/usr/share/libsigrokdecode/decoders/eeprom24xx/pd.py is in libsigrokdecode4 0.5.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 | ##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2014 Uwe Hermann <uwe@hermann-uwe.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
from .lists import *
class Decoder(srd.Decoder):
api_version = 2
id = 'eeprom24xx'
name = '24xx EEPROM'
longname = '24xx I²C EEPROM'
desc = '24xx series I²C EEPROM protocol.'
license = 'gplv2+'
inputs = ['i2c']
outputs = ['eeprom24xx']
options = (
{'id': 'chip', 'desc': 'Chip', 'default': 'generic',
'values': tuple(chips.keys())},
{'id': 'addr_counter', 'desc': 'Initial address counter value',
'default': 0},
)
annotations = (
# Warnings
('warnings', 'Warnings'),
# Bits/bytes
('control-code', 'Control code'),
('address-pin', 'Address pin (A0/A1/A2)'),
('rw-bit', 'Read/write bit'),
('word-addr-byte', 'Word address byte'),
('data-byte', 'Data byte'),
# Fields
('control-word', 'Control word'),
('word-addr', 'Word address'),
('data', 'Data'),
# Operations
('byte-write', 'Byte write'),
('page-write', 'Page write'),
('cur-addr-read', 'Current address read'),
('random-read', 'Random read'),
('seq-random-read', 'Sequential random read'),
('seq-cur-addr-read', 'Sequential current address read'),
('ack-polling', 'Acknowledge polling'),
('set-bank-addr', 'Set bank address'), # SBA. Only 34AA04.
('read-bank-addr', 'Read bank address'), # RBA. Only 34AA04.
('set-wp', 'Set write protection'), # SWP
('clear-all-wp', 'Clear all write protection'), # CWP
('read-wp', 'Read write protection status'), # RPS
)
annotation_rows = (
('bits-bytes', 'Bits/bytes', (1, 2, 3, 4, 5)),
('fields', 'Fields', (6, 7, 8)),
('ops', 'Operations', tuple(range(9, 21))),
('warnings', 'Warnings', (0,)),
)
binary = (
('binary', 'Binary'),
)
def __init__(self):
self.reset()
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
self.out_binary = self.register(srd.OUTPUT_BINARY)
self.chip = chips[self.options['chip']]
self.addr_counter = self.options['addr_counter']
def putb(self, data):
self.put(self.ss_block, self.es_block, self.out_ann, data)
def putbin(self, data):
self.put(self.ss_block, self.es_block, self.out_binary, data)
def putbits(self, bit1, bit2, bits, data):
self.put(bits[bit1][1], bits[bit2][2], self.out_ann, data)
def reset(self):
self.state = 'WAIT FOR START'
self.packets = []
self.bytebuf = []
self.is_cur_addr_read = False
self.is_random_access_read = False
self.is_seq_random_read = False
self.is_byte_write = False
self.is_page_write = False
def packet_append(self):
self.packets.append([self.ss, self.es, self.cmd, self.databyte, self.bits])
if self.cmd in ('DATA READ', 'DATA WRITE'):
self.bytebuf.append(self.databyte)
def hexbytes(self, idx):
return ' '.join(['%02X' % b for b in self.bytebuf[idx:]])
def put_control_word(self, bits):
s = ''.join(['%d' % b[0] for b in reversed(bits[4:])])
self.putbits(7, 4, bits, [1, ['Control code bits: ' + s,
'Control code: ' + s, 'Ctrl code: ' + s, 'Ctrl code', 'Ctrl', 'C']])
for i in reversed(range(self.chip['addr_pins'])):
self.putbits(i + 1, i + 1, bits,
[2, ['Address bit %d: %d' % (i, bits[i + 1][0]),
'Addr bit %d' % i, 'A%d' % i, 'A']])
s1 = 'read' if bits[0][0] == 1 else 'write'
s2 = 'R' if bits[0][0] == 1 else 'W'
self.putbits(0, 0, bits, [3, ['R/W bit: ' + s1, 'R/W', 'RW', s2]])
self.putbits(7, 0, bits, [6, ['Control word', 'Control', 'CW', 'C']])
def put_word_addr(self, p):
if self.chip['addr_bytes'] == 1:
a = p[1][3]
self.put(p[1][0], p[1][1], self.out_ann,
[4, ['Word address byte: %02X' % a, 'Word addr byte: %02X' % a,
'Addr: %02X' % a, 'A: %02X' % a, '%02X' % a]])
self.put(p[1][0], p[1][1], self.out_ann, [7, ['Word address',
'Word addr', 'Addr', 'A']])
self.addr_counter = a
else:
a = p[1][3]
self.put(p[1][0], p[1][1], self.out_ann,
[4, ['Word address high byte: %02X' % a,
'Word addr high byte: %02X' % a,
'Addr high: %02X' % a, 'AH: %02X' % a, '%02X' % a]])
a = p[2][3]
self.put(p[2][0], p[2][1], self.out_ann,
[4, ['Word address low byte: %02X' % a,
