/usr/share/libsigrokdecode/decoders/ds1307/pd.py is in libsigrokdecode4 0.5.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 | ##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2012-2014 Uwe Hermann <uwe@hermann-uwe.de>
## Copyright (C) 2013 Matt Ranostay <mranostay@gmail.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import re
import sigrokdecode as srd
from common.srdhelper import bcd2int
days_of_week = (
'Sunday', 'Monday', 'Tuesday', 'Wednesday',
'Thursday', 'Friday', 'Saturday',
)
regs = (
'Seconds', 'Minutes', 'Hours', 'Day', 'Date', 'Month', 'Year',
'Control', 'RAM',
)
bits = (
'Clock halt', 'Seconds', 'Reserved', 'Minutes', '12/24 hours', 'AM/PM',
'Hours', 'Day', 'Date', 'Month', 'Year', 'OUT', 'SQWE', 'RS', 'RAM',
)
rates = {
0b00: '1Hz',
0b01: '4096kHz',
0b10: '8192kHz',
0b11: '32768kHz',
}
DS1307_I2C_ADDRESS = 0x68
def regs_and_bits():
l = [('reg-' + r.lower(), r + ' register') for r in regs]
l += [('bit-' + re.sub('\/| ', '-', b).lower(), b + ' bit') for b in bits]
return tuple(l)
class Decoder(srd.Decoder):
api_version = 2
id = 'ds1307'
name = 'DS1307'
longname = 'Dallas DS1307'
desc = 'Realtime clock module protocol.'
license = 'gplv2+'
inputs = ['i2c']
outputs = ['ds1307']
annotations = regs_and_bits() + (
('read-datetime', 'Read date/time'),
('write-datetime', 'Write date/time'),
('reg-read', 'Register read'),
('reg-write', 'Register write'),
('warnings', 'Warnings'),
)
annotation_rows = (
('bits', 'Bits', tuple(range(9, 24))),
('regs', 'Registers', tuple(range(9))),
('date-time', 'Date/time', (24, 25, 26, 27)),
('warnings', 'Warnings', (28,)),
)
def __init__(self):
self.state = 'IDLE'
self.hours = -1
self.minutes = -1
self.seconds = -1
self.days = -1
self.date = -1
self.months = -1
self.years = -1
self.bits = []
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
def putx(self, data):
self.put(self.ss, self.es, self.out_ann, data)
def putd(self, bit1, bit2, data):
self.put(self.bits[bit1][1], self.bits[bit2][2], self.out_ann, data)
def putr(self, bit):
self.put(self.bits[bit][1], self.bits[bit][2], self.out_ann,
[11, ['Reserved bit', 'Reserved', 'Rsvd', 'R']])
def handle_reg_0x00(self, b): # Seconds (0-59) / Clock halt bit
self.putd(7, 0, [0, ['Seconds', 'Sec', 'S']])
ch = 1 if (b & (1 << 7)) else 0
self.putd(7, 7, [9, ['Clock halt: %d' % ch, 'Clk hlt: %d' % ch,
'CH: %d' % ch, 'CH']])
s = self.seconds = bcd2int(b & 0x7f)
self.putd(6, 0, [10, ['Second: %d' % s, 'Sec: %d' % s, 'S: %d' % s, 'S']])
def handle_reg_0x01(self, b): # Minutes (0-59)
self.putd(7, 0, [1, ['Minutes', 'Min', 'M']])
self.putr(7)
m = self.minutes = bcd2int(b & 0x7f)
self.putd(6, 0, [12, ['Minute: %d' % m, 'Min: %d' % m, 'M: %d' % m, 'M']])
def handle_reg_0x02(self, b): # Hours (1-12+AM/PM or 0-23)
self.putd(7, 0, [2, ['Hours', 'H']])
self.putr(7)
ampm_mode = True if (b & (1 << 6)) else False
if ampm_mode:
self.putd(6, 6, [13, ['12-hour mode', '12h mode', '12h']])
a = 'AM' if (b & (1 << 6)) else 'PM'
self.putd(5, 5, [14, [a, a[0]]])
h = self.hours = bcd2int(b & 0x1f)
self.putd(4, 0, [15, ['Hour: %d' % h, 'H: %d' % h, 'H']])
else:
self.putd(6, 6, [13, ['24-hour mode', '24h mode', '24h']])
h = self.hours = bcd2int(b & 0x3f)
self.putd(5, 0, [15, ['Hour: %d' % h, 'H: %d' % h, 'H']])
def handle_reg_0x03(self, b): # Day / day of week (1-7)
self.putd(7, 0, [3, ['Day of week', 'Day', 'D']])
for i in (7, 6, 5, 4, 3):
self.putr(i)
w = self.days = bcd2int(b & 0x07)
ws = days_of_week[self.days - 1]
self.putd(2, 0, [16, ['Weekday: %s' % ws, 'WD: %s' % ws, 'WD', 'W']])
def handle_reg_0x04(self, b): # Date (1-31)
self.putd(7, 0, [4, ['Date', 'D']])
