This file is indexed.

/usr/include/simbody/simmath/internal/Geo_BicubicBezierPatch.h is in libsimbody-dev 3.5.4+dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
#ifndef SimTK_SIMMATH_GEO_BICUBIC_BEZIER_PATCH_H_
#define SimTK_SIMMATH_GEO_BICUBIC_BEZIER_PATCH_H_

/* -------------------------------------------------------------------------- *
 *                        Simbody(tm): SimTKmath                              *
 * -------------------------------------------------------------------------- *
 * This is part of the SimTK biosimulation toolkit originating from           *
 * Simbios, the NIH National Center for Physics-Based Simulation of           *
 * Biological Structures at Stanford, funded under the NIH Roadmap for        *
 * Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody.  *
 *                                                                            *
 * Portions copyright (c) 2011-12 Stanford University and the Authors.        *
 * Authors: Michael Sherman                                                   *
 * Contributors:                                                              *
 *                                                                            *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may    *
 * not use this file except in compliance with the License. You may obtain a  *
 * copy of the License at http://www.apache.org/licenses/LICENSE-2.0.         *
 *                                                                            *
 * Unless required by applicable law or agreed to in writing, software        *
 * distributed under the License is distributed on an "AS IS" BASIS,          *
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   *
 * See the License for the specific language governing permissions and        *
 * limitations under the License.                                             *
 * -------------------------------------------------------------------------- */

/** @file
Provides primitive operations for a single bicubic Bezier patch using either
single or double precision. **/

#include "SimTKcommon.h"
#include "simmath/internal/common.h"
#include "simmath/internal/Geo.h"
#include "simmath/internal/Geo_CubicBezierCurve.h"

#include <cassert>
#include <cmath>
#include <algorithm>

namespace SimTK {


//==============================================================================
//                         GEO BICUBIC BEZIER PATCH
//==============================================================================
/** A primitive useful for computations involving a single bicubic Bezier
patch. Note that a bicubic Bezier spline surface would not necessarily be
composed of these, but could use the static methods here for patch 
computations. 

<h3>Theory</h3>
The primary reference for this implementation is the book "Geometric Modeling, 
3rd ed." by Michael E. Mortenson, Industrial Press 2006, chapter 8. We follow
Mortenson's notation here (with some name changes) and equation numbers are 
from the text. See CubicHermiteCurve_ and BicubicHermitePatch_ comments for 
introductory material; here we add the Bezier description to the algebraic and 
Hermite (geometric) forms described there.

We use B for Bezier control points (rather than P), and H for Hermite 
coefficients (rather than B). We call the Bezier basis matrix Mb (same as
Mortenson) but call the Hermite basis matrix Mh (rather than Mf). 

The 16 control points are laid out like this, matching Mortenson, with the
Hermite coefficient matrix for comparison:
<pre>
        [ b11 b12 b13 b14 ] u=0        [ h00  h01  w00  w01 ]    u=dp/du
    B = [ b21 b22 b23 b24 ]  .     H = [ h10  h11  w10  w11 ]    w=dp/dw
        [ b31 b32 b33 b34 ]  .         [ u00  u01  t00  t01 ]    t=d2p/dudw
        [ b41 b42 b43 b44 ] u=1        [ u10  u11  t10  t11 ]      ("twist")
          w=0   . .   w=1
</pre>
We store those in a 4x4 hypermatrix; subtract one from each control point
index to get the matrix indices (sorry). 

