This file is indexed.

/usr/include/tbb/partitioner.h is in libtbb-dev 2017~U7-8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
/*
    Copyright (c) 2005-2017 Intel Corporation

    Licensed under the Apache License, Version 2.0 (the "License");
    you may not use this file except in compliance with the License.
    You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.




*/

#ifndef __TBB_partitioner_H
#define __TBB_partitioner_H

#ifndef __TBB_INITIAL_CHUNKS
// initial task divisions per thread
#define __TBB_INITIAL_CHUNKS 2
#endif
#ifndef __TBB_RANGE_POOL_CAPACITY
// maximum number of elements in range pool
#define __TBB_RANGE_POOL_CAPACITY 8
#endif
#ifndef __TBB_INIT_DEPTH
// initial value for depth of range pool
#define __TBB_INIT_DEPTH 5
#endif
#ifndef __TBB_DEMAND_DEPTH_ADD
// when imbalance is found range splits this value times more
#define __TBB_DEMAND_DEPTH_ADD 1
#endif
#ifndef __TBB_STATIC_THRESHOLD
// necessary number of clocks for the work to be distributed among all tasks
#define __TBB_STATIC_THRESHOLD 40000
#endif
#if __TBB_DEFINE_MIC
#define __TBB_NONUNIFORM_TASK_CREATION 1
#ifdef __TBB_time_stamp
#define __TBB_USE_MACHINE_TIME_STAMPS 1
#define __TBB_task_duration() __TBB_STATIC_THRESHOLD
#endif // __TBB_machine_time_stamp
#endif // __TBB_DEFINE_MIC

#include "task.h"
#include "aligned_space.h"
#include "atomic.h"
#include "internal/_template_helpers.h"

#if defined(_MSC_VER) && !defined(__INTEL_COMPILER)
    // Workaround for overzealous compiler warnings
    #pragma warning (push)
    #pragma warning (disable: 4244)
#endif

namespace tbb {

class auto_partitioner;
class simple_partitioner;
class static_partitioner;
class affinity_partitioner;

namespace interface9 {
    namespace internal {
        class affinity_partition_type;
    }
}

namespace internal { //< @cond INTERNAL
size_t __TBB_EXPORTED_FUNC get_initial_auto_partitioner_divisor();

//! Defines entry point for affinity partitioner into tbb run-time library.
class affinity_partitioner_base_v3: no_copy {
    friend class tbb::affinity_partitioner;
    friend class tbb::interface9::internal::affinity_partition_type;
    //! Array that remembers affinities of tree positions to affinity_id.
    /** NULL if my_size==0. */
    affinity_id* my_array;
    //! Number of elements in my_array.
    size_t my_size;
    //! Zeros the fields.
    affinity_partitioner_base_v3() : my_array(NULL), my_size(0) {}
    //! Deallocates my_array.
    ~affinity_partitioner_base_v3() {resize(0);}
    //! Resize my_array.
    /** Retains values if resulting size is the same. */
    void __TBB_EXPORTED_METHOD resize( unsigned factor );
};

//! Provides backward-compatible methods for partition objects without affinity.
class partition_type_base {
public:
    void set_affinity( task & ) {}
    void note_affinity( task::affinity_id ) {}
    task* continue_after_execute_range() {return NULL;}
    bool decide_whether_to_delay() {return false;}
    void spawn_or_delay( bool, task& b ) {
        task::spawn(b);
    }
};

template<typename Range, typename Body, typename Partitioner> class start_scan;

} //< namespace internal @endcond

namespace serial {
namespace interface9 {
template<typename Range, typename Body, typename Partitioner> class start_for;
}
}

namespace interface9 {
//! @cond INTERNAL
namespace internal {
using namespace tbb::internal;
template<typename Range, typename Body, typename Partitioner> class start_for;
template<typename Range, typename Body, typename Partitioner> class start_reduce;

