelize-all</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-floop_002dstrip_002dmine-793"><code>floop-strip-mine</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-flto-836"><code>flto</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-flto_002dpartition-837"><code>flto-partition</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fmax_002derrors-236"><code>fmax-errors</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-fmem_002dreport-531"><code>fmem-report</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fmerge_002dall_002dconstants-706"><code>fmerge-all-constants</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fmerge_002dconstants-705"><code>fmerge-constants</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fmerge_002ddebug_002dstrings-520"><code>fmerge-debug-strings</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fmessage_002dlength-225"><code>fmessage-length</code></a>: <a href="#Language-Independent-Options">Language Independent Options</a></li>
<li><a href="#index-fmodulo_002dsched-707"><code>fmodulo-sched</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fmodulo_002dsched_002dallow_002dregmoves-708"><code>fmodulo-sched-allow-regmoves</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fmove_002dloop_002dinvariants-869"><code>fmove-loop-invariants</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fms_002dextensions-3243"><code>fms-extensions</code></a>: <a href="#Unnamed-Fields">Unnamed Fields</a></li>
<li><a href="#index-fms_002dextensions-146"><code>fms-extensions</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fms_002dextensions-113"><code>fms-extensions</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-fmudflap-712"><code>fmudflap</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fmudflapir-714"><code>fmudflapir</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fmudflapth-713"><code>fmudflapth</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fnext_002druntime-199"><code>fnext-runtime</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-fno_002daccess_002dcontrol-132"><code>fno-access-control</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002dasm-104"><code>fno-asm</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-fno_002dbranch_002dcount_002dreg-709"><code>fno-branch-count-reg</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fno_002dbuiltin-3132"><code>fno-builtin</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fno_002dbuiltin-2433"><code>fno-builtin</code></a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-fno_002dbuiltin-260"><code>fno-builtin</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-fno_002dbuiltin-105"><code>fno-builtin</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-fno_002dcommon-2574"><code>fno-common</code></a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-fno_002dcommon-2174"><code>fno-common</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fno_002dcompare_002ddebug-516"><code>fno-compare-debug</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fno_002ddeduce_002dinit_002dlist-136"><code>fno-deduce-init-list</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002ddefault_002dinline-2610"><code>fno-default-inline</code></a>: <a href="#Inline">Inline</a></li>
<li><a href="#index-fno_002ddefault_002dinline-688"><code>fno-default-inline</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fno_002ddefault_002dinline-165"><code>fno-default-inline</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002ddefer_002dpop-689"><code>fno-defer-pop</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fno_002ddiagnostics_002dshow_002doption-227"><code>fno-diagnostics-show-option</code></a>: <a href="#Language-Independent-Options">Language Independent Options</a></li>
<li><a href="#index-fno_002ddwarf2_002dcfi_002dasm-524"><code>fno-dwarf2-cfi-asm</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fno_002delide_002dconstructors-138"><code>fno-elide-constructors</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002denforce_002deh_002dspecs-139"><code>fno-enforce-eh-specs</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002dfor_002dscope-141"><code>fno-for-scope</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002dfunction_002dcse-710"><code>fno-function-cse</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fno_002dgnu_002dkeywords-142"><code>fno-gnu-keywords</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002dguess_002dbranch_002dprobability-822"><code>fno-guess-branch-probability</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fno_002dident-2175"><code>fno-ident</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fno_002dimplement_002dinlines-3273"><code>fno-implement-inlines</code></a>: <a href="#C_002b_002b-Interface">C++ Interface</a></li>
<li><a href="#index-fno_002dimplement_002dinlines-145"><code>fno-implement-inlines</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002dimplicit_002dinline_002dtemplates-144"><code>fno-implicit-inline-templates</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002dimplicit_002dtemplates-3276"><code>fno-implicit-templates</code></a>: <a href="#Template-Instantiation">Template Instantiation</a></li>
<li><a href="#index-fno_002dimplicit_002dtemplates-143"><code>fno-implicit-templates</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002dinline-694"><code>fno-inline</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fno_002dira_002dshare_002dsave_002dslots-740"><code>fno-ira-share-save-slots</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fno_002dira_002dshare_002dspill_002dslots-741"><code>fno-ira-share-spill-slots</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fno_002djump_002dtables-2185"><code>fno-jump-tables</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fno_002dmath_002derrno-849"><code>fno-math-errno</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fno_002dmerge_002ddebug_002dstrings-521"><code>fno-merge-debug-strings</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fno_002dnil_002dreceivers-200"><code>fno-nil-receivers</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-fno_002dnonansi_002dbuiltins-147"><code>fno-nonansi-builtins</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002doperator_002dnames-149"><code>fno-operator-names</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002doptional_002ddiags-150"><code>fno-optional-diags</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002dpeephole-820"><code>fno-peephole</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fno_002dpeephole2-821"><code>fno-peephole2</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fno_002dpretty_002dtemplates-152"><code>fno-pretty-templates</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002drtti-154"><code>fno-rtti</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002dsched_002dinterblock-746"><code>fno-sched-interblock</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fno_002dsched_002dspec-747"><code>fno-sched-spec</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fno_002dset_002dstack_002dexecutable-1403"><code>fno-set-stack-executable</code></a>: <a href="#i386-and-x86_002d64-Windows-Options">i386 and x86-64 Windows Options</a></li>
<li><a href="#index-fno_002dshow_002dcolumn-944"><code>fno-show-column</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-fno_002dsigned_002dbitfields-126"><code>fno-signed-bitfields</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-fno_002dsigned_002dzeros-854"><code>fno-signed-zeros</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fno_002dstack_002dlimit-2196"><code>fno-stack-limit</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fno_002dthreadsafe_002dstatics-158"><code>fno-threadsafe-statics</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002dtoplevel_002dreorder-833"><code>fno-toplevel-reorder</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fno_002dtrapping_002dmath-855"><code>fno-trapping-math</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fno_002dunsigned_002dbitfields-127"><code>fno-unsigned-bitfields</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-fno_002duse_002dcxa_002dget_002dexception_002dptr-160"><code>fno-use-cxa-get-exception-ptr</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002dvar_002dtracking_002dassignments-662"><code>fno-var-tracking-assignments</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fno_002dvar_002dtracking_002dassignments_002dtoggle-664"><code>fno-var-tracking-assignments-toggle</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fno_002dweak-163"><code>fno-weak</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fno_002dworking_002ddirectory-943"><code>fno-working-directory</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-fno_002dzero_002dinitialized_002din_002dbss-711"><code>fno-zero-initialized-in-bss</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fnon_002dcall_002dexceptions-2166"><code>fnon-call-exceptions</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fnothrow_002dopt-148"><code>fnothrow-opt</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fobjc_002dabi_002dversion-201"><code>fobjc-abi-version</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-fobjc_002dcall_002dcxx_002dcdtors-202"><code>fobjc-call-cxx-cdtors</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-fobjc_002ddirect_002ddispatch-203"><code>fobjc-direct-dispatch</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-fobjc_002dexceptions-204"><code>fobjc-exceptions</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-fobjc_002dgc-205"><code>fobjc-gc</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-fobjc_002dnilcheck-206"><code>fobjc-nilcheck</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-fobjc_002dstd-207"><code>fobjc-std</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-fomit_002dframe_002dpointer-692"><code>fomit-frame-pointer</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fopenmp-111"><code>fopenmp</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-foptimize_002dregister_002dmove-737"><code>foptimize-register-move</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-foptimize_002dsibling_002dcalls-693"><code>foptimize-sibling-calls</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-force_005fcpusubtype_005fALL-1143"><code>force_cpusubtype_ALL</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-force_005fflat_005fnamespace-1156"><code>force_flat_namespace</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-fpack_002dstruct-2189"><code>fpack-struct</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fpartial_002dinlining-817"><code>fpartial-inlining</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fpcc_002dstruct_002dreturn-3314"><code>fpcc-struct-return</code></a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-fpcc_002dstruct_002dreturn-2169"><code>fpcc-struct-return</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fpch_002ddeps-913"><code>fpch-deps</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-fpch_002dpreprocess-914"><code>fpch-preprocess</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-fpeel_002dloops-868"><code>fpeel-loops</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fpermissive-151"><code>fpermissive</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fPIC-2182"><code>fPIC</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fpic-2179"><code>fpic</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fPIE-2184"><code>fPIE</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fpie-2183"><code>fpie</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fplan9_002dextensions-3244"><code>fplan9-extensions</code></a>: <a href="#Unnamed-Fields">Unnamed Fields</a></li>
<li><a href="#index-fpost_002dipa_002dmem_002dreport-533"><code>fpost-ipa-mem-report</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fpre_002dipa_002dmem_002dreport-532"><code>fpre-ipa-mem-report</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fpredictive_002dcommoning-818"><code>fpredictive-commoning</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fprefetch_002dloop_002darrays-819"><code>fprefetch-loop-arrays</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fpreprocessed-934"><code>fpreprocessed</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-fprofile_002darcs-3139"><code>fprofile-arcs</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fprofile_002darcs-535"><code>fprofile-arcs</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fprofile_002dcorrection-840"><code>fprofile-correction</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fprofile_002ddir-841"><code>fprofile-dir</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fprofile_002dgenerate-842"><code>fprofile-generate</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fprofile_002duse-843"><code>fprofile-use</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fprofile_002dvalues-862"><code>fprofile-values</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fpu-1949"><code>fpu</code></a>: <a href="#RX-Options">RX Options</a></li>
<li><a href="#index-frandom_002dseed-655"><code>frandom-seed</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-freciprocal_002dmath-852"><code>freciprocal-math</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-frecord_002dgcc_002dswitches-2178"><code>frecord-gcc-switches</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-freg_002dstruct_002dreturn-2170"><code>freg-struct-return</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fregmove-738"><code>fregmove</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-frename_002dregisters-864"><code>frename-registers</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-freorder_002dblocks-823"><code>freorder-blocks</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-freorder_002dblocks_002dand_002dpartition-824"><code>freorder-blocks-and-partition</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-freorder_002dfunctions-825"><code>freorder-functions</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-freplace_002dobjc_002dclasses-208"><code>freplace-objc-classes</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-frepo-3275"><code>frepo</code></a>: <a href="#Template-Instantiation">Template Instantiation</a></li>
<li><a href="#index-frepo-153"><code>frepo</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-frerun_002dcse_002dafter_002dloop-721"><code>frerun-cse-after-loop</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-freschedule_002dmodulo_002dscheduled_002dloops-760"><code>freschedule-modulo-scheduled-loops</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-frounding_002dmath-856"><code>frounding-math</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fsched_002dcritical_002dpath_002dheuristic-755"><code>fsched-critical-path-heuristic</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fsched_002ddep_002dcount_002dheuristic-759"><code>fsched-dep-count-heuristic</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fsched_002dgroup_002dheuristic-754"><code>fsched-group-heuristic</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fsched_002dlast_002dinsn_002dheuristic-758"><code>fsched-last-insn-heuristic</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fsched_002dpressure-748"><code>fsched-pressure</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fsched_002drank_002dheuristic-757"><code>fsched-rank-heuristic</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fsched_002dspec_002dinsn_002dheuristic-756"><code>fsched-spec-insn-heuristic</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fsched_002dspec_002dload-749"><code>fsched-spec-load</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fsched_002dspec_002dload_002ddangerous-750"><code>fsched-spec-load-dangerous</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fsched_002dstalled_002dinsns-751"><code>fsched-stalled-insns</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fsched_002dstalled_002dinsns_002ddep-752"><code>fsched-stalled-insns-dep</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fsched_002dverbose-656"><code>fsched-verbose</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fsched2_002duse_002dsuperblocks-753"><code>fsched2-use-superblocks</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fschedule_002dinsns-744"><code>fschedule-insns</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fschedule_002dinsns2-745"><code>fschedule-insns2</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fsection_002danchors-878"><code>fsection-anchors</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fsel_002dsched_002dpipelining-763"><code>fsel-sched-pipelining</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fsel_002dsched_002dpipelining_002douter_002dloops-764"><code>fsel-sched-pipelining-outer-loops</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fselective_002dscheduling-761"><code>fselective-scheduling</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fselective_002dscheduling2-762"><code>fselective-scheduling2</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fshort_002ddouble-2172"><code>fshort-double</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fshort_002denums-3334"><code>fshort-enums</code></a>: <a href="#Non_002dbugs">Non-bugs</a></li>
<li><a href="#index-fshort_002denums-2593"><code>fshort-enums</code></a>: <a href="#Type-Attributes">Type Attributes</a></li>
<li><a href="#index-fshort_002denums-2228"><code>fshort-enums</code></a>: <a href="#Structures-unions-enumerations-and-bit_002dfields-implementation">Structures unions enumerations and bit-fields implementation</a></li>
<li><a href="#index-fshort_002denums-2171"><code>fshort-enums</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fshort_002dwchar-2173"><code>fshort-wchar</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fsignaling_002dnans-857"><code>fsignaling-nans</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fsigned_002dbitfields-3335"><code>fsigned-bitfields</code></a>: <a href="#Non_002dbugs">Non-bugs</a></li>
<li><a href="#index-fsigned_002dbitfields-124"><code>fsigned-bitfields</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-fsigned_002dchar-2225"><code>fsigned-char</code></a>: <a href="#Characters-implementation">Characters implementation</a></li>
<li><a href="#index-fsigned_002dchar-123"><code>fsigned-char</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-fsingle_002dprecision_002dconstant-858"><code>fsingle-precision-constant</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fsplit_002divs_002din_002dunroller-815"><code>fsplit-ivs-in-unroller</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fsplit_002dstack-2468"><code>fsplit-stack</code></a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-fsplit_002dstack-2197"><code>fsplit-stack</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fsplit_002dwide_002dtypes-718"><code>fsplit-wide-types</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fstack_002dcheck-2193"><code>fstack-check</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fstack_002dlimit_002dregister-2194"><code>fstack-limit-register</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fstack_002dlimit_002dsymbol-2195"><code>fstack-limit-symbol</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fstack_002dprotector-876"><code>fstack-protector</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fstack_002dprotector_002dall-877"><code>fstack-protector-all</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fstack_002dusage-534"><code>fstack-usage</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fstats-155"><code>fstats</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fstrict_002daliasing-826"><code>fstrict-aliasing</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fstrict_002denums-156"><code>fstrict-enums</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fstrict_002doverflow-827"><code>fstrict-overflow</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fstrict_002dvolatile_002dbitfields-2201"><code>fstrict-volatile-bitfields</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fsyntax_002donly-235"><code>fsyntax-only</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-ftabstop-935"><code>ftabstop</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-ftemplate_002ddepth-157"><code>ftemplate-depth</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-ftest_002dcoverage-538"><code>ftest-coverage</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fthread_002djumps-717"><code>fthread-jumps</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftime_002dreport-530"><code>ftime-report</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-ftls_002dmodel-2199"><code>ftls-model</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-ftracer-812"><code>ftracer</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftrapv-2163"><code>ftrapv</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-ftree_002dbit_002dccp-783"><code>ftree-bit-ccp</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dbuiltin_002dcall_002ddce-786"><code>ftree-builtin-call-dce</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dccp-784"><code>ftree-ccp</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dch-789"><code>ftree-ch</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dcopy_002dprop-773"><code>ftree-copy-prop</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dcopyrename-805"><code>ftree-copyrename</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002ddce-785"><code>ftree-dce</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002ddominator_002dopts-787"><code>ftree-dominator-opts</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002ddse-788"><code>ftree-dse</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dforwprop-770"><code>ftree-forwprop</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dfre-771"><code>ftree-fre</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dloop_002dim-799"><code>ftree-loop-im</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dloop_002divcanon-800"><code>ftree-loop-ivcanon</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dloop_002dlinear-791"><code>ftree-loop-linear</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dloop_002doptimize-790"><code>ftree-loop-optimize</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dparallelize_002dloops-802"><code>ftree-parallelize-loops</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dphiprop-772"><code>ftree-phiprop</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dpre-769"><code>ftree-pre</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dpta-803"><code>ftree-pta</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dreassoc-768"><code>ftree-reassoc</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dsink-782"><code>ftree-sink</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dslp_002dvectorize-808"><code>ftree-slp-vectorize</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dsra-804"><code>ftree-sra</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dter-806"><code>ftree-ter</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dvect_002dloop_002dversion-809"><code>ftree-vect-loop-version</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dvectorize-807"><code>ftree-vectorize</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-ftree_002dvectorizer_002dverbose-654"><code>ftree-vectorizer-verbose</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-ftree_002dvrp-811"><code>ftree-vrp</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-funit_002dat_002da_002dtime-832"><code>funit-at-a-time</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-funroll_002dall_002dloops-814"><code>funroll-all-loops</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-funroll_002dloops-813"><code>funroll-loops</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-funsafe_002dloop_002doptimizations-727"><code>funsafe-loop-optimizations</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-funsafe_002dmath_002doptimizations-850"><code>funsafe-math-optimizations</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-funsigned_002dbitfields-3336"><code>funsigned-bitfields</code></a>: <a href="#Non_002dbugs">Non-bugs</a></li>
<li><a href="#index-funsigned_002dbitfields-2227"><code>funsigned-bitfields</code></a>: <a href="#Structures-unions-enumerations-and-bit_002dfields-implementation">Structures unions enumerations and bit-fields implementation</a></li>
<li><a href="#index-funsigned_002dbitfields-125"><code>funsigned-bitfields</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-funsigned_002dchar-2226"><code>funsigned-char</code></a>: <a href="#Characters-implementation">Characters implementation</a></li>
<li><a href="#index-funsigned_002dchar-122"><code>funsigned-char</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-funswitch_002dloops-870"><code>funswitch-loops</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-funwind_002dtables-2167"><code>funwind-tables</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fuse_002dcxa_002datexit-159"><code>fuse-cxa-atexit</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fvar_002dtracking-660"><code>fvar-tracking</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fvar_002dtracking_002dassignments-661"><code>fvar-tracking-assignments</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fvar_002dtracking_002dassignments_002dtoggle-663"><code>fvar-tracking-assignments-toggle</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-fvariable_002dexpansion_002din_002dunroller-816"><code>fvariable-expansion-in-unroller</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fvect_002dcost_002dmodel-810"><code>fvect-cost-model</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fverbose_002dasm-2177"><code>fverbose-asm</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fvisibility-2200"><code>fvisibility</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fvisibility_002dinlines_002dhidden-161"><code>fvisibility-inlines-hidden</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fvisibility_002dms_002dcompat-162"><code>fvisibility-ms-compat</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-fvpt-863"><code>fvpt</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fweb-834"><code>fweb</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fwhole_002dprogram-835"><code>fwhole-program</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-fwide_002dexec_002dcharset-938"><code>fwide-exec-charset</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-fworking_002ddirectory-942"><code>fworking-directory</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-fwrapv-2164"><code>fwrapv</code></a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-fzero_002dlink-209"><code>fzero-link</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-G-2104"><code>G</code></a>: <a href="#System-V-Options">System V Options</a></li>
<li><a href="#index-G-1931"><code>G</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-G-1682"><code>G</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-G-1489"><code>G</code></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-g-501"><code>g</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-gcoff-506"><code>gcoff</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-gdwarf_002d_0040var_007bversion_007d-509"><code>gdwarf-</code><var>version</var></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-gen_002ddecls-210"><code>gen-decls</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-gfull-1131"><code>gfull</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-ggdb-502"><code>ggdb</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-gno_002dstrict_002ddwarf-511"><code>gno-strict-dwarf</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-gstabs-503"><code>gstabs</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-gstabs_002b-505"><code>gstabs+</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-gstrict_002ddwarf-510"><code>gstrict-dwarf</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-gtoggle-513"><code>gtoggle</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-gused-1130"><code>gused</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-gvms-512"><code>gvms</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-gxcoff-507"><code>gxcoff</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-gxcoff_002b-508"><code>gxcoff+</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-H-959"><code>H</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-headerpad_005fmax_005finstall_005fnames-1157"><code>headerpad_max_install_names</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-help-956"><code>help</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-help-85"><code>help</code></a>: <a href="#Overall-Options">Overall Options</a></li>
<li><a href="#index-I-997"><code>I</code></a>: <a href="#Directory-Options">Directory Options</a></li>
<li><a href="#index-I-887"><code>I</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-I_002d-1003"><code>I-</code></a>: <a href="#Directory-Options">Directory Options</a></li>
<li><a href="#index-I_002d-918"><code>I-</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-idirafter-923"><code>idirafter</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-iframework-1129"><code>iframework</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-imacros-922"><code>imacros</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-image_005fbase-1158"><code>image_base</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-imultilib-928"><code>imultilib</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-include-921"><code>include</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-init-1159"><code>init</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-install_005fname-1160"><code>install_name</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-iprefix-924"><code>iprefix</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-iquote-998"><code>iquote</code></a>: <a href="#Directory-Options">Directory Options</a></li>
<li><a href="#index-iquote-930"><code>iquote</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-isysroot-927"><code>isysroot</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-isystem-929"><code>isystem</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-iwithprefix-925"><code>iwithprefix</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-iwithprefixbefore-926"><code>iwithprefixbefore</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-keep_005fprivate_005fexterns-1161"><code>keep_private_externs</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-L-999"><code>L</code></a>: <a href="#Directory-Options">Directory Options</a></li>
<li><a href="#index-l-970"><code>l</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-lobjc-971"><code>lobjc</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-m-1900"><code>m</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-M-902"><code>M</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-m1-2004"><code>m1</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-m10-1771"><code>m10</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-m128bit_002dlong_002ddouble-1344"><code>m128bit-long-double</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-m16_002dbit-1114"><code>m16-bit</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-m2-2005"><code>m2</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-m210-1572"><code>m210</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-m2a-2009"><code>m2a</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-m2a_002dnofpu-2006"><code>m2a-nofpu</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-m2a_002dsingle-2008"><code>m2a-single</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-m2a_002dsingle_002donly-2007"><code>m2a-single-only</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-m3-2010"><code>m3</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-m31-1977"><code>m31</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-m32-2075"><code>m32</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-m32-1843"><code>m32</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-m32-1388"><code>m32</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-m32_002dbit-1113"><code>m32-bit</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-m32bit_002ddoubles-1948"><code>m32bit-doubles</code></a>: <a href="#RX-Options">RX Options</a></li>
<li><a href="#index-m32r-1482"><code>m32r</code></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-m32r2-1480"><code>m32r2</code></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-m32rx-1481"><code>m32rx</code></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-m340-1573"><code>m340</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-m3dnow-1360"><code>m3dnow</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-m3e-2011"><code>m3e</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-m4-2015"><code>m4</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-m4_002dnofpu-2012"><code>m4-nofpu</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-m4_002dsingle-2014"><code>m4-single</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-m4_002dsingle_002donly-2013"><code>m4-single-only</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-m40-1769"><code>m40</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-m45-1770"><code>m45</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-m4a-2019"><code>m4a</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-m4a_002dnofpu-2016"><code>m4a-nofpu</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-m4a_002dsingle-2018"><code>m4a-single</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-m4a_002dsingle_002donly-2017"><code>m4a-single-only</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-m4al-2020"><code>m4al</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-m4byte_002dfunctions-1564"><code>m4byte-functions</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-m5200-1513"><code>m5200</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-m5206e-1514"><code>m5206e</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-m528x-1515"><code>m528x</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-m5307-1516"><code>m5307</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-m5407-1517"><code>m5407</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-m64-2076"><code>m64</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-m64-1976"><code>m64</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-m64-1844"><code>m64</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-m64-1389"><code>m64</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-m64bit_002ddoubles-1947"><code>m64bit-doubles</code></a>: <a href="#RX-Options">RX Options</a></li>
<li><a href="#index-m68000-1504"><code>m68000</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-m68010-1506"><code>m68010</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-m68020-1507"><code>m68020</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-m68020_002d40-1519"><code>m68020-40</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-m68020_002d60-1520"><code>m68020-60</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-m68030-1509"><code>m68030</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-m68040-1510"><code>m68040</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-m68060-1511"><code>m68060</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-m6811-1542"><code>m6811</code></a>: <a href="#M68hc1x-Options">M68hc1x Options</a></li>
<li><a href="#index-m6812-1544"><code>m6812</code></a>: <a href="#M68hc1x-Options">M68hc1x Options</a></li>
<li><a href="#index-m68881-1522"><code>m68881</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-m68hc11-1543"><code>m68hc11</code></a>: <a href="#M68hc1x-Options">M68hc1x Options</a></li>
<li><a href="#index-m68hc12-1545"><code>m68hc12</code></a>: <a href="#M68hc1x-Options">M68hc1x Options</a></li>
<li><a href="#index-m68hcs12-1547"><code>m68hcs12</code></a>: <a href="#M68hc1x-Options">M68hc1x Options</a></li>
<li><a href="#index-m68S12-1546"><code>m68S12</code></a>: <a href="#M68hc1x-Options">M68hc1x Options</a></li>
<li><a href="#index-m8_002dbit-1115"><code>m8-bit</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-m96bit_002dlong_002ddouble-1343"><code>m96bit-long-double</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mabi-1908"><code>mabi</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mabi-1372"><code>mabi</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mabi-1027"><code>mabi</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mabi_003d32-1642"><code>mabi=32</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mabi_003d64-1645"><code>mabi=64</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mabi_003deabi-1646"><code>mabi=eabi</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mabi_003dgnu-1737"><code>mabi=gnu</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-mabi_003dibmlongdouble-1911"><code>mabi=ibmlongdouble</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mabi_003dieeelongdouble-1912"><code>mabi=ieeelongdouble</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mabi_003dmmixware-1736"><code>mabi=mmixware</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-mabi_003dn32-1644"><code>mabi=n32</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mabi_003dno_002dspe-1910"><code>mabi=no-spe</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mabi_003do64-1643"><code>mabi=o64</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mabi_003dspe-1909"><code>mabi=spe</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mabicalls-1647"><code>mabicalls</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mabort_002don_002dnoreturn-1046"><code>mabort-on-noreturn</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mabsdiff-1577"><code>mabsdiff</code></a>: <a href="#MeP-Options">MeP Options</a></li>
<li><a href="#index-mabshi-1782"><code>mabshi</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mac0-1767"><code>mac0</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-macc_002d4-1267"><code>macc-4</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-macc_002d8-1268"><code>macc-8</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-maccumulate_002doutgoing_002dargs-2041"><code>maccumulate-outgoing-args</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-maccumulate_002doutgoing_002dargs-1375"><code>maccumulate-outgoing-args</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-maddress_002dspace_002dconversion-2095"><code>maddress-space-conversion</code></a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-madjust_002dunroll-2044"><code>madjust-unroll</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mads-1917"><code>mads</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-maix_002dstruct_002dreturn-1906"><code>maix-struct-return</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-maix32-1850"><code>maix32</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-maix64-1849"><code>maix64</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-malign_002d300-1300"><code>malign-300</code></a>: <a href="#H8_002f300-Options">H8/300 Options</a></li>
<li><a href="#index-malign_002ddouble-1341"><code>malign-double</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-malign_002dint-1533"><code>malign-int</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-malign_002dlabels-1265"><code>malign-labels</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-malign_002dloops-1492"><code>malign-loops</code></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-malign_002dnatural-1854"><code>malign-natural</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-malign_002dpower-1855"><code>malign-power</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mall_002dopts-1578"><code>mall-opts</code></a>: <a href="#MeP-Options">MeP Options</a></li>
<li><a href="#index-malloc_002dcc-1247"><code>malloc-cc</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-malpha_002das-1213"><code>malpha-as</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-maltivec-1826"><code>maltivec</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mam33-1754"><code>mam33</code></a>: <a href="#MN10300-Options">MN10300 Options</a></li>
