/usr/share/libsigrokdecode/decoders/xfp/pd.py is in libsigrokdecode4 0.5.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 | ##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
from common.plugtrx import (MODULE_ID, ALARM_THRESHOLDS, AD_READOUTS, GCS_BITS,
CONNECTOR, TRANSCEIVER, SERIAL_ENCODING, XMIT_TECH, CDR, DEVICE_TECH,
ENHANCED_OPTS, AUX_TYPES)
class Decoder(srd.Decoder):
api_version = 2
id = 'xfp'
name = 'XFP'
longname = '10 Gigabit Small Form Factor Pluggable Module (XFP)'
desc = 'Data structure describing display device capabilities.'
license = 'gplv3+'
inputs = ['i2c']
outputs = ['xfp']
annotations = (
('fieldnames-and-values', 'XFP structure field names and values'),
('fields', 'XFP structure fields'),
)
def __init__(self):
# Received data items, used as an index into samplenum/data
self.cnt = -1
# Start/end sample numbers per data item
self.sn = []
# Multi-byte structure buffer
self.buf = []
# Filled in by address 0x7f in low memory
self.cur_highmem_page = 0
# Filled in by extended ID value in table 2
self.have_clei = False
# Handlers for each field in the structure, keyed by the end
# index of that field. Each handler is fed all unhandled bytes
# up until that point, so mark unused space with the dummy
# handler self.ignore().
self.MAP_LOWER_MEMORY = {
0: self.module_id,
1: self.signal_cc,
57: self.alarm_warnings,
59: self.vps,
69: self.ignore,
71: self.ber,
75: self.wavelength_cr,
79: self.fec_cr,
95: self.int_ctrl,
109: self.ad_readout,
111: self.gcs,
117: self.ignore,
118: self.ignore,
122: self.ignore,
126: self.ignore,
127: self.page_select,
}
self.MAP_HIGH_TABLE_1 = {
128: self.module_id,
129: self.ext_module_id,
130: self.connector,
138: self.transceiver,
139: self.serial_encoding,
140: self.br_min,
141: self.br_max,
142: self.link_length_smf,
143: self.link_length_e50,
144: self.link_length_50um,
145: self.link_length_625um,
146: self.link_length_copper,
147: self.device_tech,
163: self.vendor,
164: self.cdr,
167: self.vendor_oui,
183: self.vendor_pn,
185: self.vendor_rev,
187: self.wavelength,
189: self.wavelength_tolerance,
190: self.max_case_temp,
191: self.ignore,
195: self.power_supply,
211: self.vendor_sn,
219: self.manuf_date,
220: self.diag_mon,
221: self.enhanced_opts,
222: self.aux_mon,
223: self.ignore,
255: self.maybe_ascii,
}
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
def decode(self, ss, es, data):
cmd, data = data
# We only care about actual data bytes that are read (for now).
if cmd != 'DATA READ':
return
self.cnt += 1
self.sn.append([ss, es])
self.buf.append(data)
if self.cnt < 0x80:
if self.cnt in self.MAP_LOWER_MEMORY:
self.MAP_LOWER_MEMORY[self.cnt](self.buf)
self.buf.clear()
elif self.cnt < 0x0100 and self.cur_highmem_page == 0x01:
# Serial ID memory map
if self.cnt in self.MAP_HIGH_TABLE_1:
self.MAP_HIGH_TABLE_1[self.cnt](self.buf)
self.buf.clear()
# Annotation helper
def annotate(self, key, value, start_cnt=None, end_cnt=None):
if start_cnt is None:
start_cnt = self.cnt - len(self.buf) + 1
if end_cnt is None:
end_cnt = self.cnt
self.put(self.sn[start_cnt][0], self.sn[end_cnt][1],
self.out_ann, [0, [key + ": " + value]])
self.put(self.sn[start_cnt][0], self.sn[end_cnt][1],
self.out_ann, [1, [value]])
# Placeholder handler, needed to advance the buffer past unused or
# reserved space in the structures.
def ignore(self, data):
pass
# Show as ASCII if possible
def maybe_ascii(self, data):
for i in range(len(data)):
if data[i] >= 0x20 and data[i] < 0x7f:
cnt = self.cnt - len(data) + 1
self.annotate("Vendor ID", chr(data[i]), cnt, cnt)
# Convert 16-bit two's complement values, with each increment
# representing 1/256C, to degrees Celsius.
def to_temp(self, value):
if value & 0x8000:
value = -((value ^ 0xffff) + 1)
temp = value / 256.0
return "%.1f C" % temp
# TX bias current in uA. Each increment represents 0.2uA
def to_current(self, value):
current = value / 500000.0
return "%.1f mA" % current
# Power in mW, with each increment representing 0.1uW
def to_power(self, value):
power = value / 10000.0
return "%.2f mW" % power
# Wavelength in increments of 0.05nm
def to_wavelength(self, value):
wl = value / 20
return "%d nm" % wl
# Wavelength in increments of 0.005nm
def to_wavelength_tolerance(self, value):
wl = value / 200.0
return "%.1f nm" % wl
def module_id(self, data):
self.annotate("Module identifier", MODULE_ID.get(data[0], "Unknown"))
def signal_cc(self, data):