//! Join task node that contains shared flag for stealing feedback
class flag_task: public task {
public:
    tbb::atomic<bool> my_child_stolen;
    flag_task() { my_child_stolen = false; }
    task* execute() __TBB_override { return NULL; }
    static void mark_task_stolen(task &t) {
        tbb::atomic<bool> &flag = static_cast<flag_task*>(t.parent())->my_child_stolen;
#if TBB_USE_THREADING_TOOLS
        // Threading tools respect lock prefix but report false-positive data-race via plain store
        flag.fetch_and_store<release>(true);
#else
        flag = true;
#endif //TBB_USE_THREADING_TOOLS
    }
    static bool is_peer_stolen(task &t) {
        return static_cast<flag_task*>(t.parent())->my_child_stolen;
    }
};

//! Depth is a relative depth of recursive division inside a range pool. Relative depth allows
//! infinite absolute depth of the recursion for heavily unbalanced workloads with range represented
//! by a number that cannot fit into machine word.
typedef unsigned char depth_t;

//! Range pool stores ranges of type T in a circular buffer with MaxCapacity
template <typename T, depth_t MaxCapacity>
class range_vector {
    depth_t my_head;
    depth_t my_tail;
    depth_t my_size;
    depth_t my_depth[MaxCapacity]; // relative depths of stored ranges
    tbb::aligned_space<T, MaxCapacity> my_pool;

public:
    //! initialize via first range in pool
    range_vector(const T& elem) : my_head(0), my_tail(0), my_size(1) {
        my_depth[0] = 0;
        new( static_cast<void *>(my_pool.begin()) ) T(elem);//TODO: std::move?
    }
    ~range_vector() {
        while( !empty() ) pop_back();
    }
    bool empty() const { return my_size == 0; }
    depth_t size() const { return my_size; }
    //! Populates range pool via ranges up to max depth or while divisible
    //! max_depth starts from 0, e.g. value 2 makes 3 ranges in the pool up to two 1/4 pieces
    void split_to_fill(depth_t max_depth) {
        while( my_size < MaxCapacity && is_divisible(max_depth) ) {
            depth_t prev = my_head;
            my_head = (my_head + 1) % MaxCapacity;
            new(my_pool.begin()+my_head) T(my_pool.begin()[prev]); // copy TODO: std::move?
            my_pool.begin()[prev].~T(); // instead of assignment
            new(my_pool.begin()+prev) T(my_pool.begin()[my_head], split()); // do 'inverse' split
            my_depth[my_head] = ++my_depth[prev];
            my_size++;
        }
    }
    void pop_back() {
        __TBB_ASSERT(my_size > 0, "range_vector::pop_back() with empty size");
        my_pool.begin()[my_head].~T();
        my_size--;
        my_head = (my_head + MaxCapacity - 1) % MaxCapacity;
    }
    void pop_front() {
        __TBB_ASSERT(my_size > 0, "range_vector::pop_front() with empty size");
        my_pool.begin()[my_tail].~T();
        my_size--;
        my_tail = (my_tail + 1) % MaxCapacity;
    }
    T& back() {
        __TBB_ASSERT(my_size > 0, "range_vector::back() with empty size");
        return my_pool.begin()[my_head];
    }
    T& front() {
        __TBB_ASSERT(my_size > 0, "range_vector::front() with empty size");
        return my_pool.begin()[my_tail];
    }
    //! similarly to front(), returns depth of the first range in the pool
    depth_t front_depth() {
        __TBB_ASSERT(my_size > 0, "range_vector::front_depth() with empty size");
        return my_depth[my_tail];
    }
    depth_t back_depth() {
        __TBB_ASSERT(my_size > 0, "range_vector::back_depth() with empty size");
        return my_depth[my_head];
    }
    bool is_divisible(depth_t max_depth) {
        return back_depth() < max_depth && back().is_divisible();
    }
};