To convert between Bezier and Hermite or algebraic forms, use
<pre>
    A = Mb B ~Mb  (although Mb is symmetric so ~Mb=Mb)
    H = (Mh^-1 Mb) B ~(Mh^-1 Mb)
    B = (Mb^-1 Mh) H ~(Mb^-1 Mh)
</pre>
where the parenthesized (very simple) matrices are given explicitly in the 
Theory section for CubicBezierCurve_. The results are:
<pre>
    [    b11         b14           3(b12-b11)             3(b14-b13)     ]
H = [    b41         b44           3(b42-b41)             3(b44-b43)     ]
    [ 3(b21-b11)  3(b24-b14)  9(b22-b21-{b12-b11})  9({b24-b14}+b13-b23) ]
    [ 3(b41-b31)  3(b44-b34)  9({b42-b41}+b31-b32)  9({b44-b34}+b33-b43) ]
</pre>
The braces in the twist terms mark common subexpressions, so the
conversion from Bezier to Hermite takes 3x28=84 flops (all entries are 
3-vectors).
<pre>
    [   h00            h00+w00/3               h01-w01/3          h01    ]
B = [h00+u00/3 {h00+u00/3}+w00/3+t00/9 {h01+u01/3}-w01/3-t01/9 h01+u01/3 ]
    [h10-u10/3 {h10-u10/3}+w10/3-t10/9 {h11-u11/3}-w11/3+t11/9 h11-u11/3 ]
    [   h10            h10+w10/3               h11-w11/3          h11    ] 
</pre>
Exploiting the common subexpressions in braces, conversion from Hermite to 
Bezier takes 3x32=96 flops. **/
template <class P>
class Geo::BicubicBezierPatch_ {
typedef P               RealP;
typedef Vec<3,RealP>    Vec3P;

public:
/** Construct an uninitialized patch; control points will be garbage. **/
BicubicBezierPatch_() {}

/** Construct a bicubic Bezier patch using the given control points B. See the
class documentation for how this matrix is defined. If instead you
have algebraic or Hermite coefficients, you can first convert them to Bezier
control points with the calcBFromA() or calcHFromA() provided here. **/
explicit BicubicBezierPatch_(const Mat<4,4,Vec3P>& controlPoints) 
:   B(controlPoints) {} 


/** Evaluate a point P(u,w) on this patch given values for the
parameters u and w in [0,1]. Values outside this range are permitted but do 
not lie on the patch. Cost is 123 flops. **/
Vec3P evalP(RealP u, RealP w) const {return evalPUsingB(B,u,w);}

/** Evaluate the tangents Pu=dP/du, Pw=dP/dw on this patch given values for the
parameters u and w in [0,1]. Values outside this range are permitted but do not
lie on the curve segment. Cost is 248 flops. **/
void evalP1(RealP u, RealP w, Vec3P& Pu, Vec3P& Pw) const 
{   return evalP1UsingB(B,u,w,Pu,Pw); }

/** Evaluate the second derivatives Puu=d2P/du2, Pww=d2P/dw2, and cross
derivative Puw=Pwu=d2P/dudw on this patch given values for the parameters u 
and w in [0,1]. Values outside this range are permitted but do not lie on the 
curve segment. Cost is 363 flops. **/
void evalP2(RealP u, RealP w, Vec3P& Puu, Vec3P& Puw, Vec3P& Pww) const 
{   evalP2UsingB(B,u,w,Puu,Puw,Pww); }

/** Evaluate the third derivatives Puuu=d3P/du3, Pwww=d3P/dw3, and cross
derivatives Puuw=Pwuu=Puwu=d3P/du2dw and Puww=Pwwu=Pwuw=d3P/dudw2 on this patch 
given values for the parameters u and w in [0,1]. Cost is 468 flops. All
higher derivatives of a cubic patch are zero. **/
void evalP3(RealP u, RealP w, Vec3P& Puuu, Vec3P& Puuw, 
                              Vec3P& Puww, Vec3P& Pwww) const 
{   evalP3UsingB(B,u,w,Puuu,Puuw,Puww,Pwww); }

