This file is indexed.

/usr/include/simbody/SimTKcommon/internal/SmallMatrixMixed.h is in libsimbody-dev 3.5.4+dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
#ifndef SimTK_SIMMATRIX_SMALLMATRIX_MIXED_H_
#define SimTK_SIMMATRIX_SMALLMATRIX_MIXED_H_

/* -------------------------------------------------------------------------- *
 *                       Simbody(tm): SimTKcommon                             *
 * -------------------------------------------------------------------------- *
 * This is part of the SimTK biosimulation toolkit originating from           *
 * Simbios, the NIH National Center for Physics-Based Simulation of           *
 * Biological Structures at Stanford, funded under the NIH Roadmap for        *
 * Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody.  *
 *                                                                            *
 * Portions copyright (c) 2005-12 Stanford University and the Authors.        *
 * Authors: Michael Sherman                                                   *
 * Contributors:                                                              *
 *                                                                            *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may    *
 * not use this file except in compliance with the License. You may obtain a  *
 * copy of the License at http://www.apache.org/licenses/LICENSE-2.0.         *
 *                                                                            *
 * Unless required by applicable law or agreed to in writing, software        *
 * distributed under the License is distributed on an "AS IS" BASIS,          *
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   *
 * See the License for the specific language governing permissions and        *
 * limitations under the License.                                             *
 * -------------------------------------------------------------------------- */

/**@file
 * This file defines global functions and class members which use a mix 
 * of Vec, Row, and Mat types and hence need to wait until everything is 
 * defined. Some of them may depend on Lapack also.
 */

namespace SimTK {

    // COMPARISON

// m==s
template <int M, class EL, int CSL, int RSL, class ER, int RSR> inline
bool operator==(const Mat<M,M,EL,CSL,RSL>& l, const SymMat<M,ER,RSR>& r) {
    for (int i=0; i<M; ++i) {
        if (l(i,i) != r.getDiag()[i]) return false;
        for (int j=0; j<i; ++j)
            if (l(i,j) != r.getEltLower(i,j)) return false;
        for (int j=i+1; j<M; ++j)
            if (l(i,j) != r.getEltUpper(i,j)) return false;
    }
     
    return true;
}
// m!=s
template <int M, class EL, int CSL, int RSL, class ER, int RSR> inline
bool operator!=(const Mat<M,M,EL,CSL,RSL>& l, const SymMat<M,ER,RSR>& r) {
    return !(l==r);
}

// s==m
template <int M, class EL, int RSL, class ER, int CSR, int RSR> inline
bool operator==(const SymMat<M,EL,RSL>& l, const Mat<M,M,ER,CSR,RSR>& r) {
    return r==l;
}
// s!=m
template <int M, class EL, int RSL, class ER, int CSR, int RSR> inline
bool operator!=(const SymMat<M,EL,RSL>& l, const Mat<M,M,ER,CSR,RSR>& r) {
    return !(r==l);
}

    // DOT PRODUCT

// Dot product and corresponding infix operator*(). Note that
// the '*' operator is just a matrix multiply so is strictly 
// row*column to produce a scalar (1x1) result.
//
// In keeping with Matlab precedent, however, the explicit dot()
// function is defined on two column vectors
// v and w such that dot(v,w)= ~v * w. That means we use the
// Hermitian transpose of the elements of v, and the elements of
// w unchanged. If v and/or w are rows, we first convert them
// to vectors via *positional* transpose. So no matter what shape
// these have on the way in it is always the Hermitian transpose
// (or complex conjugate for scalars) of the first item times
// the unchanged elements of the second item.


template <int M, class E1, int S1, class E2, int S2> inline
typename CNT<typename CNT<E1>::THerm>::template Result<E2>::Mul 
dot(const Vec<M,E1,S1>& r, const Vec<M,E2,S2>& v) {
    typename CNT<typename CNT<E1>::THerm>::template Result<E2>::Mul sum(dot(reinterpret_cast<const Vec<M-1,E1,S1>&>(r), reinterpret_cast<const Vec<M-1,E2,S2>&>(v)) + CNT<E1>::transpose(r[M-1])*v[M-1]);
    return sum;
}
template <class E1, int S1, class E2, int S2> inline
typename CNT<typename CNT<E1>::THerm>::template Result<E2>::Mul 
dot(const Vec<1,E1,S1>& r, const Vec<1,E2,S2>& v) {
    typename CNT<typename CNT<E1>::THerm>::template Result<E2>::Mul sum(CNT<E1>::transpose(r[0])*v[0]);
    return sum;
}

// dot product (row * conforming vec)
template <int N, class E1, int S1, class E2, int S2> inline
typename CNT<E1>::template Result<E2>::Mul 
operator*(const Row<N,E1,S1>& r, const Vec<N,E2,S2>& v) {
    typename CNT<E1>::template Result<E2>::Mul sum(reinterpret_cast<const Row<N-1,E1,S1>&>(r)*reinterpret_cast<const Vec<N-1,E2,S2>&>(v) + r[N-1]*v[N-1]);
    return sum;
}
template <class E1, int S1, class E2, int S2> inline
typename CNT<E1>::template Result<E2>::Mul 
operator*(const Row<1,E1,S1>& r, const Vec<1,E2,S2>& v) {
    typename CNT<E1>::template Result<E2>::Mul sum(r[0]*v[0]);
    return sum;
}

// Alternate acceptable forms for dot().
template <int N, class E1, int S1, class E2, int S2> inline
typename CNT<E1>::template Result<E2>::Mul 
dot(const Row<N,E1,S1>& r, const Vec<N,E2,S2>& v) {
    return dot(r.positionalTranspose(),v);
}
template <int M, class E1, int S1, class E2, int S2> inline
typename CNT<E1>::template Result<E2>::Mul 
dot(const Vec<M,E1,S1>& v, const Row<M,E2,S2>& r) {
    return dot(v,r.positionalTranspose());
}
template <int N, class E1, int S1, class E2, int S2> inline
typename CNT<E1>::template Result<E2>::Mul 
dot(const Row<N,E1,S1>& r, const Row<N,E2,S2>& s) {
    return dot(r.positionalTranspose(),s.positionalTranspose());
}

    // OUTER PRODUCT

// Outer product and corresponding infix operator*(). Note that
// the '*' operator is just a matrix multiply so is strictly 
// column_mX1 * row_1Xm to produce an mXm matrix result.
//
// Although Matlab doesn't provide outer(), to be consistent
// we'll treat it as discussed for dot() above. That is, outer
// is defined on two column vectors
// v and w such that outer(v,w)= v * ~w. That means we use the
// elements of v unchanged but use the Hermitian transpose of
// the elements of w. If v and/or w are rows, we first convert them
// to vectors via *positional* transpose. So no matter what shape
// these have on the way in it is always the unchanged elements of
// the first item times the Hermitian transpose (or complex
// conjugate for scalars) of the elements of the second item.