//! Provides default methods for partition objects and common algorithm blocks.
template <typename Partition>
struct partition_type_base {
    typedef split split_type;
    // decision makers
    void set_affinity( task & ) {}
    void note_affinity( task::affinity_id ) {}
    bool check_being_stolen(task &) { return false; } // part of old should_execute_range()
    bool check_for_demand(task &) { return false; }
    bool is_divisible() { return true; } // part of old should_execute_range()
    depth_t max_depth() { return 0; }
    void align_depth(depth_t) { }
    template <typename Range> split_type get_split() { return split(); }
    Partition& self() { return *static_cast<Partition*>(this); } // CRTP helper

    template<typename StartType, typename Range>
    void work_balance(StartType &start, Range &range) {
        start.run_body( range ); // simple partitioner goes always here
    }

    template<typename StartType, typename Range>
    void execute(StartType &start, Range &range) {
        // The algorithm in a few words ([]-denotes calls to decision methods of partitioner):
        // [If this task is stolen, adjust depth and divisions if necessary, set flag].
        // If range is divisible {
        //    Spread the work while [initial divisions left];
        //    Create trap task [if necessary];
        // }
        // If not divisible or [max depth is reached], execute, else do the range pool part
        if ( range.is_divisible() ) {
            if ( self().is_divisible() ) {
                do { // split until is divisible
                    typename Partition::split_type split_obj = self().template get_split<Range>();
                    start.offer_work( split_obj );
                } while ( range.is_divisible() && self().is_divisible() );
            }
        }
        self().work_balance(start, range);
    }
};

//! Provides default splitting strategy for partition objects.
template <typename Partition>
struct adaptive_mode : partition_type_base<Partition> {
    typedef Partition my_partition;
    using partition_type_base<Partition>::self; // CRTP helper to get access to derived classes
    size_t my_divisor;
    // For affinity_partitioner, my_divisor indicates the number of affinity array indices the task reserves.
    // A task which has only one index must produce the right split without reserved index in order to avoid
    // it to be overwritten in note_affinity() of the created (right) task.
    // I.e. a task created deeper than the affinity array can remember must not save its affinity (LIFO order)
    static const unsigned factor = 1;
    adaptive_mode() : my_divisor(tbb::internal::get_initial_auto_partitioner_divisor() / 4 * my_partition::factor) {}
    adaptive_mode(adaptive_mode &src, split) : my_divisor(do_split(src, split())) {}
    adaptive_mode(adaptive_mode &src, const proportional_split& split_obj) : my_divisor(do_split(src, split_obj)) {}
    /*! Override do_split methods in order to specify splitting strategy */
    size_t do_split(adaptive_mode &src, split) {
        return src.my_divisor /= 2u;
    }
    size_t do_split(adaptive_mode &src, const proportional_split& split_obj) {
#if __TBB_ENABLE_RANGE_FEEDBACK
        size_t portion = size_t(float(src.my_divisor) * float(split_obj.right())
                                / float(split_obj.left() + split_obj.right()) + 0.5f);
#else
        size_t portion = split_obj.right() * my_partition::factor;
#endif
        portion = (portion + my_partition::factor/2) & (0ul - my_partition::factor);
#if __TBB_ENABLE_RANGE_FEEDBACK
        /** Corner case handling */
        if (!portion)
            portion = my_partition::factor;
        else if (portion == src.my_divisor)
            portion = src.my_divisor - my_partition::factor;
#endif
        src.my_divisor -= portion;
        return portion;
    }
    bool is_divisible() { // part of old should_execute_range()
        return my_divisor > my_partition::factor;
    }
};

//! Provides default linear indexing of partitioner's sequence
template <typename Partition>
struct linear_affinity_mode : adaptive_mode<Partition> {
    using adaptive_mode<Partition>::my_divisor;
    size_t my_head;
    using adaptive_mode<Partition>::self;
    linear_affinity_mode() : adaptive_mode<Partition>(), my_head(0) {}
    linear_affinity_mode(linear_affinity_mode &src, split) : adaptive_mode<Partition>(src, split())
        , my_head(src.my_head + src.my_divisor) {}
    linear_affinity_mode(linear_affinity_mode &src, const proportional_split& split_obj) : adaptive_mode<Partition>(src, split_obj)
        , my_head(src.my_head + src.my_divisor) {}
    void set_affinity( task &t ) {
        if( my_divisor )
            t.set_affinity( affinity_id(my_head) + 1 );
    }
};