for i in (7, 6):
self.putr(i)
d = self.date = bcd2int(b & 0x3f)
self.putd(5, 0, [17, ['Date: %d' % d, 'D: %d' % d, 'D']])
def handle_reg_0x05(self, b): # Month (1-12)
self.putd(7, 0, [5, ['Month', 'Mon', 'M']])
for i in (7, 6, 5):
self.putr(i)
m = self.months = bcd2int(b & 0x1f)
self.putd(4, 0, [18, ['Month: %d' % m, 'Mon: %d' % m, 'M: %d' % m, 'M']])
def handle_reg_0x06(self, b): # Year (0-99)
self.putd(7, 0, [6, ['Year', 'Y']])
y = self.years = bcd2int(b & 0xff)
self.years += 2000
self.putd(7, 0, [19, ['Year: %d' % y, 'Y: %d' % y, 'Y']])
def handle_reg_0x07(self, b): # Control Register
self.putd(7, 0, [7, ['Control', 'Ctrl', 'C']])
for i in (6, 5, 3, 2):
self.putr(i)
o = 1 if (b & (1 << 7)) else 0
s = 1 if (b & (1 << 4)) else 0
s2 = 'en' if (b & (1 << 4)) else 'dis'
r = rates[b & 0x03]
self.putd(7, 7, [20, ['Output control: %d' % o,
'OUT: %d' % o, 'O: %d' % o, 'O']])
self.putd(4, 4, [21, ['Square wave output: %sabled' % s2,
'SQWE: %sabled' % s2, 'SQWE: %d' % s, 'S: %d' % s, 'S']])
self.putd(1, 0, [22, ['Square wave output rate: %s' % r,
'Square wave rate: %s' % r, 'SQW rate: %s' % r, 'Rate: %s' % r,
'RS: %s' % s, 'RS', 'R']])
def handle_reg_0x3f(self, b): # RAM (bytes 0x08-0x3f)
self.putd(7, 0, [8, ['RAM', 'R']])
self.putd(7, 0, [23, ['SRAM: 0x%02X' % b, '0x%02X' % b]])
def output_datetime(self, cls, rw):
# TODO: Handle read/write of only parts of these items.
d = '%s, %02d.%02d.%4d %02d:%02d:%02d' % (
days_of_week[self.days - 1], self.date, self.months,
self.years, self.hours, self.minutes, self.seconds)
self.put(self.ss_block, self.es, self.out_ann,
[cls, ['%s date/time: %s' % (rw, d)]])
def handle_reg(self, b):
r = self.reg if self.reg < 8 else 0x3f
fn = getattr(self, 'handle_reg_0x%02x' % r)
fn(b)
# Honor address auto-increment feature of the DS1307. When the
# address reaches 0x3f, it will wrap around to address 0.
self.reg += 1
if self.reg > 0x3f:
self.reg = 0
def is_correct_chip(self, addr):
if addr == DS1307_I2C_ADDRESS:
return True
self.put(self.ss_block, self.es, self.out_ann,
[28, ['Ignoring non-DS1307 data (slave 0x%02X)' % addr]])
return False
def decode(self, ss, es, data):
cmd, databyte = data
# Collect the 'BITS' packet, then return. The next packet is
# guaranteed to belong to these bits we just stored.
if cmd == 'BITS':
self.bits = databyte
return
# Store the start/end samples of this I²C packet.
self.ss, self.es = ss, es
# State machine.
if self.state == 'IDLE':
# Wait for an I²C START condition.
if cmd != 'START':
return
self.state = 'GET SLAVE ADDR'
self.ss_block = ss
elif self.state == 'GET SLAVE ADDR':
# Wait for an address write operation.
if cmd != 'ADDRESS WRITE':
return
if not self.is_correct_chip(databyte):
self.state = 'IDLE'
return
self.state = 'GET REG ADDR'
elif self.state == 'GET REG ADDR':
# Wait for a data write (master selects the slave register).
if cmd != 'DATA WRITE':
return
self.reg = databyte
self.state = 'WRITE RTC REGS'
elif self.state == 'WRITE RTC REGS':
# If we see a Repeated Start here, it's an RTC read.
if cmd == 'START REPEAT':
self.state = 'READ RTC REGS'
return
# Otherwise: Get data bytes until a STOP condition occurs.
if cmd == 'DATA WRITE':
self.handle_reg(databyte)
elif cmd == 'STOP':
self.output_datetime(25, 'Written')
self.state = 'IDLE'
elif self.state == 'READ RTC REGS':
# Wait for an address read operation.
if cmd != 'ADDRESS READ':
return
if not self.is_correct_chip(databyte):
self.state = 'IDLE'
return
self.state = 'READ RTC REGS2'
elif self.state == 'READ RTC REGS2':
if cmd == 'DATA READ':
self.handle_reg(databyte)
elif cmd == 'STOP':
self.output_datetime(24, 'Read')
self.state = 'IDLE'
|