This file is indexed.

/usr/share/octave/packages/nan-3.1.4/corrcoef.m is in octave-nan 3.1.4-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
function [R,sig,ci1,ci2,nan_sig] = corrcoef(X,Y,varargin)
% CORRCOEF calculates the correlation matrix from pairwise correlations.
%   The input data can contain missing values encoded with NaN.
%   Missing data (NaN's) are handled by pairwise deletion [15]. 
%   In order to avoid possible pitfalls, use case-wise deletion or 
%   or check the correlation of NaN's with your data (see below). 
%   A significance test for testing the Hypothesis  
%   'correlation coefficient R is significantly different to zero' 
%   is included. 
%
% [...] = CORRCOEF(X);
%      calculates the (auto-)correlation matrix of X
% [...] = CORRCOEF(X,Y);
%      calculates the crosscorrelation between X and Y
%      NOTE: matlab's CORRCOEF(X,Y) returns the result of CORRCOEF([X,Y])
%            use CORRCOEF([X,Y]) if your software should be compatible with both.
%
% [...] = CORRCOEF(..., Mode);
%       Mode='Pearson' or 'parametric' [default]
%               gives the correlation coefficient  
%               also known as the 'product-moment coefficient of correlation' 
%               or 'Pearson''s correlation' [1]
%       Mode='Spearman' 	gives 'Spearman''s Rank Correlation Coefficient'
%               This replaces SPEARMAN.M
%       Mode='Rank' 		gives a nonparametric Rank Correlation Coefficient
%               This is the "Spearman rank correlation with proper handling of ties"
%               This replaces RANKCORR.M
%
% [...] = CORRCOEF(..., param1, value1, param2, value2, ... );
%	param 		value
%	'Mode'		type of correlation 
%		'Pearson','parametric'
%		'Spearman'
%		'rank'
%	'rows'		how do deal with missing values encoded as NaN's. 	
%		'complete': remove all rows with at least one NaN
%		'pairwise': [default]
%	'alpha'		0.01	: significance level to compute confidence interval
%
% [R,p,ci1,ci2,nan_sig] = CORRCOEF(...);
% 	R is the correlation matrix
%	R(i,j) is the correlation coefficient r between X(:,i) and Y(:,j)
%  p    gives the significance of R
%	It tests the null hypothesis that the product moment correlation coefficient is zero 
%       using Student's t-test on the statistic t = r*sqrt(N-2)/sqrt(1-r^2) 
%       where N is the number of samples (Statistics, M. Spiegel, Schaum series).
%  p > alpha: do not reject the Null hypothesis: 'R is zero'.
%  p < alpha: The alternative hypothesis 'R is larger than zero' is true with probability (1-alpha).
%  ci1	lower (1-alpha) confidence interval 
%  ci2	upper (1-alpha) confidence interval
%	If no alpha is provided, the default alpha is 0.01. This can be changed with function flag_implicit_significance. 
%  nan_sig 	p-value whether H0: 'NaN''s are not correlated' could be correct
%       if nan_sig < alpha, H1 ('NaNs are correlated') is very likely. 
% 
% The result is only valid if the occurence of NaN's is uncorrelated. In
% order to avoid this pitfall, the correlation of NaN's should be checked 
% or case-wise deletion should be applied. 
%   Case-Wise deletion can be implemented 
%    ix = ~any(isnan([X,Y]),2);
%    [...] = CORRCOEF(X(ix,:),Y(ix,:),...); 
%
%  Correlation (non-random distribution) of NaN's can be checked with 
%       [nan_R,nan_sig]=corrcoef(X,isnan(X))
%   or  [nan_R,nan_sig]=corrcoef([X,Y],isnan([X,Y]))
%   or  [R,p,ci1,ci2] = CORRCOEF(...);
%
% Further recommandation related to the correlation coefficient: 
% + LOOK AT THE SCATTERPLOTS to make sure that the relationship is linear
% + Correlation is not causation because 
%	it is not clear which parameter is 'cause' and which is 'effect' and
%       the observed correlation between two variables might be due to the action of other, unobserved variables.
%
% see also: SUMSKIPNAN, COVM, COV, COR, SPEARMAN, RANKCORR, RANKS,
%       PARTCORRCOEF, flag_implicit_significance
%
% REFERENCES:
% on the correlation coefficient 
% [ 1] http://mathworld.wolfram.com/CorrelationCoefficient.html
% [ 2] http://www.geography.btinternet.co.uk/spearman.htm
% [ 3] Hogg, R. V. and Craig, A. T. Introduction to Mathematical Statistics, 5th ed.  New York: Macmillan, pp. 338 and 400, 1995.
% [ 4] Lehmann, E. L. and D'Abrera, H. J. M. Nonparametrics: Statistical Methods Based on Ranks, rev. ed. Englewood Cliffs, NJ: Prentice-Hall, pp. 292, 300, and 323, 1998.
% [ 5] Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 634-637, 1992
% [ 6] http://mathworld.wolfram.com/SpearmanRankCorrelationCoefficient.html
% on the significance test of the correlation coefficient
% [11] http://www.met.rdg.ac.uk/cag/STATS/corr.html
% [12] http://www.janda.org/c10/Lectures/topic06/L24-significanceR.htm
% [13] http://faculty.vassar.edu/lowry/ch4apx.html
% [14] http://davidmlane.com/hyperstat/B134689.html
% [15] http://www.statsoft.com/textbook/stbasic.html%Correlations
% others
% [20] http://www.tufts.edu/~gdallal/corr.htm
% [21] Fisher transformation http://en.wikipedia.org/wiki/Fisher_transformation

