This file is indexed.

/usr/include/tbb/internal/_flow_graph_node_impl.h is in libtbb-dev 2017~U7-8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
/*
    Copyright (c) 2005-2017 Intel Corporation

    Licensed under the Apache License, Version 2.0 (the "License");
    you may not use this file except in compliance with the License.
    You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.




*/

#ifndef __TBB__flow_graph_node_impl_H
#define __TBB__flow_graph_node_impl_H

#ifndef __TBB_flow_graph_H
#error Do not #include this internal file directly; use public TBB headers instead.
#endif

#include "_flow_graph_item_buffer_impl.h"

//! @cond INTERNAL
namespace internal {

    using tbb::internal::aggregated_operation;
    using tbb::internal::aggregating_functor;
    using tbb::internal::aggregator;

     template< typename T, typename A >
     class function_input_queue : public item_buffer<T,A> {
     public:
         bool empty() const {
             return this->buffer_empty();
         }

         const T& front() const {
             return this->item_buffer<T, A>::front();
         }

         bool pop( T& t ) {
             return this->pop_front( t );
         }

         void pop() {
             this->destroy_front();
         }

         bool push( T& t ) {
             return this->push_back( t );
         }
     };

    //! Input and scheduling for a function node that takes a type Input as input
    //  The only up-ref is apply_body_impl, which should implement the function
    //  call and any handling of the result.
    template< typename Input, typename A, typename ImplType >
    class function_input_base : public receiver<Input>, tbb::internal::no_assign {
        enum op_type {reg_pred, rem_pred, app_body, try_fwd, tryput_bypass, app_body_bypass
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
            , add_blt_pred, del_blt_pred,
            blt_pred_cnt, blt_pred_cpy   // create vector copies of preds and succs
#endif
        };
        typedef function_input_base<Input, A, ImplType> class_type;

    public:

        //! The input type of this receiver
        typedef Input input_type;
        typedef typename receiver<input_type>::predecessor_type predecessor_type;
        typedef predecessor_cache<input_type, null_mutex > predecessor_cache_type;
        typedef function_input_queue<input_type, A> input_queue_type;
        typedef typename A::template rebind< input_queue_type >::other queue_allocator_type;

#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
        typedef typename predecessor_cache_type::built_predecessors_type built_predecessors_type;
        typedef typename receiver<input_type>::predecessor_list_type predecessor_list_type;
#endif

        //! Constructor for function_input_base
        function_input_base( graph &g, size_t max_concurrency, input_queue_type *q = NULL)
            : my_graph_ptr(&g), my_max_concurrency(max_concurrency), my_concurrency(0),
              my_queue(q), forwarder_busy(false) {
            my_predecessors.set_owner(this);
            my_aggregator.initialize_handler(handler_type(this));
        }

        //! Copy constructor
        function_input_base( const function_input_base& src, input_queue_type *q = NULL) :
            receiver<Input>(), tbb::internal::no_assign(),
            my_graph_ptr(src.my_graph_ptr), my_max_concurrency(src.my_max_concurrency),
            my_concurrency(0), my_queue(q), forwarder_busy(false)
        {
            my_predecessors.set_owner(this);
            my_aggregator.initialize_handler(handler_type(this));
        }

        //! Destructor
        // The queue is allocated by the constructor for {multi}function_node.
        // TODO: pass the graph_buffer_policy to the base so it can allocate the queue instead.
        // This would be an interface-breaking change.
        virtual ~function_input_base() {
            if ( my_queue ) delete my_queue;
        }

        //! Put to the node, returning a task if available
        task * try_put_task( const input_type &t ) __TBB_override {
           if ( my_max_concurrency == 0 ) {
               return create_body_task( t );
           } else {
               operation_type op_data(t, tryput_bypass);
               my_aggregator.execute(&op_data);
               if(op_data.status == internal::SUCCEEDED) {
                   return op_data.bypass_t;
               }
               return NULL;
           }
        }