/** Return a reference to the Bezier control points B that are
stored in this object. See the documentation for this class to see how the
returned matrix of control points is defined. **/
const Mat<4,4,Vec3P>& getControlPoints() const {return B;}
/** Return a writable reference to the Bezier control points B that are
stored in this object. See the documentation for this class to see how the
returned matrix of control points is defined. **/
Mat<4,4,Vec3P>& updControlPoints() {return B;}
/** Calculate the algebraic coefficients A from the stored Bezier control
points. See the documentation for BicubicHermitePatch_ to see how the
returned matrix of coefficients is defined. Cost is 240 flops. **/
Mat<4,4,Vec3P> calcAlgebraicCoefficients() const {return calcAFromB(B);}
/** Calculate the Hermite coefficients H from the stored 
Bezier control points. See the documentation for this class to see how the
returned matrix of coefficients is defined. Cost is 84 flops. **/
Mat<4,4,Vec3P> calcHermiteCoefficients() const {return calcHFromB(B);}

/** Return the u=0 boundary curve as a Bezier curve segment. The control points
are just the first row of the patch control points B so no computation is 
required. **/
CubicBezierCurve_<P> getBoundaryCurveU0() const 
{   return CubicBezierCurve_<P>(B[0]); } // b11 b12 b13 b14
/** Return the u=1 boundary curve as a Bezier curve segment. The control points
are just the last row of the patch control points B so no computation is 
required. **/
CubicBezierCurve_<P> getBoundaryCurveU1() const 
{   return CubicBezierCurve_<P>(B[3]); } // b41 b42 b43 b44
/** Return the w=0 boundary curve as a Bezier curve segment. The control points
are just the first column of the patch control points B so no computation is 
required. **/
CubicBezierCurve_<P> getBoundaryCurveW0() const 
{   return CubicBezierCurve_<P>(B(0)); } // b11 b21 b31 b41
/** Return the w=1 boundary curve as a Bezier curve segment. The control points
are just the last column of the patch control points B so no computation is 
required. **/
CubicBezierCurve_<P> getBoundaryCurveW1() const 
{   return CubicBezierCurve_<P>(B(3)); } // b14 b24 b34 b44

/** Given a particular value u0 for patch coordinate u, create a cubic Bezier
curve segment P(w)=P(u0,w) for the isoparametric curve along the patch at fixed
u=u0. Cost is 93 flops. **/
CubicBezierCurve_<P> calcIsoCurveU(RealP u0) const 
{   return calcIsoCurveU(B, u0); }
/** Given a particular value w0 for patch coordinate w, create a cubic Bezier
curve segment P(u)=P(u,w0) for the isoparametric curve along the patch at fixed
w=w0. Cost is 93 flops. **/
CubicBezierCurve_<P> calcIsoCurveW(RealP w0) const 
{   return calcIsoCurveW(B, w0); }

/** Split this patch into two along the u direction, along an isoparametric 
curve of constant u=t such that 0 < t < 1. On return, \a patch0 coincides with
the u=0..t subpatch, and \a patch1 coincides with the u=t..1 subpatch. Each of 
the new patches is reparameterized so that its u parameter goes from 0 to 1, 
and the w direction remains parameterized as before. This method is only 
allowed for tol <= t <= 1-tol where tol is the default tolerance for this 
precision. 

@param[in]  u       The u parameter of splitting isoparametric curve
                    (tol <= u <= 1-tol).
@param[out] patch0 Subpatch covering domain [0..u,0..1] (contains 0,0 corner).
@param[out] patch1 Subpatch covering domain [u..1,0..1] (contains 1,1 corner).

Cost is 180 flops, or 120 flops if u=1/2. **/
void splitU(RealP u, BicubicBezierPatch_<P>& patch0, 
                     BicubicBezierPatch_<P>& patch1) const {
    const RealP tol = getDefaultTol<RealP>();
    SimTK_ERRCHK1(tol <= u && u <= 1-tol, "Geo::BicubicBezierPatch::splitU()",
        "Can't split patch at parameter u=%g; it is either out of range or"
        " too close to an edge.", (double)u);
    CubicBezierCurve_<P> l,h;
    if (u==RealP(0.5)) // bisecting
        for (int i=0; i<4; ++i) {
            CubicBezierCurve_<P>(B(i)).bisect(l,h);
            patch0.B(i) = l.getControlPoints(); 
            patch1.B(i) = h.getControlPoints();
        }
    else 
        for (int i=0; i<4; ++i) {
            CubicBezierCurve_<P>(B(i)).split(u,l,h);
            patch0.B(i) = l.getControlPoints(); 
            patch1.B(i) = h.getControlPoints();
        }
}