template <int M, class E1, int S1, class E2, int S2> inline
Mat<M,M, typename CNT<E1>::template Result<typename CNT<E2>::THerm>::Mul>
outer(const Vec<M,E1,S1>& v, const Vec<M,E2,S2>& w) {
    Mat<M,M, typename CNT<E1>::template Result<typename CNT<E2>::THerm>::Mul> m;
    for (int i=0; i<M; ++i)
        m[i] = v[i] * ~w;
    return m;
}

// This is the general conforming case of Vec*Row (outer product)
template <int M, class E1, int S1, class E2, int S2> inline
typename Vec<M,E1,S1>::template Result<Row<M,E2,S2> >::Mul
operator*(const Vec<M,E1,S1>& v, const Row<M,E2,S2>& r) {
    return Vec<M,E1,S1>::template Result<Row<M,E2,S2> >::MulOp::perform(v,r);
}


// Alternate acceptable forms for outer().
template <int M, class E1, int S1, class E2, int S2> inline
Mat<M,M, typename CNT<E1>::template Result<E2>::Mul>
outer(const Vec<M,E1,S1>& v, const Row<M,E2,S2>& r) {
    return outer(v,r.positionalTranspose());
}
template <int M, class E1, int S1, class E2, int S2> inline
Mat<M,M, typename CNT<E1>::template Result<E2>::Mul>
outer(const Row<M,E1,S1>& r, const Vec<M,E2,S2>& v) {
    return outer(r.positionalTranspose(),v);
}
template <int M, class E1, int S1, class E2, int S2> inline
Mat<M,M, typename CNT<E1>::template Result<E2>::Mul>
outer(const Row<M,E1,S1>& r, const Row<M,E2,S2>& s) {
    return outer(r.positionalTranspose(),s.positionalTranspose());
}

    // MAT*VEC, ROW*MAT (conforming)

// vec = mat * vec (conforming)
template <int M, int N, class ME, int CS, int RS, class E, int S> inline
typename Mat<M,N,ME,CS,RS>::template Result<Vec<N,E,S> >::Mul
operator*(const Mat<M,N,ME,CS,RS>& m,const Vec<N,E,S>& v) {
    typename Mat<M,N,ME,CS,RS>::template Result<Vec<N,E,S> >::Mul result;
    for (int i=0; i<M; ++i)
        result[i] = m[i]*v;
    return result;
}

// row = row * mat (conforming)
template <int M, class E, int S, int N, class ME, int CS, int RS> inline
typename Row<M,E,S>::template Result<Mat<M,N,ME,CS,RS> >::Mul
operator*(const Row<M,E,S>& r, const Mat<M,N,ME,CS,RS>& m) {
    typename Row<M,E,S>::template Result<Mat<M,N,ME,CS,RS> >::Mul result;
    for (int i=0; i<N; ++i)
        result[i] = r*m(i);
    return result;
}

    // SYMMAT*VEC, ROW*SYMMAT (conforming)

// vec = sym * vec (conforming)
template <int N, class ME, int RS, class E, int S> inline
typename SymMat<N,ME,RS>::template Result<Vec<N,E,S> >::Mul
operator*(const SymMat<N,ME,RS>& m,const Vec<N,E,S>& v) {
    typename SymMat<N,ME,RS>::template Result<Vec<N,E,S> >::Mul result;
    for (int i=0; i<N; ++i) {
        result[i] = m.getDiag()[i]*v[i];
        for (int j=0; j<i; ++j)
            result[i] += m.getEltLower(i,j)*v[j];
        for (int j=i+1; j<N; ++j)
            result[i] += m.getEltUpper(i,j)*v[j];
    }
    return result;
}

// Unroll loops for small cases.

// 1 flop.
template <class ME, int RS, class E, int S> inline
typename SymMat<1,ME,RS>::template Result<Vec<1,E,S> >::Mul
operator*(const SymMat<1,ME,RS>& m,const Vec<1,E,S>& v) {
    typename SymMat<1,ME,RS>::template Result<Vec<1,E,S> >::Mul result;
    result[0] = m.getDiag()[0]*v[0];
    return result;
}

// 6 flops.
template <class ME, int RS, class E, int S> inline
typename SymMat<2,ME,RS>::template Result<Vec<2,E,S> >::Mul
operator*(const SymMat<2,ME,RS>& m,const Vec<2,E,S>& v) {
    typename SymMat<2,ME,RS>::template Result<Vec<2,E,S> >::Mul result;
    result[0] = m.getDiag()[0]    *v[0] + m.getEltUpper(0,1)*v[1];
    result[1] = m.getEltLower(1,0)*v[0] + m.getDiag()[1]    *v[1];
    return result;
}

// 15 flops.
template <class ME, int RS, class E, int S> inline
typename SymMat<3,ME,RS>::template Result<Vec<3,E,S> >::Mul
operator*(const SymMat<3,ME,RS>& m,const Vec<3,E,S>& v) {
    typename SymMat<3,ME,RS>::template Result<Vec<3,E,S> >::Mul result;
    result[0] = m.getDiag()[0]    *v[0] + m.getEltUpper(0,1)*v[1] + m.getEltUpper(0,2)*v[2];
    result[1] = m.getEltLower(1,0)*v[0] + m.getDiag()[1]    *v[1] + m.getEltUpper(1,2)*v[2];
    result[2] = m.getEltLower(2,0)*v[0] + m.getEltLower(2,1)*v[1] + m.getDiag()[2]    *v[2];
    return result;
}

// row = row * sym (conforming)
template <int M, class E, int S, class ME, int RS> inline
typename Row<M,E,S>::template Result<SymMat<M,ME,RS> >::Mul
operator*(const Row<M,E,S>& r, const SymMat<M,ME,RS>& m) {
    typename Row<M,E,S>::template Result<SymMat<M,ME,RS> >::Mul result;
    for (int j=0; j<M; ++j) {
        result[j] = r[j]*m.getDiag()[j];
        for (int i=0; i<j; ++i)
            result[j] += r[i]*m.getEltUpper(i,j);
        for (int i=j+1; i<M; ++i)
            result[j] += r[i]*m.getEltLower(i,j);
    }
    return result;
}

// Unroll loops for small cases.