'Word addr low byte: %02X' % a,
'Addr low: %02X' % a, 'AL: %02X' % a, '%02X' % a]])
self.put(p[1][0], p[2][1], self.out_ann, [7, ['Word address',
'Word addr', 'Addr', 'A']])
self.addr_counter = (p[1][3] << 8) | p[2][3]
def put_data_byte(self, p):
if self.chip['addr_bytes'] == 1:
s = '%02X' % self.addr_counter
else:
s = '%04X' % self.addr_counter
self.put(p[0], p[1], self.out_ann, [5, ['Data byte %s: %02X' % \
(s, p[3]), 'Data byte: %02X' % p[3], \
'Byte: %02X' % p[3], 'DB: %02X' % p[3], '%02X' % p[3]]])
def put_data_bytes(self, idx, cls, s):
for p in self.packets[idx:]:
self.put_data_byte(p)
self.addr_counter += 1
self.put(self.packets[idx][0], self.packets[-1][1], self.out_ann,
[8, ['Data', 'D']])
a = ''.join(['%s' % c[0] for c in s.split()]).upper()
self.putb([cls, ['%s (%s): %s' % (s, self.addr_and_len(), \
self.hexbytes(self.chip['addr_bytes'])),
'%s (%s)' % (s, self.addr_and_len()), s, a, s[0]]])
self.putbin([0, bytes(self.bytebuf[self.chip['addr_bytes']:])])
def addr_and_len(self):
if self.chip['addr_bytes'] == 1:
a = '%02X' % self.bytebuf[0]
else:
a = '%02X%02X' % tuple(self.bytebuf[:2])
num_data_bytes = len(self.bytebuf) - self.chip['addr_bytes']
d = '%d bytes' % num_data_bytes
if num_data_bytes <= 1:
d = d[:-1]
return 'addr=%s, %s' % (a, d)
def decide_on_seq_or_rnd_read(self):
if len(self.bytebuf) < 2:
self.reset()
return
if len(self.bytebuf) == 2:
self.is_random_access_read = True
else:
self.is_seq_random_read = True
def put_operation(self):
idx = 1 + self.chip['addr_bytes']
if self.is_byte_write:
# Byte write: word address, one data byte.
self.put_word_addr(self.packets)
self.put_data_bytes(idx, 9, 'Byte write')
elif self.is_page_write:
# Page write: word address, two or more data bytes.
self.put_word_addr(self.packets)
intitial_addr = self.addr_counter
self.put_data_bytes(idx, 10, 'Page write')
num_bytes_to_write = len(self.packets[idx:])
if num_bytes_to_write > self.chip['page_size']:
self.putb([0, ['Warning: Wrote %d bytes but page size is '
'only %d bytes!' % (num_bytes_to_write,
self.chip['page_size'])]])
page1 = int(intitial_addr / self.chip['page_size'])
page2 = int((self.addr_counter - 1) / self.chip['page_size'])
if page1 != page2:
self.putb([0, ['Warning: Page write crossed page boundary '
'from page %d to %d!' % (page1, page2)]])
elif self.is_cur_addr_read:
# Current address read: no word address, one data byte.
self.put_data_byte(self.packets[1])
self.put(self.packets[1][0], self.packets[-1][1], self.out_ann,
[8, ['Data', 'D']])
self.putb([11, ['Current address read: %02X' % self.bytebuf[0],
'Current address read', 'Cur addr read', 'CAR', 'C']])
self.putbin([0, bytes([self.bytebuf[0]])])
self.addr_counter += 1
elif self.is_random_access_read:
# Random access read: word address, one data byte.
self.put_control_word(self.packets[idx][4])
self.put_word_addr(self.packets)
self.put_data_bytes(idx + 1, 12, 'Random access read')
elif self.is_seq_random_read:
# Sequential random read: word address, two or more data bytes.
self.put_control_word(self.packets[idx][4])
self.put_word_addr(self.packets)
self.put_data_bytes(idx + 1, 13, 'Sequential random read')
def handle_wait_for_start(self):
# Wait for an I²C START condition.
if self.cmd not in ('START', 'START REPEAT'):
return
self.ss_block = self.ss
self.state = 'GET CONTROL WORD'
def handle_get_control_word(self):
# The packet after START must be an ADDRESS READ or ADDRESS WRITE.
if self.cmd not in ('ADDRESS READ', 'ADDRESS WRITE'):
self.reset()
return
self.packet_append()
self.put_control_word(self.bits)
self.state = '%s GET ACK NACK AFTER CONTROL WORD' % self.cmd[8]
def handle_r_get_ack_nack_after_control_word(self):
if self.cmd == 'ACK':
self.state = 'R GET WORD ADDR OR BYTE'
elif self.cmd == 'NACK':
self.es_block = self.es
self.putb([0, ['Warning: No reply from slave!']])
self.reset()
else:
self.reset()
def handle_r_get_word_addr_or_byte(self):
if self.cmd == 'STOP':
self.es_block = self.es
self.putb([0, ['Warning: Slave replied, but master aborted!']])