/** Split this patch into two along the w direction, along an isoparametric 
curve of constant w=t such that 0 < t < 1. On return, \a patch0 coincides with
the w=0..t subpatch, and \a patch1 coincides with the w=t..1 subpatch. Each of 
the new patches is reparameterized so that its w parameter goes from 0 to 1, 
and the u direction remains parameterized as before. This method is only 
allowed for tol <= t <= 1-tol where tol is the default tolerance for this 
precision. 

@param[in]  w       The w parameter of splitting isoparametric curve
                    (tol <= w <= 1-tol).
@param[out] patch0 Subpatch covering domain [0..1,0..w] (contains 0,0 corner).
@param[out] patch1 Subpatch covering domain [0..1,w..1] (contains 1,1 corner).

Cost is 180 flops, or 120 flops if w=1/2. **/
void splitW(RealP w, BicubicBezierPatch_<P>& patch0, 
                     BicubicBezierPatch_<P>& patch1) const {
    const RealP tol = getDefaultTol<RealP>();
    SimTK_ERRCHK1(tol <= w && w <= 1-tol, "Geo::BicubicBezierPatch::splitW()",
        "Can't split patch at parameter w=%g; it is either out of range or"
        " too close to an edge.", (double)w);
    CubicBezierCurve_<P> l,h;
    if (w==RealP(0.5)) // bisecting
        for (int i=0; i<4; ++i) {
            CubicBezierCurve_<P>(B[i]).bisect(l,h);
            patch0.B[i] = l.getControlPoints().positionalTranspose(); 
            patch1.B[i] = h.getControlPoints().positionalTranspose();
        }
    else 
        for (int i=0; i<4; ++i) {
            CubicBezierCurve_<P>(B[i]).split(w,l,h);
            patch0.B[i] = l.getControlPoints().positionalTranspose(); 
            patch1.B[i] = h.getControlPoints().positionalTranspose();
        }
}


/** Split this patch into four subpatches at a particular parametric point 
(u,w) such that 0 < u,w < 1, with each resulting subpatch covering part of the 
original parametric domain in each direction. The subpatches are reparametrized
to have [0..1,0..1] domains. This method is only allowed for 
tol <= u,w <= 1-tol where tol is the default tolerance for this precision. 

@param[in]  u       The u parameter of the splitting point (tol <= u <= 1-tol).
@param[in]  w       The w parameter of the splitting point (tol <= w <= 1-tol).
@param[out] patch00 Subpatch covering domain [0..u,0..w] (contains 0,0 corner).
@param[out] patch01 Subpatch covering domain [0..u,w..1] (contains 0,1 corner).
@param[out] patch10 Subpatch covering domain [u..1,0..w] (contains 1,0 corner).
@param[out] patch11 Subpatch covering domain [u..1,w..1] (contains 1,1 corner).

Cost is 360, 420, or 540 flops depending on whether both, one, or neither 
parameter is 1/2. **/
void split(RealP u, RealP w, BicubicBezierPatch_<P>& patch00, 
                             BicubicBezierPatch_<P>& patch01, 
                             BicubicBezierPatch_<P>& patch10, 
                             BicubicBezierPatch_<P>& patch11) const {
    const RealP tol = getDefaultTol<RealP>();
    SimTK_ERRCHK2((tol <= u && u <= 1-tol) && (tol <= w && w <= 1-tol), 
        "Geo::BicubicBezierPatch::split()",
        "Can't split patch at parametric point u,w=%g,%g; it is either out of"
        " range or too close to an edge.", (double)u, (double)w);

