/usr/include/sdsl/wt_int.hpp is in libsdsl-dev 2.0.3-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 | /* sdsl - succinct data structures library
Copyright (C) 2009 Simon Gog
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/ .
*/
/*! \file wt_int.hpp
\brief wt_int.hpp contains a specialized class for a wavelet tree of a
sequence of the numbers. This wavelet tree class takes
less memory than the wt_pc class for large alphabets.
\author Simon Gog, Shanika Kuruppu
*/
#ifndef INCLUDED_SDSL_INT_WAVELET_TREE
#define INCLUDED_SDSL_INT_WAVELET_TREE
#include "sdsl_concepts.hpp"
#include "int_vector.hpp"
#include "rank_support_v.hpp"
#include "select_support_mcl.hpp"
#include "wt_helper.hpp"
#include "util.hpp"
#include <set> // for calculating the alphabet size
#include <map> // for mapping a symbol to its lexicographical index
#include <algorithm> // for std::swap
#include <stdexcept>
#include <vector>
#include <queue>
#include <utility>
//! Namespace for the succinct data structure library.
namespace sdsl
{
//! A wavelet tree class for integer sequences.
/*!
* \par Space complexity
* \f$\Order{n\log|\Sigma|}\f$ bits, where \f$n\f$ is the size of the vector the wavelet tree was build for.
*
* \tparam t_bitvector Type of the bitvector used for representing the wavelet tree.
* \tparam t_rank Type of the support structure for rank on pattern `1`.
* \tparam t_select Type of the support structure for select on pattern `1`.
* \tparam t_select_zero Type of the support structure for select on pattern `0`.
*
* @ingroup wt
*/
template<class t_bitvector = bit_vector,
class t_rank = typename t_bitvector::rank_1_type,
class t_select = typename t_bitvector::select_1_type,
class t_select_zero = typename t_bitvector::select_0_type>
class wt_int
{
public:
typedef int_vector<>::size_type size_type;
typedef int_vector<>::value_type value_type;
typedef typename t_bitvector::difference_type difference_type;
typedef random_access_const_iterator<wt_int> const_iterator;
typedef const_iterator iterator;
typedef t_bitvector bit_vector_type;
typedef t_rank rank_1_type;
typedef t_select select_1_type;
typedef t_select_zero select_0_type;
typedef wt_tag index_category;
typedef int_alphabet_tag alphabet_category;
enum {lex_ordered=1};
typedef std::pair<value_type, size_type> point_type;
typedef std::vector<point_type> point_vec_type;
typedef std::pair<size_type, point_vec_type> r2d_res_type;
protected:
size_type m_size = 0;
size_type m_sigma = 0; //<- \f$ |\Sigma| \f$
bit_vector_type m_tree; // bit vector to store the wavelet tree
rank_1_type m_tree_rank; // rank support for the wavelet tree bit vector
select_1_type m_tree_select1; // select support for the wavelet tree bit vector
select_0_type m_tree_select0;
uint32_t m_max_level = 0;
mutable int_vector<64> m_path_off; // array keeps track of path offset in select-like methods
mutable int_vector<64> m_path_rank_off;// array keeps track of rank values for the offsets
void copy(const wt_int& wt) {
m_size = wt.m_size;
m_sigma = wt.m_sigma;
m_tree = wt.m_tree;
m_tree_rank = wt.m_tree_rank;
m_tree_rank.set_vector(&m_tree);
m_tree_select1 = wt.m_tree_select1;
m_tree_select1.set_vector(&m_tree);
m_tree_select0 = wt.m_tree_select0;
m_tree_select0.set_vector(&m_tree);
m_max_level = wt.m_max_level;
m_path_off = wt.m_path_off;