<li><a href="#index-mam33_002d2-1756"><code>mam33-2</code></a>: <a href="#MN10300-Options">MN10300 Options</a></li>
<li><a href="#index-mam34-1757"><code>mam34</code></a>: <a href="#MN10300-Options">MN10300 Options</a></li>
<li><a href="#index-mandroid-1291"><code>mandroid</code></a>: <a href="#GNU_002fLinux-Options">GNU/Linux Options</a></li>
<li><a href="#index-mapcs-1029"><code>mapcs</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mapcs_002dframe-1028"><code>mapcs-frame</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mapp_002dregs-2122"><code>mapp-regs</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mapp_002dregs-2056"><code>mapp-regs</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-march-1984"><code>march</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-march-1627"><code>march</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-march-1501"><code>march</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-march-1332"><code>march</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-march-1302"><code>march</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-march-1096"><code>march</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-march-1040"><code>march</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mas100_002dsyntax-1957"><code>mas100-syntax</code></a>: <a href="#RX-Options">RX Options</a></li>
<li><a href="#index-masm_003d_0040var_007bdialect_007d-1335"><code>masm=</code><var>dialect</var></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-matomic_002dupdates-2098"><code>matomic-updates</code></a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-mauto_002dincdec-1548"><code>mauto-incdec</code></a>: <a href="#M68hc1x-Options">M68hc1x Options</a></li>
<li><a href="#index-mauto_002dpic-1420"><code>mauto-pic</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-maverage-1579"><code>maverage</code></a>: <a href="#MeP-Options">MeP Options</a></li>
<li><a href="#index-mavoid_002dindexed_002daddresses-1869"><code>mavoid-indexed-addresses</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mb-2021"><code>mb</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mbackchain-1970"><code>mbackchain</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mbarrel_002dshift_002denabled-1470"><code>mbarrel-shift-enabled</code></a>: <a href="#LM32-Options">LM32 Options</a></li>
<li><a href="#index-mbase_002daddresses-1747"><code>mbase-addresses</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-mbased_003d-1580"><code>mbased=</code></a>: <a href="#MeP-Options">MeP Options</a></li>
<li><a href="#index-mbcopy-1773"><code>mbcopy</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mbcopy_002dbuiltin-1772"><code>mbcopy-builtin</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mbig-1889"><code>mbig</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mbig_002dendian-1890"><code>mbig-endian</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mbig_002dendian-1571"><code>mbig-endian</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-mbig_002dendian-1406"><code>mbig-endian</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mbig_002dendian-1036"><code>mbig-endian</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mbig_002dendian_002ddata-1952"><code>mbig-endian-data</code></a>: <a href="#RX-Options">RX Options</a></li>
<li><a href="#index-mbig_002dswitch-2121"><code>mbig-switch</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mbig_002dswitch-1306"><code>mbig-switch</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mbigtable-2025"><code>mbigtable</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mbionic-1290"><code>mbionic</code></a>: <a href="#GNU_002fLinux-Options">GNU/Linux Options</a></li>
<li><a href="#index-mbit_002dalign-1878"><code>mbit-align</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mbitfield-1530"><code>mbitfield</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mbitops-2026"><code>mbitops</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mbitops-1581"><code>mbitops</code></a>: <a href="#MeP-Options">MeP Options</a></li>
<li><a href="#index-mblock_002dmove_002dinline_002dlimit-1930"><code>mblock-move-inline-limit</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mbranch_002dcheap-1785"><code>mbranch-cheap</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mbranch_002dcost-1722"><code>mbranch-cost</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mbranch_002dcost_003d_0040var_007bnumber_007d-1495"><code>mbranch-cost=</code><var>number</var></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-mbranch_002dexpensive-1784"><code>mbranch-expensive</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mbranch_002dhints-2088"><code>mbranch-hints</code></a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-mbranch_002dlikely-1723"><code>mbranch-likely</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mbranch_002dpredict-1745"><code>mbranch-predict</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-mbss_002dplt-1833"><code>mbss-plt</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mbuild_002dconstants-1212"><code>mbuild-constants</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mbwx-1215"><code>mbwx</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mc68000-1505"><code>mc68000</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mc68020-1508"><code>mc68020</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mc_003d-1582"><code>mc=</code></a>: <a href="#MeP-Options">MeP Options</a></li>
<li><a href="#index-mcache_002dsize-2097"><code>mcache-size</code></a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-mcall_002deabi-1898"><code>mcall-eabi</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mcall_002dfreebsd-1903"><code>mcall-freebsd</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mcall_002dgnu-1902"><code>mcall-gnu</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mcall_002dlinux-1901"><code>mcall-linux</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mcall_002dnetbsd-1904"><code>mcall-netbsd</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mcall_002dprologues-1065"><code>mcall-prologues</code></a>: <a href="#AVR-Options">AVR Options</a></li>
<li><a href="#index-mcall_002dsysv-1896"><code>mcall-sysv</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mcall_002dsysv_002deabi-1897"><code>mcall-sysv-eabi</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mcall_002dsysv_002dnoeabi-1899"><code>mcall-sysv-noeabi</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mcallee_002dsuper_002dinterworking-1057"><code>mcallee-super-interworking</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mcaller_002dsuper_002dinterworking-1058"><code>mcaller-super-interworking</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mcallgraph_002ddata-1566"><code>mcallgraph-data</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-mcc_002dinit-1105"><code>mcc-init</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mcfv4e-1518"><code>mcfv4e</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mcheck_002dzero_002ddivision-1698"><code>mcheck-zero-division</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mcirrus_002dfix_002dinvalid_002dinsns-1051"><code>mcirrus-fix-invalid-insns</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mcix-1217"><code>mcix</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mcld-1364"><code>mcld</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mclip-1583"><code>mclip</code></a>: <a href="#MeP-Options">MeP Options</a></li>
<li><a href="#index-mcmodel_003dembmedany-2080"><code>mcmodel=embmedany</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mcmodel_003dkernel-1392"><code>mcmodel=kernel</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mcmodel_003dlarge-1825"><code>mcmodel=large</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mcmodel_003dlarge-1394"><code>mcmodel=large</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mcmodel_003dmedany-2079"><code>mcmodel=medany</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mcmodel_003dmedium-1824"><code>mcmodel=medium</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mcmodel_003dmedium-1393"><code>mcmodel=medium</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mcmodel_003dmedlow-2077"><code>mcmodel=medlow</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mcmodel_003dmedmid-2078"><code>mcmodel=medmid</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mcmodel_003dsmall-1823"><code>mcmodel=small</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mcmodel_003dsmall-1391"><code>mcmodel=small</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mcmpb-1813"><code>mcmpb</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mcode_002dreadable-1693"><code>mcode-readable</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mcond_002dexec-1276"><code>mcond-exec</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mcond_002dmove-1272"><code>mcond-move</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mconfig_003d-1584"><code>mconfig=</code></a>: <a href="#MeP-Options">MeP Options</a></li>
<li><a href="#index-mconsole-1396"><code>mconsole</code></a>: <a href="#i386-and-x86_002d64-Windows-Options">i386 and x86-64 Windows Options</a></li>
<li><a href="#index-mconst_002dalign-1111"><code>mconst-align</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mconst16-2145"><code>mconst16</code></a>: <a href="#Xtensa-Options">Xtensa Options</a></li>
<li><a href="#index-mconstant_002dgp-1419"><code>mconstant-gp</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mcop-1585"><code>mcop</code></a>: <a href="#MeP-Options">MeP Options</a></li>
<li><a href="#index-mcop32-1586"><code>mcop32</code></a>: <a href="#MeP-Options">MeP Options</a></li>
<li><a href="#index-mcop64-1587"><code>mcop64</code></a>: <a href="#MeP-Options">MeP Options</a></li>
<li><a href="#index-mcorea-1091"><code>mcorea</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mcoreb-1092"><code>mcoreb</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mcpu-2067"><code>mcpu</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mcpu-1821"><code>mcpu</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mcpu-1789"><code>mcpu</code></a>: <a href="#picoChip-Options">picoChip Options</a></li>
<li><a href="#index-mcpu-1502"><code>mcpu</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mcpu-1333"><code>mcpu</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mcpu-1287"><code>mcpu</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mcpu-1231"><code>mcpu</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mcpu-1097"><code>mcpu</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mcpu-1038"><code>mcpu</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mcpu-1022"><code>mcpu</code></a>: <a href="#ARC-Options">ARC Options</a></li>
<li><a href="#index-mcpu32-1512"><code>mcpu32</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mcpu_003d-1613"><code>mcpu=</code></a>: <a href="#MicroBlaze-Options">MicroBlaze Options</a></li>
<li><a href="#index-mcpu_003d-1476"><code>mcpu=</code></a>: <a href="#M32C-Options">M32C Options</a></li>
<li><a href="#index-mcpu_003d-1069"><code>mcpu=</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mcrc32-1369"><code>mcrc32</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mcsync_002danomaly-1074"><code>mcsync-anomaly</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mcx16-1366"><code>mcx16</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-MD-911"><code>MD</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-mdalign-2023"><code>mdalign</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mdata-1024"><code>mdata</code></a>: <a href="#ARC-Options">ARC Options</a></li>
<li><a href="#index-mdata_002dalign-1109"><code>mdata-align</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mdc-1589"><code>mdc</code></a>: <a href="#MeP-Options">MeP Options</a></li>
<li><a href="#index-mdebug-1982"><code>mdebug</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mdebug-1491"><code>mdebug</code></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-mdebug_002dmain_003d_0040var_007bprefix_007d-1467"><code>mdebug-main=</code><var>prefix</var></a>: <a href="#IA_002d64_002fVMS-Options">IA-64/VMS Options</a></li>
<li><a href="#index-mdebug_002dmain_003d_0040var_007bprefix_007d-1235"><code>mdebug-main=</code><var>prefix</var></a>: <a href="#DEC-Alpha_002fVMS-Options">DEC Alpha/VMS Options</a></li>
<li><a href="#index-mdec_002dasm-1787"><code>mdec-asm</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mdisable_002dcallt-2129"><code>mdisable-callt</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mdisable_002dfpregs-1308"><code>mdisable-fpregs</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mdisable_002dindexing-1309"><code>mdisable-indexing</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mdiv-1590"><code>mdiv</code></a>: <a href="#MeP-Options">MeP Options</a></li>
<li><a href="#index-mdiv-1558"><code>mdiv</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-mdiv-1524"><code>mdiv</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mdiv_003d_0040var_007bstrategy_007d-2040"><code>mdiv=</code><var>strategy</var></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mdivide_002dbreaks-1701"><code>mdivide-breaks</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mdivide_002denabled-1471"><code>mdivide-enabled</code></a>: <a href="#LM32-Options">LM32 Options</a></li>
<li><a href="#index-mdivide_002dtraps-1700"><code>mdivide-traps</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mdivsi3_005flibfunc_003d_0040var_007bname_007d-2042"><code>mdivsi3_libfunc=</code><var>name</var></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mdll-1397"><code>mdll</code></a>: <a href="#i386-and-x86_002d64-Windows-Options">i386 and x86-64 Windows Options</a></li>
<li><a href="#index-mdlmzb-1875"><code>mdlmzb</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mdmx-1672"><code>mdmx</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mdouble-1251"><code>mdouble</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mdouble_002dfloat-1859"><code>mdouble-float</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mdouble_002dfloat-1661"><code>mdouble-float</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mdsp-1664"><code>mdsp</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mdspr2-1666"><code>mdspr2</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mdual_002dnops-2100"><code>mdual-nops</code></a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-mdwarf2_002dasm-1433"><code>mdwarf2-asm</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mdword-1249"><code>mdword</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mdynamic_002dno_002dpic-1891"><code>mdynamic-no-pic</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mea32-2093"><code>mea32</code></a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-mea64-2094"><code>mea64</code></a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-meabi-1921"><code>meabi</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mearly_002dstop_002dbits-1434"><code>mearly-stop-bits</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-meb-1995"><code>meb</code></a>: <a href="#Score-Options">Score Options</a></li>
<li><a href="#index-meb-1591"><code>meb</code></a>: <a href="#MeP-Options">MeP Options</a></li>
<li><a href="#index-mel-1996"><code>mel</code></a>: <a href="#Score-Options">Score Options</a></li>
<li><a href="#index-mel-1592"><code>mel</code></a>: <a href="#MeP-Options">MeP Options</a></li>
<li><a href="#index-melf-1744"><code>melf</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-melf-1120"><code>melf</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-memb-1920"><code>memb</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-membedded_002ddata-1689"><code>membedded-data</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-memregs_003d-1478"><code>memregs=</code></a>: <a href="#M32C-Options">M32C Options</a></li>
<li><a href="#index-mep-2113"><code>mep</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mepsilon-1734"><code>mepsilon</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-merror_002dreloc-2085"><code>merror-reloc</code></a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-mesa-1979"><code>mesa</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-metrax100-1101"><code>metrax100</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-metrax4-1100"><code>metrax4</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mexplicit_002drelocs-1696"><code>mexplicit-relocs</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mexplicit_002drelocs-1225"><code>mexplicit-relocs</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mextern_002dsdata-1685"><code>mextern-sdata</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-MF-906"><code>MF</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-mfast_002dfp-1088"><code>mfast-fp</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mfast_002dindirect_002dcalls-1311"><code>mfast-indirect-calls</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mfaster_002dstructs-2066"><code>mfaster-structs</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mfdpic-1257"><code>mfdpic</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mfentry-1384"><code>mfentry</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mfix-1219"><code>mfix</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mfix_002dand_002dcontinue-1134"><code>mfix-and-continue</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-mfix_002dat697f-2073"><code>mfix-at697f</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mfix_002dcortex_002dm3_002dldrd-1061"><code>mfix-cortex-m3-ldrd</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mfix_002dr10000-1715"><code>mfix-r10000</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mfix_002dr4000-1711"><code>mfix-r4000</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mfix_002dr4400-1713"><code>mfix-r4400</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mfix_002dsb1-1719"><code>mfix-sb1</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mfix_002dvr4120-1717"><code>mfix-vr4120</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mfix_002dvr4130-1718"><code>mfix-vr4130</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mfixed_002dcc-1248"><code>mfixed-cc</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mfixed_002drange-2092"><code>mfixed-range</code></a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-mfixed_002drange-2043"><code>mfixed-range</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mfixed_002drange-1436"><code>mfixed-range</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mfixed_002drange-1312"><code>mfixed-range</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mflip_002dmips16-1639"><code>mflip-mips16</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mfloat_002dabi-1032"><code>mfloat-abi</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mfloat_002dgprs-1842"><code>mfloat-gprs</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mfloat_002dieee-1224"><code>mfloat-ieee</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mfloat_002dvax-1223"><code>mfloat-vax</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mfloat32-1780"><code>mfloat32</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mfloat64-1778"><code>mfloat64</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mflush_002dfunc-1721"><code>mflush-func</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mflush_002dfunc_003d_0040var_007bname_007d-1498"><code>mflush-func=</code><var>name</var></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-mflush_002dtrap_003d_0040var_007bnumber_007d-1496"><code>mflush-trap=</code><var>number</var></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-mfmovd-2027"><code>mfmovd</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mforce_002dno_002dpic-2151"><code>mforce-no-pic</code></a>: <a href="#Xtensa-Options">Xtensa Options</a></li>
<li><a href="#index-mfp-1043"><code>mfp</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mfp_002dexceptions-1725"><code>mfp-exceptions</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mfp_002dreg-1204"><code>mfp-reg</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mfp_002drounding_002dmode-1209"><code>mfp-rounding-mode</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mfp_002dtrap_002dmode-1208"><code>mfp-trap-mode</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mfp16_002dformat-1044"><code>mfp16-format</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mfp32-1656"><code>mfp32</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mfp64-1657"><code>mfp64</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mfpe-1042"><code>mfpe</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mfpmath-1334"><code>mfpmath</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mfpmath-847"><code>mfpmath</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-mfpr_002d32-1243"><code>mfpr-32</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mfpr_002d64-1244"><code>mfpr-64</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mfprnd-1811"><code>mfprnd</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mfpu-2057"><code>mfpu</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mfpu-1861"><code>mfpu</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mfpu-1765"><code>mfpu</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mfpu-1041"><code>mfpu</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mfriz-1945"><code>mfriz</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mfull_002dtoc-1845"><code>mfull-toc</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mfused_002dmadd-2147"><code>mfused-madd</code></a>: <a href="#Xtensa-Options">Xtensa Options</a></li>
<li><a href="#index-mfused_002dmadd-1988"><code>mfused-madd</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mfused_002dmadd-1871"><code>mfused-madd</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mfused_002dmadd-1708"><code>mfused-madd</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mfused_002dmadd-1430"><code>mfused-madd</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mfused_002dmadd-1362"><code>mfused-madd</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mg-2133"><code>mg</code></a>: <a href="#VAX-Options">VAX Options</a></li>
<li><a href="#index-MG-907"><code>MG</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-mgas-1315"><code>mgas</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mgas-1214"><code>mgas</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mgen_002dcell_002dmicrocode-1830"><code>mgen-cell-microcode</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mgettrcost_003d_0040var_007bnumber_007d-2046"><code>mgettrcost=</code><var>number</var></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mglibc-1288"><code>mglibc</code></a>: <a href="#GNU_002fLinux-Options">GNU/Linux Options</a></li>
<li><a href="#index-mgnu-2132"><code>mgnu</code></a>: <a href="#VAX-Options">VAX Options</a></li>
<li><a href="#index-mgnu_002das-1408"><code>mgnu-as</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mgnu_002dld-1410"><code>mgnu-ld</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mgnu_002dld-1320"><code>mgnu-ld</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mgotplt-1119"><code>mgotplt</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mgp32-1654"><code>mgp32</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mgp64-1655"><code>mgp64</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mgpopt-1687"><code>mgpopt</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mgpr_002d32-1241"><code>mgpr-32</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mgpr_002d64-1242"><code>mgpr-64</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mgprel_002dro-1261"><code>mgprel-ro</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mh-1295"><code>mh</code></a>: <a href="#H8_002f300-Options">H8/300 Options</a></li>
<li><a href="#index-mhard_002ddfp-1966"><code>mhard-dfp</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mhard_002ddfp-1817"><code>mhard-dfp</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mhard_002dfloat-2058"><code>mhard-float</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mhard_002dfloat-1964"><code>mhard-float</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mhard_002dfloat-1857"><code>mhard-float</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mhard_002dfloat-1658"><code>mhard-float</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mhard_002dfloat-1610"><code>mhard-float</code></a>: <a href="#MicroBlaze-Options">MicroBlaze Options</a></li>
<li><a href="#index-mhard_002dfloat-1521"><code>mhard-float</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mhard_002dfloat-1245"><code>mhard-float</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mhard_002dfloat-1033"><code>mhard-float</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mhard_002dquad_002dfloat-2061"><code>mhard-quad-float</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mhardlit-1556"><code>mhardlit</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-mhint_002dmax_002ddistance-2102"><code>mhint-max-distance</code></a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-mhint_002dmax_002dnops-2101"><code>mhint-max-nops</code></a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-mhitachi-2028"><code>mhitachi</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mhp_002dld-1321"><code>mhp-ld</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-micplb-1094"><code>micplb</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mid_002dshared_002dlibrary-1079"><code>mid-shared-library</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mieee-2032"><code>mieee</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mieee-1206"><code>mieee</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mieee_002dconformant-1211"><code>mieee-conformant</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mieee_002dfp-1336"><code>mieee-fp</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mieee_002dwith_002dinexact-1207"><code>mieee-with-inexact</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-milp32-1439"><code>milp32</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mimpure_002dtext-2050"><code>mimpure-text</code></a>: <a href="#Solaris-2-Options">Solaris 2 Options</a></li>
<li><a href="#index-mincoming_002dstack_002dboundary-1355"><code>mincoming-stack-boundary</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mindexed_002daddressing-2045"><code>mindexed-addressing</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-minline_002dall_002dstringops-1378"><code>minline-all-stringops</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-minline_002dfloat_002ddivide_002dmax_002dthroughput-1422"><code>minline-float-divide-max-throughput</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-minline_002dfloat_002ddivide_002dmin_002dlatency-1421"><code>minline-float-divide-min-latency</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-minline_002dic_005finvalidate-2033"><code>minline-ic_invalidate</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-minline_002dint_002ddivide_002dmax_002dthroughput-1425"><code>minline-int-divide-max-throughput</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-minline_002dint_002ddivide_002dmin_002dlatency-1424"><code>minline-int-divide-min-latency</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-minline_002dplt-1258"><code>minline-plt</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-minline_002dplt-1089"><code>minline-plt</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-minline_002dsqrt_002dmax_002dthroughput-1428"><code>minline-sqrt-max-throughput</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-minline_002dsqrt_002dmin_002dlatency-1427"><code>minline-sqrt-min-latency</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-minline_002dstringops_002ddynamically-1379"><code>minline-stringops-dynamically</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-minmax-1549"><code>minmax</code></a>: <a href="#M68hc1x-Options">M68hc1x Options</a></li>
<li><a href="#index-minsert_002dsched_002dnops-1895"><code>minsert-sched-nops</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mint_002dregister-1961"><code>mint-register</code></a>: <a href="#RX-Options">RX Options</a></li>
<li><a href="#index-mint16-1774"><code>mint16</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mint32-1776"><code>mint32</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mint32-1299"><code>mint32</code></a>: <a href="#H8_002f300-Options">H8/300 Options</a></li>
<li><a href="#index-mint8-1067"><code>mint8</code></a>: <a href="#AVR-Options">AVR Options</a></li>
<li><a href="#index-minterlink_002dmips16-1640"><code>minterlink-mips16</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-minvalid_002dsymbols-2048"><code>minvalid-symbols</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mio_002dvolatile-1593"><code>mio-volatile</code></a>: <a href="#MeP-Options">MeP Options</a></li>
<li><a href="#index-mips1-1629"><code>mips1</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mips16-1637"><code>mips16</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mips2-1630"><code>mips2</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mips3-1631"><code>mips3</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mips32-1633"><code>mips32</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mips32r2-1634"><code>mips32r2</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mips3d-1674"><code>mips3d</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mips4-1632"><code>mips4</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mips64-1635"><code>mips64</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mips64r2-1636"><code>mips64r2</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-misel-1834"><code>misel</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-misize-2034"><code>misize</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-missue_002drate_003d_0040var_007bnumber_007d-1494"><code>missue-rate=</code><var>number</var></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-mivc2-1588"><code>mivc2</code></a>: <a href="#MeP-Options">MeP Options</a></li>
<li><a href="#index-mjump_002din_002ddelay-1307"><code>mjump-in-delay</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mkernel-1132"><code>mkernel</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-mknuthdiv-1740"><code>mknuthdiv</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-ml-2022"><code>ml</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-ml-1594"><code>ml</code></a>: <a href="#MeP-Options">MeP Options</a></li>
<li><a href="#index-mlarge_002ddata-1228"><code>mlarge-data</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mlarge_002ddata_002dthreshold_003d_0040var_007bnumber_007d-1345"><code>mlarge-data-threshold=</code><var>number</var></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mlarge_002dmem-2090"><code>mlarge-mem</code></a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-mlarge_002dtext-1230"><code>mlarge-text</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mleadz-1595"><code>mleadz</code></a>: <a href="#MeP-Options">MeP Options</a></li>
<li><a href="#index-mleaf_002did_002dshared_002dlibrary-1081"><code>mleaf-id-shared-library</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mlibfuncs-1732"><code>mlibfuncs</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-mlibrary_002dpic-1266"><code>mlibrary-pic</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mlinked_002dfp-1263"><code>mlinked-fp</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mlinker_002dopt-1317"><code>mlinker-opt</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mlinux-1121"><code>mlinux</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mlittle-1887"><code>mlittle</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mlittle_002dendian-2074"><code>mlittle-endian</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mlittle_002dendian-1888"><code>mlittle-endian</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mlittle_002dendian-1570"><code>mlittle-endian</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-mlittle_002dendian-1407"><code>mlittle-endian</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mlittle_002dendian-1035"><code>mlittle-endian</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mlittle_002dendian_002ddata-1953"><code>mlittle-endian-data</code></a>: <a href="#RX-Options">RX Options</a></li>
<li><a href="#index-mliw-1762"><code>mliw</code></a>: <a href="#MN10300-Options">MN10300 Options</a></li>
<li><a href="#index-mllsc-1662"><code>mllsc</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mlocal_002dsdata-1683"><code>mlocal-sdata</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mlong_002dcalls-2110"><code>mlong-calls</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mlong_002dcalls-1704"><code>mlong-calls</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mlong_002dcalls-1551"><code>mlong-calls</code></a>: <a href="#M68hc1x-Options">M68hc1x Options</a></li>
<li><a href="#index-mlong_002dcalls-1264"><code>mlong-calls</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mlong_002dcalls-1086"><code>mlong-calls</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mlong_002dcalls-1047"><code>mlong-calls</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mlong_002ddouble_002d128-1969"><code>mlong-double-128</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mlong_002ddouble_002d64-1968"><code>mlong-double-64</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mlong_002dload_002dstore-1313"><code>mlong-load-store</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mlong32-1679"><code>mlong32</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mlong64-1678"><code>mlong64</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mlongcall-1936"><code>mlongcall</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mlongcalls-2156"><code>mlongcalls</code></a>: <a href="#Xtensa-Options">Xtensa Options</a></li>
<li><a href="#index-mlow_002d64k-1076"><code>mlow-64k</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mlp64-1440"><code>mlp64</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mm-1596"><code>mm</code></a>: <a href="#MeP-Options">MeP Options</a></li>
<li><a href="#index-MM-905"><code>MM</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-mmac-1999"><code>mmac</code></a>: <a href="#Score-Options">Score Options</a></li>
<li><a href="#index-mmac-1125"><code>mmac</code></a>: <a href="#CRX-Options">CRX Options</a></li>
<li><a href="#index-mmad-1706"><code>mmad</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mmalloc64-1468"><code>mmalloc64</code></a>: <a href="#IA_002d64_002fVMS-Options">IA-64/VMS Options</a></li>
<li><a href="#index-mmalloc64-1236"><code>mmalloc64</code></a>: <a href="#DEC-Alpha_002fVMS-Options">DEC Alpha/VMS Options</a></li>
<li><a href="#index-mmangle_002dcpu-1021"><code>mmangle-cpu</code></a>: <a href="#ARC-Options">ARC Options</a></li>
<li><a href="#index-mmax-1221"><code>mmax</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mmax_002dconstant_002dsize-1959"><code>mmax-constant-size</code></a>: <a href="#RX-Options">RX Options</a></li>
<li><a href="#index-mmax_002dstack_002dframe-1099"><code>mmax-stack-frame</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mmcount_002dra_002daddress-1729"><code>mmcount-ra-address</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mmcu-1063"><code>mmcu</code></a>: <a href="#AVR-Options">AVR Options</a></li>
<li><a href="#index-MMD-912"><code>MMD</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-mmedia-1253"><code>mmedia</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mmemcpy-1702"><code>mmemcpy</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mmemcpy-1611"><code>mmemcpy</code></a>: <a href="#MicroBlaze-Options">MicroBlaze Options</a></li>
<li><a href="#index-mmemory_002dlatency-1233"><code>mmemory-latency</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mmfcrf-1805"><code>mmfcrf</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mmfpgpr-1815"><code>mmfpgpr</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mminimal_002dtoc-1848"><code>mminimal-toc</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mminmax-1597"><code>mminmax</code></a>: <a href="#MeP-Options">MeP Options</a></li>
<li><a href="#index-mmmx-1356"><code>mmmx</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mmodel_003dlarge-1485"><code>mmodel=large</code></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-mmodel_003dmedium-1484"><code>mmodel=medium</code></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-mmodel_003dsmall-1483"><code>mmodel=small</code></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-mmovbe-1368"><code>mmovbe</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mmt-1676"><code>mmt</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mmul_002dbug_002dworkaround-1102"><code>mmul-bug-workaround</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mmuladd-1255"><code>mmuladd</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mmulhw-1873"><code>mmulhw</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mmult-1598"><code>mmult</code></a>: <a href="#MeP-Options">MeP Options</a></li>
<li><a href="#index-mmult_002dbug-1752"><code>mmult-bug</code></a>: <a href="#MN10300-Options">MN10300 Options</a></li>
<li><a href="#index-mmulti_002dcond_002dexec-1280"><code>mmulti-cond-exec</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mmulticore-1090"><code>mmulticore</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mmultiple-1863"><code>mmultiple</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mmvcle-1980"><code>mmvcle</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mmvme-1916"><code>mmvme</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mn-1297"><code>mn</code></a>: <a href="#H8_002f300-Options">H8/300 Options</a></li>
<li><a href="#index-mnested_002dcond_002dexec-1282"><code>mnested-cond-exec</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mnew_002dmnemonics-1819"><code>mnew-mnemonics</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mnhwloop-1997"><code>mnhwloop</code></a>: <a href="#Score-Options">Score Options</a></li>
<li><a href="#index-mno_002d3dnow-1361"><code>mno-3dnow</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mno_002d4byte_002dfunctions-1565"><code>mno-4byte-functions</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-mno_002dabicalls-1648"><code>mno-abicalls</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dabshi-1783"><code>mno-abshi</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mno_002dac0-1768"><code>mno-ac0</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mno_002daddress_002dspace_002dconversion-2096"><code>mno-address-space-conversion</code></a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-mno_002dalign_002ddouble-1342"><code>mno-align-double</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mno_002dalign_002dint-1534"><code>mno-align-int</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mno_002dalign_002dloops-1493"><code>mno-align-loops</code></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-mno_002dalign_002dstringops-1377"><code>mno-align-stringops</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mno_002daltivec-1827"><code>mno-altivec</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dam33-1755"><code>mno-am33</code></a>: <a href="#MN10300-Options">MN10300 Options</a></li>
<li><a href="#index-mno_002dapp_002dregs-2123"><code>mno-app-regs</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mno_002dapp_002dregs-2055"><code>mno-app-regs</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mno_002das100_002dsyntax-1958"><code>mno-as100-syntax</code></a>: <a href="#RX-Options">RX Options</a></li>
