/usr/share/slsh/profile.sl is in slsh 2.3.1a-3ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 | % Copyright (C) 2012-2016 John E. Davis
%
% This file is part of the S-Lang Library and may be distributed under the
% terms of the GNU General Public License. See the file COPYING for
% more information.
%---------------------------------------------------------------------------
% See the slprof script for an example of using the profiler.
%
_boseos_info=0;
_bofeof_info=0;
%public variable __DEBUG_PROFILE_;
% For lines
private variable Profile_Info_Type = struct
{
name, % (bos/eof)
num_called, % (bos/bof) num times line called
num_s_triggered, % (eof/eof) num child statements
num_f_triggered, % (eof/eof) num functions triggered
num_self_f, % (eos/) num functions directly called
num_self_s, % num statements directly called
self_time, % (eos/eof)
cum_time, % (eos/eof)
};
Profile_Info_Type.num_called = 0;
Profile_Info_Type.num_s_triggered = 0;
Profile_Info_Type.num_f_triggered = 0;
Profile_Info_Type.num_self_f = 0;
Profile_Info_Type.num_self_s = 0;
Profile_Info_Type.self_time = 0.0;
Profile_Info_Type.cum_time = 0.0;
private variable L_Info_Table;
private variable F_Info_Table;
private define convert_profile_info_to_array (p)
{
variable keys = assoc_get_keys (p);
variable i, n = length (p);
% Filter out the bad entries
_for i (0, n-1, 1)
{
if (keys[i] == "") % Dummy
assoc_delete_key (p, keys[i]);
}
n = length (p);
keys = assoc_get_keys (p);
variable s = @Profile_Info_Type;
s.num_called = Int_Type[n];
s.num_s_triggered = Int_Type[n];
s.num_f_triggered = Int_Type[n];
s.num_self_f = Int_Type[n];
s.num_self_s = Int_Type[n];
s.self_time = Double_Type[n];
s.cum_time = Double_Type[n];
s.name = keys;
variable vals = assoc_get_values (p);
_for i (0, n-1, 1)
{
variable v = vals[i];
s.num_called[i] = v.num_called;
s.num_s_triggered[i] = v.num_s_triggered;
s.num_f_triggered[i] = v.num_f_triggered;
s.num_self_f[i] = v.num_self_f;
s.num_self_s[i] = v.num_self_s;
s.self_time[i] = v.self_time;
s.cum_time[i] = v.cum_time;
}
return s;
}
private define new_l_info (name)
{
variable l = @Profile_Info_Type;
L_Info_Table[name] = l;
l.name = name;
return l;
}
private define new_f_info (name)
{
variable finfo = @Profile_Info_Type;
F_Info_Table[name] = finfo;
finfo.name = name;
return finfo;
}
private variable Function_Stack_Type = struct
{
f_info,
s_counter,
f_counter,
self_s_counter,
self_time,
cum_time,
};
private variable Function_Stack;
private variable Line_Stack_Type = struct
{
l_info,
s_counter,
f_counter,
self_f_counter,
self_time,
cum_time,
};
private variable Line_Stack;
private variable L_Info;
private variable L_S_Counter; % bos/eof
private variable L_F_Counter; % bos/eof
private variable L_Self_Time; % bof/eof
private variable L_Cum_Time; % bof/eof
private variable F_Info;
private variable F_S_Counter; % bof
private variable F_F_Counter; % bof
private variable F_Self_S; % bos
private variable F_Self_Time; % bos/eos
private variable F_Cum_Time; % bos/eos
private variable Num_Statement_Counts;
private variable Num_Fun_Calls;
private variable Tstart;
private variable Null_Struct = struct {dummy};
private variable BOS_Depth;
private variable BOS_Stack_Depth;
private define push_line_info ()
{
variable s = @Line_Stack_Type;
s.l_info = L_Info;
s.s_counter = L_S_Counter;
s.f_counter = L_F_Counter;
s.self_time = L_Self_Time;
s.cum_time = L_Cum_Time;
list_append (Line_Stack, s);
BOS_Stack_Depth++;
}
private define pop_line_info ()
{
variable s = list_pop (Line_Stack, -1);
L_Info = s.l_info;
L_Self_Time = s.self_time;
L_Cum_Time = s.cum_time;
L_Info.num_self_f++;
L_Info.num_s_triggered += (Num_Statement_Counts - s.s_counter);
L_Info.num_f_triggered += (Num_Fun_Calls - s.f_counter);
L_F_Counter = Num_Fun_Calls;
L_S_Counter = Num_Statement_Counts;
BOS_Stack_Depth--;
}
% This variable tracks sequential calls to the BOS and EOS handlers
% This can happen when profiled code calls non-profiled, which calls
% profiled.