        //! Adds src to the list of cached predecessors.
        bool register_predecessor( predecessor_type &src ) __TBB_override {
            operation_type op_data(reg_pred);
            op_data.r = &src;
            my_aggregator.execute(&op_data);
            return true;
        }

        //! Removes src from the list of cached predecessors.
        bool remove_predecessor( predecessor_type &src ) __TBB_override {
            operation_type op_data(rem_pred);
            op_data.r = &src;
            my_aggregator.execute(&op_data);
            return true;
        }

#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
        //! Adds to list of predecessors added by make_edge
        void internal_add_built_predecessor( predecessor_type &src) __TBB_override {
            operation_type op_data(add_blt_pred);
            op_data.r = &src;
            my_aggregator.execute(&op_data);
        }

        //! removes from to list of predecessors (used by remove_edge)
        void internal_delete_built_predecessor( predecessor_type &src) __TBB_override {
            operation_type op_data(del_blt_pred);
            op_data.r = &src;
            my_aggregator.execute(&op_data);
        }

        size_t predecessor_count() __TBB_override {
            operation_type op_data(blt_pred_cnt);
            my_aggregator.execute(&op_data);
            return op_data.cnt_val;
        }

        void copy_predecessors(predecessor_list_type &v) __TBB_override {
            operation_type op_data(blt_pred_cpy);
            op_data.predv = &v;
            my_aggregator.execute(&op_data);
        }

        built_predecessors_type &built_predecessors() __TBB_override {
            return my_predecessors.built_predecessors();
        }
#endif  /* TBB_PREVIEW_FLOW_GRAPH_FEATURES */

    protected:

        void reset_function_input_base( reset_flags f) {
            my_concurrency = 0;
            if(my_queue) {
                my_queue->reset();
            }
            reset_receiver(f);
            forwarder_busy = false;
        }

        graph* my_graph_ptr;
        const size_t my_max_concurrency;
        size_t my_concurrency;
        input_queue_type *my_queue;
        predecessor_cache<input_type, null_mutex > my_predecessors;

        void reset_receiver( reset_flags f) __TBB_override {
            if( f & rf_clear_edges) my_predecessors.clear();
            else
                my_predecessors.reset();
            __TBB_ASSERT(!(f & rf_clear_edges) || my_predecessors.empty(), "function_input_base reset failed");
        }

    private:

        friend class apply_body_task_bypass< class_type, input_type >;
        friend class forward_task_bypass< class_type >;

        class operation_type : public aggregated_operation< operation_type > {
        public:
            char type;
            union {
                input_type *elem;
                predecessor_type *r;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
                size_t cnt_val;
                predecessor_list_type *predv;
#endif  /* TBB_PREVIEW_FLOW_GRAPH_FEATURES */
            };
            tbb::task *bypass_t;
            operation_type(const input_type& e, op_type t) :
                type(char(t)), elem(const_cast<input_type*>(&e)) {}
            operation_type(op_type t) : type(char(t)), r(NULL) {}
        };

        bool forwarder_busy;
        typedef internal::aggregating_functor<class_type, operation_type> handler_type;
        friend class internal::aggregating_functor<class_type, operation_type>;
        aggregator< handler_type, operation_type > my_aggregator;

        task* create_and_spawn_task(bool spawn) {
            task* new_task = NULL;
            if(my_queue) {
                if(!my_queue->empty()) {
                    ++my_concurrency;
                    new_task = create_body_task(my_queue->front());

                    my_queue->pop();
                }
            }
            else {
                input_type i;
                if(my_predecessors.get_item(i)) {
                    ++my_concurrency;
                    new_task = create_body_task(i);
                }
            }
            //! Spawns a task that applies a body
            // task == NULL => g.reset(), which shouldn't occur in concurrent context
            if(spawn && new_task) {
                FLOW_SPAWN(*new_task);
                new_task = SUCCESSFULLY_ENQUEUED;
            }