m_path_rank_off = wt.m_path_rank_off;
}
private:
void init_buffers(uint32_t max_level) {
m_path_off = int_vector<64>(max_level+1);
m_path_rank_off = int_vector<64>(max_level+1);
}
// recursive internal version of the method interval_symbols
void _interval_symbols(size_type i, size_type j, size_type& k,
std::vector<value_type>& cs,
std::vector<size_type>& rank_c_i,
std::vector<size_type>& rank_c_j,
size_type level,
size_type path,
size_type node_size,
size_type offset) const {
// invariant: j>i
if (level >= m_max_level) {
rank_c_i[k]= i;
rank_c_j[k]= j;
cs[k++]= path;
return;
}
size_type ones_before_o = m_tree_rank(offset);
size_type ones_before_i = m_tree_rank(offset+i) - ones_before_o;
size_type ones_before_j = m_tree_rank(offset+j) - ones_before_o;
size_type ones_before_end = m_tree_rank(offset+ node_size) - ones_before_o;
// goto left child
if ((j-i)-(ones_before_j-ones_before_i)>0) {
size_type new_offset = offset + m_size;
size_type new_node_size = node_size - ones_before_end;
size_type new_i = i - ones_before_i;
size_type new_j = j - ones_before_j;
_interval_symbols(new_i, new_j, k, cs, rank_c_i, rank_c_j, level+1, path<<1, new_node_size, new_offset);
}
// goto right child
if ((ones_before_j-ones_before_i)>0) {
size_type new_offset = offset+(node_size - ones_before_end) + m_size;
size_type new_node_size = ones_before_end;
size_type new_i = ones_before_i;
size_type new_j = ones_before_j;
_interval_symbols(new_i, new_j, k, cs, rank_c_i, rank_c_j, level+1, (path<<1)|1, new_node_size, new_offset);
}
}
public:
const size_type& sigma = m_sigma; //!< Effective alphabet size of the wavelet tree.
const bit_vector_type& tree = m_tree; //!< A concatenation of all bit vectors of the wavelet tree.
const uint32_t& max_level = m_max_level; //!< Maximal level of the wavelet tree.
//! Default constructor
wt_int() {
init_buffers(m_max_level);
};
//! Semi-external constructor
/*! \param buf File buffer of the int_vector for which the wt_int should be build.
* \param size Size of the prefix of v, which should be indexed.
* \param max_level Maximal level of the wavelet tree. If set to 0, determined automatically.
* \par Time complexity
* \f$ \Order{n\log|\Sigma|}\f$, where \f$n=size\f$
* I.e. we need \Order{n\log n} if rac is a permutation of 0..n-1.
* \par Space complexity
* \f$ n\log|\Sigma| + O(1)\f$ bits, where \f$n=size\f$.
*/
template<uint8_t int_width>
wt_int(int_vector_buffer<int_width>& buf, size_type size,
uint32_t max_level=0) : m_size(size) {
init_buffers(m_max_level);
if (0 == m_size)
return;
size_type n = buf.size(); // set n
if (n < m_size) {
throw std::logic_error("n="+util::to_string(n)+" < "+util::to_string(m_size)+"=m_size");
return;
}
m_sigma = 0;
int_vector<int_width> rac(m_size, 0, buf.width());
value_type x = 1; // variable for the biggest value in rac
for (size_type i=0; i < m_size; ++i) {
if (buf[i] > x)
x = buf[i];
rac[i] = buf[i];
}
if (max_level == 0) {
m_max_level = bits::hi(x)+1; // max_level bits to represent all values range [0..x]
} else {
m_max_level = max_level;
}
init_buffers(m_max_level);
// buffer for elements in the right node
int_vector_buffer<> buf1(tmp_file(buf.filename(), "_wt_constr_buf"),
std::ios::out, 10*(1<<20), buf.width());
std::string tree_out_buf_file_name = tmp_file(buf.filename(), "_m_tree");