private variable Last_Was_BOS_EOS = 0;
private variable Dummy_L_Info;
private define bos_handler (file, line)
{
variable dt = toc() - Tstart;
F_Cum_Time += dt;
F_Self_Time += dt;
F_Self_S++;
if (BOS_Depth >= BOS_Stack_Depth)
{
#ifexists __DEBUG_PROFILE_
%vmessage ("# bos pushing (%d,%d)", BOS_Depth,BOS_Stack_Depth);
#endif
L_Cum_Time += dt;
L_Self_Time += dt;
push_line_info ();
}
BOS_Depth = BOS_Stack_Depth;
Num_Statement_Counts++;
file = sprintf ("%s:%d", file, line);
variable l = L_Info_Table[file];
if (l == Null_Struct)
l = new_l_info (file);
l.num_called++;
L_Info = l;
L_S_Counter = Num_Statement_Counts;
L_F_Counter = Num_Fun_Calls;
L_Self_Time = 0.0;
L_Cum_Time = 0.0;
#ifexists __DEBUG_PROFILE_
vmessage ("BOS: (%d, %d) %S", BOS_Depth, BOS_Stack_Depth, file);
#endif
Tstart = toc ();
}
private define eos_handler ()
{
variable dt = toc()-Tstart;
if (BOS_Depth < BOS_Stack_Depth)
{
#ifexists __DEBUG_PROFILE_
%vmessage ("# eos popping (%d,%d)", BOS_Depth,BOS_Stack_Depth);
#endif
pop_line_info ();
}
BOS_Depth--;
L_Self_Time += dt;
L_Cum_Time += dt;
F_Cum_Time += L_Cum_Time;
F_Self_Time += L_Self_Time;
L_Info.self_time += L_Self_Time;
L_Info.cum_time += L_Cum_Time;
#ifexists __DEBUG_PROFILE_
vmessage ("EOS: (%d,%d) %S", BOS_Depth, BOS_Stack_Depth, L_Info.name);
#endif
% This is necessary if a BOF/EOF sequence follows to avoid another
% push/pop of this object since
if (Last_Was_BOS_EOS == -1)
L_Info = Dummy_L_Info;
Last_Was_BOS_EOS = -1;
Tstart = toc();
}
private define bof_handler (fun, file)
{
variable dt = toc () - Tstart;
Num_Fun_Calls++;
#ifexists __DEBUG_PROFILE_
%vmessage ("# bof pushing (%d,%d)", BOS_Depth,BOS_Stack_Depth);
#endif
L_Self_Time += dt;
L_Cum_Time += dt;
push_line_info ();
%BOS_Stack_Depth++;
variable f = @Function_Stack_Type;
f.f_info = F_Info;
f.s_counter = F_S_Counter;
f.f_counter = F_F_Counter;
f.self_time = F_Self_Time;
f.self_s_counter = F_Self_S;
f.cum_time = F_Cum_Time;
list_append (Function_Stack, f);
file = sprintf ("%S:%S", fun, file);
variable f_info = F_Info_Table[file];
if (f_info == Null_Struct)
f_info = new_f_info (file);
f_info.num_called++;
F_Info = f_info;
F_S_Counter = Num_Statement_Counts;
F_F_Counter = Num_Fun_Calls;
F_Cum_Time = 0.0;
F_Self_Time = 0.0;
F_Self_S = 0;
#ifexists __DEBUG_PROFILE_
vmessage ("BOF: (%d,%d) %S", BOS_Depth, BOS_Stack_Depth, file);
#endif
Tstart = toc ();
}
private define eof_handler ()
{
variable dt = toc() - Tstart;
#ifexists __DEBUG_PROFILE_
%vmessage ("# eof popping (%d,%d)", BOS_Depth,BOS_Stack_Depth);
#endif
F_Cum_Time += dt;
F_Self_Time += dt;
F_Info.cum_time += F_Cum_Time;
F_Info.self_time += F_Self_Time;
F_Info.num_s_triggered += (Num_Statement_Counts - F_S_Counter);
F_Info.num_f_triggered += (Num_Fun_Calls - F_F_Counter);
F_Info.num_self_s += F_Self_S;
pop_line_info ();
% Add on time spent in the function to this line's value
L_Cum_Time += F_Cum_Time;
#ifexists __DEBUG_PROFILE_
vmessage ("EOF: (%d,%d) %S", BOS_Depth, BOS_Stack_Depth, F_Info.name);