// 1 flop.
template <class E, int S, class ME, int RS> inline
typename Row<1,E,S>::template Result<SymMat<1,ME,RS> >::Mul
operator*(const Row<1,E,S>& r, const SymMat<1,ME,RS>& m) {
    typename Row<1,E,S>::template Result<SymMat<1,ME,RS> >::Mul result;
    result[0] = r[0]*m.getDiag()[0];
    return result;
}

// 6 flops.
template <class E, int S, class ME, int RS> inline
typename Row<2,E,S>::template Result<SymMat<2,ME,RS> >::Mul
operator*(const Row<2,E,S>& r, const SymMat<2,ME,RS>& m) {
    typename Row<2,E,S>::template Result<SymMat<2,ME,RS> >::Mul result;
    result[0] = r[0]*m.getDiag()[0]     + r[1]*m.getEltLower(1,0);
    result[1] = r[0]*m.getEltUpper(0,1) + r[1]*m.getDiag()[1];
    return result;
}

// 15 flops.
template <class E, int S, class ME, int RS> inline
typename Row<3,E,S>::template Result<SymMat<3,ME,RS> >::Mul
operator*(const Row<3,E,S>& r, const SymMat<3,ME,RS>& m) {
    typename Row<3,E,S>::template Result<SymMat<3,ME,RS> >::Mul result;
    result[0] = r[0]*m.getDiag()[0]     + r[1]*m.getEltLower(1,0) + r[2]*m.getEltLower(2,0);
    result[1] = r[0]*m.getEltUpper(0,1) + r[1]*m.getDiag()[1]     + r[2]*m.getEltLower(2,1);
    result[2] = r[0]*m.getEltUpper(0,2) + r[1]*m.getEltUpper(1,2) + r[2]*m.getDiag()[2];
    return result;
}

    // NONCONFORMING MULTIPLY

    // Nonconforming: Vec on left: v*r v*m v*sym v*v
    // Result has the shape of the "most composite" (deepest) argument.

// elementwise multiply (vec * nonconforming row)
template <int M, class E1, int S1, int N, class E2, int S2> inline
typename Vec<M,E1,S1>::template Result<Row<N,E2,S2> >::MulNon
operator*(const Vec<M,E1,S1>& v, const Row<N,E2,S2>& r) {
    return Vec<M,E1,S1>::template Result<Row<N,E2,S2> >::MulOpNonConforming::perform(v,r);
}
// elementwise multiply (vec * nonconforming mat)
template <int M, class E1, int S1, int MM, int NN, class E2, int CS2, int RS2> inline
typename Vec<M,E1,S1>::template Result<Mat<MM,NN,E2,CS2,RS2> >::MulNon
operator*(const Vec<M,E1,S1>& v, const Mat<MM,NN,E2,CS2,RS2>& m) {
    return Vec<M,E1,S1>::template Result<Mat<MM,NN,E2,CS2,RS2> >
                ::MulOpNonConforming::perform(v,m);
}
// elementwise multiply (vec * nonconforming symmat)
template <int M, class E1, int S1, int MM, class E2, int RS2> inline
typename Vec<M,E1,S1>::template Result<SymMat<MM,E2,RS2> >::MulNon
operator*(const Vec<M,E1,S1>& v, const SymMat<MM,E2,RS2>& m) {
    return Vec<M,E1,S1>::template Result<SymMat<MM,E2,RS2> >
                ::MulOpNonConforming::perform(v,m);
}
// elementwise multiply (vec * nonconforming vec)
template <int M, class E1, int S1, int MM, class E2, int S2> inline
typename Vec<M,E1,S1>::template Result<Vec<MM,E2,S2> >::MulNon
operator*(const Vec<M,E1,S1>& v1, const Vec<MM,E2,S2>& v2) {
    return Vec<M,E1,S1>::template Result<Vec<MM,E2,S2> >
                ::MulOpNonConforming::perform(v1,v2);
}

    // Nonconforming: Row on left -- r*v r*r r*m r*sym


// (row or mat) = row * mat (nonconforming)
template <int M, class E, int S, int MM, int NN, class ME, int CS, int RS> inline
typename Row<M,E,S>::template Result<Mat<MM,NN,ME,CS,RS> >::MulNon
operator*(const Row<M,E,S>& r, const Mat<MM,NN,ME,CS,RS>& m) {
    return Row<M,E,S>::template Result<Mat<MM,NN,ME,CS,RS> >
        ::MulOpNonConforming::perform(r,m);
}
// (row or vec) = row * vec (nonconforming)
template <int N, class E1, int S1, int M, class E2, int S2> inline
typename Row<N,E1,S1>::template Result<Vec<M,E2,S2> >::MulNon
operator*(const Row<N,E1,S1>& r, const Vec<M,E2,S2>& v) {
    return Row<N,E1,S1>::template Result<Vec<M,E2,S2> >
        ::MulOpNonConforming::perform(r,v);
}
// (row1 or row2) = row1 * row2(nonconforming)
template <int N1, class E1, int S1, int N2, class E2, int S2> inline
typename Row<N1,E1,S1>::template Result<Row<N2,E2,S2> >::MulNon
operator*(const Row<N1,E1,S1>& r1, const Row<N2,E2,S2>& r2) {
    return Row<N1,E1,S1>::template Result<Row<N2,E2,S2> >
        ::MulOpNonConforming::perform(r1,r2);
}

    // Nonconforming: Mat on left -- m*v m*r m*sym

// (mat or vec) = mat * vec (nonconforming)
template <int M, int N, class ME, int CS, int RS, int MM, class E, int S> inline
typename Mat<M,N,ME,CS,RS>::template Result<Vec<MM,E,S> >::MulNon
operator*(const Mat<M,N,ME,CS,RS>& m,const Vec<MM,E,S>& v) {
    return Mat<M,N,ME,CS,RS>::template Result<Vec<MM,E,S> >
        ::MulOpNonConforming::perform(m,v);
}
// (mat or row) = mat * row (nonconforming)
template <int M, int N, class ME, int CS, int RS, int NN, class E, int S> inline
typename Mat<M,N,ME,CS,RS>::template Result<Row<NN,E,S> >::MulNon
operator*(const Mat<M,N,ME,CS,RS>& m,const Row<NN,E,S>& r) {
    return Mat<M,N,ME,CS,RS>::template Result<Row<NN,E,S> >
        ::MulOpNonConforming::perform(m,r);
}

// (mat or sym) = mat * sym (nonconforming)
template <int M, int N, class ME, int CS, int RS, int Dim, class E, int S> inline
typename Mat<M,N,ME,CS,RS>::template Result<SymMat<Dim,E,S> >::MulNon
operator*(const Mat<M,N,ME,CS,RS>& m,const SymMat<Dim,E,S>& sy) {
    return Mat<M,N,ME,CS,RS>::template Result<SymMat<Dim,E,S> >
        ::MulOpNonConforming::perform(m,sy);
}

    // CROSS PRODUCT

// Cross product and corresponding operator%, but only for 2- and 3-Vecs
// and Rows. It is OK to mix same-length Vecs & Rows; cross product is
// defined elementwise and never transposes the individual elements.
//
// We also define crossMat(v) below which produces a 2x2 or 3x3
// matrix M such that M*w = v % w for w the same length vector (or row) as v.
// TODO: the 3d crossMat is skew symmetric but currently there is no
// SkewMat class defined so we have to return a full 3x3.