            return new_task;
        }
        void handle_operations(operation_type *op_list) {
            operation_type *tmp;
            while (op_list) {
                tmp = op_list;
                op_list = op_list->next;
                switch (tmp->type) {
                case reg_pred:
                    my_predecessors.add(*(tmp->r));
                    __TBB_store_with_release(tmp->status, SUCCEEDED);
                    if (!forwarder_busy) {
                        forwarder_busy = true;
                        spawn_forward_task();
                    }
                    break;
                case rem_pred:
                    my_predecessors.remove(*(tmp->r));
                    __TBB_store_with_release(tmp->status, SUCCEEDED);
                    break;
                case app_body:
                    __TBB_ASSERT(my_max_concurrency != 0, NULL);
                    --my_concurrency;
                    __TBB_store_with_release(tmp->status, SUCCEEDED);
                    if (my_concurrency<my_max_concurrency) {
                        create_and_spawn_task(/*spawn=*/true);
                    }
                    break;
                case app_body_bypass: {
                        tmp->bypass_t = NULL;
                        __TBB_ASSERT(my_max_concurrency != 0, NULL);
                        --my_concurrency;
                        if(my_concurrency<my_max_concurrency)
                            tmp->bypass_t = create_and_spawn_task(/*spawn=*/false);

                        __TBB_store_with_release(tmp->status, SUCCEEDED);
                    }
                    break;
                case tryput_bypass: internal_try_put_task(tmp);  break;
                case try_fwd: internal_forward(tmp);  break;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
                case add_blt_pred: {
                         my_predecessors.internal_add_built_predecessor(*(tmp->r));
                        __TBB_store_with_release(tmp->status, SUCCEEDED);
                    }
                    break;
                case del_blt_pred:
                    my_predecessors.internal_delete_built_predecessor(*(tmp->r));
                    __TBB_store_with_release(tmp->status, SUCCEEDED);
                    break;
                case blt_pred_cnt:
                    tmp->cnt_val = my_predecessors.predecessor_count();
                    __TBB_store_with_release(tmp->status, SUCCEEDED);
                    break;
                case blt_pred_cpy:
                    my_predecessors.copy_predecessors( *(tmp->predv) );
                    __TBB_store_with_release(tmp->status, SUCCEEDED);
                    break;
#endif  /* TBB_PREVIEW_FLOW_GRAPH_FEATURES */
                }
            }
        }

        //! Put to the node, but return the task instead of enqueueing it
        void internal_try_put_task(operation_type *op) {
            __TBB_ASSERT(my_max_concurrency != 0, NULL);
            if (my_concurrency < my_max_concurrency) {
               ++my_concurrency;
               task * new_task = create_body_task(*(op->elem));
               op->bypass_t = new_task;
               __TBB_store_with_release(op->status, SUCCEEDED);
           } else if ( my_queue && my_queue->push(*(op->elem)) ) {
               op->bypass_t = SUCCESSFULLY_ENQUEUED;
               __TBB_store_with_release(op->status, SUCCEEDED);
           } else {
               op->bypass_t = NULL;
               __TBB_store_with_release(op->status, FAILED);
           }
        }

        //! Tries to spawn bodies if available and if concurrency allows
        void internal_forward(operation_type *op) {
            op->bypass_t = NULL;
            if (my_concurrency < my_max_concurrency || !my_max_concurrency)
                op->bypass_t = create_and_spawn_task(/*spawn=*/false);
            if(op->bypass_t)
                __TBB_store_with_release(op->status, SUCCEEDED);
            else {
                forwarder_busy = false;
                __TBB_store_with_release(op->status, FAILED);
            }
        }

