This file is indexed.

/usr/share/slsh/local-packages/xfig/ellipse.sl is in slang-xfig 0.2.0~.117-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
private define render_ellipse_to_fp (e, fp)
{
   ifnot (_xfig_render_depth (e;; __qualifiers))
     return;
   variable x, y;
   (x,y) = xfig_project_to_xfig_plane (e.X);
   variable center_x = x[0];
   variable center_y = y[0];
   x -= center_x; y -= center_y;
   variable a_x = x[1], b_x = x[2], a_y = y[1], b_y = y[2];
   variable a = sqrt (a_x^2 + a_y^2);
   variable b = sqrt (b_x^2 + b_y^2);

   % Make a the major axis, and b the minor
   if (b > a)
     (a, a_x, a_y, b, b_x, b_y) = (b, b_x, b_y, a, a_x, a_y);

   if (a == 0)
     return;

   variable angle = -atan2(a_y, a_x);  % Note XFig's sign convention!

   if (b != 0)
     {
	variable cos_theta = (a_x*b_x+a_y*b_y)/(a*b);
        if(cos_theta != 0)
	  {
	     variable denom = 1.0 - (b/a*cos_theta)^2;
	     if (denom != 0)
	       b *= sqrt ((1-cos_theta*cos_theta)/denom);
	  }
     }
   xfig_vwrite (fp, "%d %d %d %d %d %d %d %d %d %g %d ",
		e.object_code, e.sub_type, e.line_style, e.thickness,
		e.pen_color, e.fill_color, e.depth, e.pen_style, e.area_fill,
		e.style_val, e.direction);

   a_x = xfig_convert_units (center_x + a_x);
   a_y = xfig_convert_units (center_y + a_y);
   center_x = xfig_convert_units (center_x);
   center_y = xfig_convert_units (center_y);
   a = xfig_convert_units (a);
   b = xfig_convert_units (b);

   xfig_vwrite (fp, "%g %g %g %g %g %g %g %g %g\n",
		angle, center_x, center_y, a, b,
		center_x, center_y,  % ("the 1st point entered")
		a_x, a_y);           % ("the last point entered") -> used in XFig to select ellipse
}

private define rotate_ellipse ()
%!%+
%\function{xfig_ellipse.rotate}
%\usage{xfig_ellipse.rotate([Vector_Type axis,] Double_Type theta);}
%\description
%  If no \exmp{axis} is given, the ellipse is rotated
%  in the x-y-plane around \exmp{axis = vector(0,0,1)}.
%
%  The rotation angle \exmp{theta} is measured in radians.
%!%-
{
   variable e, axis, theta;
   switch(_NARGS)
   { case 2: (e, theta) = (); axis = vector(0,0,1); }
   { case 3: (e, axis, theta) = (); }
   { % else:
       usage("xfig_ellipse.rotate ([axis,] theta);");
   }
   e.X = vector_rotate (e.X, axis, theta);
}

private define translate_ellipse (e, dX)
{
   e.X = vector_sum (e.X, dX);
}

private define scale_ellipse ()
{
   if (_xfig_check_help (_NARGS, "<xfig_object>.scale";; __qualifiers)) return;

   variable e, sx, sy, sz;
   (e, sx, sy, sz) = _xfig_get_scale_args (_NARGS);
   variable X = e.X;

   % The following code assumes an ellipse in the x-y-plane,
   % seen from the z-direction.

   % Note that for sx != sy,
   % the vectors that specify major and minor axes of the scaled ellipse
   % differ from the scaled vectors specifying these axes of the previous ellipse.
   % They therefore have to be recalculated.
   variable center_x = X.x[0];
   variable center_y = X.y[0];
   variable x = X.x - center_x;
   variable y = X.y - center_y;
   variable a_x = x[1], b_x = x[2], a_y = y[1], b_y = y[2];
   variable a = sqrt (a_x^2 + a_y^2);
   variable b = sqrt (b_x^2 + b_y^2);
   variable angle = atan2(a_y, a_x);  % angle in SLxfig coordinates, unlike XFig convention
   % parameterization of the scaled ellipse:
   % x(t) = sx * ( cos(angle) * a*cos(t)  -  sin(angle) * b*sin(t) )
   % y(t) = sy * ( sin(angle) * a*cos(t)  +  cos(angle) * b*sin(t) )
   % r^2(t) = x(t)^2 + y(t)^2
   % d(r^2)/dt(T)  =!=  0
   variable T = atan2( a*b*(sy^2-sx^2)*sin(2*angle),
		      (a^2*sx^2 - b^2*sy^2)*cos(angle)^2 + (a^2*sy^2 - b^2*sx^2)*sin(angle)^2
		     ) * 0.5 + [0, PI/2];  % One gives the maximal r^2, the other the minimal r^2.
   variable i;
   _for i (1, 2, 1)
   {
     variable t = T[i-1];
     X.x[i] = center_x  +  cos(angle) * a*cos(t)  -  sin(angle) * b*sin(t);  % scaling by sx applied afterwards
     X.y[i] = center_y  +  sin(angle) * a*cos(t)  +  cos(angle) * b*sin(t);  % scaling by sy applied afterwards
   }