//! Class determines whether template parameter has static boolean constant
//! 'is_splittable_in_proportion' initialized with value of 'true' or not.
/** If template parameter has such field that has been initialized with non-zero
 *  value then class field will be set to 'true', otherwise - 'false'
 */
template <typename Range>
class is_splittable_in_proportion {
private:
    typedef char yes[1];
    typedef char no [2];

    template <typename range_type> static yes& decide(typename enable_if<range_type::is_splittable_in_proportion>::type *);
    template <typename range_type> static no& decide(...);
public:
    // equals to 'true' if and only if static const variable 'is_splittable_in_proportion' of template parameter
    // initialized with the value of 'true'
    static const bool value = (sizeof(decide<Range>(0)) == sizeof(yes));
};

//! Provides default methods for non-balancing partition objects.
template<class Mode>
struct unbalancing_partition_type : Mode {
    using Mode::self;
    unbalancing_partition_type() : Mode() {}
    unbalancing_partition_type(unbalancing_partition_type& p, split) : Mode(p, split()) {}
    unbalancing_partition_type(unbalancing_partition_type& p, const proportional_split& split_obj) : Mode(p, split_obj) {}
#if _MSC_VER && !defined(__INTEL_COMPILER)
    // Suppress "conditional expression is constant" warning.
    #pragma warning( push )
    #pragma warning( disable: 4127 )
#endif
    template <typename Range>
    proportional_split get_split() {
        if (is_splittable_in_proportion<Range>::value) {
            size_t size = self().my_divisor / Mode::my_partition::factor;
#if __TBB_NONUNIFORM_TASK_CREATION
            size_t right = (size + 2) / 3;
#else
            size_t right = size / 2;
#endif
            size_t left = size - right;
            return proportional_split(left, right);
        } else {
            return proportional_split(1, 1);
        }
    }
#if _MSC_VER && !defined(__INTEL_COMPILER)
    #pragma warning( pop )
#endif // warning 4127 is back
};