# No good data available.
if (data[0] != 0x00):
self.annotate("Signal Conditioner Control", "%.2x" % data[0])
def alarm_warnings(self, data):
cnt_idx = self.cnt - len(data)
idx = 0
while idx < 56:
if idx == 8:
# Skip over reserved A/D flag thresholds
idx += 8
value = (data[idx] << 8) | data[idx + 1]
if value != 0:
name = ALARM_THRESHOLDS.get(idx, "...")
if idx in (0, 2, 4, 6):
self.annotate(name, self.to_temp(value),
cnt_idx + idx, cnt_idx + idx + 1)
elif idx in (16, 18, 20, 22):
self.annotate(name, self.to_current(value),
cnt_idx + idx, cnt_idx + idx + 1)
elif idx in (24, 26, 28, 30, 32, 34, 36, 38):
self.annotate(name, self.to_power(value),
cnt_idx + idx, cnt_idx + idx + 1)
else:
self.annotate(name, "%d" % name, value, cnt_idx + idx,
cnt_idx + idx + 1)
idx += 2
def vps(self, data):
# No good data available.
if (data != [0, 0]):
self.annotate("VPS", "%.2x%.2x" % (data[0], data[1]))
def ber(self, data):
# No good data available.
if (data != [0, 0]):
self.annotate("BER", str(data))
def wavelength_cr(self, data):
# No good data available.
if (data != [0, 0, 0, 0]):
self.annotate("WCR", str(data))
def fec_cr(self, data):
if (data != [0, 0, 0, 0]):
self.annotate("FEC", str(data))
def int_ctrl(self, data):
# No good data available. Also boring.
out = []
for d in data:
out.append("%.2x" % d)
self.annotate("Interrupt bits", ' '.join(out))
def ad_readout(self, data):
cnt_idx = self.cnt - len(data) + 1
idx = 0
while idx < 14:
if idx == 2:
# Skip over reserved field
idx += 2
value = (data[idx] << 8) | data[idx + 1]
name = AD_READOUTS.get(idx, "...")
if value != 0:
if idx == 0:
self.annotate(name, self.to_temp(value),
cnt_idx + idx, cnt_idx + idx + 1)
elif idx == 4:
self.annotate(name, self.to_current(value),
cnt_idx + idx, cnt_idx + idx + 1)
elif idx in (6, 8):
self.annotate(name, self.to_power(value),
cnt_idx + idx, cnt_idx + idx + 1)
else:
self.annotate(name, str(value), cnt_idx + idx,
cnt_idx + idx + 1)
idx += 2
def gcs(self, data):
allbits = (data[0] << 8) | data[1]
out = []
for b in range(13):
if allbits & 0x8000:
out.append(GCS_BITS[b])
allbits <<= 1
self.annotate("General Control/Status", ', '.join(out))
def page_select(self, data):
self.cur_highmem_page = data[0]
def ext_module_id(self, data):
out = ["Power level %d module" % ((data[0] >> 6) + 1)]
if data[0] & 0x20 == 0:
out.append("CDR")
if data[0] & 0x10 == 0:
out.append("TX ref clock input required")
if data[0] & 0x08 == 0:
self.have_clei = True
self.annotate("Extended id", ', '.join(out))
def connector(self, data):
if data[0] in CONNECTOR:
self.annotate("Connector", CONNECTOR[data[0]])
def transceiver(self, data):
out = []
for t in range(8):
if data[t] == 0:
continue
value = data[t]
for b in range(8):
if value & 0x80:
if len(TRANSCEIVER[t]) < b + 1:
out.append("(unknown)")
else:
out.append(TRANSCEIVER[t][b])
value <<= 1
self.annotate("Transceiver compliance", ', '.join(out))
def serial_encoding(self, data):
out = []
value = data[0]
for b in range(8):
if value & 0x80:
if len(SERIAL_ENCODING) < b + 1:
out.append("(unknown)")
else:
out.append(SERIAL_ENCODING[b])
value <<= 1
self.annotate("Serial encoding support", ', '.join(out))
def br_min(self, data):
# Increments represent 100Mb/s
rate = data[0] / 10.0
self.annotate("Minimum bit rate", "%.3f GB/s" % rate)
def br_max(self, data):
# Increments represent 100Mb/s
rate = data[0] / 10.0
self.annotate("Maximum bit rate", "%.3f GB/s" % rate)
def link_length_smf(self, data):
if data[0] == 0:
length = "(standard)"
elif data[0] == 255:
length = "> 254 km"
else:
length = "%d km" % data[0]
self.annotate("Link length (SMF)", length)
def link_length_e50(self, data):
if data[0] == 0:
length = "(standard)"
elif data[0] == 255:
length = "> 508 m"
else:
length = "%d m" % (data[0] * 2)