// For 3d cross product, we'll follow Matlab and make the return type a
// Row if either or both arguments are Rows, although I'm not sure that's
// a good idea! Note that the definition of crossMat means crossMat(r)*v
// will yield a column, while r%v is a Row.

// We define v % m where v is a 3-vector and m is a 3xN matrix.
// This returns a matrix c of the same dimensions as m where
// column c(i) = v % m(i), that is, each column of c is the cross
// product of v and the corresponding column of m. This definition means that
//      v % m == crossMat(v)*m
// which seems like a good idea. (But note that v%m takes 9*N flops while
// crossMat(v)*m takes 15*N flops.) If we have a row vector r instead,
// we define r % m == v % m so again r%m==crossMat(r)*m. We also
// define the cross product operator with an Mx3 matrix on the left,
// defined so that c[i] = m[i]%v, that is, the rows of c are the
// cross products of the corresonding rows of m and vector v. Again,
// we allow v to be a row without any change to the results or return type.
// This definition means m % v = m * crossMat(v), but again it is faster.

// v = v % v
template <class E1, int S1, class E2, int S2> inline
Vec<3,typename CNT<E1>::template Result<E2>::Mul>
cross(const Vec<3,E1,S1>& a, const Vec<3,E2,S2>& b) {
    return Vec<3,typename CNT<E1>::template Result<E2>::Mul>
        (a[1]*b[2]-a[2]*b[1], a[2]*b[0]-a[0]*b[2], a[0]*b[1]-a[1]*b[0]);
}
template <class E1, int S1, class E2, int S2> inline
Vec<3,typename CNT<E1>::template Result<E2>::Mul>
operator%(const Vec<3,E1,S1>& a, const Vec<3,E2,S2>& b) {return cross(a,b);}

// r = v % r
template <class E1, int S1, class E2, int S2> inline
Row<3,typename CNT<E1>::template Result<E2>::Mul>
cross(const Vec<3,E1,S1>& a, const Row<3,E2,S2>& b) {
    return Row<3,typename CNT<E1>::template Result<E2>::Mul>
        (a[1]*b[2]-a[2]*b[1], a[2]*b[0]-a[0]*b[2], a[0]*b[1]-a[1]*b[0]);
}
template <class E1, int S1, class E2, int S2> inline
Row<3,typename CNT<E1>::template Result<E2>::Mul>
operator%(const Vec<3,E1,S1>& a, const Row<3,E2,S2>& b) {return cross(a,b);}

// r = r % v
template <class E1, int S1, class E2, int S2> inline
Row<3,typename CNT<E1>::template Result<E2>::Mul>
cross(const Row<3,E1,S1>& a, const Vec<3,E2,S2>& b) {
    return Row<3,typename CNT<E1>::template Result<E2>::Mul>
        (a[1]*b[2]-a[2]*b[1], a[2]*b[0]-a[0]*b[2], a[0]*b[1]-a[1]*b[0]);
}
template <class E1, int S1, class E2, int S2> inline
Row<3,typename CNT<E1>::template Result<E2>::Mul>
operator%(const Row<3,E1,S1>& a, const Vec<3,E2,S2>& b) {return cross(a,b);}

// r = r % r 
template <class E1, int S1, class E2, int S2> inline
Row<3,typename CNT<E1>::template Result<E2>::Mul>
cross(const Row<3,E1,S1>& a, const Row<3,E2,S2>& b) {
    return Row<3,typename CNT<E1>::template Result<E2>::Mul>
        (a[1]*b[2]-a[2]*b[1], a[2]*b[0]-a[0]*b[2], a[0]*b[1]-a[1]*b[0]);
}
template <class E1, int S1, class E2, int S2> inline
Row<3,typename CNT<E1>::template Result<E2>::Mul>
operator%(const Row<3,E1,S1>& a, const Row<3,E2,S2>& b) {return cross(a,b);}


    // Cross a vector with a matrix. The meaning is given by substituting
    // the vector's cross product matrix and performing a matrix multiply.
    // We implement v % m(3,N) for a full matrix m, and v % s(3,3) for
    // a 3x3 symmetric matrix (producing a 3x3 full result). Variants are
    // provided with the vector on the right and for when the vector is
    // supplied as a row (which doesn't change the result). See above
    // for more details.

// m = v % m
// Cost is 9*N flops.
template <class E1, int S1, int N, class E2, int CS, int RS> inline
Mat<3,N,typename CNT<E1>::template Result<E2>::Mul> // packed
cross(const Vec<3,E1,S1>& v, const Mat<3,N,E2,CS,RS>& m) {
    Mat<3,N,typename CNT<E1>::template Result<E2>::Mul> result;
    for (int j=0; j < N; ++j)
        result(j) = v % m(j);
    return result;
}
template <class E1, int S1, int N, class E2, int CS, int RS> inline
Mat<3,N,typename CNT<E1>::template Result<E2>::Mul>
operator%(const Vec<3,E1,S1>& v, const Mat<3,N,E2,CS,RS>& m) {return cross(v,m);}

// Same as above except we have a Row of N Vec<3>s instead of the matrix.
// Cost is 9*N flops.
template <class E1, int S1, int N, class E2, int S2, int S3> inline
Row< N,Vec<3,typename CNT<E1>::template Result<E2>::Mul> > // packed
cross(const Vec<3,E1,S1>& v, const Row<N,Vec<3,E2,S2>,S3>& m) {
    Row< N,Vec<3,typename CNT<E1>::template Result<E2>::Mul> > result;
    for (int j=0; j < N; ++j)
        result(j) = v % m(j);
    return result;
}
// Specialize for N==3 to avoid ambiguity
template <class E1, int S1, class E2, int S2, int S3> inline
Row< 3,Vec<3,typename CNT<E1>::template Result<E2>::Mul> > // packed
cross(const Vec<3,E1,S1>& v, const Row<3,Vec<3,E2,S2>,S3>& m) {
    Row< 3,Vec<3,typename CNT<E1>::template Result<E2>::Mul> > result;
    for (int j=0; j < 3; ++j)
        result(j) = v % m(j);
    return result;
}
template <class E1, int S1, int N, class E2, int S2, int S3> inline
Row< N,Vec<3,typename CNT<E1>::template Result<E2>::Mul> > // packed
operator%(const Vec<3,E1,S1>& v, const Row<N,Vec<3,E2,S2>,S3>& m) 
{   return cross(v,m); }
template <class E1, int S1, class E2, int S2, int S3> inline
Row< 3,Vec<3,typename CNT<E1>::template Result<E2>::Mul> > // packed
operator%(const Vec<3,E1,S1>& v, const Row<3,Vec<3,E2,S2>,S3>& m) 
{   return cross(v,m); }