    BicubicBezierPatch_<P> patch0, patch1; // results of the first split

    // We split once along one direction, and then twice along the other, so
    // make sure the second direction is the cheap bisecting one.
    if (u == Real(0.5)) {
        splitW(w,patch0,patch1);            // 120 or 180 flops
        patch0.splitU(u, patch00, patch10); // 120 flops
        patch1.splitU(u, patch01, patch11); // 120 flops
    } else {
        splitU(u,patch0,patch1);            // 180 flops
        patch0.splitW(w, patch00, patch01); // 120 or 180 flops
        patch1.splitW(w, patch10, patch11); // 120 or 180 flops
    }
}

/** Return a sphere that surrounds the entire patch in the 0<= u,w <=1
range. 

@bug Currently we use the fact that the patch is enclosed within the convex 
hull of its control points and generate the minimum bounding sphere that 
includes all control points; that is not necessarily the 
tightest-fitting sphere. **/
Geo::Sphere_<P> calcBoundingSphere() const 
{   const ArrayViewConst_<Vec3P> points(&B(0,0), &B(0,0)+16); // no copy 
    return Geo::Point_<P>::calcBoundingSphere(points); }

/** Return an axis-aligned bounding box (AABB) that surrounds the entire patch 
segment in the 0<= u,w <=1 range. 

@bug Currently we use the fact that the patch is enclosed within the convex 
hull of its control points and generate the minimum bounding box that 
includes all control points; that is not necessarily the 
tightest-fitting box. **/
Geo::AlignedBox_<P> calcAxisAlignedBoundingBox() const 
{   const ArrayViewConst_<Vec3P> points(&B(0,0), &B(0,0)+16); // no copy 
    return Geo::Point_<P>::calcAxisAlignedBoundingBox(points); }

/** Return an oriented bounding box (OBB) that surrounds the entire curve 
segment in the 0<= u,w <=1 range. 

@bug Currently we use the fact that the patch is enclosed within the convex 
hull of its control points and generate an oriented bounding box that 
includes all control points; that is not necessarily the 
tightest-fitting box. **/
Geo::OrientedBox_<P> calcOrientedBoundingBox() const 
{   const ArrayViewConst_<Vec3P> points(&B(0,0), &B(0,0)+16); // no copy 
    return Geo::Point_<P>::calcOrientedBoundingBox(points); }

/**@name                 Utility methods
These static methods work with given control points. **/
/**@{**/

/** Given Bezier control points B and values for the curve parameters 
u and w in [0..1], return the point P(u,w)=Fb(u)*B*~Fb(w) at that location, 
where Fb is a vector of Bezier basis functions. Cost is 
3x35+18=123 flops. **/
static Vec3P evalPUsingB(const Mat<4,4,Vec3P>& B, RealP u, RealP w) { 
    Row<4,P> Fbu = CubicBezierCurve_<P>::calcFb(u);     // 9 flops
    Row<4,P> Fbw = CubicBezierCurve_<P>::calcFb(w);     // 9 flops
    return Fbu * B * ~Fbw;                              // 3x35 flops
}

/** Given Bezier control points B and values for the curve parameters 
u and w in [0..1], return the tangents Pu(u,w)=dFb(u)*B*~Fb(w) and 
Pw(u,w)=Fb(u)*B*~dFb(w) at 
that location. Cost is 3x70+38=248 flops. **/
static void evalP1UsingB(const Mat<4,4,Vec3P>& B, RealP u, RealP w,
                         Vec3P& Pu, Vec3P& Pw) {
    Row<4,P> Fbu  = CubicBezierCurve_<P>::calcFb(u);     //  9 flops
    Row<4,P> Fbw  = CubicBezierCurve_<P>::calcFb(w);     //  9 flops
    Row<4,P> dFbu = CubicBezierCurve_<P>::calcDFb(u);    // 10 flops
    Row<4,P> dFbw = CubicBezierCurve_<P>::calcDFb(w);    // 10 flops
    Pu = dFbu * B * ~Fbw;                                // 3x35
    Pw = Fbu  * B * ~dFbw;                               // 3x35
}