#endif
variable f = list_pop (Function_Stack, -1);
F_Info = f.f_info;
F_Info.num_self_f++;
F_S_Counter = f.s_counter;
F_F_Counter = f.f_counter;
F_Self_Time = f.self_time;
F_Self_S = f.self_s_counter;
F_Cum_Time = f.cum_time;
%F_Cum_Time += dt;
%F_Self_Time += dt;
Tstart = toc();
}
% In function-only mode, lines are not profiled. The self-time of the
% function is its cumulative time minus the cumulative times of the
% functions that it directly calls. The F_Self_Time variable will
% track those.
private define f_bof_handler (fun, file)
{
variable dt = toc () - Tstart;
Num_Fun_Calls++;
variable f = @Function_Stack_Type;
f.f_info = F_Info;
f.f_counter = F_F_Counter;
f.self_time = F_Self_Time;
f.cum_time = F_Cum_Time + dt;
list_append (Function_Stack, f);
file = sprintf ("%S:%S", fun, file);
variable f_info = F_Info_Table[file];
if (f_info == Null_Struct)
f_info = new_f_info (file);
f_info.num_called++;
F_Info = f_info;
F_F_Counter = Num_Fun_Calls;
F_Cum_Time = 0.0;
F_Self_Time = 0.0;
Tstart = toc ();
}
private define f_eof_handler ()
{
variable dt = toc() - Tstart;
F_Cum_Time += dt;
F_Info.cum_time += F_Cum_Time;
F_Info.self_time += (F_Cum_Time - F_Self_Time);
F_Info.num_f_triggered += (Num_Fun_Calls - F_F_Counter);
variable f = list_pop (Function_Stack, -1);
F_Info = f.f_info;
F_Info.num_self_f++;
F_F_Counter = f.f_counter;
F_Self_Time = f.self_time + F_Cum_Time;
F_Cum_Time += f.cum_time;
Tstart = toc();
}
% Usage: profile_on (do_line_profile)
define profile_on ()
{
_boseos_info = 0;
_bofeof_info = 1;
if (_NARGS)
{
variable arg = ();
if (arg)
_boseos_info = 3;
}
}
define profile_off ()
{
_boseos_info = 0;
_bofeof_info = 0;
}
private define setup_profiler_variables ()
{
L_Info_Table = Assoc_Type[Struct_Type, Null_Struct];
F_Info_Table = Assoc_Type[Struct_Type, Null_Struct];
Line_Stack = {};
Function_Stack = {};
Dummy_L_Info = new_l_info ("");
L_Info = Dummy_L_Info;
L_S_Counter = 0;
L_F_Counter = 0;
L_Self_Time = 0;
L_Cum_Time = 0;
F_Info = new_f_info ("");
F_S_Counter = 0;
F_F_Counter = 0;
F_Self_Time = 0;
F_Self_S = 0;
F_Cum_Time = 0;
Tstart = 0;
Num_Statement_Counts = 0;
Num_Fun_Calls = 0;
BOS_Stack_Depth=0;
BOS_Depth=0;
}
define profile_begin ()
{
variable arg = 0;
if (_NARGS)
arg = ();
if (arg)
{
()=_set_bos_handler (&bos_handler);
()=_set_eos_handler (&eos_handler);
()=_set_bof_handler (&bof_handler);
()=_set_eof_handler (&eof_handler);
}
else
{
()=_set_bos_handler (NULL);
()=_set_eos_handler (NULL);
()=_set_bof_handler (&f_bof_handler);
()=_set_eof_handler (&f_eof_handler);
}
setup_profiler_variables ();
profile_on (arg);
tic ();
}
define profile_end ()
{
()=_set_bos_handler (NULL);
()=_set_eos_handler (NULL);
()=_set_bof_handler (NULL);
()=_set_eof_handler (NULL);
profile_off ();
}
% Calibration Notes:
%
% If the execution of a statememt causes M other statements to
% execute and N function calls, then the amount of profiler overhead
% is given by
%
% N*dF + M*dS
%