// m = v % s
// By writing this out elementwise for the symmetric case we can do this 
// in 24 flops, a small savings over doing three cross products of 9 flops each.
template<class EV, int SV, class EM, int RS> inline
Mat<3,3,typename CNT<EV>::template Result<EM>::Mul> // packed
cross(const Vec<3,EV,SV>& v, const SymMat<3,EM,RS>& s) {
    const EV& x=v[0]; const EV& y=v[1]; const EV& z=v[2];
    const EM& a=s(0,0);
    const EM& b=s(1,0); const EM& d=s(1,1);
    const EM& c=s(2,0); const EM& e=s(2,1); const EM& f=s(2,2);

    typedef typename CNT<EV>::template Result<EM>::Mul EResult;
    const EResult xe=x*e, yc=y*c, zb=z*b;
    return Mat<3,3,EResult>
      (  yc-zb,  y*e-z*d, y*f-z*e,
        z*a-x*c,  zb-xe,  z*c-x*f,
        x*b-y*a, x*d-y*b,  xe-yc );
}
template <class EV, int SV, class EM, int RS> inline
Mat<3,3,typename CNT<EV>::template Result<EM>::Mul>
operator%(const Vec<3,EV,SV>& v, const SymMat<3,EM,RS>& s) {return cross(v,s);}

// m = r % m
template <class E1, int S1, int N, class E2, int CS, int RS> inline
Mat<3,N,typename CNT<E1>::template Result<E2>::Mul> // packed
cross(const Row<3,E1,S1>& r, const Mat<3,N,E2,CS,RS>& m) {
    return cross(r.positionalTranspose(), m);
}
template <class E1, int S1, int N, class E2, int CS, int RS> inline
Mat<3,N,typename CNT<E1>::template Result<E2>::Mul>
operator%(const Row<3,E1,S1>& r, const Mat<3,N,E2,CS,RS>& m) {return cross(r,m);}

// m = r % s
template<class EV, int SV, class EM, int RS> inline
Mat<3,3,typename CNT<EV>::template Result<EM>::Mul> // packed
cross(const Row<3,EV,SV>& r, const SymMat<3,EM,RS>& s) {
    return cross(r.positionalTranspose(), s);
}
template<class EV, int SV, class EM, int RS> inline
Mat<3,3,typename CNT<EV>::template Result<EM>::Mul> // packed
operator%(const Row<3,EV,SV>& r, const SymMat<3,EM,RS>& s) {return cross(r,s);}

// m = m % v
template <int M, class EM, int CS, int RS, class EV, int S> inline
Mat<M,3,typename CNT<EM>::template Result<EV>::Mul> // packed
cross(const Mat<M,3,EM,CS,RS>& m, const Vec<3,EV,S>& v) {
    Mat<M,3,typename CNT<EM>::template Result<EV>::Mul> result;
    for (int i=0; i < M; ++i)
        result[i] = m[i] % v;
    return result;
}
template <int M, class EM, int CS, int RS, class EV, int S> inline
Mat<M,3,typename CNT<EM>::template Result<EV>::Mul> // packed
operator%(const Mat<M,3,EM,CS,RS>& m, const Vec<3,EV,S>& v) {return cross(m,v);}

// m = s % v
// By writing this out elementwise for the symmetric case we can do this 
// in 24 flops, a small savings over doing three cross products of 9 flops each.
template<class EM, int RS, class EV, int SV> inline
Mat<3,3,typename CNT<EM>::template Result<EV>::Mul> // packed
cross(const SymMat<3,EM,RS>& s, const Vec<3,EV,SV>& v) {
    const EV& x=v[0]; const EV& y=v[1]; const EV& z=v[2];
    const EM& a=s(0,0);
    const EM& b=s(1,0); const EM& d=s(1,1);
    const EM& c=s(2,0); const EM& e=s(2,1); const EM& f=s(2,2);

    typedef typename CNT<EV>::template Result<EM>::Mul EResult;
    const EResult xe=x*e, yc=y*c, zb=z*b;
    return Mat<3,3,EResult>
      (  zb-yc,  x*c-z*a, y*a-x*b,
        z*d-y*e,  xe-zb,  y*b-x*d,
        z*e-y*f, x*f-z*c,  yc-xe );
}
template<class EM, int RS, class EV, int SV> inline
Mat<3,3,typename CNT<EM>::template Result<EV>::Mul> // packed
operator%(const SymMat<3,EM,RS>& s, const Vec<3,EV,SV>& v) {return cross(s,v);}

// m = m % r
template <int M, class EM, int CS, int RS, class ER, int S> inline
Mat<M,3,typename CNT<EM>::template Result<ER>::Mul> // packed
cross(const Mat<M,3,EM,CS,RS>& m, const Row<3,ER,S>& r) {
    return cross(m,r.positionalTranspose());
}
template <int M, class EM, int CS, int RS, class ER, int S> inline
Mat<M,3,typename CNT<EM>::template Result<ER>::Mul> // packed
operator%(const Mat<M,3,EM,CS,RS>& m, const Row<3,ER,S>& r) {return cross(m,r);}

// m = s % r
template<class EM, int RS, class EV, int SV> inline
Mat<3,3,typename CNT<EM>::template Result<EV>::Mul> // packed
cross(const SymMat<3,EM,RS>& s, const Row<3,EV,SV>& r) {
    return cross(s,r.positionalTranspose());
}
template<class EM, int RS, class EV, int SV> inline
Mat<3,3,typename CNT<EM>::template Result<EV>::Mul> // packed
operator%(const SymMat<3,EM,RS>& s, const Row<3,EV,SV>& r) {return cross(s,r);}

// 2d cross product just returns a scalar. This is the z-value you
// would get if the arguments were treated as 3-vectors with 0
// z components.