osfstream tree_out_buf(tree_out_buf_file_name, std::ios::binary|
std::ios::trunc|std::ios::out);
size_type bit_size = m_size*m_max_level;
tree_out_buf.write((char*) &bit_size, sizeof(bit_size));// write size of bit_vector
size_type tree_pos = 0;
uint64_t tree_word = 0;
uint64_t mask_old = 1ULL<<(m_max_level);
for (uint32_t k=0; k<m_max_level; ++k) {
size_type start = 0;
const uint64_t mask_new = 1ULL<<(m_max_level-k-1);
do {
size_type i = start;
size_type cnt0 = 0;
size_type cnt1 = 0;
uint64_t start_value = (rac[i]&mask_old);
uint64_t x;
while (i < m_size and((x=rac[i])&mask_old)==start_value) {
if (x&mask_new) {
tree_word |= (1ULL << (tree_pos&0x3FULL));
buf1[cnt1++] = x;
} else {
rac[start + cnt0++ ] = x;
}
++tree_pos;
if ((tree_pos & 0x3FULL) == 0) { // if tree_pos % 64 == 0 write old word
tree_out_buf.write((char*) &tree_word, sizeof(tree_word));
tree_word = 0;
}
++i;
}
if (k+1 < m_max_level) { // inner node
for (size_type j=0; j<cnt1; ++j) {
rac[start+cnt0+j] = buf1[j];
}
} else { // leaf node
m_sigma += (cnt0>0) + (cnt1>0); // increase sigma for each leaf
}
start += cnt0+cnt1;
} while (start < m_size);
mask_old += mask_new;
}
if ((tree_pos & 0x3FULL) != 0) { // if tree_pos % 64 > 0 => there are remaining entries we have to write
tree_out_buf.write((char*) &tree_word, sizeof(tree_word));
}
buf1.close(true); // remove temporary file
tree_out_buf.close();
rac.resize(0);
bit_vector tree;
load_from_file(tree, tree_out_buf_file_name);
sdsl::remove(tree_out_buf_file_name);
m_tree = bit_vector_type(std::move(tree));
util::init_support(m_tree_rank, &m_tree);
util::init_support(m_tree_select0, &m_tree);
util::init_support(m_tree_select1, &m_tree);
}
//! Copy constructor
wt_int(const wt_int& wt) {
copy(wt);
}
//! Copy constructor
wt_int(wt_int&& wt) {
*this = std::move(wt);
}
//! Assignment operator
wt_int& operator=(const wt_int& wt) {
if (this != &wt) {
copy(wt);
}
return *this;
}
//! Assignment move operator
wt_int& operator=(wt_int&& wt) {
if (this != &wt) {
m_size = wt.m_size;
m_sigma = wt.m_sigma;
m_tree = std::move(wt.m_tree);
m_tree_rank = std::move(wt.m_tree_rank);
m_tree_rank.set_vector(&m_tree);
m_tree_select1 = std::move(wt.m_tree_select1);
m_tree_select1.set_vector(&m_tree);
m_tree_select0 = std::move(wt.m_tree_select0);
m_tree_select0.set_vector(&m_tree);
m_max_level = std::move(wt.m_max_level);
m_path_off = std::move(wt.m_path_off);
m_path_rank_off = std::move(wt.m_path_rank_off);
}
return *this;
}
//! Swap operator
void swap(wt_int& wt) {
if (this != &wt) {
std::swap(m_size, wt.m_size);
std::swap(m_sigma, wt.m_sigma);
m_tree.swap(wt.m_tree);
util::swap_support(m_tree_rank, wt.m_tree_rank, &m_tree, &(wt.m_tree));
util::swap_support(m_tree_select1, wt.m_tree_select1, &m_tree, &(wt.m_tree));
util::swap_support(m_tree_select0, wt.m_tree_select0, &m_tree, &(wt.m_tree));
std::swap(m_max_level, wt.m_max_level);
m_path_off.swap(wt.m_path_off);
m_path_rank_off.swap(wt.m_path_rank_off);
}
}
//! Returns the size of the original vector.
size_type size()const {
return m_size;
}
//! Returns whether the wavelet tree contains no data.
bool empty()const {
return m_size == 0;
}
//! Recovers the i-th symbol of the original vector.
/*! \param i The index of the symbol in the original vector.
* \returns The i-th symbol of the original vector.