% where dF is the amount of overhead per function call for running
% the bof/eof-handlers, and dS is the overhead per statement in
% running the bos/eos-handlers.
%
% The timers used to measure the amount of time spent in a function
% or statement are stopped when a handler is called, and started
% again when the handler returns. This introduces systematic error
% in the measurements. Call dt_S the systematic error introduced by
% bos/eos handlers and dt_F systematic error from the bof/eof handlers.
% Then the observed time as given by the interval times is related to
% the "true" time t via
%
% t_obs = t + N*dt_F + M*dt_S + dt_S
%
% The self-time of the statement t_self is determined through an
% interval timer that stops when a function is called, and starts
% again after the function returns. If the statement makes N_self
% direct function calls, then t_self is related to its observed
% self-time t_self_obs by
%
% t_self_obs = t_self + N_self*dt_F + dt_S
%
% The self-time of a function is the sum of the self-times of the
% individual statements that were executed directly by the function.
% Suppose the function executes M_self statements that in turn
% directly call a total of N_self functions. Then, for functions it
% follows that:
%
% t_self_obs_f = t_self_f + N_self*dt_F + M_self*dt_S + dt_F
%
% where the last term accounts for the overhead of the bof/eof
% handler for the function itself.
%
% ----------------------------------------------------------------
%
% The values dF, dS, dt_S, and dt_F can be determined as follows:
%
% With no handlers in place, t can be accurately measured and can be
% considered t be a known quantity. Suppose the statement has no
% function calls and let that statement be executed a very large
% number of times B with handlers in place. Then the elapsed time
% t_elapsed as given by the wallclock will be given by
%
% t_elapsed = B*(t+dS) ===> dS = (t_elapsed - B*t)/B
%
% The total measured or observed time t_obs, as given by the
% profiler's starting and stopping of the clock upon each execution
% will be given by
%
% t_obs = B*(t+dt_S) ===> dt_S = (t_obs - B*t)/B
%
% If the statement is just a function call to a function that does
% nothing, then
%
% t_elapsed = B*(t + dS + dF)
%
% Using the prior determination of dS, we obtain
%
% dF = t_elapsed/B - t - dS
%
% For just a single function call with no arguments, the self-time is
% defined to be 0. So:
%
% t_self_obs = 0 + 1*dt_F + dt_S ==> dt_F = t_self_obs-dt_S
%
private variable Overhead_Per_Statement = 0.0; % dS
private variable Error_Per_Statement = 0.0; % dt_S
private variable Overhead_Per_Function = 0.0; % dF
private variable Error_Per_Function = 0.0; % dt_F
profile_off ();
private define cal_nop_0 ();
private define cal_f_0 (n)
{
loop (n)
{
cal_nop_0(); cal_nop_0(); cal_nop_0(); cal_nop_0(); cal_nop_0();
cal_nop_0(); cal_nop_0(); cal_nop_0(); cal_nop_0(); cal_nop_0();
cal_nop_0(); cal_nop_0(); cal_nop_0(); cal_nop_0(); cal_nop_0();