template <class E1, int S1, class E2, int S2> inline
typename CNT<E1>::template Result<E2>::Mul
cross(const Vec<2,E1,S1>& a, const Vec<2,E2,S2>& b) {
    return a[0]*b[1]-a[1]*b[0];
}
template <class E1, int S1, class E2, int S2> inline
typename CNT<E1>::template Result<E2>::Mul
operator%(const Vec<2,E1,S1>& a, const Vec<2,E2,S2>& b) {return cross(a,b);}

template <class E1, int S1, class E2, int S2> inline
typename CNT<E1>::template Result<E2>::Mul
cross(const Row<2,E1,S1>& a, const Vec<2,E2,S2>& b) {
    return a[0]*b[1]-a[1]*b[0];
}
template <class E1, int S1, class E2, int S2> inline
typename CNT<E1>::template Result<E2>::Mul
operator%(const Row<2,E1,S1>& a, const Vec<2,E2,S2>& b) {return cross(a,b);}

template <class E1, int S1, class E2, int S2> inline
typename CNT<E1>::template Result<E2>::Mul
cross(const Vec<2,E1,S1>& a, const Row<2,E2,S2>& b) {
    return a[0]*b[1]-a[1]*b[0];
}
template <class E1, int S1, class E2, int S2> inline
typename CNT<E1>::template Result<E2>::Mul
operator%(const Vec<2,E1,S1>& a, const Row<2,E2,S2>& b) {return cross(a,b);}

template <class E1, int S1, class E2, int S2> inline
typename CNT<E1>::template Result<E2>::Mul
cross(const Row<2,E1,S1>& a, const Row<2,E2,S2>& b) {
    return a[0]*b[1]-a[1]*b[0];
}
template <class E1, int S1, class E2, int S2> inline
typename CNT<E1>::template Result<E2>::Mul
operator%(const Row<2,E1,S1>& a, const Row<2,E2,S2>& b) {return cross(a,b);}

    // CROSS MAT

/// Calculate matrix M(v) such that M(v)*w = v % w. We produce the
/// same M regardless of whether v is a column or row.
/// Requires 3 flops to form.
template <class E, int S> inline
Mat<3,3,E>
crossMat(const Vec<3,E,S>& v) {
    return Mat<3,3,E>(Row<3,E>( E(0), -v[2],  v[1]),
                      Row<3,E>( v[2],  E(0), -v[0]),
                      Row<3,E>(-v[1],  v[0],  E(0)));
}
/// Specialize crossMat() for negated scalar types. Returned matrix loses negator.
/// Requires 3 flops to form.
template <class E, int S> inline
Mat<3,3,E>
crossMat(const Vec<3,negator<E>,S>& v) {
    // Here the "-" operators are just recasts, but the casts
    // to type E have to perform floating point negations.
    return Mat<3,3,E>(Row<3,E>( E(0),   -v[2],    E(v[1])),
                      Row<3,E>( E(v[2]), E(0),   -v[0]),
                      Row<3,E>(-v[1],    E(v[0]), E(0)));
}

/// Form cross product matrix from a Row vector; 3 flops.
template <class E, int S> inline
Mat<3,3,E> crossMat(const Row<3,E,S>& r) {return crossMat(r.positionalTranspose());}
/// Form cross product matrix from a Row vector whose elements are negated scalars; 3 flops.
template <class E, int S> inline
Mat<3,3,E> crossMat(const Row<3,negator<E>,S>& r) {return crossMat(r.positionalTranspose());}

/// Calculate 2D cross product matrix M(v) such that M(v)*w = v0*w1-v1*w0 = v % w (a scalar). 
/// Whether v is a Vec<2> or Row<2> we create the same M, which will be a 2-element Row.
/// Requires 1 flop to form.
template <class E, int S> inline
Row<2,E> crossMat(const Vec<2,E,S>& v) {
    return Row<2,E>(-v[1], v[0]);
}
/// Specialize 2D cross product matrix for negated scalar types; 1 flop.
template <class E, int S> inline
Row<2,E> crossMat(const Vec<2,negator<E>,S>& v) {
    return Row<2,E>(-v[1], E(v[0]));
}

/// Form 2D cross product matrix from a Row<2>; 1 flop.
template <class E, int S> inline
Row<2,E> crossMat(const Row<2,E,S>& r) {return crossMat(r.positionalTranspose());}
/// Form 2D cross product matrix from a Row<2> with negated scalar elements; 1 flop.
template <class E, int S> inline
Row<2,E> crossMat(const Row<2,negator<E>,S>& r) {return crossMat(r.positionalTranspose());}

    // CROSS MAT SQ

/// Calculate matrix S(v) such that S(v)*w = -v % (v % w) = (v % w) % v. S is a symmetric,
/// 3x3 matrix with nonnegative diagonals that obey the triangle inequality. 
/// If M(v) = crossMat(v), then S(v) = square(M(v)) = ~M(v)*M(v) = -M(v)*M(v) 
/// since M is skew symmetric.
///
/// Also, S(v) = dot(v,v)*I - outer(v,v) = ~v*v*I - v*~v, where I is the identity
/// matrix. This is the form necessary for shifting inertia matrices using
/// the parallel axis theorem, something we do a lot of in multibody dynamics.
/// Consequently we want to calculate S very efficiently, which we can do because
/// it has the following very simple form. Assume v=[x y z]. Then
/// <pre>
///          y^2+z^2      T         T
///  S(v) =    -xy     x^2+z^2      T
///            -xz       -yz     x^2+y^2
/// </pre>
/// where "T" indicates that the element is identical to the symmetric one.
/// This requires 11 flops to form.
/// We produce the same S(v) regardless of whether v is a column or row.
/// Note that there is no 2D equivalent of this operator.
template <class E, int S> inline
SymMat<3,E>
crossMatSq(const Vec<3,E,S>& v) {
    const E xx = square(v[0]);
    const E yy = square(v[1]);
    const E zz = square(v[2]);
    const E nx = -v[0];
    const E ny = -v[1];
    return SymMat<3,E>( yy+zz,
                        nx*v[1], xx+zz,
                        nx*v[2], ny*v[2], xx+yy );
}
// Specialize above for negated types. Returned matrix loses negator.
// The total number of flops here is the same as above: 11 flops.
template <class E, int S> inline
SymMat<3,E>
crossMatSq(const Vec<3,negator<E>,S>& v) {
    const E xx = square(v[0]);
    const E yy = square(v[1]);
    const E zz = square(v[2]);
    const E y = v[1]; // requires a negation to convert to E
    const E z = v[2];
    // The negations in the arguments below are not floating point
    // operations because the element type is already negated.
    return SymMat<3,E>( yy+zz,
                        -v[0]*y,  xx+zz,
                        -v[0]*z, -v[1]*z, xx+yy );
}

template <class E, int S> inline
SymMat<3,E> crossMatSq(const Row<3,E,S>& r) {return crossMatSq(r.positionalTranspose());}
template <class E, int S> inline
SymMat<3,E> crossMatSq(const Row<3,negator<E>,S>& r) {return crossMatSq(r.positionalTranspose());}


    // DETERMINANT

/// Special case Mat 1x1 determinant. No computation.
template <class E, int CS, int RS> inline
E det(const Mat<1,1,E,CS,RS>& m) {
    return m(0,0);
}

/// Special case SymMat 1x1 determinant. No computation.
template <class E, int RS> inline
E det(const SymMat<1,E,RS>& s) {
    return s.diag()[0]; // s(0,0) is trouble for a 1x1 symmetric
}