<li><a href="#index-mno_002datomic_002dupdates-2099"><code>mno-atomic-updates</code></a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-mno_002davoid_002dindexed_002daddresses-1870"><code>mno-avoid-indexed-addresses</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dbackchain-1971"><code>mno-backchain</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mno_002dbase_002daddresses-1748"><code>mno-base-addresses</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-mno_002dbit_002dalign-1877"><code>mno-bit-align</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dbitfield-1529"><code>mno-bitfield</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mno_002dbranch_002dlikely-1724"><code>mno-branch-likely</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dbranch_002dpredict-1746"><code>mno-branch-predict</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-mno_002dbwx-1216"><code>mno-bwx</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mno_002dcallgraph_002ddata-1567"><code>mno-callgraph-data</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-mno_002dcheck_002dzero_002ddivision-1699"><code>mno-check-zero-division</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dcirrus_002dfix_002dinvalid_002dinsns-1052"><code>mno-cirrus-fix-invalid-insns</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mno_002dcix-1218"><code>mno-cix</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mno_002dclearbss-1612"><code>mno-clearbss</code></a>: <a href="#MicroBlaze-Options">MicroBlaze Options</a></li>
<li><a href="#index-mno_002dcmpb-1814"><code>mno-cmpb</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dcond_002dexec-1277"><code>mno-cond-exec</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mno_002dcond_002dmove-1273"><code>mno-cond-move</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mno_002dconst_002dalign-1112"><code>mno-const-align</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mno_002dconst16-2146"><code>mno-const16</code></a>: <a href="#Xtensa-Options">Xtensa Options</a></li>
<li><a href="#index-mno_002dcrt0-1760"><code>mno-crt0</code></a>: <a href="#MN10300-Options">MN10300 Options</a></li>
<li><a href="#index-mno_002dcsync_002danomaly-1075"><code>mno-csync-anomaly</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mno_002ddata_002dalign-1110"><code>mno-data-align</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mno_002ddebug-1983"><code>mno-debug</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mno_002ddiv-1559"><code>mno-div</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-mno_002ddiv-1525"><code>mno-div</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mno_002ddlmzb-1876"><code>mno-dlmzb</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002ddouble-1252"><code>mno-double</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mno_002ddsp-1665"><code>mno-dsp</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002ddspr2-1667"><code>mno-dspr2</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002ddwarf2_002dasm-1432"><code>mno-dwarf2-asm</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002ddword-1250"><code>mno-dword</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mno_002deabi-1922"><code>mno-eabi</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dearly_002dstop_002dbits-1435"><code>mno-early-stop-bits</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002deflags-1271"><code>mno-eflags</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mno_002dembedded_002ddata-1690"><code>mno-embedded-data</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dep-2112"><code>mno-ep</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mno_002depsilon-1735"><code>mno-epsilon</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-mno_002dexplicit_002drelocs-1697"><code>mno-explicit-relocs</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dexplicit_002drelocs-1226"><code>mno-explicit-relocs</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mno_002dextern_002dsdata-1686"><code>mno-extern-sdata</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dfancy_002dmath_002d387-1340"><code>mno-fancy-math-387</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mno_002dfaster_002dstructs-2065"><code>mno-faster-structs</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mno_002dfix-1220"><code>mno-fix</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mno_002dfix_002dr10000-1716"><code>mno-fix-r10000</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dfix_002dr4000-1712"><code>mno-fix-r4000</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dfix_002dr4400-1714"><code>mno-fix-r4400</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dfloat32-1779"><code>mno-float32</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mno_002dfloat64-1781"><code>mno-float64</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mno_002dflush_002dfunc-1499"><code>mno-flush-func</code></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-mno_002dflush_002dtrap-1497"><code>mno-flush-trap</code></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-mno_002dfp_002din_002dtoc-1846"><code>mno-fp-in-toc</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dfp_002dregs-1205"><code>mno-fp-regs</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mno_002dfp_002dret_002din_002d387-1339"><code>mno-fp-ret-in-387</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mno_002dfprnd-1812"><code>mno-fprnd</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dfpu-2059"><code>mno-fpu</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mno_002dfused_002dmadd-2148"><code>mno-fused-madd</code></a>: <a href="#Xtensa-Options">Xtensa Options</a></li>
<li><a href="#index-mno_002dfused_002dmadd-1989"><code>mno-fused-madd</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mno_002dfused_002dmadd-1872"><code>mno-fused-madd</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dfused_002dmadd-1709"><code>mno-fused-madd</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dfused_002dmadd-1431"><code>mno-fused-madd</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dfused_002dmadd-1363"><code>mno-fused-madd</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mno_002dgnu_002das-1409"><code>mno-gnu-as</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dgnu_002dld-1411"><code>mno-gnu-ld</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dgotplt-1118"><code>mno-gotplt</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mno_002dgpopt-1688"><code>mno-gpopt</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dhard_002ddfp-1967"><code>mno-hard-dfp</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mno_002dhard_002ddfp-1818"><code>mno-hard-dfp</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dhardlit-1557"><code>mno-hardlit</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-mno_002did_002dshared_002dlibrary-1080"><code>mno-id-shared-library</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mno_002dieee_002dfp-1337"><code>mno-ieee-fp</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mno_002dinline_002dfloat_002ddivide-1423"><code>mno-inline-float-divide</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dinline_002dint_002ddivide-1426"><code>mno-inline-int-divide</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dinline_002dsqrt-1429"><code>mno-inline-sqrt</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dint16-1777"><code>mno-int16</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mno_002dint32-1775"><code>mno-int32</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-mno_002dinterlink_002dmips16-1641"><code>mno-interlink-mips16</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dinterrupts-1064"><code>mno-interrupts</code></a>: <a href="#AVR-Options">AVR Options</a></li>
<li><a href="#index-mno_002disel-1835"><code>mno-isel</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dknuthdiv-1741"><code>mno-knuthdiv</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-mno_002dleaf_002did_002dshared_002dlibrary-1082"><code>mno-leaf-id-shared-library</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mno_002dlibfuncs-1733"><code>mno-libfuncs</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-mno_002dllsc-1663"><code>mno-llsc</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dlocal_002dsdata-1684"><code>mno-local-sdata</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dlong_002dcalls-2111"><code>mno-long-calls</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mno_002dlong_002dcalls-1705"><code>mno-long-calls</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dlong_002dcalls-1552"><code>mno-long-calls</code></a>: <a href="#M68hc1x-Options">M68hc1x Options</a></li>
<li><a href="#index-mno_002dlong_002dcalls-1322"><code>mno-long-calls</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mno_002dlong_002dcalls-1087"><code>mno-long-calls</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mno_002dlong_002dcalls-1048"><code>mno-long-calls</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mno_002dlongcall-1937"><code>mno-longcall</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dlongcalls-2157"><code>mno-longcalls</code></a>: <a href="#Xtensa-Options">Xtensa Options</a></li>
<li><a href="#index-mno_002dlow_002d64k-1077"><code>mno-low-64k</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mno_002dlsim-1574"><code>mno-lsim</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-mno_002dlsim-1239"><code>mno-lsim</code></a>: <a href="#FR30-Options">FR30 Options</a></li>
<li><a href="#index-mno_002dmad-1707"><code>mno-mad</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dmax-1222"><code>mno-max</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mno_002dmcount_002dra_002daddress-1730"><code>mno-mcount-ra-address</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dmdmx-1673"><code>mno-mdmx</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dmedia-1254"><code>mno-media</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mno_002dmemcpy-1703"><code>mno-memcpy</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dmfcrf-1806"><code>mno-mfcrf</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dmfpgpr-1816"><code>mno-mfpgpr</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dmips16-1638"><code>mno-mips16</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dmips3d-1675"><code>mno-mips3d</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dmmx-1357"><code>mno-mmx</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mno_002dmt-1677"><code>mno-mt</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dmul_002dbug_002dworkaround-1103"><code>mno-mul-bug-workaround</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mno_002dmuladd-1256"><code>mno-muladd</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mno_002dmulhw-1874"><code>mno-mulhw</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dmult_002dbug-1753"><code>mno-mult-bug</code></a>: <a href="#MN10300-Options">MN10300 Options</a></li>
<li><a href="#index-mno_002dmulti_002dcond_002dexec-1281"><code>mno-multi-cond-exec</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mno_002dmultiple-1864"><code>mno-multiple</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dmvcle-1981"><code>mno-mvcle</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mno_002dnested_002dcond_002dexec-1283"><code>mno-nested-cond-exec</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mno_002doptimize_002dmembar-1285"><code>mno-optimize-membar</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mno_002dopts-1599"><code>mno-opts</code></a>: <a href="#MeP-Options">MeP Options</a></li>
<li><a href="#index-mno_002dpack-1270"><code>mno-pack</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mno_002dpacked_002dstack-1973"><code>mno-packed-stack</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mno_002dpaired-1839"><code>mno-paired</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dpaired_002dsingle-1671"><code>mno-paired-single</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dpic-1412"><code>mno-pic</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dplt-1650"><code>mno-plt</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dpopcntb-1808"><code>mno-popcntb</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dpopcntd-1810"><code>mno-popcntd</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dpower-1794"><code>mno-power</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dpower2-1796"><code>mno-power2</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dpowerpc-1798"><code>mno-powerpc</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dpowerpc_002dgfxopt-1802"><code>mno-powerpc-gfxopt</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dpowerpc_002dgpopt-1800"><code>mno-powerpc-gpopt</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dpowerpc64-1804"><code>mno-powerpc64</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dprolog_002dfunction-2114"><code>mno-prolog-function</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mno_002dprologue_002depilogue-1116"><code>mno-prologue-epilogue</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mno_002dprototype-1914"><code>mno-prototype</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dpush_002dargs-1374"><code>mno-push-args</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mno_002dred_002dzone-1390"><code>mno-red-zone</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mno_002dregister_002dnames-1416"><code>mno-register-names</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dregnames-1935"><code>mno-regnames</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002drelax_002dimmediate-1561"><code>mno-relax-immediate</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-mno_002drelocatable-1882"><code>mno-relocatable</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002drelocatable_002dlib-1884"><code>mno-relocatable-lib</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002drtd-1532"><code>mno-rtd</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mno_002dscc-1275"><code>mno-scc</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mno_002dsched_002dar_002ddata_002dspec-1444"><code>mno-sched-ar-data-spec</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dsched_002dar_002din_002ddata_002dspec-1450"><code>mno-sched-ar-in-data-spec</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dsched_002dbr_002ddata_002dspec-1441"><code>mno-sched-br-data-spec</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dsched_002dbr_002din_002ddata_002dspec-1448"><code>mno-sched-br-in-data-spec</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dsched_002dcontrol_002dspec-1445"><code>mno-sched-control-spec</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dsched_002dcount_002dspec_002din_002dcritical_002dpath-1457"><code>mno-sched-count-spec-in-critical-path</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dsched_002din_002dcontrol_002dspec-1452"><code>mno-sched-in-control-spec</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dsched_002dprefer_002dnon_002dcontrol_002dspec_002dinsns-1455"><code>mno-sched-prefer-non-control-spec-insns</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dsched_002dprefer_002dnon_002ddata_002dspec_002dinsns-1453"><code>mno-sched-prefer-non-data-spec-insns</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dsched_002dprolog-1031"><code>mno-sched-prolog</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mno_002dsdata-1929"><code>mno-sdata</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dsdata-1417"><code>mno-sdata</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dsep_002ddata-1085"><code>mno-sep-data</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mno_002dserialize_002dvolatile-2150"><code>mno-serialize-volatile</code></a>: <a href="#Xtensa-Options">Xtensa Options</a></li>
<li><a href="#index-mno_002dshort-1527"><code>mno-short</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mno_002dside_002deffects-1106"><code>mno-side-effects</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mno_002dsim-1956"><code>mno-sim</code></a>: <a href="#RX-Options">RX Options</a></li>
<li><a href="#index-mno_002dsingle_002dexit-1750"><code>mno-single-exit</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-mno_002dslow_002dbytes-1569"><code>mno-slow-bytes</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-mno_002dsmall_002dexec-1975"><code>mno-small-exec</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mno_002dsmartmips-1669"><code>mno-smartmips</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dsoft_002dfloat-1202"><code>mno-soft-float</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mno_002dspace_002dregs-1310"><code>mno-space-regs</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mno_002dspe-1837"><code>mno-spe</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dspecld_002danomaly-1073"><code>mno-specld-anomaly</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mno_002dsplit_002daddresses-1695"><code>mno-split-addresses</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dsse-1359"><code>mno-sse</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mno_002dstack_002dalign-1108"><code>mno-stack-align</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mno_002dstack_002dbias-2082"><code>mno-stack-bias</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mno_002dstrict_002dalign-1879"><code>mno-strict-align</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dstrict_002dalign-1536"><code>mno-strict-align</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mno_002dstring-1866"><code>mno-string</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dsum_002din_002dtoc-1847"><code>mno-sum-in-toc</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dsym32-1681"><code>mno-sym32</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dtarget_002dalign-2155"><code>mno-target-align</code></a>: <a href="#Xtensa-Options">Xtensa Options</a></li>
<li><a href="#index-mno_002dtext_002dsection_002dliterals-2153"><code>mno-text-section-literals</code></a>: <a href="#Xtensa-Options">Xtensa Options</a></li>
<li><a href="#index-mno_002dtls_002dmarkers-1939"><code>mno-tls-markers</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dtoc-1885"><code>mno-toc</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dtoplevel_002dsymbols-1743"><code>mno-toplevel-symbols</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-mno_002dtpf_002dtrace-1987"><code>mno-tpf-trace</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mno_002dunaligned_002ddoubles-2063"><code>mno-unaligned-doubles</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mno_002duninit_002dconst_002din_002drodata-1692"><code>mno-uninit-const-in-rodata</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dupdate-1868"><code>mno-update</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dv8plus-2070"><code>mno-v8plus</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mno_002dvis-2072"><code>mno-vis</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mno_002dvliw_002dbranch-1279"><code>mno-vliw-branch</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mno_002dvolatile_002dasm_002dstop-1414"><code>mno-volatile-asm-stop</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mno_002dvrsave-1829"><code>mno-vrsave</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dvsx-1841"><code>mno-vsx</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dwide_002dbitfields-1563"><code>mno-wide-bitfields</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-mno_002dxgot-1652"><code>mno-xgot</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mno_002dxgot-1539"><code>mno-xgot</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mno_002dxl_002dcompat-1852"><code>mno-xl-compat</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mno_002dzero_002dextend-1739"><code>mno-zero-extend</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-mnobitfield-1528"><code>mnobitfield</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mnoliw-1763"><code>mnoliw</code></a>: <a href="#MN10300-Options">MN10300 Options</a></li>
<li><a href="#index-mnomacsave-2031"><code>mnomacsave</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mnominmax-1550"><code>mnominmax</code></a>: <a href="#M68hc1x-Options">M68hc1x Options</a></li>
<li><a href="#index-mnop_002dfun_002ddllimport-1398"><code>mnop-fun-dllimport</code></a>: <a href="#i386-and-x86_002d64-Windows-Options">i386 and x86-64 Windows Options</a></li>
<li><a href="#index-mold_002dmnemonics-1820"><code>mold-mnemonics</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-momit_002dleaf_002dframe_002dpointer-1381"><code>momit-leaf-frame-pointer</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-momit_002dleaf_002dframe_002dpointer-1071"><code>momit-leaf-frame-pointer</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mone_002dbyte_002dbool-1133"><code>mone-byte-bool</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-moptimize_002dmembar-1284"><code>moptimize-membar</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-MP-908"><code>MP</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-mpa_002drisc_002d1_002d0-1303"><code>mpa-risc-1-0</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mpa_002drisc_002d1_002d1-1304"><code>mpa-risc-1-1</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mpa_002drisc_002d2_002d0-1305"><code>mpa-risc-2-0</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mpack-1269"><code>mpack</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mpacked_002dstack-1972"><code>mpacked-stack</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mpadstruct-2035"><code>mpadstruct</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mpaired-1838"><code>mpaired</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mpaired_002dsingle-1670"><code>mpaired-single</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mpc32-1350"><code>mpc32</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mpc64-1351"><code>mpc64</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mpc80-1352"><code>mpc80</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mpcrel-1535"><code>mpcrel</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mpdebug-1104"><code>mpdebug</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mpe-1853"><code>mpe</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mpe_002daligned_002dcommons-1404"><code>mpe-aligned-commons</code></a>: <a href="#i386-and-x86_002d64-Windows-Options">i386 and x86-64 Windows Options</a></li>
<li><a href="#index-mpic_002dregister-1050"><code>mpic-register</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mplt-1649"><code>mplt</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mpoke_002dfunction_002dname-1053"><code>mpoke-function-name</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mpopcntb-1807"><code>mpopcntb</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mpopcntd-1809"><code>mpopcntd</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mportable_002druntime-1314"><code>mportable-runtime</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mpower-1793"><code>mpower</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mpower2-1795"><code>mpower2</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mpowerpc-1797"><code>mpowerpc</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mpowerpc_002dgfxopt-1801"><code>mpowerpc-gfxopt</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mpowerpc_002dgpopt-1799"><code>mpowerpc-gpopt</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mpowerpc64-1803"><code>mpowerpc64</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mprefergot-2037"><code>mprefergot</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mpreferred_002dstack_002dboundary-1354"><code>mpreferred-stack-boundary</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mprioritize_002drestricted_002dinsns-1893"><code>mprioritize-restricted-insns</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mprolog_002dfunction-2115"><code>mprolog-function</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mprologue_002depilogue-1117"><code>mprologue-epilogue</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mprototype-1913"><code>mprototype</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mpt_002dfixed-2047"><code>mpt-fixed</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mpush_002dargs-1373"><code>mpush-args</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mpush_002dargs-1126"><code>mpush-args</code></a>: <a href="#CRX-Options">CRX Options</a></li>
<li><a href="#index-MQ-910"><code>MQ</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-mr10k_002dcache_002dbarrier-1720"><code>mr10k-cache-barrier</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mrecip-1941"><code>mrecip</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mrecip-1370"><code>mrecip</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mrecip_002dprecision-1943"><code>mrecip-precision</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mrecip_003dopt-1942"><code>mrecip=opt</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mregister_002dnames-1415"><code>mregister-names</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mregnames-1934"><code>mregnames</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mregparm-1347"><code>mregparm</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mrelax-2024"><code>mrelax</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mrelax-1960"><code>mrelax</code></a>: <a href="#RX-Options">RX Options</a></li>
<li><a href="#index-mrelax-1761"><code>mrelax</code></a>: <a href="#MN10300-Options">MN10300 Options</a></li>
<li><a href="#index-mrelax-1294"><code>mrelax</code></a>: <a href="#H8_002f300-Options">H8/300 Options</a></li>
<li><a href="#index-mrelax_002dimmediate-1560"><code>mrelax-immediate</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-mrelax_002dpic_002dcalls-1728"><code>mrelax-pic-calls</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mrelocatable-1881"><code>mrelocatable</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mrelocatable_002dlib-1883"><code>mrelocatable-lib</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mrepeat-1600"><code>mrepeat</code></a>: <a href="#MeP-Options">MeP Options</a></li>
<li><a href="#index-mreturn_002dpointer_002don_002dd0-1759"><code>mreturn-pointer-on-d0</code></a>: <a href="#MN10300-Options">MN10300 Options</a></li>
<li><a href="#index-mrodata-1025"><code>mrodata</code></a>: <a href="#ARC-Options">ARC Options</a></li>
<li><a href="#index-mrtd-2414"><code>mrtd</code></a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-mrtd-1531"><code>mrtd</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mrtd-1346"><code>mrtd</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mrtp-2135"><code>mrtp</code></a>: <a href="#VxWorks-Options">VxWorks Options</a></li>
<li><a href="#index-ms-1601"><code>ms</code></a>: <a href="#MeP-Options">MeP Options</a></li>
<li><a href="#index-ms-1296"><code>ms</code></a>: <a href="#H8_002f300-Options">H8/300 Options</a></li>
<li><a href="#index-ms2600-1298"><code>ms2600</code></a>: <a href="#H8_002f300-Options">H8/300 Options</a></li>
<li><a href="#index-msafe_002ddma-2086"><code>msafe-dma</code></a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-msafe_002dhints-2103"><code>msafe-hints</code></a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-msahf-1367"><code>msahf</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-msatur-1602"><code>msatur</code></a>: <a href="#MeP-Options">MeP Options</a></li>
<li><a href="#index-msave_002dacc_002din_002dinterrupts-1962"><code>msave-acc-in-interrupts</code></a>: <a href="#RX-Options">RX Options</a></li>
<li><a href="#index-mscc-1274"><code>mscc</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-msched_002dar_002ddata_002dspec-1443"><code>msched-ar-data-spec</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-msched_002dar_002din_002ddata_002dspec-1449"><code>msched-ar-in-data-spec</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-msched_002dbr_002ddata_002dspec-1442"><code>msched-br-data-spec</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-msched_002dbr_002din_002ddata_002dspec-1447"><code>msched-br-in-data-spec</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-msched_002dcontrol_002dspec-1446"><code>msched-control-spec</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-msched_002dcostly_002ddep-1894"><code>msched-costly-dep</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-msched_002dcount_002dspec_002din_002dcritical_002dpath-1458"><code>msched-count-spec-in-critical-path</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-msched_002dfp_002dmem_002ddeps_002dzero_002dcost-1462"><code>msched-fp-mem-deps-zero-cost</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-msched_002din_002dcontrol_002dspec-1451"><code>msched-in-control-spec</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-msched_002dmax_002dmemory_002dinsns-1464"><code>msched-max-memory-insns</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-msched_002dmax_002dmemory_002dinsns_002dhard_002dlimit-1465"><code>msched-max-memory-insns-hard-limit</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-msched_002dprefer_002dnon_002dcontrol_002dspec_002dinsns-1456"><code>msched-prefer-non-control-spec-insns</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-msched_002dprefer_002dnon_002ddata_002dspec_002dinsns-1454"><code>msched-prefer-non-data-spec-insns</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-msched_002dspec_002dldc-1459"><code>msched-spec-ldc</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-msched_002dstop_002dbits_002dafter_002devery_002dcycle-1461"><code>msched-stop-bits-after-every-cycle</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mschedule-1316"><code>mschedule</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mscore5-2000"><code>mscore5</code></a>: <a href="#Score-Options">Score Options</a></li>
<li><a href="#index-mscore5u-2001"><code>mscore5u</code></a>: <a href="#Score-Options">Score Options</a></li>
<li><a href="#index-mscore7-2002"><code>mscore7</code></a>: <a href="#Score-Options">Score Options</a></li>
<li><a href="#index-mscore7d-2003"><code>mscore7d</code></a>: <a href="#Score-Options">Score Options</a></li>
<li><a href="#index-msda-2118"><code>msda</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-msdata-1926"><code>msdata</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-msdata-1418"><code>msdata</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-msdata_003ddata-1927"><code>msdata=data</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-msdata_003ddefault-1925"><code>msdata=default</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-msdata_003deabi-1923"><code>msdata=eabi</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-msdata_003dnone-1928"><code>msdata=none</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-msdata_003dnone-1486"><code>msdata=none</code></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-msdata_003dsdata-1487"><code>msdata=sdata</code></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-msdata_003dsysv-1924"><code>msdata=sysv</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-msdata_003duse-1488"><code>msdata=use</code></a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-msdram-1603"><code>msdram</code></a>: <a href="#MeP-Options">MeP Options</a></li>
<li><a href="#index-msdram-1093"><code>msdram</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-msecure_002dplt-1832"><code>msecure-plt</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-msel_002dsched_002ddont_002dcheck_002dcontrol_002dspec-1463"><code>msel-sched-dont-check-control-spec</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-msep_002ddata-1084"><code>msep-data</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mserialize_002dvolatile-2149"><code>mserialize-volatile</code></a>: <a href="#Xtensa-Options">Xtensa Options</a></li>
<li><a href="#index-mshared_002dlibrary_002did-1083"><code>mshared-library-id</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mshort-1553"><code>mshort</code></a>: <a href="#M68hc1x-Options">M68hc1x Options</a></li>
<li><a href="#index-mshort-1526"><code>mshort</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-msign_002dextend_002denabled-1473"><code>msign-extend-enabled</code></a>: <a href="#LM32-Options">LM32 Options</a></li>
<li><a href="#index-msim-2143"><code>msim</code></a>: <a href="#Xstormy16-Options">Xstormy16 Options</a></li>
<li><a href="#index-msim-1955"><code>msim</code></a>: <a href="#RX-Options">RX Options</a></li>
<li><a href="#index-msim-1915"><code>msim</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-msim-1604"><code>msim</code></a>: <a href="#MeP-Options">MeP Options</a></li>
<li><a href="#index-msim-1477"><code>msim</code></a>: <a href="#M32C-Options">M32C Options</a></li>
<li><a href="#index-msim-1070"><code>msim</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-msimnovec-1605"><code>msimnovec</code></a>: <a href="#MeP-Options">MeP Options</a></li>
<li><a href="#index-msimple_002dfpu-1860"><code>msimple-fpu</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-msingle_002dexit-1749"><code>msingle-exit</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-msingle_002dfloat-1858"><code>msingle-float</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-msingle_002dfloat-1660"><code>msingle-float</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-msingle_002dpic_002dbase-1892"><code>msingle-pic-base</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-msingle_002dpic_002dbase-1049"><code>msingle-pic-base</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-msio-1319"><code>msio</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-mslow_002dbytes-1568"><code>mslow-bytes</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-msmall_002ddata-1227"><code>msmall-data</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-msmall_002ddata_002dlimit-1954"><code>msmall-data-limit</code></a>: <a href="#RX-Options">RX Options</a></li>
<li><a href="#index-msmall_002ddivides-1618"><code>msmall-divides</code></a>: <a href="#MicroBlaze-Options">MicroBlaze Options</a></li>
<li><a href="#index-msmall_002dexec-1974"><code>msmall-exec</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-msmall_002dmem-2089"><code>msmall-mem</code></a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-msmall_002dmodel-1238"><code>msmall-model</code></a>: <a href="#FR30-Options">FR30 Options</a></li>
<li><a href="#index-msmall_002dtext-1229"><code>msmall-text</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-msmartmips-1668"><code>msmartmips</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-msoft_002dfloat-2060"><code>msoft-float</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-msoft_002dfloat-1965"><code>msoft-float</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-msoft_002dfloat-1856"><code>msoft-float</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-msoft_002dfloat-1766"><code>msoft-float</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-msoft_002dfloat-1659"><code>msoft-float</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-msoft_002dfloat-1609"><code>msoft-float</code></a>: <a href="#MicroBlaze-Options">MicroBlaze Options</a></li>
<li><a href="#index-msoft_002dfloat-1523"><code>msoft-float</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-msoft_002dfloat-1338"><code>msoft-float</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-msoft_002dfloat-1318"><code>msoft-float</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-msoft_002dfloat-1246"><code>msoft-float</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-msoft_002dfloat-1203"><code>msoft-float</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-msoft_002dfloat-1034"><code>msoft-float</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-msoft_002dquad_002dfloat-2062"><code>msoft-quad-float</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-msoft_002dreg_002dcount-1554"><code>msoft-reg-count</code></a>: <a href="#M68hc1x-Options">M68hc1x Options</a></li>
<li><a href="#index-mspace-2116"><code>mspace</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mspace-2036"><code>mspace</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mspe-1836"><code>mspe</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mspecld_002danomaly-1072"><code>mspecld-anomaly</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-msplit_002daddresses-1694"><code>msplit-addresses</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-msse-1358"><code>msse</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-msse2avx-1383"><code>msse2avx</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-msseregparm-1348"><code>msseregparm</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mstack_002dalign-1107"><code>mstack-align</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mstack_002dbias-2081"><code>mstack-bias</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mstack_002dcheck_002dl1-1078"><code>mstack-check-l1</code></a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-mstack_002dguard-1992"><code>mstack-guard</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mstack_002dincrement-1575"><code>mstack-increment</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-mstack_002dsize-1993"><code>mstack-size</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mstackrealign-1353"><code>mstackrealign</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mstdmain-2091"><code>mstdmain</code></a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-mstrict_002dalign-1880"><code>mstrict-align</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mstrict_002dalign-1537"><code>mstrict-align</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mstring-1865"><code>mstring</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mstringop_002dstrategy_003d_0040var_007balg_007d-1380"><code>mstringop-strategy=</code><var>alg</var></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mstructure_002dsize_002dboundary-1045"><code>mstructure-size-boundary</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-msvr4_002dstruct_002dreturn-1907"><code>msvr4-struct-return</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-msym32-1680"><code>msym32</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-msynci-1727"><code>msynci</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-MT-909"><code>MT</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-mtarget_002dalign-2154"><code>mtarget-align</code></a>: <a href="#Xtensa-Options">Xtensa Options</a></li>
<li><a href="#index-mtda-2117"><code>mtda</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mtext-1023"><code>mtext</code></a>: <a href="#ARC-Options">ARC Options</a></li>
<li><a href="#index-mtext_002dsection_002dliterals-2152"><code>mtext-section-literals</code></a>: <a href="#Xtensa-Options">Xtensa Options</a></li>
<li><a href="#index-mtf-1606"><code>mtf</code></a>: <a href="#MeP-Options">MeP Options</a></li>
<li><a href="#index-mthread-1399"><code>mthread</code></a>: <a href="#i386-and-x86_002d64-Windows-Options">i386 and x86-64 Windows Options</a></li>
<li><a href="#index-mthreads-1376"><code>mthreads</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mthumb-1054"><code>mthumb</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mthumb_002dinterwork-1030"><code>mthumb-interwork</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mtiny_002dstack-1066"><code>mtiny-stack</code></a>: <a href="#AVR-Options">AVR Options</a></li>
<li><a href="#index-mtiny_003d-1607"><code>mtiny=</code></a>: <a href="#MeP-Options">MeP Options</a></li>
<li><a href="#index-mtls-1260"><code>mtls</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mTLS-1259"><code>mTLS</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mtls_002ddirect_002dseg_002drefs-1382"><code>mtls-direct-seg-refs</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mtls_002dmarkers-1938"><code>mtls-markers</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mtls_002dsize-1437"><code>mtls-size</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mtoc-1886"><code>mtoc</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mtomcat_002dstats-1286"><code>mtomcat-stats</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mtoplevel_002dsymbols-1742"><code>mtoplevel-symbols</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-mtp-1059"><code>mtp</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mtpcs_002dframe-1055"><code>mtpcs-frame</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mtpcs_002dleaf_002dframe-1056"><code>mtpcs-leaf-frame</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mtpf_002dtrace-1986"><code>mtpf-trace</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mtrap_002dprecision-1210"><code>mtrap-precision</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mtune-2068"><code>mtune</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mtune-1985"><code>mtune</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mtune-1822"><code>mtune</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mtune-1758"><code>mtune</code></a>: <a href="#MN10300-Options">MN10300 Options</a></li>