* \par Precondition
* \f$ i < size() \f$
*/
value_type operator[](size_type i)const {
assert(i < size());
size_type offset = 0;
value_type res = 0;
size_type node_size = m_size;
for (uint32_t k=0; k < m_max_level; ++k) {
res <<= 1;
size_type ones_before_o = m_tree_rank(offset);
size_type ones_before_i = m_tree_rank(offset + i) - ones_before_o;
size_type ones_before_end = m_tree_rank(offset + node_size) - ones_before_o;
if (m_tree[offset+i]) { // one at position i => follow right child
offset += (node_size - ones_before_end);
node_size = ones_before_end;
i = ones_before_i;
res |= 1;
} else { // zero at position i => follow left child
node_size = (node_size - ones_before_end);
i = (i-ones_before_i);
}
offset += m_size;
}
return res;
};
//! Calculates how many symbols c are in the prefix [0..i-1] of the supported vector.
/*!
* \param i The exclusive index of the prefix range [0..i-1], so \f$i\in[0..size()]\f$.
* \param c The symbol to count the occurrences in the prefix.
* \returns The number of occurrences of symbol c in the prefix [0..i-1] of the supported vector.
* \par Time complexity
* \f$ \Order{\log |\Sigma|} \f$
* \par Precondition
* \f$ i \leq size() \f$
*/
size_type rank(size_type i, value_type c)const {
assert(i <= size());
if (((1ULL)<<(m_max_level))<=c) { // c is greater than any symbol in wt
return 0;
}
size_type offset = 0;
uint64_t mask = (1ULL) << (m_max_level-1);
size_type node_size = m_size;
for (uint32_t k=0; k < m_max_level and i; ++k) {
size_type ones_before_o = m_tree_rank(offset);
size_type ones_before_i = m_tree_rank(offset + i) - ones_before_o;
size_type ones_before_end = m_tree_rank(offset + node_size) - ones_before_o;
if (c & mask) { // search for a one at this level
offset += (node_size - ones_before_end);
node_size = ones_before_end;
i = ones_before_i;
} else { // search for a zero at this level
node_size = (node_size - ones_before_end);
i = (i-ones_before_i);
}
offset += m_size;
mask >>= 1;
}
return i;
};
//! Calculates how many occurrences of symbol wt[i] are in the prefix [0..i-1] of the original sequence.
/*!
* \param i The index of the symbol.
* \return Pair (rank(wt[i],i),wt[i])
* \par Precondition
* \f$ i < size() \f$
*/
std::pair<size_type, value_type>
inverse_select(size_type i)const {
assert(i < size());
value_type c = 0;
size_type node_size = m_size, offset = 0;
for (uint32_t k=0; k < m_max_level; ++k) {
size_type ones_before_o = m_tree_rank(offset);
size_type ones_before_i = m_tree_rank(offset + i) - ones_before_o;
size_type ones_before_end = m_tree_rank(offset + node_size) - ones_before_o;
c<<=1;
if (m_tree[offset+i]) { // go to the right child
offset += (node_size - ones_before_end);
node_size = ones_before_end;
i = ones_before_i;
c|=1;
} else { // go to the left child
node_size = (node_size - ones_before_end);
i = (i-ones_before_i);
}
offset += m_size;
}
return std::make_pair(i,c);
}
//! Calculates the i-th occurrence of the symbol c in the supported vector.
/*!
* \param i The i-th occurrence.
* \param c The symbol c.