/// Special case Mat 2x2 determinant. 3 flops (if elements are Real).
template <class E, int CS, int RS> inline
E det(const Mat<2,2,E,CS,RS>& m) {
    // Constant element indices here allow the compiler to select
    // exactly the right element at compile time.
    return E(m(0,0)*m(1,1) - m(0,1)*m(1,0));
}

/// Special case 2x2 SymMat determinant. 3 flops (if elements are Real).
template <class E, int RS> inline
E det(const SymMat<2,E,RS>& s) {
    // For Hermitian matrix (i.e., E is complex or conjugate), s(0,1) 
    // and s(1,0) are complex conjugates of one another. Because of the
    // constant indices here, the SymMat goes right to the correct
    // element, so everything gets done inline here with no conditionals.
    return E(s.getEltDiag(0)*s.getEltDiag(1) - s.getEltUpper(0,1)*s.getEltLower(1,0));
}

/// Special case Mat 3x3 determinant. 14 flops (if elements are Real).
template <class E, int CS, int RS> inline
E det(const Mat<3,3,E,CS,RS>& m) {
    return E(  m(0,0)*(m(1,1)*m(2,2)-m(1,2)*m(2,1))
             - m(0,1)*(m(1,0)*m(2,2)-m(1,2)*m(2,0))
             + m(0,2)*(m(1,0)*m(2,1)-m(1,1)*m(2,0)));
}

/// Special case SymMat 3x3 determinant. 14 flops (if elements are Real).
template <class E, int RS> inline
E det(const SymMat<3,E,RS>& s) {
    return E(  s.getEltDiag(0)*
                (s.getEltDiag(1)*s.getEltDiag(2)-s.getEltUpper(1,2)*s.getEltLower(2,1))
             - s.getEltUpper(0,1)*
                (s.getEltLower(1,0)*s.getEltDiag(2)-s.getEltUpper(1,2)*s.getEltLower(2,0))
             + s.getEltUpper(0,2)*
                (s.getEltLower(1,0)*s.getEltLower(2,1)-s.getEltDiag(1)*s.getEltLower(2,0)));
}

/// Calculate the determinant of a square matrix larger than 3x3
/// by recursive template expansion. The matrix elements must be 
/// multiplication compatible for this to compile successfully. 
/// All scalar element types are acceptable; some composite types 
/// will also work but the result is probably meaningless.
/// The determinant suffers from increasingly bad scaling as the
/// matrices get bigger; you should consider an alternative if
/// possible (see Golub and van Loan, "Matrix Computations").
/// This uses M*det(M-1) + 4*M flops. For 4x4 that's 60 flops,
/// for 5x5 it's 320, and it grows really fast from there!
/// TODO: this is not the right way to calculate determinant --
/// should calculate LU factorization at 2/3 n^3 flops, then
/// determinant is product of LU's diagonals.
template <int M, class E, int CS, int RS> inline
E det(const Mat<M,M,E,CS,RS>& m) {
    typename CNT<E>::StdNumber sign(1);
    E                          result(0);
    // We're always going to drop the first row.
    const Mat<M-1,M,E,CS,RS>& m2 = m.template getSubMat<M-1,M>(1,0);
    for (int j=0; j < M; ++j) {
        // det() here is recursive but terminates at 3x3 above.
        result += sign*m(0,j)*det(m2.dropCol(j));
        sign = -sign;
    }
    return result;
}

/// Determinant of SymMat larger than 3x3. 
/// TODO: This should be done
/// instead with a symmetric factorization; the determinant will
/// be calculable as a product of some diagonal in the factorization.
/// For now we'll punt to the really bad Mat determinant above.
template <int M, class E, int RS> inline
E det(const SymMat<M,E,RS>& s) {
    return det(Mat<M,M,E>(s));
}


    // INVERSE

/// Specialized 1x1 lapackInverse(): costs one divide.
template <class E, int CS, int RS> inline
typename Mat<1,1,E,CS,RS>::TInvert lapackInverse(const Mat<1,1,E,CS,RS>& m) {
    typedef typename Mat<1,1,E,CS,RS>::TInvert MInv;
    return MInv( E(typename CNT<E>::StdNumber(1)/m(0,0)) );
}

/// General inverse of small, fixed-size, square (mXm), non-singular matrix with 
/// scalar elements: use Lapack's LU routine with pivoting. This will only work 
/// if the element type E is a scalar type, although negator<> and conjugate<> 
/// are OK. This routine is <em>not</em> specialized for small matrix sizes other
/// than 1x1, while the inverse() method is specialized for other small sizes
/// for speed, possibly losing some numerical stability. The inverse() function
/// ends up calling this one at sizes for which it has no specialization. 
/// Normally you should call inverse(), but you can call lapackInverse() 
/// explicitly if you want to ensure that the most stable algorithm is used.
/// @see inverse()
template <int M, class E, int CS, int RS> inline
typename Mat<M,M,E,CS,RS>::TInvert lapackInverse(const Mat<M,M,E,CS,RS>& m) {
    // Copy the source matrix, which has arbitrary row and column spacing,
    // into the type for its inverse, which must be dense, columnwise
    // storage. That means its column spacing will be M and row spacing
    // will be 1, as Lapack expects for a Full matrix.
    typename Mat<M,M,E,CS,RS>::TInvert inv = m; // dense, columnwise storage

    // We'll perform the inversion ignoring negation and conjugation altogether, 
    // but the TInvert Mat type negates or conjugates the result. And because 
    // of the famous Sherman-Eastman theorem, we know that 
    // conj(inv(m))==inv(conj(m)), and of course -inv(m)==inv(-m).
    typedef typename CNT<E>::StdNumber Raw;   // Raw is E without negator or conjugate.
    Raw* rawData = reinterpret_cast<Raw*>(&inv(0,0));
    int ipiv[M], info;

    // This replaces "inv" with its LU facorization and pivot matrix P, such that
    // P*L*U = m (ignoring negation and conjugation).
    Lapack::getrf<Raw>(M,M,rawData,M,&ipiv[0],info);
    SimTK_ASSERT1(info>=0, "Argument %d to Lapack getrf routine was bad", -info);
    SimTK_ERRCHK1_ALWAYS(info==0, "lapackInverse(Mat<>)",
        "Matrix is singular so can't be inverted (Lapack getrf info=%d).", info);

    // The workspace size must be at least M. For larger matrices, Lapack wants
    // to do factorization in blocks of size NB in which case the workspace should
    // be M*NB. However, we will assume that this matrix is small (in the sense
    // that it fits entirely in cache) so the minimum workspace size is fine and
    // we don't need an extra getri call to find the workspace size nor any heap
    // allocation.