%    Copyright (C) 2000-2004,2008,2009,2011,2016 by Alois Schloegl <alois.schloegl@gmail.com>	
%    This function is part of the NaN-toolbox
%    http://pub.ist.ac.at/~schloegl/matlab/NaN/

%    This program is free software: you can redistribute it and/or modify
%    it under the terms of the GNU General Public License as published by
%    the Free Software Foundation, either version 3 of the License, or
%    (at your option) any later version.
%
%    This program is distributed in the hope that it will be useful,
%    but WITHOUT ANY WARRANTY; without even the implied warranty of
%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%    GNU General Public License for more details.
%
%    You should have received a copy of the GNU General Public License
%    along with this program.  If not, see <http://www.gnu.org/licenses/>.

% Features:
% + handles missing values (encoded as NaN's)
%       + pairwise deletion of missing data
%       + checks independence of missing values (NaNs) 
% + parametric and non-parametric (rank) correlation
%       + Pearson's correlation
%       + Spearman's rank correlation
%       + Rank correlation (non-parametric, Spearman rank correlation with proper handling of ties)
% + is fast, using an efficient algorithm O(n.log(n)) for calculating the ranks
% + significance test for null-hypthesis: r=0 
% + confidence interval included
% - rank correlation works for cell arrays, too (no check for missing values).
% + compatible with Octave and Matlab

global FLAG_NANS_OCCURED;

NARG = nargout;	% needed because nargout is not reentrant in Octave, and corrcoef is recursive
mode = [];

if nargin==1
        Y = [];
        Mode='Pearson';
elseif nargin==0
        fprintf(2,'Error CORRCOEF: Missing argument(s)\n');
elseif nargin>1
        if ischar(Y)
                varg = [Y,varargin];
                Y=[];
        else
                varg = varargin;
        end;

        if length(varg)<1, 
                Mode = 'Pearson';
        elseif length(varg)==1, 
                Mode = varg{1};
        else
                for k = 2:2:length(varg),
                        mode = setfield(mode,lower(varg{k-1}),varg{k});
                end;
                if isfield(mode,'mode')
                        Mode = mode.mode; 
                end;
        end;
end;
if isempty(Mode) Mode='pearson'; end; 
Mode=[Mode,'        '];



FLAG_WARNING = warning;		% save warning status
warning('off');

[r1,c1]=size(X);
if ~isempty(Y)
        [r2,c2]=size(Y);
        if r1~=r2,
                fprintf(2,'Error CORRCOEF: X and Y must have the same number of observations (rows).\n');
                return;
        end;
        NN = real(~isnan(X)')*real(~isnan(Y));
else
        [r2,c2]=size(X);
        NN = real(~isnan(X)')*real(~isnan(X));  
end;