/*! Determine work-balance phase implementing splitting & stealing actions */
template<class Mode>
struct balancing_partition_type : unbalancing_partition_type<Mode> {
    using Mode::self;
#ifdef __TBB_USE_MACHINE_TIME_STAMPS
    tbb::internal::machine_tsc_t my_dst_tsc;
#endif
    enum {
        begin = 0,
        run,
        pass
    } my_delay;
    depth_t my_max_depth;
    static const unsigned range_pool_size = __TBB_RANGE_POOL_CAPACITY;
    balancing_partition_type(): unbalancing_partition_type<Mode>()
#ifdef __TBB_USE_MACHINE_TIME_STAMPS
        , my_dst_tsc(0)
#endif
        , my_delay(begin)
        , my_max_depth(__TBB_INIT_DEPTH) {}
    balancing_partition_type(balancing_partition_type& p, split)
        : unbalancing_partition_type<Mode>(p, split())
#ifdef __TBB_USE_MACHINE_TIME_STAMPS
        , my_dst_tsc(0)
#endif
        , my_delay(pass)
        , my_max_depth(p.my_max_depth) {}
    balancing_partition_type(balancing_partition_type& p, const proportional_split& split_obj)
        : unbalancing_partition_type<Mode>(p, split_obj)
#ifdef __TBB_USE_MACHINE_TIME_STAMPS
        , my_dst_tsc(0)
#endif
        , my_delay(begin)
        , my_max_depth(p.my_max_depth) {}
    bool check_being_stolen( task &t) { // part of old should_execute_range()
        if( !(self().my_divisor / Mode::my_partition::factor) ) { // if not from the top P tasks of binary tree
            self().my_divisor = 1; // TODO: replace by on-stack flag (partition_state's member)?
            if( t.is_stolen_task() && t.parent()->ref_count() >= 2 ) { // runs concurrently with the left task
#if __TBB_USE_OPTIONAL_RTTI
                // RTTI is available, check whether the cast is valid
                __TBB_ASSERT(dynamic_cast<flag_task*>(t.parent()), 0);
                // correctness of the cast relies on avoiding the root task for which:
                // - initial value of my_divisor != 0 (protected by separate assertion)
                // - is_stolen_task() always returns false for the root task.
#endif
                flag_task::mark_task_stolen(t);
                if( !my_max_depth ) my_max_depth++;
                my_max_depth += __TBB_DEMAND_DEPTH_ADD;
                return true;
            }
        }
        return false;
    }
    depth_t max_depth() { return my_max_depth; }
    void align_depth(depth_t base) {
        __TBB_ASSERT(base <= my_max_depth, 0);
        my_max_depth -= base;
    }
    template<typename StartType, typename Range>
    void work_balance(StartType &start, Range &range) {
        if( !range.is_divisible() || !self().max_depth() ) {
            start.run_body( range ); // simple partitioner goes always here
        }
        else { // do range pool
            internal::range_vector<Range, range_pool_size> range_pool(range);
            do {
                range_pool.split_to_fill(self().max_depth()); // fill range pool
                if( self().check_for_demand( start ) ) {
                    if( range_pool.size() > 1 ) {
                        start.offer_work( range_pool.front(), range_pool.front_depth() );
                        range_pool.pop_front();
                        continue;
                    }
                    if( range_pool.is_divisible(self().max_depth()) ) // was not enough depth to fork a task
                        continue; // note: next split_to_fill() should split range at least once
                }
                start.run_body( range_pool.back() );
                range_pool.pop_back();
            } while( !range_pool.empty() && !start.is_cancelled() );
        }
    }
    bool check_for_demand( task &t ) {
        if( pass == my_delay ) {
            if( self().my_divisor > 1 ) // produce affinitized tasks while they have slot in array
                return true; // do not do my_max_depth++ here, but be sure range_pool is splittable once more
            else if( self().my_divisor && my_max_depth ) { // make balancing task
                self().my_divisor = 0; // once for each task; depth will be decreased in align_depth()
                return true;
            }
            else if( flag_task::is_peer_stolen(t) ) {
                my_max_depth += __TBB_DEMAND_DEPTH_ADD;
                return true;
            }
        } else if( begin == my_delay ) {
#ifndef __TBB_USE_MACHINE_TIME_STAMPS
            my_delay = pass;
#else
            my_dst_tsc = __TBB_time_stamp() + __TBB_task_duration();
            my_delay = run;
        } else if( run == my_delay ) {
            if( __TBB_time_stamp() < my_dst_tsc ) {
                __TBB_ASSERT(my_max_depth > 0, NULL);
                 my_max_depth--; // increase granularity since tasks seem having too small work
                return false;
            }
            my_delay = pass;
            return true;
#endif // __TBB_USE_MACHINE_TIME_STAMPS
        }
        return false;
    }
};

class auto_partition_type: public balancing_partition_type<adaptive_mode<auto_partition_type> > {
public:
    auto_partition_type( const auto_partitioner& )
        : balancing_partition_type<adaptive_mode<auto_partition_type> >() {
        my_divisor *= __TBB_INITIAL_CHUNKS;
    }
    auto_partition_type( auto_partition_type& src, split)
        : balancing_partition_type<adaptive_mode<auto_partition_type> >(src, split()) {}
    bool is_divisible() { // part of old should_execute_range()
        if( my_divisor > 1 ) return true;
        if( my_divisor && my_max_depth ) { // can split the task. TODO: on-stack flag instead
            // keep same fragmentation while splitting for the local task pool
            my_max_depth--;
            my_divisor = 0; // decrease max_depth once per task
            return true;
        } else return false;
    }
    bool check_for_demand(task &t) {
        if( flag_task::is_peer_stolen(t) ) {
            my_max_depth += __TBB_DEMAND_DEPTH_ADD;
            return true;
        } else return false;
    }
};