* \par Time complexity
* \f$ \Order{\log |\Sigma|} \f$
* \par Precondition
* \f$ 1 \leq i \leq rank(size(), c) \f$
*/
size_type select(size_type i, value_type c)const {
assert(1 <= i and i <= rank(size(), c));
// possible optimization: if the array is a permutation we can start at the bottom of the tree
size_type offset = 0;
uint64_t mask = (1ULL) << (m_max_level-1);
size_type node_size = m_size;
m_path_off[0] = m_path_rank_off[0] = 0;
for (uint32_t k=0; k < m_max_level and node_size; ++k) {
size_type ones_before_o = m_tree_rank(offset);
m_path_rank_off[k] = ones_before_o;
size_type ones_before_end = m_tree_rank(offset + node_size) - ones_before_o;
if (c & mask) { // search for a one at this level
offset += (node_size - ones_before_end);
node_size = ones_before_end;
} else { // search for a zero at this level
node_size = (node_size - ones_before_end);
}
offset += m_size;
m_path_off[k+1] = offset;
mask >>= 1;
}
if (0ULL == node_size or node_size < i) {
throw std::logic_error("select("+util::to_string(i)+","+util::to_string(c)+"): c does not occur i times in the WT");
return m_size;
}
mask = 1ULL;
for (uint32_t k=m_max_level; k>0; --k) {
offset = m_path_off[k-1];
size_type ones_before_o = m_path_rank_off[k-1];
if (c & mask) { // right child => search i'th
i = m_tree_select1(ones_before_o + i) - offset + 1;
} else { // left child => search i'th zero
i = m_tree_select0(offset - ones_before_o + i) - offset + 1;
}
mask <<= 1;
}
return i-1;
};
//! For each symbol c in wt[i..j-1] get rank(i,c) and rank(j,c).
/*!
* \param i The start index (inclusive) of the interval.
* \param j The end index (exclusive) of the interval.
* \param k Reference for number of different symbols in [i..j-1].
* \param cs Reference to a vector that will contain in
* cs[0..k-1] all symbols that occur in [i..j-1] in
* ascending order.
* \param rank_c_i Reference to a vector which equals
* rank_c_i[p] = rank(i,cs[p]), for \f$ 0 \leq p < k \f$.
* \param rank_c_j Reference to a vector which equals
* rank_c_j[p] = rank(j,cs[p]), for \f$ 0 \leq p < k \f$.
* \par Time complexity
* \f$ \Order{\min{\sigma, k \log \sigma}} \f$
*
* \par Precondition
* \f$ i \leq j \leq size() \f$
* \f$ cs.size() \geq \sigma \f$
* \f$ rank_{c_i}.size() \geq \sigma \f$
* \f$ rank_{c_j}.size() \geq \sigma \f$
*/
void interval_symbols(size_type i, size_type j, size_type& k,
std::vector<value_type>& cs,
std::vector<size_type>& rank_c_i,
std::vector<size_type>& rank_c_j) const {
assert(i <= j and j <= size());
k=0;
if (i==j) {
return;
}
if ((i+1)==j) {
auto res = inverse_select(i);
cs[0]=res.second;
rank_c_i[0]=res.first;
rank_c_j[0]=res.first+1;
k=1;
return;
}
_interval_symbols(i, j, k, cs, rank_c_i, rank_c_j, 0, 0, m_size, 0);
}
//! How many symbols are lexicographic smaller/greater than c in [i..j-1].
/*!
* \param i Start index (inclusive) of the interval.
* \param j End index (exclusive) of the interval.
* \param c Symbol c.
* \return A triple containing:
* * rank(i,c)
* * #symbols smaller than c in [i..j-1]
* * #symbols greater than c in [i..j-1]
*
* \par Precondition
* \f$ i \leq j \leq size() \f$
*/
template<class t_ret_type = std::tuple<size_type, size_type, size_type>>
t_ret_type lex_count(size_type i, size_type j, value_type c)const {
assert(i <= j and j <= size());
if (((1ULL)<<(m_max_level))<=c) { // c is greater than any symbol in wt
return t_ret_type {0, j-i, 0};
}
size_type offset = 0;
size_type smaller = 0;
size_type greater = 0;
uint64_t mask = (1ULL) << (m_max_level-1);
size_type node_size = m_size;
for (uint32_t k=0; k < m_max_level; ++k) {
size_type ones_before_o = m_tree_rank(offset);
size_type ones_before_i = m_tree_rank(offset + i) - ones_before_o;
size_type ones_before_j = m_tree_rank(offset + j) - ones_before_o;
size_type ones_before_end = m_tree_rank(offset + node_size) - ones_before_o;
if (c & mask) { // search for a one at this level
offset += (node_size - ones_before_end);
node_size = ones_before_end;
smaller += j-i-ones_before_j+ones_before_i;
i = ones_before_i;
j = ones_before_j;
} else { // search for a zero at this level
node_size -= ones_before_end;
greater += ones_before_j-ones_before_i;
i -= ones_before_i;
j -= ones_before_j;
}
offset += m_size;
mask >>= 1;
}
return t_ret_type {i, smaller, greater};
};
//! How many symbols are lexicographic smaller than c in [0..i-1].