        //! Applies the body to the provided input
        //  then decides if more work is available
        task * apply_body_bypass( input_type &i ) {
            task * new_task = static_cast<ImplType *>(this)->apply_body_impl_bypass(i);
            if ( my_max_concurrency != 0 ) {
                operation_type op_data(app_body_bypass);  // tries to pop an item or get_item, enqueues another apply_body
                my_aggregator.execute(&op_data);
                tbb::task *ttask = op_data.bypass_t;
                new_task = combine_tasks(new_task, ttask);
            }
            return new_task;
        }

        //! allocates a task to apply a body
        inline task * create_body_task( const input_type &input ) {

            return (my_graph_ptr->is_active()) ?
                new(task::allocate_additional_child_of(*(my_graph_ptr->root_task())))
                    apply_body_task_bypass < class_type, input_type >(*this, input) :
                NULL;
        }

       //! This is executed by an enqueued task, the "forwarder"
       task *forward_task() {
           operation_type op_data(try_fwd);
           task *rval = NULL;
           do {
               op_data.status = WAIT;
               my_aggregator.execute(&op_data);
               if(op_data.status == SUCCEEDED) {
                   tbb::task *ttask = op_data.bypass_t;
                   rval = combine_tasks(rval, ttask);
               }
           } while (op_data.status == SUCCEEDED);
           return rval;
       }

       inline task *create_forward_task() {
           return (my_graph_ptr->is_active()) ?
               new(task::allocate_additional_child_of(*(my_graph_ptr->root_task()))) forward_task_bypass< class_type >(*this) :
               NULL;
       }

       //! Spawns a task that calls forward()
       inline void spawn_forward_task() {
           task* tp = create_forward_task();
           if(tp) {
               FLOW_SPAWN(*tp);
           }
       }
    };  // function_input_base

    //! Implements methods for a function node that takes a type Input as input and sends
    //  a type Output to its successors.
    template< typename Input, typename Output, typename A>
    class function_input : public function_input_base<Input, A, function_input<Input,Output,A> > {
    public:
        typedef Input input_type;
        typedef Output output_type;
        typedef function_body<input_type, output_type> function_body_type;
        typedef function_input<Input,Output,A> my_class;
        typedef function_input_base<Input, A, my_class> base_type;
        typedef function_input_queue<input_type, A> input_queue_type;

        // constructor
        template<typename Body>
        function_input( graph &g, size_t max_concurrency, Body& body, input_queue_type *q = NULL ) :
            base_type(g, max_concurrency, q),
            my_body( new internal::function_body_leaf< input_type, output_type, Body>(body) ),
            my_init_body( new internal::function_body_leaf< input_type, output_type, Body>(body) ) {
        }

        //! Copy constructor
        function_input( const function_input& src, input_queue_type *q = NULL ) :
                base_type(src, q),
                my_body( src.my_init_body->clone() ),
                my_init_body(src.my_init_body->clone() ) {
        }

        ~function_input() {
            delete my_body;
            delete my_init_body;
        }

        template< typename Body >
        Body copy_function_object() {
            function_body_type &body_ref = *this->my_body;
            return dynamic_cast< internal::function_body_leaf<input_type, output_type, Body> & >(body_ref).get_body();
        }

        task * apply_body_impl_bypass( const input_type &i) {
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
            // There is an extra copied needed to capture the
            // body execution without the try_put
            tbb::internal::fgt_begin_body( my_body );
            output_type v = (*my_body)(i);
            tbb::internal::fgt_end_body( my_body );
            task * new_task = successors().try_put_task( v );
#else
            task * new_task = successors().try_put_task( (*my_body)(i) );
#endif
            return new_task;
        }

    protected:

        void reset_function_input(reset_flags f) {
            base_type::reset_function_input_base(f);
            if(f & rf_reset_bodies) {
                function_body_type *tmp = my_init_body->clone();
                delete my_body;
                my_body = tmp;
            }
        }

        function_body_type *my_body;
        function_body_type *my_init_body;
        virtual broadcast_cache<output_type > &successors() = 0;