self.annotate("Link length (extended, 50μm MMF)", length)
def link_length_50um(self, data):
if data[0] == 0:
length = "(standard)"
elif data[0] == 255:
length = "> 254 m"
else:
length = "%d m" % data[0]
self.annotate("Link length (50μm MMF)", length)
def link_length_625um(self, data):
if data[0] == 0:
length = "(standard)"
elif data[0] == 255:
length = "> 254 m"
else:
length = "%d m" % (data[0])
self.annotate("Link length (62.5μm MMF)", length)
def link_length_copper(self, data):
if data[0] == 0:
length = "(unknown)"
elif data[0] == 255:
length = "> 254 m"
else:
length = "%d m" % (data[0] * 2)
self.annotate("Link length (copper)", length)
def device_tech(self, data):
out = []
xmit = data[0] >> 4
if xmit <= len(XMIT_TECH) - 1:
out.append("%s transmitter" % XMIT_TECH[xmit])
dev = data[0] & 0x0f
for b in range(4):
out.append(DEVICE_TECH[b][(dev >> (3 - b)) & 0x01])
self.annotate("Device technology", ', '.join(out))
def vendor(self, data):
name = bytes(data).strip().decode('ascii').strip('\x00')
if name:
self.annotate("Vendor", name)
def cdr(self, data):
out = []
value = data[0]
for b in range(8):
if value & 0x80:
out.append(CDR[b])
value <<= 1
self.annotate("CDR support", ', '.join(out))
def vendor_oui(self, data):
if data != [0, 0, 0]:
self.annotate("Vendor OUI", "%.2X-%.2X-%.2X" % tuple(data))
def vendor_pn(self, data):
name = bytes(data).strip().decode('ascii').strip('\x00')
if name:
self.annotate("Vendor part number", name)
def vendor_rev(self, data):
name = bytes(data).strip().decode('ascii').strip('\x00')
if name:
self.annotate("Vendor revision", name)
def wavelength(self, data):
value = (data[0] << 8) | data[1]
self.annotate("Wavelength", self.to_wavelength(value))
def wavelength_tolerance(self, data):
value = (data[0] << 8) | data[1]
self.annotate("Wavelength tolerance", self.to_wavelength_tolerance(value))
def max_case_temp(self, data):
self.annotate("Maximum case temperature", "%d C" % data[0])
def power_supply(self, data):
out = []
self.annotate("Max power dissipation",
"%.3f W" % (data[0] * 0.02), self.cnt - 3, self.cnt - 3)
self.annotate("Max power dissipation (powered down)",
"%.3f W" % (data[1] * 0.01), self.cnt - 2, self.cnt - 2)
value = (data[2] >> 4) * 0.050
self.annotate("Max current required (5V supply)",
"%.3f A" % value, self.cnt - 1, self.cnt - 1)
value = (data[2] & 0x0f) * 0.100
self.annotate("Max current required (3.3V supply)",
"%.3f A" % value, self.cnt - 1, self.cnt - 1)
value = (data[3] >> 4) * 0.100
self.annotate("Max current required (1.8V supply)",
"%.3f A" % value, self.cnt, self.cnt)
value = (data[3] & 0x0f) * 0.050
self.annotate("Max current required (-5.2V supply)",
"%.3f A" % value, self.cnt, self.cnt)
def vendor_sn(self, data):
name = bytes(data).strip().decode('ascii').strip('\x00')
if name:
self.annotate("Vendor serial number", name)
def manuf_date(self, data):
y = int(bytes(data[0:2])) + 2000
m = int(bytes(data[2:4]))
d = int(bytes(data[4:6]))
mnf = "%.4d-%.2d-%.2d" % (y, m, d)
lot = bytes(data[6:]).strip().decode('ascii').strip('\x00')
if lot:
mnf += " lot " + lot
self.annotate("Manufacturing date", mnf)
def diag_mon(self, data):
out = []
if data[0] & 0x10:
out.append("BER support")
else:
out.append("no BER support")
if data[0] & 0x08:
out.append("average power measurement")
else:
out.append("OMA power measurement")
self.annotate("Diagnostic monitoring", ', '.join(out))
def enhanced_opts(self, data):
out = []
value = data[0]
for b in range(8):
if value & 0x80:
out.append(ENHANCED_OPTS[b])
value <<= 1
self.annotate("Enhanced option support", ', '.join(out))
def aux_mon(self, data):
aux = AUX_TYPES[data[0] >> 4]
self.annotate("AUX1 monitoring", aux)
aux = AUX_TYPES[data[0] & 0x0f]
self.annotate("AUX2 monitoring", aux)
|