/** Given Bezier control points B and values for the curve parameters 
u and w in [0..1], return the second derivatives Puu(u,w)=d2Fb(u)*B*~Fb(w),
Puw(u,w)=dFb(u)*B*~dFb(w) and Pww(u,w)=Fb(u)*B*~d2Fb(w) at that location. 
Cost is 3x105+48=363 flops. **/
static void evalP2UsingB(const Mat<4,4,Vec3P>& B, RealP u, RealP w,
                         Vec3P& Puu, Vec3P& Puw, Vec3P& Pww) {
    Row<4,P> Fbu   = CubicBezierCurve_<P>::calcFb(u);     //  9 flops
    Row<4,P> Fbw   = CubicBezierCurve_<P>::calcFb(w);     //  9 flops
    Row<4,P> dFbu  = CubicBezierCurve_<P>::calcDFb(u);    // 10 flops
    Row<4,P> dFbw  = CubicBezierCurve_<P>::calcDFb(w);    // 10 flops
    Row<4,P> d2Fbu = CubicBezierCurve_<P>::calcD2Fb(u);   //  5 flops
    Row<4,P> d2Fbw = CubicBezierCurve_<P>::calcD2Fb(w);   //  5 flops
    Puu = d2Fbu * B * ~Fbw;                               // 3x35
    Puw = dFbu  * B * ~dFbw;                              // 3x35
    Pww = Fbu   * B * ~d2Fbw;                             // 3x35
}

/** Given Bezier control points B and values for the curve parameters 
u and w in [0..1], return the third derivatives Puuu(u,w)=d3Fb(u)*B*~Fb(w),
Puuw(u,w)=d2Fb(u)*B*~dFb(w), Puww(u,w)=dFb(u)*B*~d2Fb(w) and 
Pwww(u,w)=Fb(u)*B*~d3Fb(w) at that location. Cost is 3x140+48=468 flops. **/
static void evalP3UsingB(const Mat<4,4,Vec3P>& B, RealP u, RealP w,
                         Vec3P& Puuu, Vec3P& Puuw, Vec3P& Puww, Vec3P& Pwww) {
    Row<4,P> Fbu   = CubicBezierCurve_<P>::calcFb(u);     //  9 flops
    Row<4,P> Fbw   = CubicBezierCurve_<P>::calcFb(w);     //  9 flops
    Row<4,P> dFbu  = CubicBezierCurve_<P>::calcDFb(u);    // 10 flops
    Row<4,P> dFbw  = CubicBezierCurve_<P>::calcDFb(w);    // 10 flops
    Row<4,P> d2Fbu = CubicBezierCurve_<P>::calcD2Fb(u);   //  5 flops
    Row<4,P> d2Fbw = CubicBezierCurve_<P>::calcD2Fb(w);   //  5 flops
    Row<4,P> d3Fbu = CubicBezierCurve_<P>::calcD3Fb(u);   //  0 
    Row<4,P> d3Fbw = CubicBezierCurve_<P>::calcD3Fb(w);   //  0
    Puuu = d3Fbu * B * ~Fbw;                              // 3x35
    Puuw = d2Fbu * B * ~dFbw;                             // 3x35
    Puww = dFbu  * B * ~d2Fbw;                            // 3x35
    Pwww = Fbu   * B * ~d3Fbw;                            // 3x35
}

/** Given a particular value u0 for patch coordinate u, create a cubic Bezier
curve segment P(w)=P(u0,w) for the isoparametric curve along the patch at fixed
u=u0. Cost is 3x28+9=93 flops. **/
static CubicBezierCurve_<P> 
calcIsoCurveU(const Mat<4,4,Vec3P>& B, RealP u0) 
{   const Row<4,Vec3P> Bu0 = CubicBezierCurve_<P>::calcFb(u0) * B;
    return CubicBezierCurve_<P>(Bu0); }