    };  // function_input


    // helper templates to clear the successor edges of the output ports of an multifunction_node
    template<int N> struct clear_element {
        template<typename P> static void clear_this(P &p) {
            (void)tbb::flow::get<N-1>(p).successors().clear();
            clear_element<N-1>::clear_this(p);
        }
        template<typename P> static bool this_empty(P &p) {
            if(tbb::flow::get<N-1>(p).successors().empty())
                return clear_element<N-1>::this_empty(p);
            return false;
        }
    };

    template<> struct clear_element<1> {
        template<typename P> static void clear_this(P &p) {
            (void)tbb::flow::get<0>(p).successors().clear();
        }
        template<typename P> static bool this_empty(P &p) {
            return tbb::flow::get<0>(p).successors().empty();
        }
    };

#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
    // helper templates to extract the output ports of an multifunction_node from graph
    template<int N> struct extract_element {
        template<typename P> static void extract_this(P &p) {
            (void)tbb::flow::get<N-1>(p).successors().built_successors().sender_extract(tbb::flow::get<N-1>(p));
            extract_element<N-1>::extract_this(p);
        }
    };

    template<> struct extract_element<1> {
        template<typename P> static void extract_this(P &p) {
            (void)tbb::flow::get<0>(p).successors().built_successors().sender_extract(tbb::flow::get<0>(p));
        }
    };
#endif

    //! Implements methods for a function node that takes a type Input as input
    //  and has a tuple of output ports specified.
    template< typename Input, typename OutputPortSet, typename A>
    class multifunction_input : public function_input_base<Input, A, multifunction_input<Input,OutputPortSet,A> > {
    public:
        static const int N = tbb::flow::tuple_size<OutputPortSet>::value;
        typedef Input input_type;
        typedef OutputPortSet output_ports_type;
        typedef multifunction_body<input_type, output_ports_type> multifunction_body_type;
        typedef multifunction_input<Input,OutputPortSet,A> my_class;
        typedef function_input_base<Input, A, my_class> base_type;
        typedef function_input_queue<input_type, A> input_queue_type;

        // constructor
        template<typename Body>
        multifunction_input(
                graph &g,
                size_t max_concurrency,
                Body& body,
                input_queue_type *q = NULL ) :
            base_type(g, max_concurrency, q),
            my_body( new internal::multifunction_body_leaf<input_type, output_ports_type, Body>(body) ),
            my_init_body( new internal::multifunction_body_leaf<input_type, output_ports_type, Body>(body) ) {
        }

        //! Copy constructor
        multifunction_input( const multifunction_input& src, input_queue_type *q = NULL ) :
                base_type(src, q),
                my_body( src.my_init_body->clone() ),
                my_init_body(src.my_init_body->clone() ) {
        }

        ~multifunction_input() {
            delete my_body;
            delete my_init_body;
        }

        template< typename Body >
        Body copy_function_object() {
            multifunction_body_type &body_ref = *this->my_body;
            return *static_cast<Body*>(dynamic_cast< internal::multifunction_body_leaf<input_type, output_ports_type, Body> & >(body_ref).get_body_ptr());
        }

        // for multifunction nodes we do not have a single successor as such.  So we just tell
        // the task we were successful.
        task * apply_body_impl_bypass( const input_type &i) {
            tbb::internal::fgt_begin_body( my_body );
            (*my_body)(i, my_output_ports);
            tbb::internal::fgt_end_body( my_body );
            task * new_task = SUCCESSFULLY_ENQUEUED;
            return new_task;
        }

        output_ports_type &output_ports(){ return my_output_ports; }

    protected:
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
        void extract() {
            extract_element<N>::extract_this(my_output_ports);
        }
#endif

        void reset(reset_flags f) {
            base_type::reset_function_input_base(f);
            if(f & rf_clear_edges)clear_element<N>::clear_this(my_output_ports);
            if(f & rf_reset_bodies) {
                multifunction_body_type *tmp = my_init_body->clone();
                delete my_body;
                my_body = tmp;
            }
            __TBB_ASSERT(!(f & rf_clear_edges) || clear_element<N>::this_empty(my_output_ports), "multifunction_node reset failed");
        }

        multifunction_body_type *my_body;
        multifunction_body_type *my_init_body;
        output_ports_type my_output_ports;