self.reset()
return
elif self.cmd != 'DATA READ':
self.reset()
return
self.packet_append()
self.state = 'R GET ACK NACK AFTER WORD ADDR OR BYTE'
def handle_r_get_ack_nack_after_word_addr_or_byte(self):
if self.cmd == 'ACK':
self.state = 'R GET RESTART'
elif self.cmd == 'NACK':
self.is_cur_addr_read = True
self.state = 'GET STOP AFTER LAST BYTE'
else:
self.reset()
def handle_r_get_restart(self):
if self.cmd == 'RESTART':
self.state = 'R READ BYTE'
else:
self.reset()
def handle_r_read_byte(self):
if self.cmd == 'DATA READ':
self.packet_append()
self.state = 'R GET ACK NACK AFTER BYTE WAS READ'
else:
self.reset()
def handle_r_get_ack_nack_after_byte_was_read(self):
if self.cmd == 'ACK':
self.state = 'R READ BYTE'
elif self.cmd == 'NACK':
# It's either a RANDOM READ or a SEQUENTIAL READ.
self.state = 'GET STOP AFTER LAST BYTE'
else:
self.reset()
def handle_w_get_ack_nack_after_control_word(self):
if self.cmd == 'ACK':
self.state = 'W GET WORD ADDR'
elif self.cmd == 'NACK':
self.es_block = self.es
self.putb([0, ['Warning: No reply from slave!']])
self.reset()
else:
self.reset()
def handle_w_get_word_addr(self):
if self.cmd == 'STOP':
self.es_block = self.es
self.putb([0, ['Warning: Slave replied, but master aborted!']])
self.reset()
return
elif self.cmd != 'DATA WRITE':
self.reset()
return
self.packet_append()
self.state = 'W GET ACK AFTER WORD ADDR'
def handle_w_get_ack_after_word_addr(self):
if self.cmd == 'ACK':
self.state = 'W DETERMINE EEPROM READ OR WRITE'
else:
self.reset()
def handle_w_determine_eeprom_read_or_write(self):
if self.cmd == 'START REPEAT':
# It's either a RANDOM ACCESS READ or SEQUENTIAL RANDOM READ.
self.state = 'R2 GET CONTROL WORD'
elif self.cmd == 'DATA WRITE':
self.packet_append()
self.state = 'W GET ACK NACK AFTER BYTE WAS WRITTEN'
else:
self.reset()
def handle_w_write_byte(self):
if self.cmd == 'DATA WRITE':
self.packet_append()
self.state = 'W GET ACK NACK AFTER BYTE WAS WRITTEN'
elif self.cmd == 'STOP':
if len(self.bytebuf) < 2:
self.reset()
return
self.es_block = self.es
if len(self.bytebuf) == 2:
self.is_byte_write = True
else:
self.is_page_write = True
self.put_operation()
self.reset()
elif self.cmd == 'START REPEAT':
# It's either a RANDOM ACCESS READ or SEQUENTIAL RANDOM READ.
self.state = 'R2 GET CONTROL WORD'
else:
self.reset()
def handle_w_get_ack_nack_after_byte_was_written(self):
if self.cmd == 'ACK':
self.state = 'W WRITE BYTE'
else:
self.reset()
def handle_r2_get_control_word(self):
if self.cmd == 'ADDRESS READ':
self.packet_append()
self.state = 'R2 GET ACK AFTER ADDR READ'
else:
self.reset()
def handle_r2_get_ack_after_addr_read(self):
if self.cmd == 'ACK':
self.state = 'R2 READ BYTE'
else:
self.reset()
def handle_r2_read_byte(self):
if self.cmd == 'DATA READ':
self.packet_append()
self.state = 'R2 GET ACK NACK AFTER BYTE WAS READ'
elif self.cmd == 'STOP':
self.decide_on_seq_or_rnd_read()
self.es_block = self.es
self.putb([0, ['Warning: STOP expected after a NACK (not ACK)']])
self.put_operation()
self.reset()
else:
self.reset()
def handle_r2_get_ack_nack_after_byte_was_read(self):
if self.cmd == 'ACK':
self.state = 'R2 READ BYTE'
elif self.cmd == 'NACK':
self.decide_on_seq_or_rnd_read()
self.state = 'GET STOP AFTER LAST BYTE'
else:
self.reset()
def handle_get_stop_after_last_byte(self):
if self.cmd == 'STOP':
self.es_block = self.es
self.put_operation()
self.reset()
elif self.cmd == 'START REPEAT':
self.es_block = self.es
self.putb([0, ['Warning: STOP expected (not RESTART)']])
self.put_operation()
self.reset()
self.ss_block = self.ss
self.state = 'GET CONTROL WORD'
else:
self.reset()
def decode(self, ss, es, data):
self.cmd, self.databyte = data
# Collect the 'BITS' packet, then return. The next packet is
# guaranteed to belong to these bits we just stored.
if self.cmd == 'BITS':
self.bits = self.databyte
return
# Store the start/end samples of this I²C packet.
self.ss, self.es = ss, es
# State machine.
s = 'handle_%s' % self.state.lower().replace(' ', '_')
handle_state = getattr(self, s)
handle_state()
|