/*!
* \param i Exclusive right bound of the range.
* \param c Symbol c.
* \return A tuple containing:
* * rank(i,c)
* * #symbols smaller than c in [0..i-1]
* \par Precondition
* \f$ i \leq size() \f$
*/
template<class t_ret_type = std::tuple<size_type, size_type>>
t_ret_type lex_smaller_count(size_type i, value_type c) const {
assert(i <= size());
if (((1ULL)<<(m_max_level))<=c) { // c is greater than any symbol in wt
return t_ret_type {0, i};
}
size_type offset = 0;
size_type result = 0;
uint64_t mask = (1ULL) << (m_max_level-1);
size_type node_size = m_size;
for (uint32_t k=0; k < m_max_level and i; ++k) {
size_type ones_before_o = m_tree_rank(offset);
size_type ones_before_i = m_tree_rank(offset + i) - ones_before_o;
size_type ones_before_end = m_tree_rank(offset + node_size) - ones_before_o;
if (c & mask) { // search for a one at this level
offset += (node_size - ones_before_end);
node_size = ones_before_end;
result += i - ones_before_i;
i = ones_before_i;
} else { // search for a zero at this level
node_size = (node_size - ones_before_end);
i -= ones_before_i;
}
offset += m_size;
mask >>= 1;
}
return t_ret_type {i, result};
}
//! range_search_2d searches points in the index interval [lb..rb] and value interval [vlb..vrb].
/*! \param lb Left bound of index interval (inclusive)
* \param rb Right bound of index interval (inclusive)
* \param vlb Left bound of value interval (inclusive)
* \param vrb Right bound of value interval (inclusive)
* \param report Should the matching points be returned?
* \return Pair (#of found points, vector of points), the vector is empty when
* report = false.
*/
std::pair<size_type, std::vector<std::pair<value_type, size_type>>>
range_search_2d(size_type lb, size_type rb, value_type vlb, value_type vrb,
bool report=true) const {
size_type offsets[m_max_level+1];
size_type ones_before_os[m_max_level+1];
offsets[0] = 0;
if (vrb > (1ULL << m_max_level))
vrb = (1ULL << m_max_level);
if (vlb > vrb)
return make_pair(0, point_vec_type());
size_type cnt_answers = 0;
point_vec_type point_vec;
_range_search_2d(lb, rb, vlb, vrb, 0, 0, m_size, offsets, ones_before_os, 0, point_vec, report, cnt_answers);
return make_pair(cnt_answers, point_vec);
}
void
_range_search_2d(size_type lb, size_type rb, value_type vlb, value_type vrb, size_type level,
size_type ilb, size_type node_size, size_type offsets[],
size_type ones_before_os[], size_type path,
point_vec_type& point_vec, bool report, size_type& cnt_answers)
const {
if (lb > rb)
return;
if (level == m_max_level) {
if (report) {
for (size_type j=lb+1; j <= rb+1; ++j) {
size_type i = j;
size_type c = path;
for (uint32_t k=m_max_level; k>0; --k) {
size_type offset = offsets[k-1];
size_type ones_before_o = ones_before_os[k-1];
if (c&1) {
i = m_tree_select1(ones_before_o + i) - offset + 1;
} else {
i = m_tree_select0(offset - ones_before_o + i) - offset + 1;
}
c >>= 1;
}
point_vec.emplace_back(i-1, path);
}
}
cnt_answers += rb-lb+1;
return;
}
size_type irb = ilb + (1ULL << (m_max_level-level));
size_type mid = (irb + ilb)>>1;
size_type offset = offsets[level];
size_type ones_before_o = m_tree_rank(offset);
ones_before_os[level] = ones_before_o;
size_type ones_before_lb = m_tree_rank(offset + lb);
size_type ones_before_rb = m_tree_rank(offset + rb + 1);
size_type ones_before_end = m_tree_rank(offset + node_size);
size_type zeros_before_o = offset - ones_before_o;
size_type zeros_before_lb = offset + lb - ones_before_lb;