class simple_partition_type: public partition_type_base<simple_partition_type> {
public:
    simple_partition_type( const simple_partitioner& ) {}
    simple_partition_type( const simple_partition_type&, split ) {}
    //! simplified algorithm
    template<typename StartType, typename Range>
    void execute(StartType &start, Range &range) {
        split_type split_obj = split(); // start.offer_work accepts split_type as reference
        while( range.is_divisible() )
            start.offer_work( split_obj );
        start.run_body( range );
    }
};

class static_partition_type : public unbalancing_partition_type<linear_affinity_mode<static_partition_type> > {
public:
    typedef proportional_split split_type;
    static_partition_type( const static_partitioner& )
        : unbalancing_partition_type<linear_affinity_mode<static_partition_type> >() {}
    static_partition_type( static_partition_type& p, split )
        : unbalancing_partition_type<linear_affinity_mode<static_partition_type> >(p, split()) {}
    static_partition_type( static_partition_type& p, const proportional_split& split_obj )
        : unbalancing_partition_type<linear_affinity_mode<static_partition_type> >(p, split_obj) {}
};

class affinity_partition_type : public balancing_partition_type<linear_affinity_mode<affinity_partition_type> > {
    static const unsigned factor_power = 4; // TODO: get a unified formula based on number of computing units
    tbb::internal::affinity_id* my_array;
public:
    static const unsigned factor = 1 << factor_power; // number of slots in affinity array per task
    typedef proportional_split split_type;
    affinity_partition_type( tbb::internal::affinity_partitioner_base_v3& ap )
        : balancing_partition_type<linear_affinity_mode<affinity_partition_type> >() {
        __TBB_ASSERT( (factor&(factor-1))==0, "factor must be power of two" );
        ap.resize(factor);
        my_array = ap.my_array;
        my_max_depth = factor_power + 1;
        __TBB_ASSERT( my_max_depth < __TBB_RANGE_POOL_CAPACITY, 0 );
    }
    affinity_partition_type(affinity_partition_type& p, split)
        : balancing_partition_type<linear_affinity_mode<affinity_partition_type> >(p, split())
        , my_array(p.my_array) {}
    affinity_partition_type(affinity_partition_type& p, const proportional_split& split_obj)
        : balancing_partition_type<linear_affinity_mode<affinity_partition_type> >(p, split_obj)
        , my_array(p.my_array) {}
    void set_affinity( task &t ) {
        if( my_divisor ) {
            if( !my_array[my_head] )
                // TODO: consider new ideas with my_array for both affinity and static partitioner's, then code reuse
                t.set_affinity( affinity_id(my_head / factor + 1) );
            else
                t.set_affinity( my_array[my_head] );
        }
    }
    void note_affinity( task::affinity_id id ) {
        if( my_divisor )
            my_array[my_head] = id;
    }
};

//! Backward-compatible partition for auto and affinity partition objects.
class old_auto_partition_type: public tbb::internal::partition_type_base {
    size_t num_chunks;
    static const size_t VICTIM_CHUNKS = 4;
public:
    bool should_execute_range(const task &t) {
        if( num_chunks<VICTIM_CHUNKS && t.is_stolen_task() )
            num_chunks = VICTIM_CHUNKS;
        return num_chunks==1;
    }
    old_auto_partition_type( const auto_partitioner& )
      : num_chunks(internal::get_initial_auto_partitioner_divisor()*__TBB_INITIAL_CHUNKS/4) {}
    old_auto_partition_type( const affinity_partitioner& )
      : num_chunks(internal::get_initial_auto_partitioner_divisor()*__TBB_INITIAL_CHUNKS/4) {}
    old_auto_partition_type( old_auto_partition_type& pt, split ) {
        num_chunks = pt.num_chunks = (pt.num_chunks+1u) / 2u;
    }
};