<li><a href="#index-mtune-1628"><code>mtune</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mtune-1503"><code>mtune</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mtune-1438"><code>mtune</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mtune-1331"><code>mtune</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mtune-1232"><code>mtune</code></a>: <a href="#DEC-Alpha-Options">DEC Alpha Options</a></li>
<li><a href="#index-mtune-1098"><code>mtune</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-mtune-1039"><code>mtune</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-muclibc-1289"><code>muclibc</code></a>: <a href="#GNU_002fLinux-Options">GNU/Linux Options</a></li>
<li><a href="#index-muls-1998"><code>muls</code></a>: <a href="#Score-Options">Score Options</a></li>
<li><a href="#index-multcost_003d_0040var_007bnumber_007d-2039"><code>multcost=</code><var>number</var></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-multi_005fmodule-1162"><code>multi_module</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-multilib_002dlibrary_002dpic-1262"><code>multilib-library-pic</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-multiply_002denabled-1472"><code>multiply-enabled</code></a>: <a href="#LM32-Options">LM32 Options</a></li>
<li><a href="#index-multiply_005fdefined-1163"><code>multiply_defined</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-multiply_005fdefined_005funused-1164"><code>multiply_defined_unused</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-munaligned_002ddoubles-2064"><code>munaligned-doubles</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-municode-1400"><code>municode</code></a>: <a href="#i386-and-x86_002d64-Windows-Options">i386 and x86-64 Windows Options</a></li>
<li><a href="#index-muninit_002dconst_002din_002drodata-1691"><code>muninit-const-in-rodata</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-munix-2131"><code>munix</code></a>: <a href="#VAX-Options">VAX Options</a></li>
<li><a href="#index-munix_002dasm-1786"><code>munix-asm</code></a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-munsafe_002ddma-2087"><code>munsafe-dma</code></a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-mupdate-1867"><code>mupdate</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-muser_002denabled-1474"><code>muser-enabled</code></a>: <a href="#LM32-Options">LM32 Options</a></li>
<li><a href="#index-musermode-2038"><code>musermode</code></a>: <a href="#SH-Options">SH Options</a></li>
<li><a href="#index-mv850-2120"><code>mv850</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mv850e-2128"><code>mv850e</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mv850e1-2126"><code>mv850e1</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mv850e2-2125"><code>mv850e2</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mv850e2v3-2124"><code>mv850e2v3</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mv850es-2127"><code>mv850es</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mv8plus-2069"><code>mv8plus</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mveclibabi-1944"><code>mveclibabi</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mveclibabi-1371"><code>mveclibabi</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mvect8_002dret_002din_002dmem-1349"><code>mvect8-ret-in-mem</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mvis-2071"><code>mvis</code></a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-mvliw_002dbranch-1278"><code>mvliw-branch</code></a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-mvms_002dreturn_002dcodes-1466"><code>mvms-return-codes</code></a>: <a href="#IA_002d64_002fVMS-Options">IA-64/VMS Options</a></li>
<li><a href="#index-mvms_002dreturn_002dcodes-1234"><code>mvms-return-codes</code></a>: <a href="#DEC-Alpha_002fVMS-Options">DEC Alpha/VMS Options</a></li>
<li><a href="#index-mvolatile_002dasm_002dstop-1413"><code>mvolatile-asm-stop</code></a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-mvr4130_002dalign-1726"><code>mvr4130-align</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mvrsave-1828"><code>mvrsave</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mvsx-1840"><code>mvsx</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mvxworks-1919"><code>mvxworks</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mvzeroupper-1365"><code>mvzeroupper</code></a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-mwarn_002dcell_002dmicrocode-1831"><code>mwarn-cell-microcode</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mwarn_002ddynamicstack-1991"><code>mwarn-dynamicstack</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mwarn_002dframesize-1990"><code>mwarn-framesize</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mwarn_002dreloc-2084"><code>mwarn-reloc</code></a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-mwide_002dbitfields-1562"><code>mwide-bitfields</code></a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-mwin32-1401"><code>mwin32</code></a>: <a href="#i386-and-x86_002d64-Windows-Options">i386 and x86-64 Windows Options</a></li>
<li><a href="#index-mwindows-1402"><code>mwindows</code></a>: <a href="#i386-and-x86_002d64-Windows-Options">i386 and x86-64 Windows Options</a></li>
<li><a href="#index-mword_002drelocations-1060"><code>mword-relocations</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mwords_002dlittle_002dendian-1037"><code>mwords-little-endian</code></a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-mxgot-1651"><code>mxgot</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-mxgot-1538"><code>mxgot</code></a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-mxilinx_002dfpu-1862"><code>mxilinx-fpu</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mxl_002dbarrel_002dshift-1616"><code>mxl-barrel-shift</code></a>: <a href="#MicroBlaze-Options">MicroBlaze Options</a></li>
<li><a href="#index-mxl_002dcompat-1851"><code>mxl-compat</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mxl_002dfloat_002dconvert-1622"><code>mxl-float-convert</code></a>: <a href="#MicroBlaze-Options">MicroBlaze Options</a></li>
<li><a href="#index-mxl_002dfloat_002dsqrt-1623"><code>mxl-float-sqrt</code></a>: <a href="#MicroBlaze-Options">MicroBlaze Options</a></li>
<li><a href="#index-mxl_002dgp_002dopt-1620"><code>mxl-gp-opt</code></a>: <a href="#MicroBlaze-Options">MicroBlaze Options</a></li>
<li><a href="#index-mxl_002dmultiply_002dhigh-1621"><code>mxl-multiply-high</code></a>: <a href="#MicroBlaze-Options">MicroBlaze Options</a></li>
<li><a href="#index-mxl_002dpattern_002dcompare-1617"><code>mxl-pattern-compare</code></a>: <a href="#MicroBlaze-Options">MicroBlaze Options</a></li>
<li><a href="#index-mxl_002dsoft_002ddiv-1615"><code>mxl-soft-div</code></a>: <a href="#MicroBlaze-Options">MicroBlaze Options</a></li>
<li><a href="#index-mxl_002dsoft_002dmul-1614"><code>mxl-soft-mul</code></a>: <a href="#MicroBlaze-Options">MicroBlaze Options</a></li>
<li><a href="#index-mxl_002dstack_002dcheck-1619"><code>mxl-stack-check</code></a>: <a href="#MicroBlaze-Options">MicroBlaze Options</a></li>
<li><a href="#index-myellowknife-1918"><code>myellowknife</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-mzarch-1978"><code>mzarch</code></a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-mzda-2119"><code>mzda</code></a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-mzero_002dextend-1738"><code>mzero-extend</code></a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-no_002dcanonical_002dprefixes-87"><code>no-canonical-prefixes</code></a>: <a href="#Overall-Options">Overall Options</a></li>
<li><a href="#index-no_002dintegrated_002dcpp-115"><code>no-integrated-cpp</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-no_005fdead_005fstrip_005finits_005fand_005fterms-1166"><code>no_dead_strip_inits_and_terms</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-noall_005fload-1165"><code>noall_load</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-nocpp-1710"><code>nocpp</code></a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-nodefaultlibs-973"><code>nodefaultlibs</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-nofixprebinding-1167"><code>nofixprebinding</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-nofpu-1950"><code>nofpu</code></a>: <a href="#RX-Options">RX Options</a></li>
<li><a href="#index-nolibdld-1324"><code>nolibdld</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-nomultidefs-1168"><code>nomultidefs</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-non_002dstatic-2136"><code>non-static</code></a>: <a href="#VxWorks-Options">VxWorks Options</a></li>
<li><a href="#index-noprebind-1169"><code>noprebind</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-noseglinkedit-1170"><code>noseglinkedit</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-nostartfiles-972"><code>nostartfiles</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-nostdinc-919"><code>nostdinc</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-nostdinc_002b_002b-920"><code>nostdinc++</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-nostdinc_002b_002b-164"><code>nostdinc++</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-nostdlib-974"><code>nostdlib</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-o-888"><code>o</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-O-681"><code>O</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-o-81"><code>o</code></a>: <a href="#Overall-Options">Overall Options</a></li>
<li><a href="#index-O0-685"><code>O0</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-O1-682"><code>O1</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-O2-683"><code>O2</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-O3-684"><code>O3</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-Ofast-687"><code>Ofast</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-Os-686"><code>Os</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-P-951"><code>P</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-p-526"><code>p</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-pagezero_005fsize-1171"><code>pagezero_size</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-param-879"><code>param</code></a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-pass_002dexit_002dcodes-76"><code>pass-exit-codes</code></a>: <a href="#Overall-Options">Overall Options</a></li>
<li><a href="#index-pedantic-3345"><code>pedantic</code></a>: <a href="#Warnings-and-Errors">Warnings and Errors</a></li>
<li><a href="#index-pedantic-2694"><code>pedantic</code></a>: <a href="#Alternate-Keywords">Alternate Keywords</a></li>
<li><a href="#index-pedantic-2232"><code>pedantic</code></a>: <a href="#C-Extensions">C Extensions</a></li>
<li><a href="#index-pedantic-900"><code>pedantic</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-pedantic-244"><code>pedantic</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-pedantic-60"><code>pedantic</code></a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-pedantic_002derrors-3346"><code>pedantic-errors</code></a>: <a href="#Warnings-and-Errors">Warnings and Errors</a></li>
<li><a href="#index-pedantic_002derrors-3341"><code>pedantic-errors</code></a>: <a href="#Non_002dbugs">Non-bugs</a></li>
<li><a href="#index-pedantic_002derrors-901"><code>pedantic-errors</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-pedantic_002derrors-245"><code>pedantic-errors</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-pedantic_002derrors-61"><code>pedantic-errors</code></a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-pg-528"><code>pg</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-pie-981"><code>pie</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-pipe-84"><code>pipe</code></a>: <a href="#Overall-Options">Overall Options</a></li>
<li><a href="#index-prebind-1172"><code>prebind</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-prebind_005fall_005ftwolevel_005fmodules-1173"><code>prebind_all_twolevel_modules</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-print_002dfile_002dname-665"><code>print-file-name</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-print_002dlibgcc_002dfile_002dname-671"><code>print-libgcc-file-name</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-print_002dmulti_002ddirectory-666"><code>print-multi-directory</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-print_002dmulti_002dlib-667"><code>print-multi-lib</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-print_002dmulti_002dos_002ddirectory-668"><code>print-multi-os-directory</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-print_002dmultiarch-669"><code>print-multiarch</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-print_002dobjc_002druntime_002dinfo-221"><code>print-objc-runtime-info</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-print_002dprog_002dname-670"><code>print-prog-name</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-print_002dsearch_002ddirs-672"><code>print-search-dirs</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-print_002dsysroot-673"><code>print-sysroot</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-print_002dsysroot_002dheaders_002dsuffix-674"><code>print-sysroot-headers-suffix</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-private_005fbundle-1174"><code>private_bundle</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-pthread-2053"><code>pthread</code></a>: <a href="#Solaris-2-Options">Solaris 2 Options</a></li>
<li><a href="#index-pthread-1940"><code>pthread</code></a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-pthreads-2052"><code>pthreads</code></a>: <a href="#Solaris-2-Options">Solaris 2 Options</a></li>
<li><a href="#index-Q-529"><code>Q</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-Qn-2106"><code>Qn</code></a>: <a href="#System-V-Options">System V Options</a></li>
<li><a href="#index-Qy-2105"><code>Qy</code></a>: <a href="#System-V-Options">System V Options</a></li>
<li><a href="#index-rdynamic-982"><code>rdynamic</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-read_005fonly_005frelocs-1175"><code>read_only_relocs</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-remap-955"><code>remap</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-s-983"><code>s</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-S-967"><code>S</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-S-78"><code>S</code></a>: <a href="#Overall-Options">Overall Options</a></li>
<li><a href="#index-save_002dtemps-657"><code>save-temps</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-save_002dtemps_003dobj-658"><code>save-temps=obj</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-sectalign-1176"><code>sectalign</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-sectcreate-1180"><code>sectcreate</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-sectobjectsymbols-1177"><code>sectobjectsymbols</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-sectorder-1182"><code>sectorder</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-seg1addr-1179"><code>seg1addr</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-seg_005faddr_005ftable-1186"><code>seg_addr_table</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-seg_005faddr_005ftable_005ffilename-1187"><code>seg_addr_table_filename</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-segaddr-1183"><code>segaddr</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-seglinkedit-1188"><code>seglinkedit</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-segprot-1189"><code>segprot</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-segs_005fread_005fonly_005faddr-1184"><code>segs_read_only_addr</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-segs_005fread_005fwrite_005faddr-1185"><code>segs_read_write_addr</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-shared-985"><code>shared</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-shared_002dlibgcc-986"><code>shared-libgcc</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-sim-1122"><code>sim</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-sim2-1123"><code>sim2</code></a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-single_005fmodule-1192"><code>single_module</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-specs-1001"><code>specs</code></a>: <a href="#Directory-Options">Directory Options</a></li>
<li><a href="#index-static-1325"><code>static</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-static-1193"><code>static</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-static-984"><code>static</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-static_002dlibgcc-987"><code>static-libgcc</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-std-3338"><code>std</code></a>: <a href="#Non_002dbugs">Non-bugs</a></li>
<li><a href="#index-std-3134"><code>std</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-std-101"><code>std</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-std-58"><code>std</code></a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-std_003d-917"><code>std=</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-sub_005flibrary-1194"><code>sub_library</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-sub_005fumbrella-1195"><code>sub_umbrella</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-symbolic-988"><code>symbolic</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-sysroot-1002"><code>sysroot</code></a>: <a href="#Directory-Options">Directory Options</a></li>
<li><a href="#index-T-989"><code>T</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-target_002dhelp-957"><code>target-help</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-target_002dhelp-86"><code>target-help</code></a>: <a href="#Overall-Options">Overall Options</a></li>
<li><a href="#index-threads-2051"><code>threads</code></a>: <a href="#Solaris-2-Options">Solaris 2 Options</a></li>
<li><a href="#index-threads-1326"><code>threads</code></a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-time-659"><code>time</code></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-tno_002dandroid_002dcc-1292"><code>tno-android-cc</code></a>: <a href="#GNU_002fLinux-Options">GNU/Linux Options</a></li>
<li><a href="#index-tno_002dandroid_002dld-1293"><code>tno-android-ld</code></a>: <a href="#GNU_002fLinux-Options">GNU/Linux Options</a></li>
<li><a href="#index-traditional-3293"><code>traditional</code></a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-traditional-119"><code>traditional</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-traditional_002dcpp-953"><code>traditional-cpp</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-traditional_002dcpp-118"><code>traditional-cpp</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-trigraphs-954"><code>trigraphs</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-trigraphs-114"><code>trigraphs</code></a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-twolevel_005fnamespace-1196"><code>twolevel_namespace</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-u-993"><code>u</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-U-885"><code>U</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-umbrella-1197"><code>umbrella</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-undef-886"><code>undef</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-undefined-1198"><code>undefined</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-unexported_005fsymbols_005flist-1199"><code>unexported_symbols_list</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-v-958"><code>v</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-v-82"><code>v</code></a>: <a href="#Overall-Options">Overall Options</a></li>
<li><a href="#index-version-960"><code>version</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-version-88"><code>version</code></a>: <a href="#Overall-Options">Overall Options</a></li>
<li><a href="#index-W-3303"><code>W</code></a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-w-899"><code>w</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-W-248"><code>W</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-w-237"><code>w</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wa-961"><code>Wa</code></a>: <a href="#Assembler-Options">Assembler Options</a></li>
<li><a href="#index-Wabi-166"><code>Wabi</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Waddress-413"><code>Waddress</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Waggregate_002dreturn-417"><code>Waggregate-return</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wall-3317"><code>Wall</code></a>: <a href="#Standard-Libraries">Standard Libraries</a></li>
<li><a href="#index-Wall-889"><code>Wall</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-Wall-246"><code>Wall</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Warray_002dbounds-352"><code>Warray-bounds</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wassign_002dintercept-211"><code>Wassign-intercept</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-Wattributes-420"><code>Wattributes</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wbad_002dfunction_002dcast-386"><code>Wbad-function-cast</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wbuiltin_002dmacro_002dredefined-422"><code>Wbuiltin-macro-redefined</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wcast_002dalign-390"><code>Wcast-align</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wcast_002dqual-388"><code>Wcast-qual</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wchar_002dsubscripts-251"><code>Wchar-subscripts</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wclobbered-394"><code>Wclobbered</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wcomment-890"><code>Wcomment</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-Wcomment-253"><code>Wcomment</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wcomments-891"><code>Wcomments</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-Wconversion-396"><code>Wconversion</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wconversion_002dnull-398"><code>Wconversion-null</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wcoverage_002dmismatch-229"><code>Wcoverage-mismatch</code></a>: <a href="#Language-Independent-Options">Language Independent Options</a></li>
<li><a href="#index-Wctor_002ddtor_002dprivacy-168"><code>Wctor-dtor-privacy</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wdeclaration_002dafter_002dstatement-367"><code>Wdeclaration-after-statement</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wdeprecated-451"><code>Wdeprecated</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wdeprecated_002ddeclarations-453"><code>Wdeprecated-declarations</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wdisabled_002doptimization-489"><code>Wdisabled-optimization</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wdiv_002dby_002dzero-354"><code>Wdiv-by-zero</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wdouble_002dpromotion-255"><code>Wdouble-promotion</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-weak_005freference_005fmismatches-1200"><code>weak_reference_mismatches</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-Weffc_002b_002b-178"><code>Weffc++</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wempty_002dbody-400"><code>Wempty-body</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wendif_002dlabels-896"><code>Wendif-labels</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-Wendif_002dlabels-372"><code>Wendif-labels</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wenum_002dcompare-402"><code>Wenum-compare</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Werror-897"><code>Werror</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-Werror-238"><code>Werror</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Werror_003d-240"><code>Werror=</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wextra-249"><code>Wextra</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wfatal_002derrors-242"><code>Wfatal-errors</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wfloat_002dequal-361"><code>Wfloat-equal</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wformat-2431"><code>Wformat</code></a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-Wformat-257"><code>Wformat</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wformat_002dcontains_002dnul-264"><code>Wformat-contains-nul</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wformat_002dextra_002dargs-266"><code>Wformat-extra-args</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wformat_002dnonliteral-2435"><code>Wformat-nonliteral</code></a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-Wformat_002dnonliteral-269"><code>Wformat-nonliteral</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wformat_002dsecurity-271"><code>Wformat-security</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wformat_002dy2k-261"><code>Wformat-y2k</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wformat_002dzero_002dlength-268"><code>Wformat-zero-length</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wformat_003d2-273"><code>Wformat=2</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wframe_002dlarger_002dthan-377"><code>Wframe-larger-than</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-whatsloaded-1201"><code>whatsloaded</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-whyload-1178"><code>whyload</code></a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-Wignored_002dqualifiers-285"><code>Wignored-qualifiers</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wimplicit-283"><code>Wimplicit</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wimplicit_002dfunction_002ddeclaration-281"><code>Wimplicit-function-declaration</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wimplicit_002dint-279"><code>Wimplicit-int</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Winit_002dself-277"><code>Winit-self</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Winline-2605"><code>Winline</code></a>: <a href="#Inline">Inline</a></li>
<li><a href="#index-Winline-471"><code>Winline</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wint_002dto_002dpointer_002dcast-476"><code>Wint-to-pointer-cast</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Winvalid_002doffsetof-474"><code>Winvalid-offsetof</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Winvalid_002dpch-479"><code>Winvalid-pch</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wjump_002dmisses_002dinit-404"><code>Wjump-misses-init</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wl-992"><code>Wl</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-Wlarger_002dthan_002d_0040var_007blen_007d-376"><code>Wlarger-than-</code><var>len</var></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wlarger_002dthan_003d_0040var_007blen_007d-375"><code>Wlarger-than=</code><var>len</var></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wlogical_002dop-415"><code>Wlogical-op</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wlong_002dlong-481"><code>Wlong-long</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wmain-287"><code>Wmain</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wmissing_002dbraces-289"><code>Wmissing-braces</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wmissing_002ddeclarations-433"><code>Wmissing-declarations</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wmissing_002dfield_002dinitializers-435"><code>Wmissing-field-initializers</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wmissing_002dformat_002dattribute-440"><code>Wmissing-format-attribute</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wmissing_002dinclude_002ddirs-291"><code>Wmissing-include-dirs</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wmissing_002dparameter_002dtype-429"><code>Wmissing-parameter-type</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wmissing_002dprototypes-431"><code>Wmissing-prototypes</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wmultichar-445"><code>Wmultichar</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wnested_002dexterns-469"><code>Wnested-externs</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dabi-167"><code>Wno-abi</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wno_002daddress-414"><code>Wno-address</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002daggregate_002dreturn-418"><code>Wno-aggregate-return</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dall-247"><code>Wno-all</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002darray_002dbounds-351"><code>Wno-array-bounds</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dassign_002dintercept-212"><code>Wno-assign-intercept</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-Wno_002dattributes-419"><code>Wno-attributes</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dbad_002dfunction_002dcast-387"><code>Wno-bad-function-cast</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dbuiltin_002dmacro_002dredefined-421"><code>Wno-builtin-macro-redefined</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dcast_002dalign-391"><code>Wno-cast-align</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dcast_002dqual-389"><code>Wno-cast-qual</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dchar_002dsubscripts-252"><code>Wno-char-subscripts</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dclobbered-395"><code>Wno-clobbered</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dcomment-254"><code>Wno-comment</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dconversion-397"><code>Wno-conversion</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dconversion_002dnull-399"><code>Wno-conversion-null</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dctor_002ddtor_002dprivacy-169"><code>Wno-ctor-dtor-privacy</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wno_002ddeclaration_002dafter_002dstatement-368"><code>Wno-declaration-after-statement</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002ddeprecated-450"><code>Wno-deprecated</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002ddeprecated_002ddeclarations-452"><code>Wno-deprecated-declarations</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002ddisabled_002doptimization-490"><code>Wno-disabled-optimization</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002ddiv_002dby_002dzero-353"><code>Wno-div-by-zero</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002ddouble_002dpromotion-256"><code>Wno-double-promotion</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002deffc_002b_002b-179"><code>Wno-effc++</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wno_002dempty_002dbody-401"><code>Wno-empty-body</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dendif_002dlabels-371"><code>Wno-endif-labels</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002denum_002dcompare-403"><code>Wno-enum-compare</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002derror-239"><code>Wno-error</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002derror_003d-241"><code>Wno-error=</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dextra-250"><code>Wno-extra</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dfatal_002derrors-243"><code>Wno-fatal-errors</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dfloat_002dequal-362"><code>Wno-float-equal</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dformat-258"><code>Wno-format</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dformat_002dcontains_002dnul-263"><code>Wno-format-contains-nul</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dformat_002dextra_002dargs-265"><code>Wno-format-extra-args</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dformat_002dnonliteral-270"><code>Wno-format-nonliteral</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dformat_002dsecurity-272"><code>Wno-format-security</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dformat_002dy2k-262"><code>Wno-format-y2k</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dformat_002dzero_002dlength-267"><code>Wno-format-zero-length</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dformat_003d2-274"><code>Wno-format=2</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dignored_002dqualifiers-286"><code>Wno-ignored-qualifiers</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dimplicit-284"><code>Wno-implicit</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dimplicit_002dfunction_002ddeclaration-282"><code>Wno-implicit-function-declaration</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dimplicit_002dint-280"><code>Wno-implicit-int</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dinit_002dself-278"><code>Wno-init-self</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dinline-472"><code>Wno-inline</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dint_002dto_002dpointer_002dcast-475"><code>Wno-int-to-pointer-cast</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dinvalid_002doffsetof-473"><code>Wno-invalid-offsetof</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dinvalid_002dpch-480"><code>Wno-invalid-pch</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002djump_002dmisses_002dinit-405"><code>Wno-jump-misses-init</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dlogical_002dop-416"><code>Wno-logical-op</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dlong_002dlong-482"><code>Wno-long-long</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dmain-288"><code>Wno-main</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dmissing_002dbraces-290"><code>Wno-missing-braces</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dmissing_002ddeclarations-434"><code>Wno-missing-declarations</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dmissing_002dfield_002dinitializers-436"><code>Wno-missing-field-initializers</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dmissing_002dformat_002dattribute-441"><code>Wno-missing-format-attribute</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dmissing_002dinclude_002ddirs-292"><code>Wno-missing-include-dirs</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dmissing_002dparameter_002dtype-430"><code>Wno-missing-parameter-type</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dmissing_002dprototypes-432"><code>Wno-missing-prototypes</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dmudflap-495"><code>Wno-mudflap</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dmultichar-444"><code>Wno-multichar</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dnested_002dexterns-470"><code>Wno-nested-externs</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dnoexcept-171"><code>Wno-noexcept</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wno_002dnon_002dtemplate_002dfriend-182"><code>Wno-non-template-friend</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wno_002dnon_002dvirtual_002ddtor-173"><code>Wno-non-virtual-dtor</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wno_002dnonnull-276"><code>Wno-nonnull</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dold_002dstyle_002dcast-185"><code>Wno-old-style-cast</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wno_002dold_002dstyle_002ddeclaration-426"><code>Wno-old-style-declaration</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dold_002dstyle_002ddefinition-428"><code>Wno-old-style-definition</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002doverflow-454"><code>Wno-overflow</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002doverlength_002dstrings-497"><code>Wno-overlength-strings</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002doverloaded_002dvirtual-187"><code>Wno-overloaded-virtual</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wno_002doverride_002dinit-457"><code>Wno-override-init</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dpacked-462"><code>Wno-packed</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dpacked_002dbitfield_002dcompat-464"><code>Wno-packed-bitfield-compat</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dpadded-466"><code>Wno-padded</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dparentheses-294"><code>Wno-parentheses</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dpedantic_002dms_002dformat-380"><code>Wno-pedantic-ms-format</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dpmf_002dconversions-3280"><code>Wno-pmf-conversions</code></a>: <a href="#Bound-member-functions">Bound member functions</a></li>