size_type zeros_before_rb = offset + rb + 1 - ones_before_rb;
size_type zeros_before_end = offset + node_size - ones_before_end;
if (vlb < mid and mid) {
size_type nlb = zeros_before_lb - zeros_before_o;
size_type nrb = zeros_before_rb - zeros_before_o;
offsets[level+1] = offset + m_size;
if (nrb)
_range_search_2d(nlb, nrb-1, vlb, std::min(vrb,mid-1), level+1, ilb, zeros_before_end - zeros_before_o, offsets, ones_before_os, path<<1, point_vec, report, cnt_answers);
}
if (vrb >= mid) {
size_type nlb = ones_before_lb - ones_before_o;
size_type nrb = ones_before_rb - ones_before_o;
offsets[level+1] = offset + m_size + (zeros_before_end - zeros_before_o);
if (nrb)
_range_search_2d(nlb, nrb-1, std::max(mid, vlb), vrb, level+1, mid, ones_before_end - ones_before_o, offsets, ones_before_os, (path<<1)+1 , point_vec, report, cnt_answers);
}
}
//! Returns a const_iterator to the first element.
const_iterator begin()const {
return const_iterator(this, 0);
}
//! Returns a const_iterator to the element after the last element.
const_iterator end()const {
return const_iterator(this, size());
}
//! Serializes the data structure into the given ostream
size_type serialize(std::ostream& out, structure_tree_node* v=nullptr, std::string name="")const {
structure_tree_node* child = structure_tree::add_child(v, name, util::class_name(*this));
size_type written_bytes = 0;
written_bytes += write_member(m_size, out, child, "size");
written_bytes += write_member(m_sigma, out, child, "sigma");
written_bytes += m_tree.serialize(out, child, "tree");
written_bytes += m_tree_rank.serialize(out, child, "tree_rank");
written_bytes += m_tree_select1.serialize(out, child, "tree_select_1");
written_bytes += m_tree_select0.serialize(out, child, "tree_select_0");
written_bytes += write_member(m_max_level, out, child, "max_level");
structure_tree::add_size(child, written_bytes);
return written_bytes;
}
//! Loads the data structure from the given istream.
void load(std::istream& in) {
read_member(m_size, in);
read_member(m_sigma, in);
m_tree.load(in);
m_tree_rank.load(in, &m_tree);
m_tree_select1.load(in, &m_tree);
m_tree_select0.load(in, &m_tree);
read_member(m_max_level, in);
init_buffers(m_max_level);
}
//! Represents a node in the wavelet tree
struct node_type {
size_type offset = 0;
size_type size = 0;
size_type level = 0;
value_type sym = 0;
// Default constructor
node_type(size_type o=0, size_type sz=0, size_type l=0,
value_type sy=0) :
offset(o), size(sz), level(l), sym(sy) {}
// Copy constructor
node_type(const node_type&) = default;
// Move copy constructor
node_type(node_type&&) = default;
// Assignment operator
node_type& operator=(const node_type&) = default;
// Move assignment operator
node_type& operator=(node_type&&) = default;
// Comparator operator
bool operator==(const node_type& v) const {
return offset == v.offset;
}
// Smaller operator
bool operator<(const node_type& v) const {
return offset < v.offset;
}
// Greater operator
bool operator>(const node_type& v) const {
return offset > v.offset;
}
};
//! Checks if the node is a leaf node
bool is_leaf(const node_type& v) const {
return v.level == m_max_level;
}
value_type sym(const node_type& v) const {
return v.sym;
}
bool empty(const node_type& v) const {
return v.size == (size_type)0;
}
//! Return the root node
node_type root() const {
return node_type(0, m_size, 0, 0);
}
//! Returns the two child nodes of an inner node
/*! \param v An inner node of a wavelet tree.