    };  // multifunction_input

    // template to refer to an output port of a multifunction_node
    template<size_t N, typename MOP>
    typename tbb::flow::tuple_element<N, typename MOP::output_ports_type>::type &output_port(MOP &op) {
        return tbb::flow::get<N>(op.output_ports());
    }

// helper structs for split_node
    template<int N>
    struct emit_element {
        template<typename T, typename P>
        static void emit_this(const T &t, P &p) {
            (void)tbb::flow::get<N-1>(p).try_put(tbb::flow::get<N-1>(t));
            emit_element<N-1>::emit_this(t,p);
        }
    };

    template<>
    struct emit_element<1> {
        template<typename T, typename P>
        static void emit_this(const T &t, P &p) {
            (void)tbb::flow::get<0>(p).try_put(tbb::flow::get<0>(t));
        }
    };

    //! Implements methods for an executable node that takes continue_msg as input
    template< typename Output >
    class continue_input : public continue_receiver {
    public:

        //! The input type of this receiver
        typedef continue_msg input_type;

        //! The output type of this receiver
        typedef Output output_type;
        typedef function_body<input_type, output_type> function_body_type;

        template< typename Body >
        continue_input( graph &g, Body& body )
            : my_graph_ptr(&g),
             my_body( new internal::function_body_leaf< input_type, output_type, Body>(body) ),
             my_init_body( new internal::function_body_leaf< input_type, output_type, Body>(body) ) { }

        template< typename Body >
        continue_input( graph &g, int number_of_predecessors, Body& body )
            : continue_receiver( number_of_predecessors ), my_graph_ptr(&g),
             my_body( new internal::function_body_leaf< input_type, output_type, Body>(body) ),
             my_init_body( new internal::function_body_leaf< input_type, output_type, Body>(body) )
        { }

        continue_input( const continue_input& src ) : continue_receiver(src),
            my_graph_ptr(src.my_graph_ptr),
            my_body( src.my_init_body->clone() ),
            my_init_body( src.my_init_body->clone() ) {}

        ~continue_input() {
            delete my_body;
            delete my_init_body;
        }

        template< typename Body >
        Body copy_function_object() {
            function_body_type &body_ref = *my_body;
            return dynamic_cast< internal::function_body_leaf<input_type, output_type, Body> & >(body_ref).get_body();
        }

        void reset_receiver( reset_flags f) __TBB_override {
            continue_receiver::reset_receiver(f);
            if(f & rf_reset_bodies) {
                function_body_type *tmp = my_init_body->clone();
                delete my_body;
                my_body = tmp;
            }
        }

    protected:

        graph* my_graph_ptr;
        function_body_type *my_body;
        function_body_type *my_init_body;

        virtual broadcast_cache<output_type > &successors() = 0;

        friend class apply_body_task_bypass< continue_input< Output >, continue_msg >;

        //! Applies the body to the provided input
        task *apply_body_bypass( input_type ) {
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
            // There is an extra copied needed to capture the
            // body execution without the try_put
            tbb::internal::fgt_begin_body( my_body );
            output_type v = (*my_body)( continue_msg() );
            tbb::internal::fgt_end_body( my_body );
            return successors().try_put_task( v );
#else
            return successors().try_put_task( (*my_body)( continue_msg() ) );
#endif
        }

        //! Spawns a task that applies the body
        task *execute( ) __TBB_override {
            return (my_graph_ptr->is_active()) ?
                new ( task::allocate_additional_child_of( *(my_graph_ptr->root_task()) ) )
                    apply_body_task_bypass< continue_input< Output >, continue_msg >( *this, continue_msg() ) :
                NULL;
        }