<li><a href="#index-Wno_002dpmf_002dconversions-190"><code>Wno-pmf-conversions</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wno_002dpointer_002darith-383"><code>Wno-pointer-arith</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dpointer_002dsign-492"><code>Wno-pointer-sign</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dpointer_002dto_002dint_002dcast-477"><code>Wno-pointer-to-int-cast</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dpragmas-335"><code>Wno-pragmas</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dprotocol-213"><code>Wno-protocol</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-Wno_002dredundant_002ddecls-468"><code>Wno-redundant-decls</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dreorder-175"><code>Wno-reorder</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wno_002dreturn_002dtype-298"><code>Wno-return-type</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dselector-216"><code>Wno-selector</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-Wno_002dsequence_002dpoint-296"><code>Wno-sequence-point</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dshadow-374"><code>Wno-shadow</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dsign_002dcompare-407"><code>Wno-sign-compare</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dsign_002dconversion-412"><code>Wno-sign-conversion</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dsign_002dpromo-193"><code>Wno-sign-promo</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wno_002dstack_002dprotector-494"><code>Wno-stack-protector</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dstrict_002daliasing-338"><code>Wno-strict-aliasing</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dstrict_002daliasing_003dn-340"><code>Wno-strict-aliasing=n</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dstrict_002dnull_002dsentinel-181"><code>Wno-strict-null-sentinel</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wno_002dstrict_002doverflow-342"><code>Wno-strict-overflow</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dstrict_002dprototypes-424"><code>Wno-strict-prototypes</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dstrict_002dselector_002dmatch-218"><code>Wno-strict-selector-match</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-Wno_002dsuggest_002dattribute_003d-344"><code>Wno-suggest-attribute=</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dsuggest_002dattribute_003dconst-348"><code>Wno-suggest-attribute=const</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dsuggest_002dattribute_003dnoreturn-350"><code>Wno-suggest-attribute=noreturn</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dsuggest_002dattribute_003dpure-346"><code>Wno-suggest-attribute=pure</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dswitch-300"><code>Wno-switch</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dswitch_002ddefault-302"><code>Wno-switch-default</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dswitch_002denum-304"><code>Wno-switch-enum</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dsync_002dnand-306"><code>Wno-sync-nand</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dsystem_002dheaders-356"><code>Wno-system-headers</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dtraditional-364"><code>Wno-traditional</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dtraditional_002dconversion-366"><code>Wno-traditional-conversion</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dtrampolines-360"><code>Wno-trampolines</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dtrigraphs-308"><code>Wno-trigraphs</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dtype_002dlimits-385"><code>Wno-type-limits</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dundeclared_002dselector-220"><code>Wno-undeclared-selector</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-Wno_002dundef-370"><code>Wno-undef</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002duninitialized-328"><code>Wno-uninitialized</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dunknown_002dpragmas-331"><code>Wno-unknown-pragmas</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dunsafe_002dloop_002doptimizations-379"><code>Wno-unsafe-loop-optimizations</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dunused-326"><code>Wno-unused</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dunused_002dbut_002dset_002dparameter-310"><code>Wno-unused-but-set-parameter</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dunused_002dbut_002dset_002dvariable-312"><code>Wno-unused-but-set-variable</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dunused_002dfunction-314"><code>Wno-unused-function</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dunused_002dlabel-316"><code>Wno-unused-label</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dunused_002dparameter-318"><code>Wno-unused-parameter</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dunused_002dresult-320"><code>Wno-unused-result</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dunused_002dvalue-324"><code>Wno-unused-value</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dunused_002dvariable-322"><code>Wno-unused-variable</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dvariadic_002dmacros-484"><code>Wno-variadic-macros</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dvla-486"><code>Wno-vla</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dvolatile_002dregister_002dvar-488"><code>Wno-volatile-register-var</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wno_002dwrite_002dstrings-393"><code>Wno-write-strings</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wnoexcept-170"><code>Wnoexcept</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wnon_002dtemplate_002dfriend-183"><code>Wnon-template-friend</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wnon_002dvirtual_002ddtor-172"><code>Wnon-virtual-dtor</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wnonnull-275"><code>Wnonnull</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wnormalized_003d-446"><code>Wnormalized=</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wold_002dstyle_002dcast-184"><code>Wold-style-cast</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wold_002dstyle_002ddeclaration-425"><code>Wold-style-declaration</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wold_002dstyle_002ddefinition-427"><code>Wold-style-definition</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Woverflow-455"><code>Woverflow</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Woverlength_002dstrings-496"><code>Woverlength-strings</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Woverloaded_002dvirtual-186"><code>Woverloaded-virtual</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Woverride_002dinit-456"><code>Woverride-init</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wp-882"><code>Wp</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-Wpacked-461"><code>Wpacked</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wpacked_002dbitfield_002dcompat-463"><code>Wpacked-bitfield-compat</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wpadded-465"><code>Wpadded</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wparentheses-293"><code>Wparentheses</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wpedantic_002dms_002dformat-381"><code>Wpedantic-ms-format</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wpmf_002dconversions-191"><code>Wpmf-conversions</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wpointer_002darith-2365"><code>Wpointer-arith</code></a>: <a href="#Pointer-Arith">Pointer Arith</a></li>
<li><a href="#index-Wpointer_002darith-382"><code>Wpointer-arith</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wpointer_002dsign-491"><code>Wpointer-sign</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wpointer_002dto_002dint_002dcast-478"><code>Wpointer-to-int-cast</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wpragmas-336"><code>Wpragmas</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wprotocol-214"><code>Wprotocol</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-wrapper-89"><code>wrapper</code></a>: <a href="#Overall-Options">Overall Options</a></li>
<li><a href="#index-Wredundant_002ddecls-467"><code>Wredundant-decls</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wreorder-174"><code>Wreorder</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wreturn_002dtype-297"><code>Wreturn-type</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wselector-215"><code>Wselector</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-Wsequence_002dpoint-295"><code>Wsequence-point</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wshadow-373"><code>Wshadow</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wsign_002dcompare-406"><code>Wsign-compare</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wsign_002dconversion-411"><code>Wsign-conversion</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wsign_002dpromo-192"><code>Wsign-promo</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wstack_002dprotector-493"><code>Wstack-protector</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wstrict_002daliasing-337"><code>Wstrict-aliasing</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wstrict_002daliasing_003dn-339"><code>Wstrict-aliasing=n</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wstrict_002dnull_002dsentinel-180"><code>Wstrict-null-sentinel</code></a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-Wstrict_002doverflow-341"><code>Wstrict-overflow</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wstrict_002dprototypes-423"><code>Wstrict-prototypes</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wstrict_002dselector_002dmatch-217"><code>Wstrict-selector-match</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-Wsuggest_002dattribute_003d-343"><code>Wsuggest-attribute=</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wsuggest_002dattribute_003dconst-347"><code>Wsuggest-attribute=const</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wsuggest_002dattribute_003dnoreturn-349"><code>Wsuggest-attribute=noreturn</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wsuggest_002dattribute_003dpure-345"><code>Wsuggest-attribute=pure</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wswitch-299"><code>Wswitch</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wswitch_002ddefault-301"><code>Wswitch-default</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wswitch_002denum-303"><code>Wswitch-enum</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wsync_002dnand-305"><code>Wsync-nand</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wsystem_002dheaders-898"><code>Wsystem-headers</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-Wsystem_002dheaders-355"><code>Wsystem-headers</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wtraditional-893"><code>Wtraditional</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-Wtraditional-363"><code>Wtraditional</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wtraditional_002dconversion-365"><code>Wtraditional-conversion</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wtrampolines-359"><code>Wtrampolines</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wtrigraphs-892"><code>Wtrigraphs</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-Wtrigraphs-307"><code>Wtrigraphs</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wtype_002dlimits-384"><code>Wtype-limits</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wundeclared_002dselector-219"><code>Wundeclared-selector</code></a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-Wundef-894"><code>Wundef</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-Wundef-369"><code>Wundef</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wuninitialized-327"><code>Wuninitialized</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wunknown_002dpragmas-330"><code>Wunknown-pragmas</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wunsafe_002dloop_002doptimizations-378"><code>Wunsafe-loop-optimizations</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wunsuffixed_002dfloat_002dconstants-498"><code>Wunsuffixed-float-constants</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wunused-325"><code>Wunused</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wunused_002dbut_002dset_002dparameter-309"><code>Wunused-but-set-parameter</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wunused_002dbut_002dset_002dvariable-311"><code>Wunused-but-set-variable</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wunused_002dfunction-313"><code>Wunused-function</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wunused_002dlabel-315"><code>Wunused-label</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wunused_002dmacros-895"><code>Wunused-macros</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-Wunused_002dparameter-317"><code>Wunused-parameter</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wunused_002dresult-319"><code>Wunused-result</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wunused_002dvalue-323"><code>Wunused-value</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wunused_002dvariable-321"><code>Wunused-variable</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wvariadic_002dmacros-483"><code>Wvariadic-macros</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wvla-485"><code>Wvla</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wvolatile_002dregister_002dvar-487"><code>Wvolatile-register-var</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-Wwrite_002dstrings-392"><code>Wwrite-strings</code></a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-x-915"><code>x</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-x-75"><code>x</code></a>: <a href="#Overall-Options">Overall Options</a></li>
<li><a href="#index-Xassembler-962"><code>Xassembler</code></a>: <a href="#Assembler-Options">Assembler Options</a></li>
<li><a href="#index-Xbind_002dlazy-2139"><code>Xbind-lazy</code></a>: <a href="#VxWorks-Options">VxWorks Options</a></li>
<li><a href="#index-Xbind_002dnow-2140"><code>Xbind-now</code></a>: <a href="#VxWorks-Options">VxWorks Options</a></li>
<li><a href="#index-Xlinker-991"><code>Xlinker</code></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-Xpreprocessor-883"><code>Xpreprocessor</code></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-Ym-2108"><code>Ym</code></a>: <a href="#System-V-Options">System V Options</a></li>
<li><a href="#index-YP-2107"><code>YP</code></a>: <a href="#System-V-Options">System V Options</a></li>
 </ul><div class="node">
<a name="Keyword-Index"></a>
<p><hr>
Previous:&nbsp;<a rel="previous" accesskey="p" href="#Option-Index">Option Index</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="#Top">Top</a>

</div>

<h2 class="unnumbered">Keyword Index</h2>



<ul class="index-cp" compact>
<li><a href="#index-g_t_0040samp_007b_0021_007d-in-constraint-2660">&lsquo;<samp><span class="samp">!</span></samp>&rsquo; in constraint</a>: <a href="#Multi_002dAlternative">Multi-Alternative</a></li>
<li><a href="#index-g_t_0040samp_007b_0023_007d-in-constraint-2669">&lsquo;<samp><span class="samp">#</span></samp>&rsquo; in constraint</a>: <a href="#Modifiers">Modifiers</a></li>
<li><a href="#index-g_t_0040code_007b_0023pragma_007d-3208"><code>#pragma</code></a>: <a href="#Pragmas">Pragmas</a></li>
<li><a href="#index-g_t_0023pragma-implementation-3266"><code>#pragma implementation</code></a>: <a href="#C_002b_002b-Interface">C++ Interface</a></li>
<li><a href="#index-g_t_0040code_007b_0023pragma-implementation_007d_002c-implied-3268"><code>#pragma implementation</code>, implied</a>: <a href="#C_002b_002b-Interface">C++ Interface</a></li>
<li><a href="#index-g_t_0023pragma-interface-3265"><code>#pragma interface</code></a>: <a href="#C_002b_002b-Interface">C++ Interface</a></li>
<li><a href="#index-g_t_0040code_007b_0023pragma_007d_002c-reason-for-not-using-2555"><code>#pragma</code>, reason for not using</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0024-2564">$</a>: <a href="#Dollar-Signs">Dollar Signs</a></li>
<li><a href="#index-g_t_0040samp_007b_0025_007d-in-constraint-2668">&lsquo;<samp><span class="samp">%</span></samp>&rsquo; in constraint</a>: <a href="#Modifiers">Modifiers</a></li>
<li><a href="#index-g_t_0040code_007b_0025include_007d-1005"><code>%include</code></a>: <a href="#Spec-Files">Spec Files</a></li>
<li><a href="#index-g_t_0040code_007b_0025include_005fnoerr_007d-1006"><code>%include_noerr</code></a>: <a href="#Spec-Files">Spec Files</a></li>
<li><a href="#index-g_t_0040code_007b_0025rename_007d-1007"><code>%rename</code></a>: <a href="#Spec-Files">Spec Files</a></li>
<li><a href="#index-g_t_0040samp_007b_0026_007d-in-constraint-2666">&lsquo;<samp><span class="samp">&amp;</span></samp>&rsquo; in constraint</a>: <a href="#Modifiers">Modifiers</a></li>
<li><a href="#index-g_t_0040code_007b_0027_007d-3310"><code>'</code></a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-g_t_0040samp_007b_002a_007d-in-constraint-2670">&lsquo;<samp><span class="samp">*</span></samp>&rsquo; in constraint</a>: <a href="#Modifiers">Modifiers</a></li>
<li><a href="#index-g_t_0040samp_007b_002b_007d-in-constraint-2665">&lsquo;<samp><span class="samp">+</span></samp>&rsquo; in constraint</a>: <a href="#Modifiers">Modifiers</a></li>
<li><a href="#index-g_t_0040option_007b_002dlgcc_007d_002c-use-with-_0040option_007b_002dnodefaultlibs_007d-978"><samp><span class="option">-lgcc</span></samp>, use with <samp><span class="option">-nodefaultlibs</span></samp></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-g_t_0040option_007b_002dlgcc_007d_002c-use-with-_0040option_007b_002dnostdlib_007d-975"><samp><span class="option">-lgcc</span></samp>, use with <samp><span class="option">-nostdlib</span></samp></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-g_t_0040option_007b_002dnodefaultlibs_007d-and-unresolved-references-979"><samp><span class="option">-nodefaultlibs</span></samp> and unresolved references</a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-g_t_0040option_007b_002dnostdlib_007d-and-unresolved-references-976"><samp><span class="option">-nostdlib</span></samp> and unresolved references</a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-g_t_002esdata_002f_002esdata2-references-_0028PowerPC_0029-1933">.sdata/.sdata2 references (PowerPC)</a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-g_t_0040code_007b_002f_002f_007d-2561"><code>//</code></a>: <a href="#C_002b_002b-Comments">C++ Comments</a></li>
<li><a href="#index-g_t_0040samp_007b0_007d-in-constraint-2646">&lsquo;<samp><span class="samp">0</span></samp>&rsquo; in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-g_t_0040samp_007b_003c_007d-in-constraint-2631">&lsquo;<samp><span class="samp">&lt;</span></samp>&rsquo; in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-g_t_0040samp_007b_003d_007d-in-constraint-2664">&lsquo;<samp><span class="samp">=</span></samp>&rsquo; in constraint</a>: <a href="#Modifiers">Modifiers</a></li>
<li><a href="#index-g_t_0040samp_007b_003e_007d-in-constraint-2632">&lsquo;<samp><span class="samp">&gt;</span></samp>&rsquo; in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-g_t_0040samp_007b_003f_007d-in-constraint-2658">&lsquo;<samp><span class="samp">?</span></samp>&rsquo; in constraint</a>: <a href="#Multi_002dAlternative">Multi-Alternative</a></li>
<li><a href="#index-g_t_0040code_007b_003f_003a_007d-extensions-2266"><code>?:</code> extensions</a>: <a href="#Conditionals">Conditionals</a></li>
<li><a href="#index-g_t_0040code_007b_003f_003a_007d-side-effect-2268"><code>?:</code> side effect</a>: <a href="#Conditionals">Conditionals</a></li>
<li><a href="#index-g_t_0040samp_007b_005f_007d-in-variables-in-macros-2258">&lsquo;<samp><span class="samp">_</span></samp>&rsquo; in variables in macros</a>: <a href="#Typeof">Typeof</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fclear_005fcache-3142"><code>__builtin___clear_cache</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005ffprintf_005fchk-2736"><code>__builtin___fprintf_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fmemcpy_005fchk-2721"><code>__builtin___memcpy_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fmemmove_005fchk-2723"><code>__builtin___memmove_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fmempcpy_005fchk-2722"><code>__builtin___mempcpy_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fmemset_005fchk-2724"><code>__builtin___memset_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fprintf_005fchk-2734"><code>__builtin___printf_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fsnprintf_005fchk-2731"><code>__builtin___snprintf_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fsprintf_005fchk-2730"><code>__builtin___sprintf_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fstpcpy_005fchk-2726"><code>__builtin___stpcpy_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fstrcat_005fchk-2728"><code>__builtin___strcat_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fstrcpy_005fchk-2725"><code>__builtin___strcpy_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fstrncat_005fchk-2729"><code>__builtin___strncat_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fstrncpy_005fchk-2727"><code>__builtin___strncpy_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fvfprintf_005fchk-2737"><code>__builtin___vfprintf_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fvprintf_005fchk-2735"><code>__builtin___vprintf_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fvsnprintf_005fchk-2733"><code>__builtin___vsnprintf_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005f_005f_005fvsprintf_005fchk-2732"><code>__builtin___vsprintf_chk</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fapply-2250"><code>__builtin_apply</code></a>: <a href="#Constructing-Calls">Constructing Calls</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fapply_005fargs-2249"><code>__builtin_apply_args</code></a>: <a href="#Constructing-Calls">Constructing Calls</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fbswap32-3182"><code>__builtin_bswap32</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fbswap64-3183"><code>__builtin_bswap64</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fchoose_005fexpr-3136"><code>__builtin_choose_expr</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fclz-3165"><code>__builtin_clz</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fclzl-3170"><code>__builtin_clzl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fclzll-3175"><code>__builtin_clzll</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fconstant_005fp-3137"><code>__builtin_constant_p</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fctz-3166"><code>__builtin_ctz</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fctzl-3171"><code>__builtin_ctzl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fctzll-3176"><code>__builtin_ctzll</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fexpect-3138"><code>__builtin_expect</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fextract_005freturn_005faddress-2699"><code>__builtin_extract_return_address</code></a>: <a href="#Return-Address">Return Address</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fffs-3164"><code>__builtin_ffs</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fffsl-3169"><code>__builtin_ffsl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fffsll-3174"><code>__builtin_ffsll</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005ffpclassify-2740"><code>__builtin_fpclassify</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fframe_005faddress-2701"><code>__builtin_frame_address</code></a>: <a href="#Return-Address">Return Address</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005ffrob_005freturn_005faddress-2700"><code>__builtin_frob_return_address</code></a>: <a href="#Return-Address">Return Address</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fhuge_005fval-3144"><code>__builtin_huge_val</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fhuge_005fvalf-3145"><code>__builtin_huge_valf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fhuge_005fvall-3146"><code>__builtin_huge_vall</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fhuge_005fvalq-3185"><code>__builtin_huge_valq</code></a>: <a href="#X86-Built_002din-Functions">X86 Built-in Functions</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005finf-3148"><code>__builtin_inf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005finfd128-3151"><code>__builtin_infd128</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005finfd32-3149"><code>__builtin_infd32</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005finfd64-3150"><code>__builtin_infd64</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005finff-3152"><code>__builtin_inff</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005finfl-3153"><code>__builtin_infl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005finfq-3184"><code>__builtin_infq</code></a>: <a href="#X86-Built_002din-Functions">X86 Built-in Functions</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fisfinite-2741"><code>__builtin_isfinite</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fisgreater-2743"><code>__builtin_isgreater</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fisgreaterequal-2744"><code>__builtin_isgreaterequal</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fisinf_005fsign-2745"><code>__builtin_isinf_sign</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fisless-2746"><code>__builtin_isless</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fislessequal-2747"><code>__builtin_islessequal</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fislessgreater-2748"><code>__builtin_islessgreater</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fisnormal-2742"><code>__builtin_isnormal</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fisunordered-2749"><code>__builtin_isunordered</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fnan-3155"><code>__builtin_nan</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fnand128-3158"><code>__builtin_nand128</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fnand32-3156"><code>__builtin_nand32</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fnand64-3157"><code>__builtin_nand64</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fnanf-3159"><code>__builtin_nanf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fnanl-3160"><code>__builtin_nanl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fnans-3161"><code>__builtin_nans</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fnansf-3162"><code>__builtin_nansf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fnansl-3163"><code>__builtin_nansl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fobject_005fsize-2720"><code>__builtin_object_size</code></a>: <a href="#Object-Size-Checking">Object Size Checking</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005foffsetof-2702"><code>__builtin_offsetof</code></a>: <a href="#Offsetof">Offsetof</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fparity-3168"><code>__builtin_parity</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fparityl-3173"><code>__builtin_parityl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fparityll-3178"><code>__builtin_parityll</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fpopcount-3167"><code>__builtin_popcount</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fpopcountl-3172"><code>__builtin_popcountl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fpopcountll-3177"><code>__builtin_popcountll</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fpowi-2750"><code>__builtin_powi</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fpowif-2751"><code>__builtin_powif</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fpowil-2752"><code>__builtin_powil</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fprefetch-3143"><code>__builtin_prefetch</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005freturn-2251"><code>__builtin_return</code></a>: <a href="#Constructing-Calls">Constructing Calls</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005freturn_005faddress-2698"><code>__builtin_return_address</code></a>: <a href="#Return-Address">Return Address</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005frx_005fbrk-3186"><code>__builtin_rx_brk</code></a>: <a href="#RX-Built_002din-Functions">RX Built-in Functions</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005frx_005fclrpsw-3187"><code>__builtin_rx_clrpsw</code></a>: <a href="#RX-Built_002din-Functions">RX Built-in Functions</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005frx_005fint-3188"><code>__builtin_rx_int</code></a>: <a href="#RX-Built_002din-Functions">RX Built-in Functions</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005frx_005fmachi-3189"><code>__builtin_rx_machi</code></a>: <a href="#RX-Built_002din-Functions">RX Built-in Functions</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005frx_005fmaclo-3190"><code>__builtin_rx_maclo</code></a>: <a href="#RX-Built_002din-Functions">RX Built-in Functions</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005frx_005fmulhi-3191"><code>__builtin_rx_mulhi</code></a>: <a href="#RX-Built_002din-Functions">RX Built-in Functions</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005frx_005fmullo-3192"><code>__builtin_rx_mullo</code></a>: <a href="#RX-Built_002din-Functions">RX Built-in Functions</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005frx_005fmvfachi-3193"><code>__builtin_rx_mvfachi</code></a>: <a href="#RX-Built_002din-Functions">RX Built-in Functions</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005frx_005fmvfacmi-3194"><code>__builtin_rx_mvfacmi</code></a>: <a href="#RX-Built_002din-Functions">RX Built-in Functions</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005frx_005fmvfc-3195"><code>__builtin_rx_mvfc</code></a>: <a href="#RX-Built_002din-Functions">RX Built-in Functions</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005frx_005fmvtachi-3196"><code>__builtin_rx_mvtachi</code></a>: <a href="#RX-Built_002din-Functions">RX Built-in Functions</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005frx_005fmvtaclo-3197"><code>__builtin_rx_mvtaclo</code></a>: <a href="#RX-Built_002din-Functions">RX Built-in Functions</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005frx_005fmvtc-3198"><code>__builtin_rx_mvtc</code></a>: <a href="#RX-Built_002din-Functions">RX Built-in Functions</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005frx_005fmvtipl-3199"><code>__builtin_rx_mvtipl</code></a>: <a href="#RX-Built_002din-Functions">RX Built-in Functions</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005frx_005fracw-3200"><code>__builtin_rx_racw</code></a>: <a href="#RX-Built_002din-Functions">RX Built-in Functions</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005frx_005frevw-3201"><code>__builtin_rx_revw</code></a>: <a href="#RX-Built_002din-Functions">RX Built-in Functions</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005frx_005frmpa-3202"><code>__builtin_rx_rmpa</code></a>: <a href="#RX-Built_002din-Functions">RX Built-in Functions</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005frx_005fround-3203"><code>__builtin_rx_round</code></a>: <a href="#RX-Built_002din-Functions">RX Built-in Functions</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005frx_005fsat-3204"><code>__builtin_rx_sat</code></a>: <a href="#RX-Built_002din-Functions">RX Built-in Functions</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005frx_005fsetpsw-3205"><code>__builtin_rx_setpsw</code></a>: <a href="#RX-Built_002din-Functions">RX Built-in Functions</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005frx_005fwait-3206"><code>__builtin_rx_wait</code></a>: <a href="#RX-Built_002din-Functions">RX Built-in Functions</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005ftrap-3140"><code>__builtin_trap</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005ftypes_005fcompatible_005fp-3135"><code>__builtin_types_compatible_p</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005funreachable-3141"><code>__builtin_unreachable</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fva_005farg_005fpack-2252"><code>__builtin_va_arg_pack</code></a>: <a href="#Constructing-Calls">Constructing Calls</a></li>
<li><a href="#index-g_t_005f_005fbuiltin_005fva_005farg_005fpack_005flen-2253"><code>__builtin_va_arg_pack_len</code></a>: <a href="#Constructing-Calls">Constructing Calls</a></li>
<li><a href="#index-g_t_0040code_007b_005f_005fcomplex_005f_005f_007d-keyword-2277"><code>__complex__</code> keyword</a>: <a href="#Complex">Complex</a></li>
<li><a href="#index-g_t_0040code_007b_005f_005fdeclspec_0028dllexport_0029_007d-2421"><code>__declspec(dllexport)</code></a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007b_005f_005fdeclspec_0028dllimport_0029_007d-2422"><code>__declspec(dllimport)</code></a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_005f_005fextension_005f_005f-2693"><code>__extension__</code></a>: <a href="#Alternate-Keywords">Alternate Keywords</a></li>
<li><a href="#index-g_t_0040code_007b_005f_005ffloat128_007d-data-type-2283"><code>__float128</code> data type</a>: <a href="#Floating-Types">Floating Types</a></li>
<li><a href="#index-g_t_0040code_007b_005f_005ffloat80_007d-data-type-2282"><code>__float80</code> data type</a>: <a href="#Floating-Types">Floating Types</a></li>
<li><a href="#index-g_t_0040code_007b_005f_005ffp16_007d-data-type-2289"><code>__fp16</code> data type</a>: <a href="#Half_002dPrecision">Half-Precision</a></li>
<li><a href="#index-g_t_0040code_007b_005f_005ffunc_005f_005f_007d-identifier-2695"><code>__func__</code> identifier</a>: <a href="#Function-Names">Function Names</a></li>
<li><a href="#index-g_t_0040code_007b_005f_005fFUNCTION_005f_005f_007d-identifier-2696"><code>__FUNCTION__</code> identifier</a>: <a href="#Function-Names">Function Names</a></li>
<li><a href="#index-g_t_0040code_007b_005f_005fimag_005f_005f_007d-keyword-2279"><code>__imag__</code> keyword</a>: <a href="#Complex">Complex</a></li>
<li><a href="#index-g_t_0040code_007b_005f_005fint128_007d-data-types-2269"><code>__int128</code> data types</a>: <a href="#g_t_005f_005fint128">__int128</a></li>
<li><a href="#index-g_t_0040code_007b_005f_005fPRETTY_005fFUNCTION_005f_005f_007d-identifier-2697"><code>__PRETTY_FUNCTION__</code> identifier</a>: <a href="#Function-Names">Function Names</a></li>
<li><a href="#index-g_t_0040code_007b_005f_005freal_005f_005f_007d-keyword-2278"><code>__real__</code> keyword</a>: <a href="#Complex">Complex</a></li>
<li><a href="#index-g_t_005f_005fSTDC_005fHOSTED_005f_005f-57"><code>__STDC_HOSTED__</code></a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-g_t_005f_005fsync_005fadd_005fand_005ffetch-2709"><code>__sync_add_and_fetch</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_005f_005fsync_005fand_005fand_005ffetch-2712"><code>__sync_and_and_fetch</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_005f_005fsync_005fbool_005fcompare_005fand_005fswap-2715"><code>__sync_bool_compare_and_swap</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_005f_005fsync_005ffetch_005fand_005fadd-2703"><code>__sync_fetch_and_add</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_005f_005fsync_005ffetch_005fand_005fand-2706"><code>__sync_fetch_and_and</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_005f_005fsync_005ffetch_005fand_005fnand-2708"><code>__sync_fetch_and_nand</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_005f_005fsync_005ffetch_005fand_005for-2705"><code>__sync_fetch_and_or</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_005f_005fsync_005ffetch_005fand_005fsub-2704"><code>__sync_fetch_and_sub</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_005f_005fsync_005ffetch_005fand_005fxor-2707"><code>__sync_fetch_and_xor</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_005f_005fsync_005flock_005frelease-2719"><code>__sync_lock_release</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_005f_005fsync_005flock_005ftest_005fand_005fset-2718"><code>__sync_lock_test_and_set</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_005f_005fsync_005fnand_005fand_005ffetch-2714"><code>__sync_nand_and_fetch</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_005f_005fsync_005for_005fand_005ffetch-2711"><code>__sync_or_and_fetch</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_005f_005fsync_005fsub_005fand_005ffetch-2710"><code>__sync_sub_and_fetch</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_005f_005fsync_005fsynchronize-2717"><code>__sync_synchronize</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_005f_005fsync_005fval_005fcompare_005fand_005fswap-2716"><code>__sync_val_compare_and_swap</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_005f_005fsync_005fxor_005fand_005ffetch-2713"><code>__sync_xor_and_fetch</code></a>: <a href="#Atomic-Builtins">Atomic Builtins</a></li>
<li><a href="#index-g_t_0040code_007b_005f_005fthread_007d-3247"><code>__thread</code></a>: <a href="#Thread_002dLocal">Thread-Local</a></li>
<li><a href="#index-g_t_0040code_007b_005fAccum_007d-data-type-2303"><code>_Accum</code> data type</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007b_005fComplex_007d-keyword-2276"><code>_Complex</code> keyword</a>: <a href="#Complex">Complex</a></li>
<li><a href="#index-g_t_0040code_007b_005fDecimal128_007d-data-type-2293"><code>_Decimal128</code> data type</a>: <a href="#Decimal-Float">Decimal Float</a></li>
<li><a href="#index-g_t_0040code_007b_005fDecimal32_007d-data-type-2291"><code>_Decimal32</code> data type</a>: <a href="#Decimal-Float">Decimal Float</a></li>
<li><a href="#index-g_t_0040code_007b_005fDecimal64_007d-data-type-2292"><code>_Decimal64</code> data type</a>: <a href="#Decimal-Float">Decimal Float</a></li>
<li><a href="#index-g_t_005fexit-2754"><code>_exit</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_005fExit-2753"><code>_Exit</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007b_005fFract_007d-data-type-2302"><code>_Fract</code> data type</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007b_005fSat_007d-data-type-2304"><code>_Sat</code> data type</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-ABI-3286">ABI</a>: <a href="#Compatibility">Compatibility</a></li>
<li><a href="#index-abort-2755"><code>abort</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-abs-2756"><code>abs</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-accessing-volatiles-3251">accessing volatiles</a>: <a href="#C_002b_002b-Volatiles">C++ Volatiles</a></li>
<li><a href="#index-accessing-volatiles-2612">accessing volatiles</a>: <a href="#Volatiles">Volatiles</a></li>
<li><a href="#index-acos-2757"><code>acos</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-acosf-2758"><code>acosf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-acosh-2759"><code>acosh</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-acoshf-2760"><code>acoshf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-acoshl-2761"><code>acoshl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-acosl-2762"><code>acosl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-Ada-5">Ada</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-additional-floating-types-2281">additional floating types</a>: <a href="#Floating-Types">Floating Types</a></li>
<li><a href="#index-address-constraints-2652">address constraints</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-address-of-a-label-2243">address of a label</a>: <a href="#Labels-as-Values">Labels as Values</a></li>
<li><a href="#index-address_005foperand-2654"><code>address_operand</code></a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-g_t_0040code_007balias_007d-attribute-2403"><code>alias</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007baligned_007d-attribute-2592"><code>aligned</code> attribute</a>: <a href="#Type-Attributes">Type Attributes</a></li>
<li><a href="#index-g_t_0040code_007baligned_007d-attribute-2569"><code>aligned</code> attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-g_t_0040code_007baligned_007d-attribute-2404"><code>aligned</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-alignment-2596">alignment</a>: <a href="#Alignment">Alignment</a></li>
<li><a href="#index-g_t_0040code_007balloc_005fsize_007d-attribute-2405"><code>alloc_size</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-alloca-2763"><code>alloca</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007balloca_007d-vs-variable_002dlength-arrays-2350"><code>alloca</code> vs variable-length arrays</a>: <a href="#Variable-Length">Variable Length</a></li>
<li><a href="#index-Allow-nesting-in-an-interrupt-handler-on-the-Blackfin-processor_002e-2463">Allow nesting in an interrupt handler on the Blackfin processor.</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-alternate-keywords-2691">alternate keywords</a>: <a href="#Alternate-Keywords">Alternate Keywords</a></li>
<li><a href="#index-g_t_0040code_007balways_005finline_007d-function-attribute-2406"><code>always_inline</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-AMD-x86_002d64-Options-1330">AMD x86-64 Options</a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-AMD1-52">AMD1</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-ANSI-C-24">ANSI C</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-ANSI-C-standard-23">ANSI C standard</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-ANSI-C89-25">ANSI C89</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-ANSI-support-98">ANSI support</a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-ANSI-X3_002e159_002d1989-27">ANSI X3.159-1989</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-apostrophes-3309">apostrophes</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-application-binary-interface-3287">application binary interface</a>: <a href="#Compatibility">Compatibility</a></li>
<li><a href="#index-ARC-Options-1018">ARC Options</a>: <a href="#ARC-Options">ARC Options</a></li>
<li><a href="#index-ARM-_005bAnnotated-C_002b_002b-Reference-Manual_005d-3284">ARM [Annotated C++ Reference Manual]</a>: <a href="#Backwards-Compatibility">Backwards Compatibility</a></li>
<li><a href="#index-ARM-options-1026">ARM options</a>: <a href="#ARM-Options">ARM Options</a></li>
<li><a href="#index-arrays-of-length-zero-2338">arrays of length zero</a>: <a href="#Zero-Length">Zero Length</a></li>
<li><a href="#index-arrays-of-variable-length-2345">arrays of variable length</a>: <a href="#Variable-Length">Variable Length</a></li>
<li><a href="#index-arrays_002c-non_002dlvalue-2359">arrays, non-lvalue</a>: <a href="#Subscripting">Subscripting</a></li>
<li><a href="#index-g_t_0040code_007bartificial_007d-function-attribute-2408"><code>artificial</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-asin-2764"><code>asin</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-asinf-2765"><code>asinf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-asinh-2766"><code>asinh</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-asinhf-2767"><code>asinhf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-asinhl-2768"><code>asinhl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-asinl-2769"><code>asinl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007basm_007d-constraints-2623"><code>asm</code> constraints</a>: <a href="#Constraints">Constraints</a></li>