   X.x *= sx;
   X.y *= sy;
   X.z *= sz;
}

private define get_bbox_ellipse (e)
{
   variable X = e.X;

   % The following code assumes an ellipse in the x-y-plane,
   % seen from the z-direction.
   variable center_x = X.x[0];
   variable center_y = X.y[0];
   variable x = X.x - center_x;
   variable y = X.y - center_y;
   variable a_x = x[1], b_x = x[2], a_y = y[1], b_y = y[2];
   variable a = sqrt (a_x^2 + a_y^2);
   variable b = sqrt (b_x^2 + b_y^2);

   variable angle = atan2(a_y, a_x);
   % x(t) = cos(angle) * a*cos(t)  -  sin(angle) * b*sin(t)
   % y(t) = sin(angle) * a*cos(t)  +  cos(angle) * b*sin(t)
   variable tx = atan2(-b*sin(angle), a*cos(angle));  % => dx/dt(tx) = 0
   variable ty = atan2( b*cos(angle), a*sin(angle));  % => dy/dt(ty) = 0
   variable x_tx = a*cos(angle)*cos(tx) - b*sin(angle)*sin(tx);
   variable y_ty = a*sin(angle)*cos(ty) + b*cos(angle)*sin(ty);
   x = [X.x, center_x + x_tx, center_x - x_tx];
   y = [X.y, center_y + y_ty, center_y - y_ty];

   return min(x), max(x), min(y), max(y), min(X.z), max(X.z);
}

private define set_depth (obj, depth)
{
   obj.depth = depth;
}

private define set_pen_color (obj, pc)
{
   obj.pen_color = xfig_lookup_color (pc);
}

private define set_thickness (obj, th)
{
   obj.thickness = th;
}

private define set_line_style (obj, ls)
{
   obj.line_style = ls;
}

private define set_area_fill (obj, af)
{
   obj.area_fill = af;
}

private define set_fill_color (obj, fc)
{
   obj.fill_color = xfig_lookup_color(fc);
}

define xfig_new_ellipse () %{{{
%!%+
%\function{xfig_new_ellipse}
%\synopsis{Create a new ellipse object}
%\usage{XFig_Ellipse_Type xfig_create_ellipse (Double_Type a [, b])}
%\qualifiers
%\qualifier{line}{line style}{0}
%\qualifier{width}{line width}{1}
%\qualifier{color}{line color}{-1}
%\qualifier{fillcolor}{}{-1}
%\qualifier{areafill}{darkness or pattern}{-1 or 20, depending on \exmp{fillcolor}}
%\qualifier{depth}{XFig depth}{50}
%\qualifier{x0}{x-position}{0}
%\qualifier{y0}{y-position}{0}
%\qualifier{z0}{z-position}{0}
%!%-
{
   if (_xfig_check_help (_NARGS, _function_name;; __qualifiers)) return;

   variable a, b;
   switch(_NARGS)
   { case 1: a = (); b = a; }
   { case 2: (a, b) = (); }
   { % else:
       usage("xfig_new_ellipse (a [, b])");
   }

   variable obj = xfig_new_object (struct {
     object_code = 1, % int (always 1)
     sub_type = 1,    % int (1: ellipse defined by radii
                      %      2: ellipse defined by diameters
                      %      3: circle defined by radius
                      %      4: circle defined by diameter)
     line_style       % int (enumeration type)
       = qualifier ("line", 0),
     thickness        % int (1/80 inch)
       = qualifier ("width", 1),
     pen_color        % int (enumeration type, pen color)
       = qualifier_exists ("color")
         ? xfig_lookup_color (qualifier ("color"))
         : -1,
     fill_color       % int (enumeration type, fill color)
       = qualifier_exists ("fillcolor")
         ? xfig_lookup_color (qualifier ("fillcolor"))
         : -1,
     depth            % int (enumeration type)
       = qualifier ("depth", 50),
     pen_style = -1,  % int (pen style, not used)
     area_fill        % int (enumeration type, -1 = no fill)
       = qualifier ("areafill", qualifier_exists ("fillcolor") ? 20 : -1),
     style_val = 1.,  % float (1/80 inch)
     direction = 1,   % int (always 1)

     % The shape of the ellipse can be described by
     % 3 points that specify the center, major, and minor axes.
     X = vector (qualifier ("x0", 0) + [0,a,0],
		 qualifier ("y0", 0) + [0,0,b],
		 qualifier ("z0", 0) + [0,0,0])
   });

   obj.render_to_fp = &render_ellipse_to_fp;
   obj.set_depth = &set_depth;
   obj.rotate = &rotate_ellipse;
   obj.translate = &translate_ellipse;
   obj.scale = &scale_ellipse;
   obj.get_bbox = &get_bbox_ellipse;
   obj.set_thickness = &set_thickness;
   obj.set_pen_color = &set_pen_color;
   obj.set_line_style = &set_line_style;
   obj.set_area_fill = &set_area_fill;
   obj.set_fill_color = &set_fill_color;
   return obj;
} %}}}