/** Given a particular value w0 for patch coordinate w, create a cubic Bezier
curve segment P(u)=P(u,w0) for the isoparametric curve along the patch at fixed
w=w0. Cost is 3x28+9=93 flops. **/
static CubicBezierCurve_<P> 
calcIsoCurveW(const Mat<4,4,Vec3P>& B, RealP w0)
{    const Vec<4,Vec3P> Bw0 = B * ~CubicBezierCurve_<P>::calcFb(w0);
     return CubicBezierCurve_<P>(Bw0); }

/** Given the Bezier control points B, return the equivalent vector algebraic
coefficients A. All coefficients are 3-vectors. Cost is 3x80=240 flops. **/
static Mat<4,4,Vec3P> calcAFromB(const Mat<4,4,Vec3P>& B) {
    typedef const Vec3P& Coef;
    Coef b11=B(0,0), b12=B(0,1), b13=B(0,2), b14=B(0,3), 
         b21=B(1,0), b22=B(1,1), b23=B(1,2), b24=B(1,3), 
         b31=B(2,0), b32=B(2,1), b33=B(2,2), b34=B(2,3), 
         b41=B(3,0), b42=B(3,1), b43=B(3,2), b44=B(3,3); 
    // First calculate Mb*B:
    //       a   b   c   d
    //       e   f   g   h
    //       p   q   r   s
    //      b11 b12 b13 b14
    Vec3P a= b41-b11+3*(b21-b31), b= b42-b12+3*(b22-b32),   // 3x16 flops
          c= b43-b13+3*(b23-b33), d= b44-b14+3*(b24-b34);
    Vec3P e= 3*(b11+b31)-6*b21,   f= 3*(b12+b32)-6*b22,     // 3x16 flops
          g= 3*(b13+b33)-6*b23,   h= 3*(b14+b34)-6*b24;
    Vec3P p= 3*(b21-b11),         q= 3*(b22-b12),           // 3x8 flops
          r= 3*(b23-b13),         s= 3*(b24-b14);

    // Then calculate (Mb*B)*~Mb. (3x40 more flops)
    return Mat<4,4,Vec3P>
       ( d-a+3*(b-c),          3*(a+c)-6*b,       3*(b-a),        a,
         h-e+3*(f-g),          3*(e+g)-6*f,       3*(f-e),        e,
         s-p+3*(q-r),          3*(p+r)-6*q,       3*(q-p),        p,
         b14-b11+3*(b12-b13),  3*(b11+b13)-6*b12, 3*(b12-b11),   b11 );
}

/** Given the vector algebraic coefficients A, return the equivalent Bezier
control points B. All coefficients are 3-vectors. Cost is 3x72=216 flops. **/
static Mat<4,4,Vec3P> calcBFromA(const Mat<4,4,Vec3P>& A) {
    typedef const Vec3P& Coef;
    Coef a33=A(0,0), a32=A(0,1), a31=A(0,2), a30=A(0,3), 
         a23=A(1,0), a22=A(1,1), a21=A(1,2), a20=A(1,3), 
         a13=A(2,0), a12=A(2,1), a11=A(2,2), a10=A(2,3), 
         a03=A(3,0), a02=A(3,1), a01=A(3,2), a00=A(3,3); 
    // First calculate Mb^-1*A:
    //      a03 a02 a01 a00
    //       a   b   c   d
    //       e   f   g   h
    //       p   q   r   s
    Vec3P a=a13/3+a03, b=a12/3+a02, c=a11/3+a01, d=a10/3+a00;   // 3x8 flops
    Vec3P e=(a23+2*a13)/3+a03, f=(a22+2*a12)/3+a02,             // 3x16 flops
          g=(a21+2*a11)/3+a01, h=(a20+2*a10)/3+a00;
    Vec3P p=a33+a23+a13+a03, q=a32+a22+a12+a02,                 // 3x12 flops
          r=a31+a21+a11+a01, s=a30+a20+a10+a00;