    };  // continue_input

    //! Implements methods for both executable and function nodes that puts Output to its successors
    template< typename Output >
    class function_output : public sender<Output> {
    public:

        template<int N> friend struct clear_element;
        typedef Output output_type;
        typedef typename sender<output_type>::successor_type successor_type;
        typedef broadcast_cache<output_type> broadcast_cache_type;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
        typedef typename sender<output_type>::built_successors_type built_successors_type;
        typedef typename sender<output_type>::successor_list_type successor_list_type;
#endif

        function_output() { my_successors.set_owner(this); }
        function_output(const function_output & /*other*/) : sender<output_type>() {
            my_successors.set_owner(this);
        }

        //! Adds a new successor to this node
        bool register_successor( successor_type &r ) __TBB_override {
            successors().register_successor( r );
            return true;
        }

        //! Removes a successor from this node
        bool remove_successor( successor_type &r ) __TBB_override {
            successors().remove_successor( r );
            return true;
        }

#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
        built_successors_type &built_successors() __TBB_override { return successors().built_successors(); }


        void internal_add_built_successor( successor_type &r) __TBB_override {
            successors().internal_add_built_successor( r );
        }

        void internal_delete_built_successor( successor_type &r) __TBB_override {
            successors().internal_delete_built_successor( r );
        }

        size_t successor_count() __TBB_override {
            return successors().successor_count();
        }

        void  copy_successors( successor_list_type &v) __TBB_override {
            successors().copy_successors(v);
        }
#endif  /* TBB_PREVIEW_FLOW_GRAPH_FEATURES */

        // for multifunction_node.  The function_body that implements
        // the node will have an input and an output tuple of ports.  To put
        // an item to a successor, the body should
        //
        //    get<I>(output_ports).try_put(output_value);
        //
        // if task pointer is returned will always spawn and return true, else
        // return value will be bool returned from successors.try_put.
        task *try_put_task(const output_type &i) { // not a virtual method in this class
            return my_successors.try_put_task(i);
        }

        broadcast_cache_type &successors() { return my_successors; }
    protected:
        broadcast_cache_type my_successors;

    };  // function_output

    template< typename Output >
    class multifunction_output : public function_output<Output> {
    public:
        typedef Output output_type;
        typedef function_output<output_type> base_type;
        using base_type::my_successors;

        multifunction_output() : base_type() {my_successors.set_owner(this);}
        multifunction_output( const multifunction_output &/*other*/) : base_type() { my_successors.set_owner(this); }

        bool try_put(const output_type &i) {
            task *res = my_successors.try_put_task(i);
            if(!res) return false;
            if(res != SUCCESSFULLY_ENQUEUED) FLOW_SPAWN(*res);
            return true;
        }
    };  // multifunction_output

//composite_node
#if TBB_PREVIEW_FLOW_GRAPH_TRACE && __TBB_FLOW_GRAPH_CPP11_FEATURES
    template<typename CompositeType>
    void add_nodes_impl(CompositeType*, bool) {}

    template< typename CompositeType, typename NodeType1, typename... NodeTypes >
    void add_nodes_impl(CompositeType *c_node, bool visible, const NodeType1& n1, const NodeTypes&... n) {
        void *addr = const_cast<NodeType1 *>(&n1);

        if(visible)
            tbb::internal::itt_relation_add( tbb::internal::ITT_DOMAIN_FLOW, c_node, tbb::internal::FLOW_NODE, tbb::internal::__itt_relation_is_parent_of, addr, tbb::internal::FLOW_NODE );
        else
            tbb::internal::itt_relation_add( tbb::internal::ITT_DOMAIN_FLOW, addr, tbb::internal::FLOW_NODE, tbb::internal::__itt_relation_is_child_of, c_node, tbb::internal::FLOW_NODE );
        add_nodes_impl(c_node, visible, n...);
    }
#endif

}  // internal

#endif // __TBB__flow_graph_node_impl_H