} // namespace interfaceX::internal
//! @endcond
} // namespace interfaceX

//! A simple partitioner
/** Divides the range until the range is not divisible.
    @ingroup algorithms */
class simple_partitioner {
public:
    simple_partitioner() {}
private:
    template<typename Range, typename Body, typename Partitioner> friend class serial::interface9::start_for;
    template<typename Range, typename Body, typename Partitioner> friend class interface9::internal::start_for;
    template<typename Range, typename Body, typename Partitioner> friend class interface9::internal::start_reduce;
    template<typename Range, typename Body, typename Partitioner> friend class internal::start_scan;
    // backward compatibility
    class partition_type: public internal::partition_type_base {
    public:
        bool should_execute_range(const task& ) {return false;}
        partition_type( const simple_partitioner& ) {}
        partition_type( const partition_type&, split ) {}
    };
    // new implementation just extends existing interface
    typedef interface9::internal::simple_partition_type task_partition_type;

    // TODO: consider to make split_type public
    typedef interface9::internal::simple_partition_type::split_type split_type;
};

//! An auto partitioner
/** The range is initial divided into several large chunks.
    Chunks are further subdivided into smaller pieces if demand detected and they are divisible.
    @ingroup algorithms */
class auto_partitioner {
public:
    auto_partitioner() {}

private:
    template<typename Range, typename Body, typename Partitioner> friend class serial::interface9::start_for;
    template<typename Range, typename Body, typename Partitioner> friend class interface9::internal::start_for;
    template<typename Range, typename Body, typename Partitioner> friend class interface9::internal::start_reduce;
    template<typename Range, typename Body, typename Partitioner> friend class internal::start_scan;
    // backward compatibility
    typedef interface9::internal::old_auto_partition_type partition_type;
    // new implementation just extends existing interface
    typedef interface9::internal::auto_partition_type task_partition_type;

    // TODO: consider to make split_type public
    typedef interface9::internal::auto_partition_type::split_type split_type;
};

//! A static partitioner
class static_partitioner {
public:
    static_partitioner() {}
private:
    template<typename Range, typename Body, typename Partitioner> friend class serial::interface9::start_for;
    template<typename Range, typename Body, typename Partitioner> friend class interface9::internal::start_for;
    template<typename Range, typename Body, typename Partitioner> friend class interface9::internal::start_reduce;
    template<typename Range, typename Body, typename Partitioner> friend class internal::start_scan;
    // backward compatibility
    typedef interface9::internal::old_auto_partition_type partition_type;
    // new implementation just extends existing interface
    typedef interface9::internal::static_partition_type task_partition_type;

    // TODO: consider to make split_type public
    typedef interface9::internal::static_partition_type::split_type split_type;
};

//! An affinity partitioner
class affinity_partitioner: internal::affinity_partitioner_base_v3 {
public:
    affinity_partitioner() {}

private:
    template<typename Range, typename Body, typename Partitioner> friend class serial::interface9::start_for;
    template<typename Range, typename Body, typename Partitioner> friend class interface9::internal::start_for;
    template<typename Range, typename Body, typename Partitioner> friend class interface9::internal::start_reduce;
    template<typename Range, typename Body, typename Partitioner> friend class internal::start_scan;
    // backward compatibility - for parallel_scan only
    typedef interface9::internal::old_auto_partition_type partition_type;
    // new implementation just extends existing interface
    typedef interface9::internal::affinity_partition_type task_partition_type;

    // TODO: consider to make split_type public
    typedef interface9::internal::affinity_partition_type::split_type split_type;
};

} // namespace tbb

#if defined(_MSC_VER) && !defined(__INTEL_COMPILER)
    #pragma warning (pop)
#endif // warning 4244 is back
#undef __TBB_INITIAL_CHUNKS
#undef __TBB_RANGE_POOL_CAPACITY
#undef __TBB_INIT_DEPTH
#endif /* __TBB_partitioner_H */