<li><a href="#index-g_t_0040code_007basm_007d-expressions-2617"><code>asm</code> expressions</a>: <a href="#Extended-Asm">Extended Asm</a></li>
<li><a href="#index-assembler-instructions-2618">assembler instructions</a>: <a href="#Extended-Asm">Extended Asm</a></li>
<li><a href="#index-assembler-names-for-identifiers-2673">assembler names for identifiers</a>: <a href="#Asm-Labels">Asm Labels</a></li>
<li><a href="#index-assembly-code_002c-invalid-3353">assembly code, invalid</a>: <a href="#Bug-Criteria">Bug Criteria</a></li>
<li><a href="#index-atan-2770"><code>atan</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-atan2-2771"><code>atan2</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-atan2f-2772"><code>atan2f</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-atan2l-2773"><code>atan2l</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-atanf-2774"><code>atanf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-atanh-2775"><code>atanh</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-atanhf-2776"><code>atanhf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-atanhl-2777"><code>atanhl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-atanl-2778"><code>atanl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-attribute-of-types-2590">attribute of types</a>: <a href="#Type-Attributes">Type Attributes</a></li>
<li><a href="#index-attribute-of-variables-2567">attribute of variables</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-attribute-syntax-2557">attribute syntax</a>: <a href="#Attribute-Syntax">Attribute Syntax</a></li>
<li><a href="#index-autoincrement_002fdecrement-addressing-2629">autoincrement/decrement addressing</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-automatic-_0040code_007binline_007d-for-C_002b_002b-member-fns-2606">automatic <code>inline</code> for C++ member fns</a>: <a href="#Inline">Inline</a></li>
<li><a href="#index-AVR-Options-1062">AVR Options</a>: <a href="#AVR-Options">AVR Options</a></li>
<li><a href="#index-Backwards-Compatibility-3283">Backwards Compatibility</a>: <a href="#Backwards-Compatibility">Backwards Compatibility</a></li>
<li><a href="#index-base-class-members-3329">base class members</a>: <a href="#Name-lookup">Name lookup</a></li>
<li><a href="#index-bcmp-2779"><code>bcmp</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007bbelow100_007d-attribute-2589"><code>below100</code> attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-binary-compatibility-3285">binary compatibility</a>: <a href="#Compatibility">Compatibility</a></li>
<li><a href="#index-Binary-constants-using-the-_0040samp_007b0b_007d-prefix-3248">Binary constants using the &lsquo;<samp><span class="samp">0b</span></samp>&rsquo; prefix</a>: <a href="#Binary-constants">Binary constants</a></li>
<li><a href="#index-Blackfin-Options-1068">Blackfin Options</a>: <a href="#Blackfin-Options">Blackfin Options</a></li>
<li><a href="#index-bound-pointer-to-member-function-3279">bound pointer to member function</a>: <a href="#Bound-member-functions">Bound member functions</a></li>
<li><a href="#index-bounds-checking-715">bounds checking</a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-bug-criteria-3349">bug criteria</a>: <a href="#Bug-Criteria">Bug Criteria</a></li>
<li><a href="#index-bugs-3347">bugs</a>: <a href="#Bugs">Bugs</a></li>
<li><a href="#index-bugs_002c-known-3288">bugs, known</a>: <a href="#Trouble">Trouble</a></li>
<li><a href="#index-built_002din-functions-2739">built-in functions</a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-built_002din-functions-106">built-in functions</a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-bzero-2780"><code>bzero</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-C-compilation-options-68">C compilation options</a>: <a href="#Invoking-GCC">Invoking GCC</a></li>
<li><a href="#index-C-intermediate-output_002c-nonexistent-20">C intermediate output, nonexistent</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-C-language-extensions-2231">C language extensions</a>: <a href="#C-Extensions">C Extensions</a></li>
<li><a href="#index-C-language_002c-traditional-117">C language, traditional</a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-C-standard-21">C standard</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-C-standards-22">C standards</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-c_002b_002b-93"><code>c++</code></a>: <a href="#Invoking-G_002b_002b">Invoking G++</a></li>
<li><a href="#index-C_002b_002b-14">C++</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-C_002b_002b-comments-2562">C++ comments</a>: <a href="#C_002b_002b-Comments">C++ Comments</a></li>
<li><a href="#index-C_002b_002b-compilation-options-69">C++ compilation options</a>: <a href="#Invoking-GCC">Invoking GCC</a></li>
<li><a href="#index-C_002b_002b-interface-and-implementation-headers-3263">C++ interface and implementation headers</a>: <a href="#C_002b_002b-Interface">C++ Interface</a></li>
<li><a href="#index-C_002b_002b-language-extensions-3250">C++ language extensions</a>: <a href="#C_002b_002b-Extensions">C++ Extensions</a></li>
<li><a href="#index-C_002b_002b-member-fns_002c-automatically-_0040code_007binline_007d-2609">C++ member fns, automatically <code>inline</code></a>: <a href="#Inline">Inline</a></li>
<li><a href="#index-C_002b_002b-misunderstandings-3324">C++ misunderstandings</a>: <a href="#C_002b_002b-Misunderstandings">C++ Misunderstandings</a></li>
<li><a href="#index-C_002b_002b-options_002c-command-line-129">C++ options, command line</a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-C_002b_002b-pragmas_002c-effect-on-inlining-3271">C++ pragmas, effect on inlining</a>: <a href="#C_002b_002b-Interface">C++ Interface</a></li>
<li><a href="#index-C_002b_002b-source-file-suffixes-91">C++ source file suffixes</a>: <a href="#Invoking-G_002b_002b">Invoking G++</a></li>
<li><a href="#index-C_002b_002b-static-data_002c-declaring-and-defining-3325">C++ static data, declaring and defining</a>: <a href="#Static-Definitions">Static Definitions</a></li>
<li><a href="#index-C1X-44">C1X</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-C89-26">C89</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-C90-34">C90</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-C94-36">C94</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-C95-38">C95</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-C99-40">C99</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-C9X-42">C9X</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-C_005fINCLUDE_005fPATH-2215"><code>C_INCLUDE_PATH</code></a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-cabs-2781"><code>cabs</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cabsf-2782"><code>cabsf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cabsl-2783"><code>cabsl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cacos-2784"><code>cacos</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cacosf-2785"><code>cacosf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cacosh-2786"><code>cacosh</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cacoshf-2787"><code>cacoshf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cacoshl-2788"><code>cacoshl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cacosl-2789"><code>cacosl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007bcallee_005fpop_005faggregate_005freturn_007d-attribute-2459"><code>callee_pop_aggregate_return</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-calling-functions-through-the-function-vector-on-H8_002f300_002c-M16C_002c-M32C-and-SH2A-processors-2436">calling functions through the function vector on H8/300, M16C, M32C and SH2A processors</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-calloc-2790"><code>calloc</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-carg-2791"><code>carg</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cargf-2792"><code>cargf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cargl-2793"><code>cargl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-case-labels-in-initializers-2375">case labels in initializers</a>: <a href="#Designated-Inits">Designated Inits</a></li>
<li><a href="#index-case-ranges-2379">case ranges</a>: <a href="#Case-Ranges">Case Ranges</a></li>
<li><a href="#index-casin-2794"><code>casin</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-casinf-2795"><code>casinf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-casinh-2796"><code>casinh</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-casinhf-2797"><code>casinhf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-casinhl-2798"><code>casinhl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-casinl-2799"><code>casinl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cast-to-a-union-2381">cast to a union</a>: <a href="#Cast-to-Union">Cast to Union</a></li>
<li><a href="#index-catan-2800"><code>catan</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-catanf-2801"><code>catanf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-catanh-2802"><code>catanh</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-catanhf-2803"><code>catanhf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-catanhl-2804"><code>catanhl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-catanl-2805"><code>catanl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cbrt-2806"><code>cbrt</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cbrtf-2807"><code>cbrtf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cbrtl-2808"><code>cbrtl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ccos-2809"><code>ccos</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ccosf-2810"><code>ccosf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ccosh-2811"><code>ccosh</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ccoshf-2812"><code>ccoshf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ccoshl-2813"><code>ccoshl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ccosl-2814"><code>ccosl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ceil-2815"><code>ceil</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ceilf-2816"><code>ceilf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ceill-2817"><code>ceill</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cexp-2818"><code>cexp</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cexpf-2819"><code>cexpf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cexpl-2820"><code>cexpl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-character-set_002c-execution-937">character set, execution</a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-character-set_002c-input-941">character set, input</a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-character-set_002c-input-normalization-449">character set, input normalization</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-character-set_002c-wide-execution-939">character set, wide execution</a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-cimag-2821"><code>cimag</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cimagf-2822"><code>cimagf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cimagl-2823"><code>cimagl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007bcleanup_007d-attribute-2570"><code>cleanup</code> attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-clog-2824"><code>clog</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-clogf-2825"><code>clogf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-clogl-2826"><code>clogl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-COBOL-11">COBOL</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-code-generation-conventions-2159">code generation conventions</a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-code_002c-mixed-with-declarations-2385">code, mixed with declarations</a>: <a href="#Mixed-Declarations">Mixed Declarations</a></li>
<li><a href="#index-g_t_0040code_007bcold_007d-function-attribute-2480"><code>cold</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-command-options-66">command options</a>: <a href="#Invoking-GCC">Invoking GCC</a></li>
<li><a href="#index-comments_002c-C_002b_002b-style-2563">comments, C++ style</a>: <a href="#C_002b_002b-Comments">C++ Comments</a></li>
<li><a href="#index-g_t_0040code_007bcommon_007d-attribute-2571"><code>common</code> attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-comparison-of-signed-and-unsigned-values_002c-warning-409">comparison of signed and unsigned values, warning</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-compiler-bugs_002c-reporting-3358">compiler bugs, reporting</a>: <a href="#Bug-Reporting">Bug Reporting</a></li>
<li><a href="#index-compiler-compared-to-C_002b_002b-preprocessor-18">compiler compared to C++ preprocessor</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-compiler-options_002c-C_002b_002b-128">compiler options, C++</a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-compiler-options_002c-Objective_002dC-and-Objective_002dC_002b_002b-194">compiler options, Objective-C and Objective-C++</a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-compiler-version_002c-specifying-1012">compiler version, specifying</a>: <a href="#Target-Options">Target Options</a></li>
<li><a href="#index-COMPILER_005fPATH-2210"><code>COMPILER_PATH</code></a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-complex-conjugation-2280">complex conjugation</a>: <a href="#Complex">Complex</a></li>
<li><a href="#index-complex-numbers-2275">complex numbers</a>: <a href="#Complex">Complex</a></li>
<li><a href="#index-compound-literals-2372">compound literals</a>: <a href="#Compound-Literals">Compound Literals</a></li>
<li><a href="#index-computed-gotos-2241">computed gotos</a>: <a href="#Labels-as-Values">Labels as Values</a></li>
<li><a href="#index-conditional-expressions_002c-extensions-2262">conditional expressions, extensions</a>: <a href="#Conditionals">Conditionals</a></li>
<li><a href="#index-conflicting-types-3318">conflicting types</a>: <a href="#Disappointments">Disappointments</a></li>
<li><a href="#index-conj-2827"><code>conj</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-conjf-2828"><code>conjf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-conjl-2829"><code>conjl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007bconst_007d-applied-to-function-2394"><code>const</code> applied to function</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bconst_007d-function-attribute-2415"><code>const</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-constants-in-constraints-2635">constants in constraints</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-constraint-modifier-characters-2663">constraint modifier characters</a>: <a href="#Modifiers">Modifiers</a></li>
<li><a href="#index-constraint_002c-matching-2649">constraint, matching</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-constraints_002c-_0040code_007basm_007d-2622">constraints, <code>asm</code></a>: <a href="#Constraints">Constraints</a></li>
<li><a href="#index-constraints_002c-machine-specific-2672">constraints, machine specific</a>: <a href="#Machine-Constraints">Machine Constraints</a></li>
<li><a href="#index-constructing-calls-2247">constructing calls</a>: <a href="#Constructing-Calls">Constructing Calls</a></li>
<li><a href="#index-constructor-expressions-2368">constructor expressions</a>: <a href="#Compound-Literals">Compound Literals</a></li>
<li><a href="#index-g_t_0040code_007bconstructor_007d-function-attribute-2417"><code>constructor</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-contributors-3360">contributors</a>: <a href="#Contributors">Contributors</a></li>
<li><a href="#index-copysign-2830"><code>copysign</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-copysignf-2831"><code>copysignf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-copysignl-2832"><code>copysignl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-core-dump-3351">core dump</a>: <a href="#Bug-Criteria">Bug Criteria</a></li>
<li><a href="#index-cos-2833"><code>cos</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cosf-2834"><code>cosf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cosh-2835"><code>cosh</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-coshf-2836"><code>coshf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-coshl-2837"><code>coshl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cosl-2838"><code>cosl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-CPATH-2214"><code>CPATH</code></a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-CPLUS_005fINCLUDE_005fPATH-2216"><code>CPLUS_INCLUDE_PATH</code></a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-cpow-2839"><code>cpow</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cpowf-2840"><code>cpowf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cpowl-2841"><code>cpowl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cproj-2842"><code>cproj</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cprojf-2843"><code>cprojf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-cprojl-2844"><code>cprojl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-creal-2845"><code>creal</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-crealf-2846"><code>crealf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-creall-2847"><code>creall</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-CRIS-Options-1095">CRIS Options</a>: <a href="#CRIS-Options">CRIS Options</a></li>
<li><a href="#index-cross-compiling-1009">cross compiling</a>: <a href="#Target-Options">Target Options</a></li>
<li><a href="#index-CRX-Options-1124">CRX Options</a>: <a href="#CRX-Options">CRX Options</a></li>
<li><a href="#index-csin-2848"><code>csin</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-csinf-2849"><code>csinf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-csinh-2850"><code>csinh</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-csinhf-2851"><code>csinhf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-csinhl-2852"><code>csinhl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-csinl-2853"><code>csinl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-csqrt-2854"><code>csqrt</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-csqrtf-2855"><code>csqrtf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-csqrtl-2856"><code>csqrtl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ctan-2857"><code>ctan</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ctanf-2858"><code>ctanf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ctanh-2859"><code>ctanh</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ctanhf-2860"><code>ctanhf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ctanhl-2861"><code>ctanhl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ctanl-2862"><code>ctanl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-Darwin-options-1127">Darwin options</a>: <a href="#Darwin-Options">Darwin Options</a></li>
<li><a href="#index-dcgettext-2863"><code>dcgettext</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007bDD_007d-integer-suffix-2298"><code>DD</code> integer suffix</a>: <a href="#Decimal-Float">Decimal Float</a></li>
<li><a href="#index-g_t_0040code_007bdd_007d-integer-suffix-2295"><code>dd</code> integer suffix</a>: <a href="#Decimal-Float">Decimal Float</a></li>
<li><a href="#index-deallocating-variable-length-arrays-2349">deallocating variable length arrays</a>: <a href="#Variable-Length">Variable Length</a></li>
<li><a href="#index-debugging-information-options-500">debugging information options</a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-decimal-floating-types-2290">decimal floating types</a>: <a href="#Decimal-Float">Decimal Float</a></li>
<li><a href="#index-declaration-scope-3306">declaration scope</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-declarations-inside-expressions-2234">declarations inside expressions</a>: <a href="#Statement-Exprs">Statement Exprs</a></li>
<li><a href="#index-declarations_002c-mixed-with-code-2384">declarations, mixed with code</a>: <a href="#Mixed-Declarations">Mixed Declarations</a></li>
<li><a href="#index-declaring-attributes-of-functions-2387">declaring attributes of functions</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-declaring-static-data-in-C_002b_002b-3327">declaring static data in C++</a>: <a href="#Static-Definitions">Static Definitions</a></li>
<li><a href="#index-defining-static-data-in-C_002b_002b-3328">defining static data in C++</a>: <a href="#Static-Definitions">Static Definitions</a></li>
<li><a href="#index-dependencies-for-make-as-output-2219">dependencies for make as output</a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-dependencies_002c-_0040command_007bmake_007d-904">dependencies, <samp><span class="command">make</span></samp></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-DEPENDENCIES_005fOUTPUT-2218"><code>DEPENDENCIES_OUTPUT</code></a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-dependent-name-lookup-3331">dependent name lookup</a>: <a href="#Name-lookup">Name lookup</a></li>
<li><a href="#index-g_t_0040code_007bdeprecated_007d-attribute-2575"><code>deprecated</code> attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-g_t_0040code_007bdeprecated_007d-attribute_002e-2419"><code>deprecated</code> attribute.</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-designated-initializers-2376">designated initializers</a>: <a href="#Designated-Inits">Designated Inits</a></li>
<li><a href="#index-designator-lists-2378">designator lists</a>: <a href="#Designated-Inits">Designated Inits</a></li>
<li><a href="#index-designators-2377">designators</a>: <a href="#Designated-Inits">Designated Inits</a></li>
<li><a href="#index-g_t_0040code_007bdestructor_007d-function-attribute-2418"><code>destructor</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bDF_007d-integer-suffix-2297"><code>DF</code> integer suffix</a>: <a href="#Decimal-Float">Decimal Float</a></li>
<li><a href="#index-g_t_0040code_007bdf_007d-integer-suffix-2294"><code>df</code> integer suffix</a>: <a href="#Decimal-Float">Decimal Float</a></li>
<li><a href="#index-dgettext-2864"><code>dgettext</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-diagnostic-messages-223">diagnostic messages</a>: <a href="#Language-Independent-Options">Language Independent Options</a></li>
<li><a href="#index-dialect-options-95">dialect options</a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-digits-in-constraint-2647">digits in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-directory-options-994">directory options</a>: <a href="#Directory-Options">Directory Options</a></li>
<li><a href="#index-g_t_0040code_007bdisinterrupt_007d-attribute-2420"><code>disinterrupt</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bDL_007d-integer-suffix-2299"><code>DL</code> integer suffix</a>: <a href="#Decimal-Float">Decimal Float</a></li>
<li><a href="#index-g_t_0040code_007bdl_007d-integer-suffix-2296"><code>dl</code> integer suffix</a>: <a href="#Decimal-Float">Decimal Float</a></li>
<li><a href="#index-dollar-signs-in-identifier-names-2565">dollar signs in identifier names</a>: <a href="#Dollar-Signs">Dollar Signs</a></li>
<li><a href="#index-double_002dword-arithmetic-2271">double-word arithmetic</a>: <a href="#Long-Long">Long Long</a></li>
<li><a href="#index-downward-funargs-2245">downward funargs</a>: <a href="#Nested-Functions">Nested Functions</a></li>
<li><a href="#index-drem-2865"><code>drem</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-dremf-2866"><code>dremf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-dreml-2867"><code>dreml</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040samp_007bE_007d-in-constraint-2639">&lsquo;<samp><span class="samp">E</span></samp>&rsquo; in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-earlyclobber-operand-2667">earlyclobber operand</a>: <a href="#Modifiers">Modifiers</a></li>
<li><a href="#index-eight-bit-data-on-the-H8_002f300_002c-H8_002f300H_002c-and-H8S-2423">eight bit data on the H8/300, H8/300H, and H8S</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-empty-structures-2342">empty structures</a>: <a href="#Empty-Structures">Empty Structures</a></li>
<li><a href="#index-environment-variables-2202">environment variables</a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-erf-2868"><code>erf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-erfc-2869"><code>erfc</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-erfcf-2870"><code>erfcf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-erfcl-2871"><code>erfcl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-erff-2872"><code>erff</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-erfl-2873"><code>erfl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007berror_007d-function-attribute-2411"><code>error</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-error-messages-3342">error messages</a>: <a href="#Warnings-and-Errors">Warnings and Errors</a></li>
<li><a href="#index-escaped-newlines-2356">escaped newlines</a>: <a href="#Escaped-Newlines">Escaped Newlines</a></li>
<li><a href="#index-exception-handler-functions-on-the-Blackfin-processor-2424">exception handler functions on the Blackfin processor</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-exclamation-point-2661">exclamation point</a>: <a href="#Multi_002dAlternative">Multi-Alternative</a></li>
<li><a href="#index-exit-2874"><code>exit</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-exp-2875"><code>exp</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-exp10-2876"><code>exp10</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-exp10f-2877"><code>exp10f</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-exp10l-2878"><code>exp10l</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-exp2-2879"><code>exp2</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-exp2f-2880"><code>exp2f</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-exp2l-2881"><code>exp2l</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-expf-2882"><code>expf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-expl-2883"><code>expl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-explicit-register-variables-2676">explicit register variables</a>: <a href="#Explicit-Reg-Vars">Explicit Reg Vars</a></li>
<li><a href="#index-expm1-2884"><code>expm1</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-expm1f-2885"><code>expm1f</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-expm1l-2886"><code>expm1l</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-expressions-containing-statements-2235">expressions containing statements</a>: <a href="#Statement-Exprs">Statement Exprs</a></li>
<li><a href="#index-expressions_002c-constructor-2371">expressions, constructor</a>: <a href="#Compound-Literals">Compound Literals</a></li>
<li><a href="#index-extended-_0040code_007basm_007d-2616">extended <code>asm</code></a>: <a href="#Extended-Asm">Extended Asm</a></li>
<li><a href="#index-extensible-constraints-2656">extensible constraints</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-extensions_002c-_0040code_007b_003f_003a_007d-2265">extensions, <code>?:</code></a>: <a href="#Conditionals">Conditionals</a></li>
<li><a href="#index-extensions_002c-C-language-2230">extensions, C language</a>: <a href="#C-Extensions">C Extensions</a></li>
<li><a href="#index-extensions_002c-C_002b_002b-language-3249">extensions, C++ language</a>: <a href="#C_002b_002b-Extensions">C++ Extensions</a></li>
<li><a href="#index-external-declaration-scope-3304">external declaration scope</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-g_t_0040code_007bexternally_005fvisible_007d-attribute_002e-2425"><code>externally_visible</code> attribute.</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040samp_007bF_007d-in-constraint-2640">&lsquo;<samp><span class="samp">F</span></samp>&rsquo; in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-fabs-2887"><code>fabs</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fabsf-2888"><code>fabsf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fabsl-2889"><code>fabsl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fatal-signal-3350">fatal signal</a>: <a href="#Bug-Criteria">Bug Criteria</a></li>
<li><a href="#index-fdim-2890"><code>fdim</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fdimf-2891"><code>fdimf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fdiml-2892"><code>fdiml</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-FDL_002c-GNU-Free-Documentation-License-3359">FDL, GNU Free Documentation License</a>: <a href="#GNU-Free-Documentation-License">GNU Free Documentation License</a></li>
<li><a href="#index-ffs-2893"><code>ffs</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-file-name-suffix-74">file name suffix</a>: <a href="#Overall-Options">Overall Options</a></li>
<li><a href="#index-file-names-965">file names</a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-fixed_002dpoint-types-2301">fixed-point types</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bflatten_007d-function-attribute-2410"><code>flatten</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-flexible-array-members-2341">flexible array members</a>: <a href="#Zero-Length">Zero Length</a></li>
<li><a href="#index-g_t_0040code_007bfloat_007d-as-function-value-type-3311"><code>float</code> as function value type</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-floating-point-precision-3320">floating point precision</a>: <a href="#Disappointments">Disappointments</a></li>
<li><a href="#index-floating-point-precision-845">floating point precision</a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-floor-2894"><code>floor</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-floorf-2895"><code>floorf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-floorl-2896"><code>floorl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fma-2897"><code>fma</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fmaf-2898"><code>fmaf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fmal-2899"><code>fmal</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fmax-2900"><code>fmax</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fmaxf-2901"><code>fmaxf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fmaxl-2902"><code>fmaxl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fmin-2903"><code>fmin</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fminf-2904"><code>fminf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fminl-2905"><code>fminl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fmod-2906"><code>fmod</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fmodf-2907"><code>fmodf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fmodl-2908"><code>fmodl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007bforce_005falign_005farg_005fpointer_007d-attribute-2484"><code>force_align_arg_pointer</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bformat_007d-function-attribute-2430"><code>format</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bformat_005farg_007d-function-attribute-2434"><code>format_arg</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-Fortran-6">Fortran</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-forwarding-calls-2248">forwarding calls</a>: <a href="#Constructing-Calls">Constructing Calls</a></li>
<li><a href="#index-fprintf-2909"><code>fprintf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fprintf_005funlocked-2910"><code>fprintf_unlocked</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fputs-2911"><code>fputs</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-fputs_005funlocked-2912"><code>fputs_unlocked</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-FR30-Options-1237">FR30 Options</a>: <a href="#FR30-Options">FR30 Options</a></li>
<li><a href="#index-freestanding-environment-54">freestanding environment</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-freestanding-implementation-53">freestanding implementation</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-frexp-2913"><code>frexp</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-frexpf-2914"><code>frexpf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-frexpl-2915"><code>frexpl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-FRV-Options-1240">FRV Options</a>: <a href="#FRV-Options">FRV Options</a></li>
<li><a href="#index-fscanf-2916"><code>fscanf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007bfscanf_007d_002c-and-constant-strings-3299"><code>fscanf</code>, and constant strings</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-function-addressability-on-the-M32R_002fD-2455">function addressability on the M32R/D</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-function-attributes-2386">function attributes</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-function-pointers_002c-arithmetic-2363">function pointers, arithmetic</a>: <a href="#Pointer-Arith">Pointer Arith</a></li>
<li><a href="#index-function-prototype-declarations-2558">function prototype declarations</a>: <a href="#Function-Prototypes">Function Prototypes</a></li>
<li><a href="#index-function-without-a-prologue_002fepilogue-code-2461">function without a prologue/epilogue code</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-function_002c-size-of-pointer-to-2364">function, size of pointer to</a>: <a href="#Pointer-Arith">Pointer Arith</a></li>
<li><a href="#index-functions-called-via-pointer-on-the-RS_002f6000-and-PowerPC-2450">functions called via pointer on the RS/6000 and PowerPC</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-functions-in-arbitrary-sections-2391">functions in arbitrary sections</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-functions-that-are-dynamically-resolved-2402">functions that are dynamically resolved</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-functions-that-are-passed-arguments-in-registers-on-the-386-2397">functions that are passed arguments in registers on the 386</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-functions-that-behave-like-malloc-2392">functions that behave like malloc</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-functions-that-do-not-pop-the-argument-stack-on-the-386-2399">functions that do not pop the argument stack on the 386</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-functions-that-do-pop-the-argument-stack-on-the-386-2413">functions that do pop the argument stack on the 386</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-functions-that-have-different-compilation-options-on-the-386-2400">functions that have different compilation options on the 386</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-functions-that-have-different-optimization-options-2401">functions that have different optimization options</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-functions-that-have-no-side-effects-2390">functions that have no side effects</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-functions-that-never-return-2388">functions that never return</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-functions-that-pop-the-argument-stack-on-the-386-2398">functions that pop the argument stack on the 386</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-functions-that-return-more-than-once-2389">functions that return more than once</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-functions-which-do-not-handle-memory-bank-switching-on-68HC11_002f68HC12-2462">functions which do not handle memory bank switching on 68HC11/68HC12</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-functions-which-handle-memory-bank-switching-2426">functions which handle memory bank switching</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-functions-with-non_002dnull-pointer-arguments-2396">functions with non-null pointer arguments</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-functions-with-_0040code_007bprintf_007d_002c-_0040code_007bscanf_007d_002c-_0040code_007bstrftime_007d-or-_0040code_007bstrfmon_007d-style-arguments-2395">functions with <code>printf</code>, <code>scanf</code>, <code>strftime</code> or <code>strfmon</code> style arguments</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040samp_007bg_007d-in-constraint-2644">&lsquo;<samp><span class="samp">g</span></samp>&rsquo; in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-g_t_0040samp_007bG_007d-in-constraint-2641">&lsquo;<samp><span class="samp">G</span></samp>&rsquo; in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-g_002b_002b-92"><code>g++</code></a>: <a href="#Invoking-G_002b_002b">Invoking G++</a></li>
<li><a href="#index-G_002b_002b-15">G++</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-gamma-2917"><code>gamma</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-gamma_005fr-2920"><code>gamma_r</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-gammaf-2918"><code>gammaf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-gammaf_005fr-2921"><code>gammaf_r</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-gammal-2919"><code>gammal</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-gammal_005fr-2922"><code>gammal_r</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-GCC-2">GCC</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-GCC-command-options-65">GCC command options</a>: <a href="#Invoking-GCC">Invoking GCC</a></li>
<li><a href="#index-GCC_005fEXEC_005fPREFIX-2209"><code>GCC_EXEC_PREFIX</code></a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-g_t_0040code_007bgcc_005fstruct_007d-2595"><code>gcc_struct</code></a>: <a href="#Type-Attributes">Type Attributes</a></li>
<li><a href="#index-g_t_0040code_007bgcc_005fstruct_007d-attribute-2588"><code>gcc_struct</code> attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-g_t_0040command_007bgcov_007d-536"><samp><span class="command">gcov</span></samp></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-gettext-2923"><code>gettext</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-global-offset-table-2180">global offset table</a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-global-register-after-_0040code_007blongjmp_007d-2684">global register after <code>longjmp</code></a>: <a href="#Global-Reg-Vars">Global Reg Vars</a></li>
<li><a href="#index-global-register-variables-2680">global register variables</a>: <a href="#Global-Reg-Vars">Global Reg Vars</a></li>
<li><a href="#index-GNAT-17">GNAT</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-GNU-C-Compiler-4">GNU C Compiler</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-GNU-Compiler-Collection-3">GNU Compiler Collection</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-g_t_0040code_007bgnu_005finline_007d-function-attribute-2407"><code>gnu_inline</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-Go-7">Go</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-goto-with-computed-label-2242">goto with computed label</a>: <a href="#Labels-as-Values">Labels as Values</a></li>
<li><a href="#index-g_t_0040command_007bgprof_007d-527"><samp><span class="command">gprof</span></samp></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-grouping-options-70">grouping options</a>: <a href="#Invoking-GCC">Invoking GCC</a></li>
<li><a href="#index-g_t_0040samp_007bH_007d-in-constraint-2642">&lsquo;<samp><span class="samp">H</span></samp>&rsquo; in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-half_002dprecision-floating-point-2288">half-precision floating point</a>: <a href="#Half_002dPrecision">Half-Precision</a></li>
<li><a href="#index-hardware-models-and-configurations_002c-specifying-1016">hardware models and configurations, specifying</a>: <a href="#Submodel-Options">Submodel Options</a></li>
<li><a href="#index-hex-floats-2300">hex floats</a>: <a href="#Hex-Floats">Hex Floats</a></li>