* \return Return a pair of nodes (left child, right child).
* \pre !is_leaf(v)
*/
std::pair<node_type, node_type>
expand(const node_type& v) const {
node_type v_right = v;
return expand(std::move(v_right));
}
//! Returns the two child nodes of an inner node
/*! \param v An inner node of a wavelet tree.
* \return Return a pair of nodes (left child, right child).
* \pre !is_leaf(v)
*/
std::pair<node_type, node_type>
expand(node_type&& v) const {
node_type v_left;
size_type offset_rank = m_tree_rank(v.offset);
size_type ones = m_tree_rank(v.offset + v.size) - offset_rank;
v_left.offset = v.offset + m_size;
v_left.size = v.size - ones;
v_left.level = v.level + 1;
v_left.sym = v.sym<<1;
v.offset = v.offset + m_size + v_left.size;
v.size = ones;
v.level = v.level + 1;
v.sym = (v.sym<<1)|1;
return std::make_pair(std::move(v_left), v);
}
//! Returns for each range its left and right child ranges
/*! \param v An inner node of an wavelet tree.
* \param ranges A vector of ranges. Each range [s,e]
* has to be contained in v=[v_s,v_e].
* \return A vector a range pairs. The first element of each
* range pair correspond to the original range
* mapped to the left child of v; the second element to the
* range mapped to the right child of v.
* \pre !is_leaf(v) and s>=v_s and e<=v_e
*/
std::pair<range_vec_type, range_vec_type>
expand(const node_type& v,
const range_vec_type& ranges) const {
auto ranges_copy = ranges;
return expand(v, std::move(ranges_copy));
}
//! Returns for each range its left and right child ranges
/*! \param v An inner node of an wavelet tree.
* \param ranges A vector of ranges. Each range [s,e]
* has to be contained in v=[v_s,v_e].
* \return A vector a range pairs. The first element of each
* range pair correspond to the original range
* mapped to the left child of v; the second element to the
* range mapped to the right child of v.
* \pre !is_leaf(v) and s>=v_s and e<=v_e
*/
std::pair<range_vec_type, range_vec_type>
expand(const node_type& v,
range_vec_type&& ranges) const {
auto v_sp_rank = m_tree_rank(v.offset); // this is already calculated in expand(v)
range_vec_type res(ranges.size());
size_t i = 0;
for (auto& r : ranges) {
auto sp_rank = m_tree_rank(v.offset + r.first);
auto right_size = m_tree_rank(v.offset + r.second + 1)
- sp_rank;
auto left_size = (r.second-r.first+1)-right_size;
auto right_sp = sp_rank - v_sp_rank;
auto left_sp = r.first - right_sp;
r = range_type(left_sp, left_sp + left_size - 1);
res[i++] = range_type(right_sp, right_sp + right_size - 1);
}
return make_pair(ranges, std::move(res));
}
//! Returns for a range its left and right child ranges
/*! \param v An inner node of an wavelet tree.
* \param r A ranges [s,e], such that [s,e] is
* contained in v=[v_s,v_e].
* \return A range pair. The first element of the
* range pair correspond to the original range
* mapped to the left child of v; the second element to the
* range mapped to the right child of v.
* \pre !is_leaf(v) and s>=v_s and e<=v_e
*/
std::pair<range_type, range_type>
expand(const node_type& v, const range_type& r) const {
auto v_sp_rank = m_tree_rank(v.offset); // this is already calculated in expand(v)
auto sp_rank = m_tree_rank(v.offset + r.first);
auto right_size = m_tree_rank(v.offset + r.second + 1)
- sp_rank;
auto left_size = (r.second-r.first+1)-right_size;
auto right_sp = sp_rank - v_sp_rank;
auto left_sp = r.first - right_sp;
return make_pair(range_type(left_sp, left_sp + left_size - 1),
range_type(right_sp, right_sp + right_size - 1));
}
//! return the path to the leaf for a given symbol
std::pair<uint64_t,uint64_t> path(value_type c) const {
return {m_max_level,c};
}
};
}// end namespace sdsl
#endif
|