%%%%% generate combinations using indices for pairwise calculation of the correlation
YESNAN = any(isnan(X(:))) | any(isnan(Y(:)));
if YESNAN,
	FLAG_NANS_OCCURED=(1==1);
	if isfield(mode,'rows')
		if strcmp(mode.rows,'complete')
			ix = ~any([X,Y],2);
			X = X(ix,:); 
			if ~isempty(Y) 
				Y = Y(ix,:); 
			end; 	
			YESNAN = 0; 
			NN = size(X,1); 
		elseif strcmp(mode.rows,'all')
			fprintf(1,'Warning: data contains NaNs, rows=pairwise is used.');  
			%%NN(NN < size(X,1)) = NaN; 
		elseif strcmp(mode.rows,'pairwise')
			%%% default
		end; 
	end; 
end; 
if isempty(Y),
        IX = ones(c1)-diag(ones(c1,1));
        [jx, jy ] = find(IX);
        [jxo,jyo] = find(IX);
	R = eye(c1);        
else
        IX = sparse([],[],[],c1+c2,c1+c2,c1*c2);
        IX(1:c1,c1+(1:c2)) = 1;
        [jx,jy] = find(IX);
        
        IX = ones(c1,c2);
        [jxo,jyo] = find(IX);
	R = zeros(c1,c2);
end;  

if strcmp(lower(Mode(1:7)),'pearson');
        % see http://mathworld.wolfram.com/CorrelationCoefficient.html
	if ~YESNAN,
                [S,N,SSQ] = sumskipnan(X,1);
                if ~isempty(Y),
	                [S2,N2,SSQ2] = sumskipnan(Y,1);
                        CC = X'*Y;
                        M1 = S./N;
                        M2 = S2./N2;
                        cc = CC./NN - M1'*M2;
                        R  = cc./sqrt((SSQ./N-M1.*M1)'*(SSQ2./N2-M2.*M2));
                else        
                        CC = X'*X;
                        M  = S./N;
                        cc = CC./NN - M'*M;
                        v  = SSQ./N - M.*M; %max(N-1,0);
                        R  = cc./sqrt(v'*v);
                end;
        else
                if ~isempty(Y),
                        X  = [X,Y];
                end;  
                for k = 1:length(jx),
                        %ik = ~any(isnan(X(:,[jx(k),jy(k)])),2);
                        ik = ~isnan(X(:,jx(k))) & ~isnan(X(:,jy(k)));
                        [s,n,s2] = sumskipnan(X(ik,[jx(k),jy(k)]),1);
                        v  = (s2-s.*s./n)./n;
                        cc = X(ik,jx(k))'*X(ik,jy(k));
                        cc = cc/n(1) - prod(s./n);
                        %r(k) = cc./sqrt(prod(v));
                        R(jxo(k),jyo(k)) = cc./sqrt(prod(v));
                end;
	end
        
elseif strcmp(lower(Mode(1:4)),'rank');
        % see [ 6] http://mathworld.wolfram.com/SpearmanRankCorrelationCoefficient.html
	if ~YESNAN,
                if isempty(Y)
	                R = corrcoef(ranks(X));
                else
                        R = corrcoef(ranks(X),ranks(Y));
                end;
        else
                if ~isempty(Y),
                        X = [X,Y];
                end;  
                for k = 1:length(jx),
                        %ik = ~any(isnan(X(:,[jx(k),jy(k)])),2);
                        ik = ~isnan(X(:,jx(k))) & ~isnan(X(:,jy(k)));
                        il = ranks(X(ik,[jx(k),jy(k)]));
                        R(jxo(k),jyo(k)) = corrcoef(il(:,1),il(:,2));
                end;
		X = ranks(X);
	end;
        
elseif strcmp(lower(Mode(1:8)),'spearman');
        % see [ 6] http://mathworld.wolfram.com/SpearmanRankCorrelationCoefficient.html
        if ~isempty(Y),
                X = [X,Y];
        end;  
        
        n = repmat(nan,c1,c2);
        
        if ~YESNAN,
                iy = ranks(X);	%  calculates ranks;
		                