cal_nop_0(); cal_nop_0(); cal_nop_0(); cal_nop_0(); cal_nop_0();
}
}
private define cal_s_0 (n)
{
loop (n)
{
() = 1; () = 1; () = 1; () = 1; () = 1;
() = 1; () = 1; () = 1; () = 1; () = 1;
() = 1; () = 1; () = 1; () = 1; () = 1;
() = 1; () = 1; () = 1; () = 1; () = 1;
}
}
profile_on (1);
private define cal_nop_1 ();
private define cal_f_1 (n)
{
loop (n)
{
cal_nop_1(); cal_nop_1(); cal_nop_1(); cal_nop_1(); cal_nop_1();
cal_nop_1(); cal_nop_1(); cal_nop_1(); cal_nop_1(); cal_nop_1();
cal_nop_1(); cal_nop_1(); cal_nop_1(); cal_nop_1(); cal_nop_1();
cal_nop_1(); cal_nop_1(); cal_nop_1(); cal_nop_1(); cal_nop_1();
}
}
private define cal_s_1 (n)
{
loop (n)
{
() = 1; () = 1; () = 1; () = 1; () = 1;
() = 1; () = 1; () = 1; () = 1; () = 1;
() = 1; () = 1; () = 1; () = 1; () = 1;
() = 1; () = 1; () = 1; () = 1; () = 1;
}
}
profile_off ();
#ifnexists sum
private define sum (x)
{
variable s = 0.0;
foreach (x) s += ();
return s;
}
#endif
define profile_calibrate ()
{
#ifexists __DEBUG_PROFILE_
return;
#endif
if (_NARGS == 0) 1000;
variable n1 = ();
variable n0 = 100*n1;
tic();
cal_s_0 (n0);
variable t0 = toc;
variable t_expected = ((t0*n1)/n0); % when done n1 times
profile_begin (1);
tic ();
cal_s_1 (n1);
variable t_elapsed = toc ();
profile_end ();
variable s = convert_profile_info_to_array (L_Info_Table);
variable num = sum (s.num_called);
variable t_obs = sum(s.cum_time);
Error_Per_Statement = (t_obs - t_expected)/num;
Overhead_Per_Statement = (t_elapsed-t_expected)/num;
% Now calibrate the function call overhead
tic();
cal_f_0(n0);
t0 = toc;
t_expected = ((t0*n1)/n0); % when done n1 times
profile_begin (1);
tic ();
cal_f_1 (n1);
t_elapsed = toc ();
profile_end ();
%variable f = convert_func_info_to_array ();
s = convert_profile_info_to_array (L_Info_Table);
num = sum (s.num_called);
Overhead_Per_Function = (t_elapsed - t_expected)/num - Overhead_Per_Statement;
t_obs = sum(s.self_time);
Error_Per_Function = t_obs/num - Error_Per_Statement;
if (Error_Per_Function < 0)
Error_Per_Function = 0.0;
}
private define profile_report_lines (fp, s)
{
s.cum_time -= (Error_Per_Statement * (s.num_called + s.num_s_triggered)
+ s.num_f_triggered * Error_Per_Function);
s.self_time -= (Error_Per_Statement * s.num_called
+ s.num_self_f * Error_Per_Function);
variable rates = s.cum_time/s.num_called;
variable i = array_sort (s.self_time);
%variable i = array_sort (s.cum_time);
array_reverse (i);
rates = rates[i];
variable num_called = s.num_called[i];
variable self_time = s.self_time[i];
variable cum_time = s.cum_time[i];
variable num_self_f = s.num_self_f[i];
variable num_s_triggered = s.num_s_triggered[i];
variable num_f_triggered = s.num_f_triggered[i];
variable name = s.name[i];
#iffalse
variable total_counts = sum(num_called);
variable total_calls = sum(num_self_f);
() = fprintf (fp, "#Number of profiled statements executed: %g\n", total_counts);
() = fprintf (fp, "#Number of profiled function calls: %g\n", total_calls);