    // Then calculate (Mb^-1*A)*Mb^-T (3x36 more flops)
    return Mat<4,4,Vec3P>
       ( a00,   a01/3+a00,  (a02+2*a01)/3+a00,     a03+a02+a01+a00,
          d,      c/3+d,       (b+2*c)/3+d,             a+b+c+d,
          h,      g/3+h,       (f+2*g)/3+h,             e+f+g+h,
          s,      r/3+s,       (q+2*r) /3+s,            p+q+r+s     );
}

/** Given the Bezier control points B, return the equivalent vector Hermite
coefficients H. All coefficients are 3-vectors. Cost is 3x28=84 flops. **/
static Mat<4,4,Vec3P> calcHFromB(const Mat<4,4,Vec3P>& B) {
    typedef const Vec3P& Coef;
    Coef b11=B(0,0), b12=B(0,1), b13=B(0,2), b14=B(0,3), 
         b21=B(1,0), b22=B(1,1), b23=B(1,2), b24=B(1,3), 
         b31=B(2,0), b32=B(2,1), b33=B(2,2), b34=B(2,3), 
         b41=B(3,0), b42=B(3,1), b43=B(3,2), b44=B(3,3); 

    // First calculate a few temps -- see class comments. (3x4 flops)
    Vec3P b12mb11=b12-b11, b24mb14=b24-b14, b42mb41=b42-b41, b44mb34=b44-b34;

    // Then calculate (Mh^-1 Mb) B ~(Mh^-1 Mb). (3x24 more flops)
    return Mat<4,4,Vec3P>
       (     b11,         b14,          3*b12mb11,           3*(b14-b13),
             b41,         b44,          3*b42mb41,           3*(b44-b43),
         3*(b21-b11),  3*b24mb14,  9*(b22-b21-b12mb11),  9*(b24mb14+b13-b23),
         3*(b41-b31),  3*b44mb34,  9*(b42mb41+b31-b32),  9*(b44mb34+b33-b43) );
}

/** Given the vector Hermite coefficients H, return the equivalent Bezier
control points B. All coefficients are 3-vectors. Cost is 3x32=96 flops. **/
static Mat<4,4,Vec3P> calcBFromH(const Mat<4,4,Vec3P>& H) {
    typedef const Vec3P& Coef;
    Coef h00=H(0,0), h01=H(0,1), w00=H(0,2), w01=H(0,3), 
         h10=H(1,0), h11=H(1,1), w10=H(1,2), w11=H(1,3), 
         u00=H(2,0), u01=H(2,1), t00=H(2,2), t01=H(2,3), 
         u10=H(3,0), u11=H(3,1), t10=H(3,2), t11=H(3,3); 

    // First calculate a few temps -- see class comments. (3x8 flops)
    Vec3P tmp00=h00+u00/3, tmp01=h01+u01/3, 
          tmp10=h10-u10/3, tmp11=h11-u11/3;

    // Then calculate (Mb^-1 Mh) H ~(Mb^-1 Mh). (3x24 more flops)
    return Mat<4,4,Vec3P>
       (  h00,       h00+w00/3,          h01-w01/3,       h01,
         tmp00,  tmp00+w00/3+t00/9,  tmp01-w01/3-t01/9,  tmp01,
         tmp10,  tmp10+w10/3-t10/9,  tmp11-w11/3+t11/9,  tmp11,
          h10,       h10+w10/3,          h11-w11/3,       h11  );
}
/**@}**/

private:
Mat<4,4,Vec3P> B;   // 16 Bezier control points; see above for definition
};



} // namespace SimTK

#endif // SimTK_SIMMATH_GEO_BICUBIC_BEZIER_PATCH_H_