                for k = 1:length(jx),
                        [R(jxo(k),jyo(k)),n(jxo(k),jyo(k))] = sumskipnan((iy(:,jx(k)) - iy(:,jy(k))).^2);	% NN is the number of non-missing values
                end;
        else
                for k = 1:length(jx),
                        %ik = ~any(isnan(X(:,[jx(k),jy(k)])),2);
                        ik = ~isnan(X(:,jx(k))) & ~isnan(X(:,jy(k)));
                        il = ranks(X(ik,[jx(k),jy(k)]));
                        % NN is the number of non-missing values
                        [R(jxo(k),jyo(k)),n(jxo(k),jyo(k))] = sumskipnan((il(:,1) - il(:,2)).^2);
                end;
		X = ranks(X);
        end;
        R = 1 - 6 * R ./ (n.*(n.*n-1));
        
elseif strcmp(lower(Mode(1:7)),'partial');
        fprintf(2,'Error CORRCOEF: use PARTCORRCOEF \n',Mode);
        
        return;
        
elseif strcmp(lower(Mode(1:7)),'kendall');
        fprintf(2,'Error CORRCOEF: mode ''%s'' not implemented yet.\n',Mode);
        
        return;
else
        fprintf(2,'Error CORRCOEF: unknown mode ''%s''\n',Mode);
end;

if (NARG<2), 
        warning(FLAG_WARNING); 	% restore warning status
        return;
end;


% CONFIDENCE INTERVAL
if isfield(mode,'alpha')
	alpha = mode.alpha; 
elseif exist('flag_implicit_significance','file'),
        alpha = flag_implicit_significance;
else
	alpha = 0.01;        
end;
% fprintf(1,'CORRCOEF: confidence interval is based on alpha=%f\n',alpha);


% SIGNIFICANCE TEST
R(isnan(R))=0;
tmp = 1 - R.*R;
tmp(tmp<0) = 0;		% prevent tmp<0 i.e. imag(t)~=0 
t   = R.*sqrt(max(NN-2,0)./tmp);

if exist('t_cdf','file');
        sig = t_cdf(t,NN-2);
elseif exist('tcdf','file')>1;
        sig = tcdf(t,NN-2);
else
        fprintf('CORRCOEF: significance test not completed because of missing TCDF-function\n')
        sig = repmat(nan,size(R));
end;
sig  = 2 * min(sig,1 - sig);


if NARG<3, 
	warning(FLAG_WARNING); 	% restore warning status
        return;
end;


tmp = R;
%tmp(ix1 | ix2) = nan;		% avoid division-by-zero warning
z   = log((1+tmp)./(1-tmp))/2; 	% Fisher transformation [21]
%sz = 1./sqrt(NN-3);		% standard error of z
sz  = sqrt(2)*erfinv(1-alpha)./sqrt(NN-3);	% confidence interval for alpha of z

ci1 = tanh(z-sz);
ci2 = tanh(z+sz);

%ci1(isnan(ci1))=R(isnan(ci1));	% in case of isnan(ci), the interval limits are exactly the R value 
%ci2(isnan(ci2))=R(isnan(ci2));

if (NARG<5) || ~YESNAN, 
	nan_sig = repmat(NaN,size(R));
	warning(FLAG_WARNING); 	% restore warning status
	return;
end;

%%%%% ----- check independence of NaNs (missing values) -----
[nan_R, nan_sig] = corrcoef(X,double(isnan(X)));

% remove diagonal elements, because these have not any meaning %
nan_sig(isnan(nan_R)) = nan;
% remove diagonal elements, because these have not any meaning %
nan_R(isnan(nan_R)) = 0;

if 0, any(nan_sig(:) < alpha),
        tmp = nan_sig(:);			% Hack to skip NaN's in MIN(X)
        min_sig = min(tmp(~isnan(tmp))); 	% Necessary, because Octave returns NaN rather than min(X) for min(NaN,X) 
        fprintf(1,'CORRCOFF Warning: Missing Values (i.e. NaNs) are not independent of data (p-value=%f)\n', min_sig);
        fprintf(1,'   Its recommended to remove all samples (i.e. rows) with any missing value (NaN).\n');
        fprintf(1,'   The null-hypotheses (NaNs are uncorrelated) is rejected for the following parameter pair(s).\n');
        [ix,iy] = find(nan_sig < alpha);
        disp([ix,iy])
end;

%%%%% ----- end of independence check ------

warning(FLAG_WARNING); 	% restore warning status
return;