<li><a href="#index-g_t_0040code_007bHK_007d-fixed_002dsuffix-2329"><code>HK</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bhk_007d-fixed_002dsuffix-2313"><code>hk</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-hosted-environment-108">hosted environment</a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-hosted-environment-56">hosted environment</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-hosted-implementation-55">hosted implementation</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-g_t_0040code_007bhot_007d-function-attribute-2479"><code>hot</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-HPPA-Options-1301">HPPA Options</a>: <a href="#HPPA-Options">HPPA Options</a></li>
<li><a href="#index-g_t_0040code_007bHR_007d-fixed_002dsuffix-2321"><code>HR</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bhr_007d-fixed_002dsuffix-2305"><code>hr</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-hypot-2924"><code>hypot</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-hypotf-2925"><code>hypotf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-hypotl-2926"><code>hypotl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040samp_007bI_007d-in-constraint-2638">&lsquo;<samp><span class="samp">I</span></samp>&rsquo; in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-g_t_0040samp_007bi_007d-in-constraint-2636">&lsquo;<samp><span class="samp">i</span></samp>&rsquo; in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-i386-and-x86_002d64-Windows-Options-1395">i386 and x86-64 Windows Options</a>: <a href="#i386-and-x86_002d64-Windows-Options">i386 and x86-64 Windows Options</a></li>
<li><a href="#index-i386-Options-1327">i386 Options</a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-IA_002d64-Options-1405">IA-64 Options</a>: <a href="#IA_002d64-Options">IA-64 Options</a></li>
<li><a href="#index-IBM-RS_002f6000-and-PowerPC-Options-1792">IBM RS/6000 and PowerPC Options</a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-identifier-names_002c-dollar-signs-in-2566">identifier names, dollar signs in</a>: <a href="#Dollar-Signs">Dollar Signs</a></li>
<li><a href="#index-identifiers_002c-names-in-assembler-code-2675">identifiers, names in assembler code</a>: <a href="#Asm-Labels">Asm Labels</a></li>
<li><a href="#index-g_t_0040code_007bifunc_007d-attribute-2441"><code>ifunc</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-ilogb-2927"><code>ilogb</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ilogbf-2928"><code>ilogbf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ilogbl-2929"><code>ilogbl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-imaxabs-2930"><code>imaxabs</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-implementation_002ddefined-behavior_002c-C-language-2224">implementation-defined behavior, C language</a>: <a href="#C-Implementation">C Implementation</a></li>
<li><a href="#index-implementation_002ddefined-behavior_002c-C_002b_002b-language-2229">implementation-defined behavior, C++ language</a>: <a href="#C_002b_002b-Implementation">C++ Implementation</a></li>
<li><a href="#index-implied-_0040code_007b_0023pragma-implementation_007d-3267">implied <code>#pragma implementation</code></a>: <a href="#C_002b_002b-Interface">C++ Interface</a></li>
<li><a href="#index-incompatibilities-of-GCC-3292">incompatibilities of GCC</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-increment-operators-3356">increment operators</a>: <a href="#Bug-Criteria">Bug Criteria</a></li>
<li><a href="#index-index-2931"><code>index</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-indirect-calls-on-ARM-2449">indirect calls on ARM</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-indirect-calls-on-MIPS-2451">indirect calls on MIPS</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007binit_005fpriority_007d-attribute-3281"><code>init_priority</code> attribute</a>: <a href="#C_002b_002b-Attributes">C++ Attributes</a></li>
<li><a href="#index-initializations-in-expressions-2369">initializations in expressions</a>: <a href="#Compound-Literals">Compound Literals</a></li>
<li><a href="#index-initializers-with-labeled-elements-2373">initializers with labeled elements</a>: <a href="#Designated-Inits">Designated Inits</a></li>
<li><a href="#index-initializers_002c-non_002dconstant-2366">initializers, non-constant</a>: <a href="#Initializers">Initializers</a></li>
<li><a href="#index-g_t_0040code_007binline_007d-automatic-for-C_002b_002b-member-fns-2607"><code>inline</code> automatic for C++ member fns</a>: <a href="#Inline">Inline</a></li>
<li><a href="#index-inline-functions-2599">inline functions</a>: <a href="#Inline">Inline</a></li>
<li><a href="#index-inline-functions_002c-omission-of-2603">inline functions, omission of</a>: <a href="#Inline">Inline</a></li>
<li><a href="#index-inlining-and-C_002b_002b-pragmas-3270">inlining and C++ pragmas</a>: <a href="#C_002b_002b-Interface">C++ Interface</a></li>
<li><a href="#index-installation-trouble-3289">installation trouble</a>: <a href="#Trouble">Trouble</a></li>
<li><a href="#index-integrating-function-code-2600">integrating function code</a>: <a href="#Inline">Inline</a></li>
<li><a href="#index-Intel-386-Options-1329">Intel 386 Options</a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-interface-and-implementation-headers_002c-C_002b_002b-3262">interface and implementation headers, C++</a>: <a href="#C_002b_002b-Interface">C++ Interface</a></li>
<li><a href="#index-intermediate-C-version_002c-nonexistent-19">intermediate C version, nonexistent</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-interrupt-handler-functions-2409">interrupt handler functions</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-interrupt-handler-functions-on-the-Blackfin_002c-m68k_002c-H8_002f300-and-SH-processors-2442">interrupt handler functions on the Blackfin, m68k, H8/300 and SH processors</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-interrupt-service-routines-on-ARM-2444">interrupt service routines on ARM</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-interrupt-thread-functions-on-fido-2443">interrupt thread functions on fido</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-introduction-1">introduction</a>: <a href="#Top">Top</a></li>
<li><a href="#index-invalid-assembly-code-3352">invalid assembly code</a>: <a href="#Bug-Criteria">Bug Criteria</a></li>
<li><a href="#index-invalid-input-3357">invalid input</a>: <a href="#Bug-Criteria">Bug Criteria</a></li>
<li><a href="#index-invoking-_0040command_007bg_002b_002b_007d-94">invoking <samp><span class="command">g++</span></samp></a>: <a href="#Invoking-G_002b_002b">Invoking G++</a></li>
<li><a href="#index-isalnum-2932"><code>isalnum</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-isalpha-2933"><code>isalpha</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-isascii-2934"><code>isascii</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-isblank-2935"><code>isblank</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-iscntrl-2936"><code>iscntrl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-isdigit-2937"><code>isdigit</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-isgraph-2938"><code>isgraph</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-islower-2939"><code>islower</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ISO-9899-33">ISO 9899</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-ISO-C-30">ISO C</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-ISO-C-standard-29">ISO C standard</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-ISO-C1X-43">ISO C1X</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-ISO-C90-31">ISO C90</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-ISO-C94-35">ISO C94</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-ISO-C95-37">ISO C95</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-ISO-C99-39">ISO C99</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-ISO-C9X-41">ISO C9X</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-ISO-support-99">ISO support</a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-ISO_002fIEC-9899-32">ISO/IEC 9899</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-isprint-2940"><code>isprint</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ispunct-2941"><code>ispunct</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-isspace-2942"><code>isspace</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-isupper-2943"><code>isupper</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-iswalnum-2944"><code>iswalnum</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-iswalpha-2945"><code>iswalpha</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-iswblank-2946"><code>iswblank</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-iswcntrl-2947"><code>iswcntrl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-iswdigit-2948"><code>iswdigit</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-iswgraph-2949"><code>iswgraph</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-iswlower-2950"><code>iswlower</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-iswprint-2951"><code>iswprint</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-iswpunct-2952"><code>iswpunct</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-iswspace-2953"><code>iswspace</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-iswupper-2954"><code>iswupper</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-iswxdigit-2955"><code>iswxdigit</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-isxdigit-2956"><code>isxdigit</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-j0-2957"><code>j0</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-j0f-2958"><code>j0f</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-j0l-2959"><code>j0l</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-j1-2960"><code>j1</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-j1f-2961"><code>j1f</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-j1l-2962"><code>j1l</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-Java-8">Java</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-g_t_0040code_007bjava_005finterface_007d-attribute-3282"><code>java_interface</code> attribute</a>: <a href="#C_002b_002b-Attributes">C++ Attributes</a></li>
<li><a href="#index-jn-2963"><code>jn</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-jnf-2964"><code>jnf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-jnl-2965"><code>jnl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007bK_007d-fixed_002dsuffix-2330"><code>K</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bk_007d-fixed_002dsuffix-2314"><code>k</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bkeep_005finterrupts_005fmasked_007d-attribute-2439"><code>keep_interrupts_masked</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-keywords_002c-alternate-2692">keywords, alternate</a>: <a href="#Alternate-Keywords">Alternate Keywords</a></li>
<li><a href="#index-known-causes-of-trouble-3290">known causes of trouble</a>: <a href="#Trouble">Trouble</a></li>
<li><a href="#index-g_t_0040code_007bl1_005fdata_007d-variable-attribute-2582"><code>l1_data</code> variable attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-g_t_0040code_007bl1_005fdata_005fA_007d-variable-attribute-2583"><code>l1_data_A</code> variable attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-g_t_0040code_007bl1_005fdata_005fB_007d-variable-attribute-2584"><code>l1_data_B</code> variable attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-g_t_0040code_007bl1_005ftext_007d-function-attribute-2446"><code>l1_text</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bl2_007d-function-attribute-2447"><code>l2</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bl2_007d-variable-attribute-2585"><code>l2</code> variable attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-labeled-elements-in-initializers-2374">labeled elements in initializers</a>: <a href="#Designated-Inits">Designated Inits</a></li>
<li><a href="#index-labels-as-values-2240">labels as values</a>: <a href="#Labels-as-Values">Labels as Values</a></li>
<li><a href="#index-labs-2966"><code>labs</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-LANG-2203"><code>LANG</code></a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-language-dialect-options-96">language dialect options</a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-LC_005fALL-2206"><code>LC_ALL</code></a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-LC_005fCTYPE-2204"><code>LC_CTYPE</code></a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-LC_005fMESSAGES-2205"><code>LC_MESSAGES</code></a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-ldexp-2967"><code>ldexp</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ldexpf-2968"><code>ldexpf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ldexpl-2969"><code>ldexpl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007bleaf_007d-function-attribute-2448"><code>leaf</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-length_002dzero-arrays-2340">length-zero arrays</a>: <a href="#Zero-Length">Zero Length</a></li>
<li><a href="#index-lgamma-2970"><code>lgamma</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-lgamma_005fr-2973"><code>lgamma_r</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-lgammaf-2971"><code>lgammaf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-lgammaf_005fr-2974"><code>lgammaf_r</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-lgammal-2972"><code>lgammal</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-lgammal_005fr-2975"><code>lgammal_r</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-Libraries-969">Libraries</a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-LIBRARY_005fPATH-2211"><code>LIBRARY_PATH</code></a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-link-options-963">link options</a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-linker-script-990">linker script</a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-g_t_0040code_007bLK_007d-fixed_002dsuffix-2331"><code>LK</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007blk_007d-fixed_002dsuffix-2315"><code>lk</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bLL_007d-integer-suffix-2273"><code>LL</code> integer suffix</a>: <a href="#Long-Long">Long Long</a></li>
<li><a href="#index-llabs-2976"><code>llabs</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007bLLK_007d-fixed_002dsuffix-2332"><code>LLK</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bllk_007d-fixed_002dsuffix-2316"><code>llk</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bLLR_007d-fixed_002dsuffix-2324"><code>LLR</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bllr_007d-fixed_002dsuffix-2308"><code>llr</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-llrint-2977"><code>llrint</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-llrintf-2978"><code>llrintf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-llrintl-2979"><code>llrintl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-llround-2980"><code>llround</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-llroundf-2981"><code>llroundf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-llroundl-2982"><code>llroundl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-LM32-options-1469">LM32 options</a>: <a href="#LM32-Options">LM32 Options</a></li>
<li><a href="#index-load-address-instruction-2650">load address instruction</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-local-labels-2238">local labels</a>: <a href="#Local-Labels">Local Labels</a></li>
<li><a href="#index-local-variables-in-macros-2259">local variables in macros</a>: <a href="#Typeof">Typeof</a></li>
<li><a href="#index-local-variables_002c-specifying-registers-2688">local variables, specifying registers</a>: <a href="#Local-Reg-Vars">Local Reg Vars</a></li>
<li><a href="#index-locale-2207">locale</a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-locale-definition-2213">locale definition</a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-log-2983"><code>log</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-log10-2984"><code>log10</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-log10f-2985"><code>log10f</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-log10l-2986"><code>log10l</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-log1p-2987"><code>log1p</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-log1pf-2988"><code>log1pf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-log1pl-2989"><code>log1pl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-log2-2990"><code>log2</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-log2f-2991"><code>log2f</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-log2l-2992"><code>log2l</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-logb-2993"><code>logb</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-logbf-2994"><code>logbf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-logbl-2995"><code>logbl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-logf-2996"><code>logf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-logl-2997"><code>logl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007blong-long_007d-data-types-2270"><code>long long</code> data types</a>: <a href="#Long-Long">Long Long</a></li>
<li><a href="#index-longjmp-2686"><code>longjmp</code></a>: <a href="#Global-Reg-Vars">Global Reg Vars</a></li>
<li><a href="#index-g_t_0040code_007blongjmp_007d-incompatibilities-3302"><code>longjmp</code> incompatibilities</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-g_t_0040code_007blongjmp_007d-warnings-329"><code>longjmp</code> warnings</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-g_t_0040code_007bLR_007d-fixed_002dsuffix-2323"><code>LR</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007blr_007d-fixed_002dsuffix-2307"><code>lr</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-lrint-2998"><code>lrint</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-lrintf-2999"><code>lrintf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-lrintl-3000"><code>lrintl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-lround-3001"><code>lround</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-lroundf-3002"><code>lroundf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-lroundl-3003"><code>lroundl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040samp_007bm_007d-in-constraint-2625">&lsquo;<samp><span class="samp">m</span></samp>&rsquo; in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-M32C-options-1475">M32C options</a>: <a href="#M32C-Options">M32C Options</a></li>
<li><a href="#index-M32R_002fD-options-1479">M32R/D options</a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-M680x0-options-1500">M680x0 options</a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-M68hc1x-options-1541">M68hc1x options</a>: <a href="#M68hc1x-Options">M68hc1x Options</a></li>
<li><a href="#index-machine-dependent-options-1017">machine dependent options</a>: <a href="#Submodel-Options">Submodel Options</a></li>
<li><a href="#index-machine-specific-constraints-2671">machine specific constraints</a>: <a href="#Machine-Constraints">Machine Constraints</a></li>
<li><a href="#index-macro-with-variable-arguments-2353">macro with variable arguments</a>: <a href="#Variadic-Macros">Variadic Macros</a></li>
<li><a href="#index-macros-containing-_0040code_007basm_007d-2620">macros containing <code>asm</code></a>: <a href="#Extended-Asm">Extended Asm</a></li>
<li><a href="#index-macros_002c-inline-alternative-2602">macros, inline alternative</a>: <a href="#Inline">Inline</a></li>
<li><a href="#index-macros_002c-local-labels-2239">macros, local labels</a>: <a href="#Local-Labels">Local Labels</a></li>
<li><a href="#index-macros_002c-local-variables-in-2261">macros, local variables in</a>: <a href="#Typeof">Typeof</a></li>
<li><a href="#index-macros_002c-statements-in-expressions-2236">macros, statements in expressions</a>: <a href="#Statement-Exprs">Statement Exprs</a></li>
<li><a href="#index-macros_002c-types-of-arguments-2256">macros, types of arguments</a>: <a href="#Typeof">Typeof</a></li>
<li><a href="#index-g_t_0040command_007bmake_007d-903"><samp><span class="command">make</span></samp></a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-malloc-3004"><code>malloc</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007bmalloc_007d-attribute-2452"><code>malloc</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-matching-constraint-2648">matching constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-MCore-options-1555">MCore options</a>: <a href="#MCore-Options">MCore Options</a></li>
<li><a href="#index-member-fns_002c-automatically-_0040code_007binline_007d-2608">member fns, automatically <code>inline</code></a>: <a href="#Inline">Inline</a></li>
<li><a href="#index-memchr-3005"><code>memchr</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-memcmp-3006"><code>memcmp</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-memcpy-3007"><code>memcpy</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-memory-references-in-constraints-2626">memory references in constraints</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-mempcpy-3008"><code>mempcpy</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-memset-3009"><code>memset</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-MeP-options-1576">MeP options</a>: <a href="#MeP-Options">MeP Options</a></li>
<li><a href="#index-Mercury-12">Mercury</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-message-formatting-224">message formatting</a>: <a href="#Language-Independent-Options">Language Independent Options</a></li>
<li><a href="#index-messages_002c-warning-232">messages, warning</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-messages_002c-warning-and-error-3344">messages, warning and error</a>: <a href="#Warnings-and-Errors">Warnings and Errors</a></li>
<li><a href="#index-MicroBlaze-Options-1608">MicroBlaze Options</a>: <a href="#MicroBlaze-Options">MicroBlaze Options</a></li>
<li><a href="#index-middle_002doperands_002c-omitted-2264">middle-operands, omitted</a>: <a href="#Conditionals">Conditionals</a></li>
<li><a href="#index-MIPS-options-1624">MIPS options</a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-g_t_0040code_007bmips16_007d-attribute-2453"><code>mips16</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-misunderstandings-in-C_002b_002b-3322">misunderstandings in C++</a>: <a href="#C_002b_002b-Misunderstandings">C++ Misunderstandings</a></li>
<li><a href="#index-mixed-declarations-and-code-2383">mixed declarations and code</a>: <a href="#Mixed-Declarations">Mixed Declarations</a></li>
<li><a href="#index-g_t_0040code_007bmktemp_007d_002c-and-constant-strings-3297"><code>mktemp</code>, and constant strings</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-MMIX-Options-1731">MMIX Options</a>: <a href="#MMIX-Options">MMIX Options</a></li>
<li><a href="#index-MN10300-options-1751">MN10300 options</a>: <a href="#MN10300-Options">MN10300 Options</a></li>
<li><a href="#index-g_t_0040code_007bmode_007d-attribute-2576"><code>mode</code> attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-modf-3010"><code>modf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-modff-3011"><code>modff</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-modfl-3012"><code>modfl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-modifiers-in-constraints-2662">modifiers in constraints</a>: <a href="#Modifiers">Modifiers</a></li>
<li><a href="#index-g_t_0040code_007bms_005fabi_007d-attribute-2457"><code>ms_abi</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bms_005fhook_005fprologue_007d-attribute-2460"><code>ms_hook_prologue</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bms_005fstruct_007d-2594"><code>ms_struct</code></a>: <a href="#Type-Attributes">Type Attributes</a></li>
<li><a href="#index-g_t_0040code_007bms_005fstruct_007d-attribute-2587"><code>ms_struct</code> attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-mudflap-716">mudflap</a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-multiple-alternative-constraints-2657">multiple alternative constraints</a>: <a href="#Multi_002dAlternative">Multi-Alternative</a></li>
<li><a href="#index-multiprecision-arithmetic-2272">multiprecision arithmetic</a>: <a href="#Long-Long">Long Long</a></li>
<li><a href="#index-g_t_0040samp_007bn_007d-in-constraint-2637">&lsquo;<samp><span class="samp">n</span></samp>&rsquo; in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-named-address-spaces-2337">named address spaces</a>: <a href="#Named-Address-Spaces">Named Address Spaces</a></li>
<li><a href="#index-names-used-in-assembler-code-2674">names used in assembler code</a>: <a href="#Asm-Labels">Asm Labels</a></li>
<li><a href="#index-naming-convention_002c-implementation-headers-3269">naming convention, implementation headers</a>: <a href="#C_002b_002b-Interface">C++ Interface</a></li>
<li><a href="#index-nearbyint-3013"><code>nearbyint</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-nearbyintf-3014"><code>nearbyintf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-nearbyintl-3015"><code>nearbyintl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-nested-functions-2244">nested functions</a>: <a href="#Nested-Functions">Nested Functions</a></li>
<li><a href="#index-newlines-_0028escaped_0029-2357">newlines (escaped)</a>: <a href="#Escaped-Newlines">Escaped Newlines</a></li>
<li><a href="#index-nextafter-3016"><code>nextafter</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-nextafterf-3017"><code>nextafterf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-nextafterl-3018"><code>nextafterl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-nexttoward-3019"><code>nexttoward</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-nexttowardf-3020"><code>nexttowardf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-nexttowardl-3021"><code>nexttowardl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-NFC-447">NFC</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-NFKC-448">NFKC</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-NMI-handler-functions-on-the-Blackfin-processor-2464">NMI handler functions on the Blackfin processor</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bno_005finstrument_005ffunction_007d-function-attribute-2465"><code>no_instrument_function</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bno_005fsplit_005fstack_007d-function-attribute-2467"><code>no_split_stack</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bnoclone_007d-function-attribute-2470"><code>noclone</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bnocommon_007d-attribute-2572"><code>nocommon</code> attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-g_t_0040code_007bnoinline_007d-function-attribute-2469"><code>noinline</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bnomips16_007d-attribute-2454"><code>nomips16</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-non_002dconstant-initializers-2367">non-constant initializers</a>: <a href="#Initializers">Initializers</a></li>
<li><a href="#index-non_002dstatic-inline-function-2611">non-static inline function</a>: <a href="#Inline">Inline</a></li>
<li><a href="#index-g_t_0040code_007bnonnull_007d-function-attribute-2471"><code>nonnull</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bnoreturn_007d-function-attribute-2472"><code>noreturn</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bnothrow_007d-function-attribute-2473"><code>nothrow</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040samp_007bo_007d-in-constraint-2628">&lsquo;<samp><span class="samp">o</span></samp>&rsquo; in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-OBJC_005fINCLUDE_005fPATH-2217"><code>OBJC_INCLUDE_PATH</code></a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-Objective_002dC-63">Objective-C</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-Objective_002dC-9">Objective-C</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-Objective_002dC-and-Objective_002dC_002b_002b-options_002c-command-line-195">Objective-C and Objective-C++ options, command line</a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-Objective_002dC_002b_002b-64">Objective-C++</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-Objective_002dC_002b_002b-10">Objective-C++</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-offsettable-address-2627">offsettable address</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-old_002dstyle-function-definitions-2559">old-style function definitions</a>: <a href="#Function-Prototypes">Function Prototypes</a></li>
<li><a href="#index-omitted-middle_002doperands-2263">omitted middle-operands</a>: <a href="#Conditionals">Conditionals</a></li>
<li><a href="#index-open-coding-2601">open coding</a>: <a href="#Inline">Inline</a></li>
<li><a href="#index-OpenMP-parallel-112">OpenMP parallel</a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-operand-constraints_002c-_0040code_007basm_007d-2621">operand constraints, <code>asm</code></a>: <a href="#Constraints">Constraints</a></li>
<li><a href="#index-g_t_0040code_007boptimize_007d-function-attribute-2474"><code>optimize</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-optimize-options-679">optimize options</a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-options-to-control-diagnostics-formatting-222">options to control diagnostics formatting</a>: <a href="#Language-Independent-Options">Language Independent Options</a></li>
<li><a href="#index-options-to-control-warnings-230">options to control warnings</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-options_002c-C_002b_002b-130">options, C++</a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-options_002c-code-generation-2160">options, code generation</a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-options_002c-debugging-499">options, debugging</a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-options_002c-dialect-97">options, dialect</a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-options_002c-directory-search-995">options, directory search</a>: <a href="#Directory-Options">Directory Options</a></li>
<li><a href="#index-options_002c-GCC-command-67">options, GCC command</a>: <a href="#Invoking-GCC">Invoking GCC</a></li>
<li><a href="#index-options_002c-grouping-71">options, grouping</a>: <a href="#Invoking-GCC">Invoking GCC</a></li>
<li><a href="#index-options_002c-linking-964">options, linking</a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-options_002c-Objective_002dC-and-Objective_002dC_002b_002b-196">options, Objective-C and Objective-C++</a>: <a href="#Objective_002dC-and-Objective_002dC_002b_002b-Dialect-Options">Objective-C and Objective-C++ Dialect Options</a></li>
<li><a href="#index-options_002c-optimization-680">options, optimization</a>: <a href="#Optimize-Options">Optimize Options</a></li>
<li><a href="#index-options_002c-order-73">options, order</a>: <a href="#Invoking-GCC">Invoking GCC</a></li>
<li><a href="#index-options_002c-preprocessor-881">options, preprocessor</a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-order-of-evaluation_002c-side-effects-3340">order of evaluation, side effects</a>: <a href="#Non_002dbugs">Non-bugs</a></li>
<li><a href="#index-order-of-options-72">order of options</a>: <a href="#Invoking-GCC">Invoking GCC</a></li>
<li><a href="#index-g_t_0040code_007bOS_005fmain_007d-AVR-function-attribute-2475"><code>OS_main</code> AVR function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bOS_005ftask_007d-AVR-function-attribute-2476"><code>OS_task</code> AVR function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-other-register-constraints-2655">other register constraints</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-output-file-option-80">output file option</a>: <a href="#Overall-Options">Overall Options</a></li>
<li><a href="#index-overloaded-virtual-function_002c-warning-188">overloaded virtual function, warning</a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-g_t_0040samp_007bp_007d-in-constraint-2653">&lsquo;<samp><span class="samp">p</span></samp>&rsquo; in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-g_t_0040code_007bpacked_007d-attribute-2577"><code>packed</code> attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-parameter-forward-declaration-2351">parameter forward declaration</a>: <a href="#Variable-Length">Variable Length</a></li>
<li><a href="#index-Pascal-13">Pascal</a>: <a href="#G_002b_002b-and-GCC">G++ and GCC</a></li>
<li><a href="#index-g_t_0040code_007bpcs_007d-function-attribute-2477"><code>pcs</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-PDP_002d11-Options-1764">PDP-11 Options</a>: <a href="#PDP_002d11-Options">PDP-11 Options</a></li>
<li><a href="#index-PIC-2181">PIC</a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-picoChip-options-1788">picoChip options</a>: <a href="#picoChip-Options">picoChip Options</a></li>
<li><a href="#index-pmf-3277">pmf</a>: <a href="#Bound-member-functions">Bound member functions</a></li>
<li><a href="#index-pointer-arguments-2416">pointer arguments</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-pointer-to-member-function-3278">pointer to member function</a>: <a href="#Bound-member-functions">Bound member functions</a></li>
<li><a href="#index-portions-of-temporary-objects_002c-pointers-to-3333">portions of temporary objects, pointers to</a>: <a href="#Temporaries">Temporaries</a></li>
<li><a href="#index-pow-3022"><code>pow</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-pow10-3023"><code>pow10</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-pow10f-3024"><code>pow10f</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-pow10l-3025"><code>pow10l</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-PowerPC-options-1790">PowerPC options</a>: <a href="#PowerPC-Options">PowerPC Options</a></li>
<li><a href="#index-powf-3026"><code>powf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-powl-3027"><code>powl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-pragma-GCC-optimize-3237">pragma GCC optimize</a>: <a href="#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a></li>
<li><a href="#index-pragma-GCC-pop_005foptions-3239">pragma GCC pop_options</a>: <a href="#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a></li>
<li><a href="#index-pragma-GCC-push_005foptions-3238">pragma GCC push_options</a>: <a href="#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a></li>
<li><a href="#index-pragma-GCC-reset_005foptions-3240">pragma GCC reset_options</a>: <a href="#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a></li>
<li><a href="#index-pragma-GCC-target-3236">pragma GCC target</a>: <a href="#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a></li>
<li><a href="#index-pragma_002c-address-3213">pragma, address</a>: <a href="#M32C-Pragmas">M32C Pragmas</a></li>
<li><a href="#index-pragma_002c-align-3225">pragma, align</a>: <a href="#Solaris-Pragmas">Solaris Pragmas</a></li>
<li><a href="#index-pragma_002c-call-3219">pragma, call</a>: <a href="#MeP-Pragmas">MeP Pragmas</a></li>
<li><a href="#index-pragma_002c-coprocessor-available-3215">pragma, coprocessor available</a>: <a href="#MeP-Pragmas">MeP Pragmas</a></li>
<li><a href="#index-pragma_002c-coprocessor-call_005fsaved-3216">pragma, coprocessor call_saved</a>: <a href="#MeP-Pragmas">MeP Pragmas</a></li>
<li><a href="#index-pragma_002c-coprocessor-subclass-3217">pragma, coprocessor subclass</a>: <a href="#MeP-Pragmas">MeP Pragmas</a></li>
<li><a href="#index-pragma_002c-custom-io_005fvolatile-3214">pragma, custom io_volatile</a>: <a href="#MeP-Pragmas">MeP Pragmas</a></li>
<li><a href="#index-pragma_002c-diagnostic-3231">pragma, diagnostic</a>: <a href="#Diagnostic-Pragmas">Diagnostic Pragmas</a></li>
<li><a href="#index-pragma_002c-disinterrupt-3218">pragma, disinterrupt</a>: <a href="#MeP-Pragmas">MeP Pragmas</a></li>
<li><a href="#index-pragma_002c-extern_005fprefix-3229">pragma, extern_prefix</a>: <a href="#Symbol_002dRenaming-Pragmas">Symbol-Renaming Pragmas</a></li>
<li><a href="#index-pragma_002c-fini-3226">pragma, fini</a>: <a href="#Solaris-Pragmas">Solaris Pragmas</a></li>
<li><a href="#index-pragma_002c-init-3227">pragma, init</a>: <a href="#Solaris-Pragmas">Solaris Pragmas</a></li>
<li><a href="#index-pragma_002c-long_005fcalls-3209">pragma, long_calls</a>: <a href="#ARM-Pragmas">ARM Pragmas</a></li>
<li><a href="#index-pragma_002c-long_005fcalls_005foff-3211">pragma, long_calls_off</a>: <a href="#ARM-Pragmas">ARM Pragmas</a></li>
<li><a href="#index-pragma_002c-longcall-3220">pragma, longcall</a>: <a href="#RS_002f6000-and-PowerPC-Pragmas">RS/6000 and PowerPC Pragmas</a></li>
<li><a href="#index-pragma_002c-mark-3221">pragma, mark</a>: <a href="#Darwin-Pragmas">Darwin Pragmas</a></li>
<li><a href="#index-pragma_002c-memregs-3212">pragma, memregs</a>: <a href="#M32C-Pragmas">M32C Pragmas</a></li>
<li><a href="#index-pragma_002c-no_005flong_005fcalls-3210">pragma, no_long_calls</a>: <a href="#ARM-Pragmas">ARM Pragmas</a></li>
<li><a href="#index-pragma_002c-options-align-3222">pragma, options align</a>: <a href="#Darwin-Pragmas">Darwin Pragmas</a></li>
<li><a href="#index-pragma_002c-pop_005fmacro-3235">pragma, pop_macro</a>: <a href="#Push_002fPop-Macro-Pragmas">Push/Pop Macro Pragmas</a></li>
<li><a href="#index-pragma_002c-push_005fmacro-3234">pragma, push_macro</a>: <a href="#Push_002fPop-Macro-Pragmas">Push/Pop Macro Pragmas</a></li>
<li><a href="#index-pragma_002c-reason-for-not-using-2556">pragma, reason for not using</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-pragma_002c-redefine_005fextname-3228">pragma, redefine_extname</a>: <a href="#Symbol_002dRenaming-Pragmas">Symbol-Renaming Pragmas</a></li>
<li><a href="#index-pragma_002c-segment-3223">pragma, segment</a>: <a href="#Darwin-Pragmas">Darwin Pragmas</a></li>
<li><a href="#index-pragma_002c-unused-3224">pragma, unused</a>: <a href="#Darwin-Pragmas">Darwin Pragmas</a></li>
<li><a href="#index-pragma_002c-visibility-3233">pragma, visibility</a>: <a href="#Visibility-Pragmas">Visibility Pragmas</a></li>
<li><a href="#index-pragma_002c-weak-3230">pragma, weak</a>: <a href="#Weak-Pragmas">Weak Pragmas</a></li>
<li><a href="#index-pragmas-3207">pragmas</a>: <a href="#Pragmas">Pragmas</a></li>
<li><a href="#index-pragmas-in-C_002b_002b_002c-effect-on-inlining-3272">pragmas in C++, effect on inlining</a>: <a href="#C_002b_002b-Interface">C++ Interface</a></li>
<li><a href="#index-pragmas_002c-interface-and-implementation-3264">pragmas, interface and implementation</a>: <a href="#C_002b_002b-Interface">C++ Interface</a></li>
<li><a href="#index-pragmas_002c-warning-of-unknown-334">pragmas, warning of unknown</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-precompiled-headers-2222">precompiled headers</a>: <a href="#Precompiled-Headers">Precompiled Headers</a></li>
<li><a href="#index-preprocessing-numbers-3316">preprocessing numbers</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-preprocessing-tokens-3315">preprocessing tokens</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-preprocessor-options-880">preprocessor options</a>: <a href="#Preprocessor-Options">Preprocessor Options</a></li>
<li><a href="#index-printf-3028"><code>printf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-printf_005funlocked-3029"><code>printf_unlocked</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040command_007bprof_007d-525"><samp><span class="command">prof</span></samp></a>: <a href="#Debugging-Options">Debugging Options</a></li>
<li><a href="#index-g_t_0040code_007bprogmem_007d-AVR-variable-attribute-2581"><code>progmem</code> AVR variable attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-promotion-of-formal-parameters-2560">promotion of formal parameters</a>: <a href="#Function-Prototypes">Function Prototypes</a></li>
<li><a href="#index-g_t_0040code_007bpure_007d-function-attribute-2478"><code>pure</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-push-address-instruction-2651">push address instruction</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-putchar-3030"><code>putchar</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-puts-3031"><code>puts</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007bQ_007d-floating-point-suffix-2287"><code>Q</code> floating point suffix</a>: <a href="#Floating-Types">Floating Types</a></li>