() = fprintf (fp, "#Profiler Overhead per statement: %g ms\n", Overhead_Per_Statement*1e3);
() = fprintf (fp, "#Profiler Overhead per function : %g ms\n", Overhead_Per_Function*1e3);
() = fprintf (fp, "#Profiler Error per statement : %g ms\n", Error_Per_Statement*1e3);
() = fprintf (fp, "#Profiler Error per function : %g ms\n", Error_Per_Function*1e3);
() = fprintf (fp, "#Total Profiler Overhead: %g secs\n",
total_counts * Overhead_Per_Statement + total_calls*Overhead_Per_Function);
() = fprintf (fp, "\n\n");
#endif
() = fprintf (fp, "#ncalls ms/call totalselfms totalsecs Fcalls Scalls File:line\n");
% 1234567 1234567890AB 1234567890AB 1234567890AB 1234567 1234567
_for i (0, length(rates)-1, 1)
{
() = fprintf (fp, "%7d %12.5f %12.5f %12.5f %7d %7d %s\n",
num_called[i], rates[i]*1e3, self_time[i]*1e3,
cum_time[i], num_f_triggered[i], num_s_triggered[i], name[i]);
}
}
private define profile_report_funcs (fp, s)
{
#ifnfalse
s.cum_time -= (Error_Per_Statement * s.num_s_triggered
+ s.num_f_triggered * Error_Per_Function);
s.self_time -= (Error_Per_Statement * s.num_self_s
+ s.num_self_f * Error_Per_Function);
#endif
variable rates = s.cum_time/s.num_called;
variable i = array_sort (s.self_time);
%variable i = array_sort (s.cum_time);
array_reverse (i);
rates = rates[i];
variable num_called = s.num_called[i];
variable self_time = s.self_time[i];
variable cum_time = s.cum_time[i];
variable num_self_f = s.num_self_f[i];
variable num_self_s = s.num_self_s[i];
variable num_s_triggered = s.num_s_triggered[i];
variable num_f_triggered = s.num_f_triggered[i];
variable name = s.name[i];
() = fprintf (fp, "#function ncalls ms/call totalselfms totalsecs Function File\n");
% 123456789012345678901234 1234567 1234567890AB 1234567890AB 1234567890AB
_for i (0, length(rates)-1, 1)
{
variable func_file = name[i];
variable j = is_substr (func_file, ":");
variable func = substr (func_file, 1, j-1);
variable file = substr (func_file, j+1, -1);
() = fprintf (fp, "%-24s %7d %12.4f %12.4f %12.4f %7d %7d %s\n",
func,
num_called[i], rates[i]*1e3, self_time[i]*1e3,
cum_time[i], num_self_f[i], num_self_s[i],
file
);
}
}
private define output_title (fp, title)
{
variable s = "----------------------------------------------------------------";
variable spaces = "";
loop ((strlen(s) - strlen(title))/2)
spaces = strcat (spaces, " ");
() = fprintf (fp, "\n#%s\n#%s%s\n#%s\n\n", s, spaces, title, s);;
}
define profile_report (file)
{
if (0 == __is_initialized (&L_Info_Table))
return;
variable fp = file;
if (typeof (file) == String_Type)
fp = fopen (fp, "w");
variable f = convert_profile_info_to_array (F_Info_Table);
if (length (f.cum_time))
{
output_title (fp, "Function Call Profile Report");
profile_report_funcs (fp, f);
}
variable s = convert_profile_info_to_array (L_Info_Table);
if (length (s.cum_time))
{
output_title (fp, "Line by Line Profile Report");
profile_report_lines (fp, s);
}
ifnot (_eqs (fp,file))
() = fclose (fp);
}
provide ("profile");
|