    Raw work[M];
    Lapack::getri<Raw>(M,rawData,M,&ipiv[0],&work[0],M,info);
    SimTK_ASSERT1(info>=0, "Argument %d to Lapack getri routine was bad", -info);
    SimTK_ERRCHK1_ALWAYS(info==0, "lapackInverse(Mat<>)",
        "Matrix is singular so can't be inverted (Lapack getri info=%d).", info);
    return inv;
}


/// Specialized 1x1 Mat inverse: costs one divide.
template <class E, int CS, int RS> inline
typename Mat<1,1,E,CS,RS>::TInvert inverse(const Mat<1,1,E,CS,RS>& m) {
    typedef typename Mat<1,1,E,CS,RS>::TInvert MInv;
    return MInv( E(typename CNT<E>::StdNumber(1)/m(0,0)) );
}

/// Specialized 1x1 SymMat inverse: costs one divide.
template <class E, int RS> inline
typename SymMat<1,E,RS>::TInvert inverse(const SymMat<1,E,RS>& s) {
    typedef typename SymMat<1,E,RS>::TInvert SInv;
    return SInv( E(typename CNT<E>::StdNumber(1)/s.diag()[0]) );
}

/// Specialized 2x2 Mat inverse: costs one divide plus 9 flops.
template <class E, int CS, int RS> inline
typename Mat<2,2,E,CS,RS>::TInvert inverse(const Mat<2,2,E,CS,RS>& m) {
    const E               d  ( det(m) );
    const typename CNT<E>::TInvert ood( typename CNT<E>::StdNumber(1)/d );
    return typename Mat<2,2,E,CS,RS>::TInvert( E( ood*m(1,1)), E(-ood*m(0,1)),
                                               E(-ood*m(1,0)), E( ood*m(0,0)));
}

/// Specialized 2x2 SymMat inverse: costs one divide plus 7 flops.
template <class E, int RS> inline
typename SymMat<2,E,RS>::TInvert inverse(const SymMat<2,E,RS>& s) {
    const E               d  ( det(s) );
    const typename CNT<E>::TInvert ood( typename CNT<E>::StdNumber(1)/d );
    return typename SymMat<2,E,RS>::TInvert( E( ood*s(1,1)),
                                             E(-ood*s(1,0)), E(ood*s(0,0)));
}

/// Specialized 3x3 inverse: costs one divide plus 41 flops (for real-valued
/// matrices). No pivoting done here so this may be subject to numerical errors 
/// that Lapack would avoid. Call lapackInverse() instead if you're worried.
/// @see lapackInverse()
template <class E, int CS, int RS> inline
typename Mat<3,3,E,CS,RS>::TInvert inverse(const Mat<3,3,E,CS,RS>& m) {
    // Calculate determinants for each 2x2 submatrix with first row removed.
    // (See the specialized 3x3 determinant routine above.) We're calculating
    // this explicitly here because we can re-use the intermediate terms.
    const E d00 (m(1,1)*m(2,2)-m(1,2)*m(2,1)),
            nd01(m(1,2)*m(2,0)-m(1,0)*m(2,2)),   // -d01
            d02 (m(1,0)*m(2,1)-m(1,1)*m(2,0));

    // This is the 3x3 determinant and its inverse.
    const E d  (m(0,0)*d00 + m(0,1)*nd01 + m(0,2)*d02);
    const typename CNT<E>::TInvert 
            ood(typename CNT<E>::StdNumber(1)/d);

    // The other six 2x2 determinants we can't re-use, but we can still
    // avoid some copying by calculating them explicitly here.
    const E nd10(m(0,2)*m(2,1)-m(0,1)*m(2,2)),  // -d10
            d11 (m(0,0)*m(2,2)-m(0,2)*m(2,0)),
            nd12(m(0,1)*m(2,0)-m(0,0)*m(2,1)),  // -d12
            d20 (m(0,1)*m(1,2)-m(0,2)*m(1,1)),
            nd21(m(0,2)*m(1,0)-m(0,0)*m(1,2)),  // -d21
            d22 (m(0,0)*m(1,1)-m(0,1)*m(1,0));

    return typename Mat<3,3,E,CS,RS>::TInvert
       ( E(ood* d00), E(ood*nd10), E(ood* d20),
         E(ood*nd01), E(ood* d11), E(ood*nd21),
         E(ood* d02), E(ood*nd12), E(ood* d22) ); 
}

/// Specialized 3x3 inverse for symmetric or Hermitian: costs one divide plus 
/// 29 flops (for real-valued matrices). No pivoting done here so this may be 
/// subject to numerical errors that Lapack would avoid. Call lapackSymInverse() 
/// instead if you're worried.
/// @see lapackSymInverse()
template <class E, int RS> inline
typename SymMat<3,E,RS>::TInvert inverse(const SymMat<3,E,RS>& s) {
    // Calculate determinants for each 2x2 submatrix with first row removed.
    // (See the specialized 3x3 determinant routine above.) We're calculating
    // this explicitly here because we can re-use the intermediate terms.
    const E d00 (s(1,1)*s(2,2)-s(1,2)*s(2,1)),
            nd01(s(1,2)*s(2,0)-s(1,0)*s(2,2)),   // -d01
            d02 (s(1,0)*s(2,1)-s(1,1)*s(2,0));

    // This is the 3x3 determinant and its inverse.
    const E d  (s(0,0)*d00 + s(0,1)*nd01 + s(0,2)*d02);
    const typename CNT<E>::TInvert 
            ood(typename CNT<E>::StdNumber(1)/d);

    // The other six 2x2 determinants we can't re-use, but we can still
    // avoid some copying by calculating them explicitly here.
    const E d11 (s(0,0)*s(2,2)-s(0,2)*s(2,0)),
            nd12(s(0,1)*s(2,0)-s(0,0)*s(2,1)),  // -d12
            d22 (s(0,0)*s(1,1)-s(0,1)*s(1,0));

    return typename SymMat<3,E,RS>::TInvert
       ( E(ood* d00), 
         E(ood*nd01), E(ood* d11), 
         E(ood* d02), E(ood*nd12), E(ood* d22) ); 
}

/// For any matrix larger than 3x3, we just punt to the Lapack implementation.
/// @see lapackInverse()
template <int M, class E, int CS, int RS> inline
typename Mat<M,M,E,CS,RS>::TInvert inverse(const Mat<M,M,E,CS,RS>& m) {
    return lapackInverse(m);
}

// Implement the Mat<>::invert() method using the above specialized 
// inverse functions. This will only compile if M==N.
template <int M, int N, class ELT, int CS, int RS> inline
typename Mat<M,N,ELT,CS,RS>::TInvert 
Mat<M,N,ELT,CS,RS>::invert() const {
    return SimTK::inverse(*this);
}

} //namespace SimTK


#endif //SimTK_SIMMATRIX_SMALLMATRIX_MIXED_H_