<li><a href="#index-g_t_0040code_007bq_007d-floating-point-suffix-2285"><code>q</code> floating point suffix</a>: <a href="#Floating-Types">Floating Types</a></li>
<li><a href="#index-g_t_0040code_007bqsort_007d_002c-and-global-register-variables-2682"><code>qsort</code>, and global register variables</a>: <a href="#Global-Reg-Vars">Global Reg Vars</a></li>
<li><a href="#index-question-mark-2659">question mark</a>: <a href="#Multi_002dAlternative">Multi-Alternative</a></li>
<li><a href="#index-g_t_0040code_007bR_007d-fixed_002dsuffix-2322"><code>R</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007br_007d-fixed_002dsuffix-2306"><code>r</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040samp_007br_007d-in-constraint-2633">&lsquo;<samp><span class="samp">r</span></samp>&rsquo; in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-ranges-in-case-statements-2380">ranges in case statements</a>: <a href="#Case-Ranges">Case Ranges</a></li>
<li><a href="#index-read_002donly-strings-3295">read-only strings</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-register-variable-after-_0040code_007blongjmp_007d-2683">register variable after <code>longjmp</code></a>: <a href="#Global-Reg-Vars">Global Reg Vars</a></li>
<li><a href="#index-registers-2619">registers</a>: <a href="#Extended-Asm">Extended Asm</a></li>
<li><a href="#index-registers-for-local-variables-2690">registers for local variables</a>: <a href="#Local-Reg-Vars">Local Reg Vars</a></li>
<li><a href="#index-registers-in-constraints-2634">registers in constraints</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-registers_002c-global-allocation-2679">registers, global allocation</a>: <a href="#Explicit-Reg-Vars">Explicit Reg Vars</a></li>
<li><a href="#index-registers_002c-global-variables-in-2681">registers, global variables in</a>: <a href="#Global-Reg-Vars">Global Reg Vars</a></li>
<li><a href="#index-g_t_0040code_007bregparm_007d-attribute-2481"><code>regparm</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-relocation-truncated-to-fit-_0028ColdFire_0029-1540">relocation truncated to fit (ColdFire)</a>: <a href="#M680x0-Options">M680x0 Options</a></li>
<li><a href="#index-relocation-truncated-to-fit-_0028MIPS_0029-1653">relocation truncated to fit (MIPS)</a>: <a href="#MIPS-Options">MIPS Options</a></li>
<li><a href="#index-remainder-3032"><code>remainder</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-remainderf-3033"><code>remainderf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-remainderl-3034"><code>remainderl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-remquo-3035"><code>remquo</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-remquof-3036"><code>remquof</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-remquol-3037"><code>remquol</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-reordering_002c-warning-176">reordering, warning</a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-reporting-bugs-3348">reporting bugs</a>: <a href="#Bugs">Bugs</a></li>
<li><a href="#index-g_t_0040code_007bresbank_007d-attribute-2485"><code>resbank</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-rest-argument-_0028in-macro_0029-2354">rest argument (in macro)</a>: <a href="#Variadic-Macros">Variadic Macros</a></li>
<li><a href="#index-restricted-pointers-3255">restricted pointers</a>: <a href="#Restricted-Pointers">Restricted Pointers</a></li>
<li><a href="#index-restricted-references-3256">restricted references</a>: <a href="#Restricted-Pointers">Restricted Pointers</a></li>
<li><a href="#index-restricted-this-pointer-3257">restricted this pointer</a>: <a href="#Restricted-Pointers">Restricted Pointers</a></li>
<li><a href="#index-g_t_0040code_007breturns_005ftwice_007d-attribute-2486"><code>returns_twice</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-rindex-3038"><code>rindex</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-rint-3039"><code>rint</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-rintf-3040"><code>rintf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-rintl-3041"><code>rintl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-round-3042"><code>round</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-roundf-3043"><code>roundf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-roundl-3044"><code>roundl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-RS_002f6000-and-PowerPC-Options-1791">RS/6000 and PowerPC Options</a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-RTTI-3261">RTTI</a>: <a href="#Vague-Linkage">Vague Linkage</a></li>
<li><a href="#index-run_002dtime-options-2161">run-time options</a>: <a href="#Code-Gen-Options">Code Gen Options</a></li>
<li><a href="#index-RX-Options-1946">RX Options</a>: <a href="#RX-Options">RX Options</a></li>
<li><a href="#index-g_t_0040samp_007bs_007d-in-constraint-2643">&lsquo;<samp><span class="samp">s</span></samp>&rsquo; in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-S_002f390-and-zSeries-Options-1963">S/390 and zSeries Options</a>: <a href="#S_002f390-and-zSeries-Options">S/390 and zSeries Options</a></li>
<li><a href="#index-save-all-registers-on-the-Blackfin_002c-H8_002f300_002c-H8_002f300H_002c-and-H8S-2487">save all registers on the Blackfin, H8/300, H8/300H, and H8S</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-save-volatile-registers-on-the-MicroBlaze-2488">save volatile registers on the MicroBlaze</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-scalb-3045"><code>scalb</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-scalbf-3046"><code>scalbf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-scalbl-3047"><code>scalbl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-scalbln-3048"><code>scalbln</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-scalblnf-3049"><code>scalblnf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-scalbn-3051"><code>scalbn</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-scalbnf-3052"><code>scalbnf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007bscanf_007d_002c-and-constant-strings-3300"><code>scanf</code>, and constant strings</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-scanfnl-3053"><code>scanfnl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-scope-of-a-variable-length-array-2347">scope of a variable length array</a>: <a href="#Variable-Length">Variable Length</a></li>
<li><a href="#index-scope-of-declaration-3319">scope of declaration</a>: <a href="#Disappointments">Disappointments</a></li>
<li><a href="#index-scope-of-external-declarations-3305">scope of external declarations</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-Score-Options-1994">Score Options</a>: <a href="#Score-Options">Score Options</a></li>
<li><a href="#index-search-path-996">search path</a>: <a href="#Directory-Options">Directory Options</a></li>
<li><a href="#index-g_t_0040code_007bsection_007d-function-attribute-2489"><code>section</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bsection_007d-variable-attribute-2578"><code>section</code> variable attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-g_t_0040code_007bsentinel_007d-function-attribute-2490"><code>sentinel</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-setjmp-2687"><code>setjmp</code></a>: <a href="#Global-Reg-Vars">Global Reg Vars</a></li>
<li><a href="#index-g_t_0040code_007bsetjmp_007d-incompatibilities-3301"><code>setjmp</code> incompatibilities</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-shared-strings-3296">shared strings</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-g_t_0040code_007bshared_007d-variable-attribute-2579"><code>shared</code> variable attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-side-effect-in-_0040code_007b_003f_003a_007d-2267">side effect in <code>?:</code></a>: <a href="#Conditionals">Conditionals</a></li>
<li><a href="#index-side-effects_002c-macro-argument-2237">side effects, macro argument</a>: <a href="#Statement-Exprs">Statement Exprs</a></li>
<li><a href="#index-side-effects_002c-order-of-evaluation-3339">side effects, order of evaluation</a>: <a href="#Non_002dbugs">Non-bugs</a></li>
<li><a href="#index-signal-handler-functions-on-the-AVR-processors-2491">signal handler functions on the AVR processors</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-signbit-3054"><code>signbit</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-signbitd128-3059"><code>signbitd128</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-signbitd32-3057"><code>signbitd32</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-signbitd64-3058"><code>signbitd64</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-signbitf-3055"><code>signbitf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-signbitl-3056"><code>signbitl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-signed-and-unsigned-values_002c-comparison-warning-410">signed and unsigned values, comparison warning</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-significand-3060"><code>significand</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-significandf-3061"><code>significandf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-significandl-3062"><code>significandl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-simple-constraints-2624">simple constraints</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-sin-3063"><code>sin</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-sincos-3064"><code>sincos</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-sincosf-3065"><code>sincosf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-sincosl-3066"><code>sincosl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-sinf-3067"><code>sinf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-sinh-3068"><code>sinh</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-sinhf-3069"><code>sinhf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-sinhl-3070"><code>sinhl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-sinl-3071"><code>sinl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-sizeof-2255"><code>sizeof</code></a>: <a href="#Typeof">Typeof</a></li>
<li><a href="#index-smaller-data-references-1490">smaller data references</a>: <a href="#M32R_002fD-Options">M32R/D Options</a></li>
<li><a href="#index-smaller-data-references-_0028PowerPC_0029-1932">smaller data references (PowerPC)</a>: <a href="#RS_002f6000-and-PowerPC-Options">RS/6000 and PowerPC Options</a></li>
<li><a href="#index-snprintf-3072"><code>snprintf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-Solaris-2-options-2049">Solaris 2 options</a>: <a href="#Solaris-2-Options">Solaris 2 Options</a></li>
<li><a href="#index-SPARC-options-2054">SPARC options</a>: <a href="#SPARC-Options">SPARC Options</a></li>
<li><a href="#index-Spec-Files-1004">Spec Files</a>: <a href="#Spec-Files">Spec Files</a></li>
<li><a href="#index-specified-registers-2678">specified registers</a>: <a href="#Explicit-Reg-Vars">Explicit Reg Vars</a></li>
<li><a href="#index-specifying-compiler-version-and-target-machine-1011">specifying compiler version and target machine</a>: <a href="#Target-Options">Target Options</a></li>
<li><a href="#index-specifying-hardware-config-1015">specifying hardware config</a>: <a href="#Submodel-Options">Submodel Options</a></li>
<li><a href="#index-specifying-machine-version-1010">specifying machine version</a>: <a href="#Target-Options">Target Options</a></li>
<li><a href="#index-specifying-registers-for-local-variables-2689">specifying registers for local variables</a>: <a href="#Local-Reg-Vars">Local Reg Vars</a></li>
<li><a href="#index-speed-of-compilation-2223">speed of compilation</a>: <a href="#Precompiled-Headers">Precompiled Headers</a></li>
<li><a href="#index-sprintf-3073"><code>sprintf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-SPU-options-2083">SPU options</a>: <a href="#SPU-Options">SPU Options</a></li>
<li><a href="#index-sqrt-3074"><code>sqrt</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-sqrtf-3075"><code>sqrtf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-sqrtl-3076"><code>sqrtl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-sscanf-3077"><code>sscanf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007bsscanf_007d_002c-and-constant-strings-3298"><code>sscanf</code>, and constant strings</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-g_t_0040code_007bsseregparm_007d-attribute-2483"><code>sseregparm</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-statements-inside-expressions-2233">statements inside expressions</a>: <a href="#Statement-Exprs">Statement Exprs</a></li>
<li><a href="#index-static-data-in-C_002b_002b_002c-declaring-and-defining-3326">static data in C++, declaring and defining</a>: <a href="#Static-Definitions">Static Definitions</a></li>
<li><a href="#index-stpcpy-3078"><code>stpcpy</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-stpncpy-3079"><code>stpncpy</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strcasecmp-3080"><code>strcasecmp</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strcat-3081"><code>strcat</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strchr-3082"><code>strchr</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strcmp-3083"><code>strcmp</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strcpy-3084"><code>strcpy</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strcspn-3085"><code>strcspn</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strdup-3086"><code>strdup</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strfmon-3087"><code>strfmon</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strftime-3088"><code>strftime</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-string-constants-3294">string constants</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-strlen-3089"><code>strlen</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strncasecmp-3090"><code>strncasecmp</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strncat-3091"><code>strncat</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strncmp-3092"><code>strncmp</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strncpy-3093"><code>strncpy</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strndup-3094"><code>strndup</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strpbrk-3095"><code>strpbrk</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strrchr-3096"><code>strrchr</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strspn-3097"><code>strspn</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-strstr-3098"><code>strstr</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007bstruct_007d-3241"><code>struct</code></a>: <a href="#Unnamed-Fields">Unnamed Fields</a></li>
<li><a href="#index-structures-3312">structures</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-structures_002c-constructor-expression-2370">structures, constructor expression</a>: <a href="#Compound-Literals">Compound Literals</a></li>
<li><a href="#index-submodel-options-1014">submodel options</a>: <a href="#Submodel-Options">Submodel Options</a></li>
<li><a href="#index-subscripting-2358">subscripting</a>: <a href="#Subscripting">Subscripting</a></li>
<li><a href="#index-subscripting-and-function-values-2360">subscripting and function values</a>: <a href="#Subscripting">Subscripting</a></li>
<li><a href="#index-suffixes-for-C_002b_002b-source-90">suffixes for C++ source</a>: <a href="#Invoking-G_002b_002b">Invoking G++</a></li>
<li><a href="#index-SUNPRO_005fDEPENDENCIES-2220"><code>SUNPRO_DEPENDENCIES</code></a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-suppressing-warnings-233">suppressing warnings</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-surprises-in-C_002b_002b-3323">surprises in C++</a>: <a href="#C_002b_002b-Misunderstandings">C++ Misunderstandings</a></li>
<li><a href="#index-syntax-checking-234">syntax checking</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-g_t_0040code_007bsyscall_005flinkage_007d-attribute-2493"><code>syscall_linkage</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-system-headers_002c-warnings-from-358">system headers, warnings from</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-g_t_0040code_007bsysv_005fabi_007d-attribute-2458"><code>sysv_abi</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-tan-3099"><code>tan</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-tanf-3100"><code>tanf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-tanh-3101"><code>tanh</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-tanhf-3102"><code>tanhf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-tanhl-3103"><code>tanhl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-tanl-3104"><code>tanl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007btarget_007d-function-attribute-2494"><code>target</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-target-machine_002c-specifying-1013">target machine, specifying</a>: <a href="#Target-Options">Target Options</a></li>
<li><a href="#index-target-options-1008">target options</a>: <a href="#Target-Options">Target Options</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022abm_0022_0029_007d-attribute-2495"><code>target("abm")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022aes_0022_0029_007d-attribute-2496"><code>target("aes")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022align_002dstringops_0022_0029_007d-attribute-2517"><code>target("align-stringops")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022altivec_0022_0029_007d-attribute-2522"><code>target("altivec")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022arch_003d_0040var_007bARCH_007d_0022_0029_007d-attribute-2519"><code>target("arch=</code><var>ARCH</var><code>")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022avoid_002dindexed_002daddresses_0022_0029_007d-attribute-2541"><code>target("avoid-indexed-addresses")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022cld_0022_0029_007d-attribute-2511"><code>target("cld")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022cmpb_0022_0029_007d-attribute-2523"><code>target("cmpb")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022cpu_003d_0040var_007bCPU_007d_0022_0029_007d-attribute-2544"><code>target("cpu=</code><var>CPU</var><code>")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022dlmzb_0022_0029_007d-attribute-2524"><code>target("dlmzb")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022fancy_002dmath_002d387_0022_0029_007d-attribute-2512"><code>target("fancy-math-387")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022fma4_0022_0029_007d-attribute-2507"><code>target("fma4")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022fpmath_003d_0040var_007bFPMATH_007d_0022_0029_007d-attribute-2521"><code>target("fpmath=</code><var>FPMATH</var><code>")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022fprnd_0022_0029_007d-attribute-2525"><code>target("fprnd")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022friz_0022_0029_007d-attribute-2540"><code>target("friz")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022fused_002dmadd_0022_0029_007d-attribute-2513"><code>target("fused-madd")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022hard_002ddfp_0022_0029_007d-attribute-2526"><code>target("hard-dfp")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022ieee_002dfp_0022_0029_007d-attribute-2514"><code>target("ieee-fp")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022inline_002dall_002dstringops_0022_0029_007d-attribute-2515"><code>target("inline-all-stringops")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022inline_002dstringops_002ddynamically_0022_0029_007d-attribute-2516"><code>target("inline-stringops-dynamically")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022isel_0022_0029_007d-attribute-2527"><code>target("isel")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022longcall_0022_0029_007d-attribute-2543"><code>target("longcall")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022lwp_0022_0029_007d-attribute-2509"><code>target("lwp")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022mfcrf_0022_0029_007d-attribute-2528"><code>target("mfcrf")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022mfpgpr_0022_0029_007d-attribute-2529"><code>target("mfpgpr")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022mmx_0022_0029_007d-attribute-2497"><code>target("mmx")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022mulhw_0022_0029_007d-attribute-2530"><code>target("mulhw")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022multiple_0022_0029_007d-attribute-2531"><code>target("multiple")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022paired_0022_0029_007d-attribute-2542"><code>target("paired")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022pclmul_0022_0029_007d-attribute-2498"><code>target("pclmul")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022popcnt_0022_0029_007d-attribute-2499"><code>target("popcnt")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022popcntb_0022_0029_007d-attribute-2533"><code>target("popcntb")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022popcntd_0022_0029_007d-attribute-2534"><code>target("popcntd")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022powerpc_002dgfxopt_0022_0029_007d-attribute-2535"><code>target("powerpc-gfxopt")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022powerpc_002dgpopt_0022_0029_007d-attribute-2536"><code>target("powerpc-gpopt")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022recip_0022_0029_007d-attribute-2518"><code>target("recip")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022recip_002dprecision_0022_0029_007d-attribute-2537"><code>target("recip-precision")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022sse_0022_0029_007d-attribute-2500"><code>target("sse")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022sse2_0022_0029_007d-attribute-2501"><code>target("sse2")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022sse3_0022_0029_007d-attribute-2502"><code>target("sse3")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022sse4_0022_0029_007d-attribute-2503"><code>target("sse4")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022sse4_002e1_0022_0029_007d-attribute-2504"><code>target("sse4.1")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022sse4_002e2_0022_0029_007d-attribute-2505"><code>target("sse4.2")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022sse4a_0022_0029_007d-attribute-2506"><code>target("sse4a")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022ssse3_0022_0029_007d-attribute-2510"><code>target("ssse3")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022string_0022_0029_007d-attribute-2538"><code>target("string")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022tune_003d_0040var_007bTUNE_007d_0022_0029_007d-attribute-2520"><code>target("tune=</code><var>TUNE</var><code>")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022update_0022_0029_007d-attribute-2532"><code>target("update")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022vsx_0022_0029_007d-attribute-2539"><code>target("vsx")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007btarget_0028_0022xop_0022_0029_007d-attribute-2508"><code>target("xop")</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-TC1-46">TC1</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-TC2-48">TC2</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-TC3-50">TC3</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-Technical-Corrigenda-45">Technical Corrigenda</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-Technical-Corrigendum-1-47">Technical Corrigendum 1</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-Technical-Corrigendum-2-49">Technical Corrigendum 2</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-Technical-Corrigendum-3-51">Technical Corrigendum 3</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-template-instantiation-3274">template instantiation</a>: <a href="#Template-Instantiation">Template Instantiation</a></li>
<li><a href="#index-temporaries_002c-lifetime-of-3332">temporaries, lifetime of</a>: <a href="#Temporaries">Temporaries</a></li>
<li><a href="#index-tgamma-3105"><code>tgamma</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-tgammaf-3106"><code>tgammaf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-tgammal-3107"><code>tgammal</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-Thread_002dLocal-Storage-3245">Thread-Local Storage</a>: <a href="#Thread_002dLocal">Thread-Local</a></li>
<li><a href="#index-thunks-2246">thunks</a>: <a href="#Nested-Functions">Nested Functions</a></li>
<li><a href="#index-tiny-data-section-on-the-H8_002f300H-and-H8S-2546">tiny data section on the H8/300H and H8S</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040acronym_007bTLS_007d-3246"><acronym>TLS</acronym></a>: <a href="#Thread_002dLocal">Thread-Local</a></li>
<li><a href="#index-g_t_0040code_007btls_005fmodel_007d-attribute-2580"><code>tls_model</code> attribute</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-TMPDIR-2208"><code>TMPDIR</code></a>: <a href="#Environment-Variables">Environment Variables</a></li>
<li><a href="#index-toascii-3108"><code>toascii</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-tolower-3109"><code>tolower</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-toupper-3110"><code>toupper</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-towlower-3111"><code>towlower</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-towupper-3112"><code>towupper</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-traditional-C-language-116">traditional C language</a>: <a href="#C-Dialect-Options">C Dialect Options</a></li>
<li><a href="#index-trunc-3113"><code>trunc</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-truncf-3114"><code>truncf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-truncl-3115"><code>truncl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-two_002dstage-name-lookup-3330">two-stage name lookup</a>: <a href="#Name-lookup">Name lookup</a></li>
<li><a href="#index-type-alignment-2597">type alignment</a>: <a href="#Alignment">Alignment</a></li>
<li><a href="#index-type-attributes-2591">type attributes</a>: <a href="#Type-Attributes">Type Attributes</a></li>
<li><a href="#index-g_t_0040code_007btype_005finfo_007d-3260"><code>type_info</code></a>: <a href="#Vague-Linkage">Vague Linkage</a></li>
<li><a href="#index-typedef-names-as-function-parameters-3307">typedef names as function parameters</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-typeof-2254"><code>typeof</code></a>: <a href="#Typeof">Typeof</a></li>
<li><a href="#index-g_t_0040code_007bUHK_007d-fixed_002dsuffix-2333"><code>UHK</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007buhk_007d-fixed_002dsuffix-2317"><code>uhk</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bUHR_007d-fixed_002dsuffix-2325"><code>UHR</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007buhr_007d-fixed_002dsuffix-2309"><code>uhr</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bUK_007d-fixed_002dsuffix-2334"><code>UK</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007buk_007d-fixed_002dsuffix-2318"><code>uk</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bULK_007d-fixed_002dsuffix-2335"><code>ULK</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bulk_007d-fixed_002dsuffix-2319"><code>ulk</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bULL_007d-integer-suffix-2274"><code>ULL</code> integer suffix</a>: <a href="#Long-Long">Long Long</a></li>
<li><a href="#index-g_t_0040code_007bULLK_007d-fixed_002dsuffix-2336"><code>ULLK</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bullk_007d-fixed_002dsuffix-2320"><code>ullk</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bULLR_007d-fixed_002dsuffix-2328"><code>ULLR</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bullr_007d-fixed_002dsuffix-2312"><code>ullr</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bULR_007d-fixed_002dsuffix-2327"><code>ULR</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bulr_007d-fixed_002dsuffix-2311"><code>ulr</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-undefined-behavior-3354">undefined behavior</a>: <a href="#Bug-Criteria">Bug Criteria</a></li>
<li><a href="#index-undefined-function-value-3355">undefined function value</a>: <a href="#Bug-Criteria">Bug Criteria</a></li>
<li><a href="#index-underscores-in-variables-in-macros-2257">underscores in variables in macros</a>: <a href="#Typeof">Typeof</a></li>
<li><a href="#index-g_t_0040code_007bunion_007d-3242"><code>union</code></a>: <a href="#Unnamed-Fields">Unnamed Fields</a></li>
<li><a href="#index-union_002c-casting-to-a-2382">union, casting to a</a>: <a href="#Cast-to-Union">Cast to Union</a></li>
<li><a href="#index-unions-3313">unions</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-unknown-pragmas_002c-warning-333">unknown pragmas, warning</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-unresolved-references-and-_0040option_007b_002dnodefaultlibs_007d-980">unresolved references and <samp><span class="option">-nodefaultlibs</span></samp></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-unresolved-references-and-_0040option_007b_002dnostdlib_007d-977">unresolved references and <samp><span class="option">-nostdlib</span></samp></a>: <a href="#Link-Options">Link Options</a></li>
<li><a href="#index-g_t_0040code_007bunused_007d-attribute_002e-2547"><code>unused</code> attribute.</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bUR_007d-fixed_002dsuffix-2326"><code>UR</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007bur_007d-fixed_002dsuffix-2310"><code>ur</code> fixed-suffix</a>: <a href="#Fixed_002dPoint">Fixed-Point</a></li>
<li><a href="#index-g_t_0040code_007buse_005fdebug_005fexception_005freturn_007d-attribute-2440"><code>use_debug_exception_return</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007buse_005fshadow_005fregister_005fset_007d-attribute-2438"><code>use_shadow_register_set</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bused_007d-attribute_002e-2548"><code>used</code> attribute.</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-User-stack-pointer-in-interrupts-on-the-Blackfin-2445">User stack pointer in interrupts on the Blackfin</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040samp_007bV_007d-in-constraint-2630">&lsquo;<samp><span class="samp">V</span></samp>&rsquo; in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-V850-Options-2109">V850 Options</a>: <a href="#V850-Options">V850 Options</a></li>
<li><a href="#index-vague-linkage-3258">vague linkage</a>: <a href="#Vague-Linkage">Vague Linkage</a></li>
<li><a href="#index-value-after-_0040code_007blongjmp_007d-2685">value after <code>longjmp</code></a>: <a href="#Global-Reg-Vars">Global Reg Vars</a></li>
<li><a href="#index-variable-addressability-on-the-IA_002d64-2456">variable addressability on the IA-64</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-variable-addressability-on-the-M32R_002fD-2586">variable addressability on the M32R/D</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-variable-alignment-2598">variable alignment</a>: <a href="#Alignment">Alignment</a></li>
<li><a href="#index-variable-attributes-2568">variable attributes</a>: <a href="#Variable-Attributes">Variable Attributes</a></li>
<li><a href="#index-variable-number-of-arguments-2352">variable number of arguments</a>: <a href="#Variadic-Macros">Variadic Macros</a></li>
<li><a href="#index-variable_002dlength-array-scope-2348">variable-length array scope</a>: <a href="#Variable-Length">Variable Length</a></li>
<li><a href="#index-variable_002dlength-arrays-2344">variable-length arrays</a>: <a href="#Variable-Length">Variable Length</a></li>
<li><a href="#index-variables-in-specified-registers-2677">variables in specified registers</a>: <a href="#Explicit-Reg-Vars">Explicit Reg Vars</a></li>
<li><a href="#index-variables_002c-local_002c-in-macros-2260">variables, local, in macros</a>: <a href="#Typeof">Typeof</a></li>
<li><a href="#index-variadic-macros-2355">variadic macros</a>: <a href="#Variadic-Macros">Variadic Macros</a></li>
<li><a href="#index-VAX-options-2130">VAX options</a>: <a href="#VAX-Options">VAX Options</a></li>
<li><a href="#index-g_t_0040code_007bversion_005fid_007d-attribute-2549"><code>version_id</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-vfprintf-3116"><code>vfprintf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-vfscanf-3117"><code>vfscanf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-g_t_0040code_007bvisibility_007d-attribute-2550"><code>visibility</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-VLAs-2346">VLAs</a>: <a href="#Variable-Length">Variable Length</a></li>
<li><a href="#index-g_t_0040code_007bvliw_007d-attribute-2551"><code>vliw</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-void-pointers_002c-arithmetic-2361">void pointers, arithmetic</a>: <a href="#Pointer-Arith">Pointer Arith</a></li>
<li><a href="#index-void_002c-size-of-pointer-to-2362">void, size of pointer to</a>: <a href="#Pointer-Arith">Pointer Arith</a></li>
<li><a href="#index-volatile-access-3254">volatile access</a>: <a href="#C_002b_002b-Volatiles">C++ Volatiles</a></li>
<li><a href="#index-volatile-access-2615">volatile access</a>: <a href="#Volatiles">Volatiles</a></li>
<li><a href="#index-g_t_0040code_007bvolatile_007d-applied-to-function-2393"><code>volatile</code> applied to function</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-volatile-read-3252">volatile read</a>: <a href="#C_002b_002b-Volatiles">C++ Volatiles</a></li>
<li><a href="#index-volatile-read-2613">volatile read</a>: <a href="#Volatiles">Volatiles</a></li>
<li><a href="#index-volatile-write-3253">volatile write</a>: <a href="#C_002b_002b-Volatiles">C++ Volatiles</a></li>
<li><a href="#index-volatile-write-2614">volatile write</a>: <a href="#Volatiles">Volatiles</a></li>
<li><a href="#index-vprintf-3118"><code>vprintf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-vscanf-3119"><code>vscanf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-vsnprintf-3120"><code>vsnprintf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-vsprintf-3121"><code>vsprintf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-vsscanf-3122"><code>vsscanf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-vtable-3259">vtable</a>: <a href="#Vague-Linkage">Vague Linkage</a></li>
<li><a href="#index-VxWorks-Options-2134">VxWorks Options</a>: <a href="#VxWorks-Options">VxWorks Options</a></li>
<li><a href="#index-g_t_0040code_007bW_007d-floating-point-suffix-2286"><code>W</code> floating point suffix</a>: <a href="#Floating-Types">Floating Types</a></li>
<li><a href="#index-g_t_0040code_007bw_007d-floating-point-suffix-2284"><code>w</code> floating point suffix</a>: <a href="#Floating-Types">Floating Types</a></li>
<li><a href="#index-g_t_0040code_007bwarn_005funused_005fresult_007d-attribute-2552"><code>warn_unused_result</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-warning-for-comparison-of-signed-and-unsigned-values-408">warning for comparison of signed and unsigned values</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-warning-for-overloaded-virtual-function-189">warning for overloaded virtual function</a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-warning-for-reordering-of-member-initializers-177">warning for reordering of member initializers</a>: <a href="#C_002b_002b-Dialect-Options">C++ Dialect Options</a></li>
<li><a href="#index-warning-for-unknown-pragmas-332">warning for unknown pragmas</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-g_t_0040code_007bwarning_007d-function-attribute-2412"><code>warning</code> function attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-warning-messages-231">warning messages</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-warnings-from-system-headers-357">warnings from system headers</a>: <a href="#Warning-Options">Warning Options</a></li>
<li><a href="#index-warnings-vs-errors-3343">warnings vs errors</a>: <a href="#Warnings-and-Errors">Warnings and Errors</a></li>
<li><a href="#index-g_t_0040code_007bweak_007d-attribute-2553"><code>weak</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-g_t_0040code_007bweakref_007d-attribute-2554"><code>weakref</code> attribute</a>: <a href="#Function-Attributes">Function Attributes</a></li>
<li><a href="#index-whitespace-3308">whitespace</a>: <a href="#Incompatibilities">Incompatibilities</a></li>
<li><a href="#index-g_t_0040samp_007bX_007d-in-constraint-2645">&lsquo;<samp><span class="samp">X</span></samp>&rsquo; in constraint</a>: <a href="#Simple-Constraints">Simple Constraints</a></li>
<li><a href="#index-X3_002e159_002d1989-28">X3.159-1989</a>: <a href="#Standards">Standards</a></li>
<li><a href="#index-x86_002d64-options-2141">x86-64 options</a>: <a href="#x86_002d64-Options">x86-64 Options</a></li>
<li><a href="#index-x86_002d64-Options-1328">x86-64 Options</a>: <a href="#i386-and-x86_002d64-Options">i386 and x86-64 Options</a></li>
<li><a href="#index-Xstormy16-Options-2142">Xstormy16 Options</a>: <a href="#Xstormy16-Options">Xstormy16 Options</a></li>
<li><a href="#index-Xtensa-Options-2144">Xtensa Options</a>: <a href="#Xtensa-Options">Xtensa Options</a></li>
<li><a href="#index-y0-3123"><code>y0</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-y0f-3124"><code>y0f</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-y0l-3125"><code>y0l</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-y1-3126"><code>y1</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-y1f-3127"><code>y1f</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-y1l-3128"><code>y1l</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-yn-3129"><code>yn</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ynf-3130"><code>ynf</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-ynl-3131"><code>ynl</code></a>: <a href="#Other-Builtins">Other Builtins</a></li>
<li><a href="#index-zero_002dlength-arrays-2339">zero-length arrays</a>: <a href="#Zero-Length">Zero Length</a></li>
<li><a href="#index-zero_002dsize-structures-2343">zero-size structures</a>: <a href="#Empty-Structures">Empty Structures</a></li>
<li><a href="#index-zSeries-options-2158">zSeries options</a>: <a href="#zSeries-Options">zSeries Options</a></li>
 </ul><!--  -->
<!-- Epilogue -->
<!--  -->
<div class="footnote">
<hr>
<a name="texinfo-footnotes-in-document"></a><h4>Footnotes</h4><p class="footnote"><small>[<a name="fn-1" href="#fnd-1">1</a>]</small> On some systems, &lsquo;<samp><span class="samp">gcc -shared</span></samp>&rsquo;
needs to build supplementary stub code for constructors to work.  On
multi-libbed systems, &lsquo;<samp><span class="samp">gcc -shared</span></samp>&rsquo; must select the correct support
libraries to link against.  Failing to supply the correct flags may lead
to subtle defects.  Supplying them in cases where they are not necessary
is innocuous.</p>

 <p class="footnote"><small>[<a name="fn-2" href="#fnd-2">2</a>]</small> Future versions of GCC may zero-extend, or use
a target-defined <code>ptr_extend</code> pattern.  Do not rely on sign extension.</p>

 <p class="footnote"><small>[<a name="fn-3" href="#fnd-3">3</a>]</small> The analogous feature in
Fortran is called an assigned goto, but that name seems inappropriate in
C, where one can do more than simply store label addresses in label
variables.</p>

 <p class="footnote"><small>[<a name="fn-4" href="#fnd-4">4</a>]</small> A file's <dfn>basename</dfn>
was the name stripped of all leading path information and of trailing
suffixes, such as &lsquo;<samp><span class="samp">.h</span></samp>&rsquo; or &lsquo;<samp><span class="samp">.C</span></samp>&rsquo; or &lsquo;<samp><span class="samp">.cc</span></samp>&rsquo;.</p>

 <p class="footnote"><small>[<a name="fn-5" href="#fnd-5">5</a>]</small> The C++ standard just uses the
term &ldquo;dependent&rdquo; for names that depend on the type or value of
template parameters.  This shorter term will also be used in the rest of
this section.</p>

 <hr></div>

</body></html>