This file is indexed.

/usr/include/sdsl/wm_int.hpp is in libsdsl-dev 2.0.3-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
/* sdsl - succinct data structures library
    Copyright (C) 2014 Simon Gog

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see http://www.gnu.org/licenses/ .
*/
/*! \file wm_int.hpp
    \brief wm_int.hpp contains a specialized class for a wavelet tree for
           sequences over large alphabets.
    \author Simon Gog
*/
#ifndef INCLUDED_SDSL_WM_INT
#define INCLUDED_SDSL_WM_INT

#include "sdsl_concepts.hpp"
#include "int_vector.hpp"
#include "rank_support_v.hpp"
#include "select_support_mcl.hpp"
#include "wt_helper.hpp"
#include "util.hpp"
#include <set> // for calculating the alphabet size
#include <map> // for mapping a symbol to its lexicographical index
#include <algorithm> // for std::swap
#include <stdexcept>
#include <vector>
#include <queue>
#include <utility>

//! Namespace for the succinct data structure library.
namespace sdsl
{

//! A wavelet tree class for integer sequences.
/*!
 * \tparam t_bitvector   Type of the bitvector used for representing the wavelet tree.
 * \tparam t_rank        Type of the support structure for rank on pattern `1`.
 * \tparam t_select      Type of the support structure for select on pattern `1`.
 * \tparam t_select_zero Type of the support structure for select on pattern `0`.
 *
 * This wavelet tree variant does not store the two children of a node v aligned
 * with v; it is also known as wavelet matrix.
 *
 * \par References
 *      [1] F. Claude, G. Navarro: ,,The Wavelet Matrix'', Proceedings of
 *          SPIRE 2012.
 *
 *   @ingroup wt
 */
template<class t_bitvector   = bit_vector,
         class t_rank        = typename t_bitvector::rank_1_type,
         class t_select      = typename t_bitvector::select_1_type,
         class t_select_zero = typename t_bitvector::select_0_type>
class wm_int
{
    public:

        typedef int_vector<>::size_type              size_type;
        typedef int_vector<>::value_type             value_type;
        typedef typename t_bitvector::difference_type difference_type;
        typedef random_access_const_iterator<wm_int> const_iterator;
        typedef const_iterator                       iterator;
        typedef t_bitvector                          bit_vector_type;
        typedef t_rank                               rank_1_type;
        typedef t_select                             select_1_type;
        typedef t_select_zero                        select_0_type;
        typedef wt_tag                               index_category;
        typedef int_alphabet_tag                     alphabet_category;
        enum 	{lex_ordered=0};

        typedef std::pair<value_type, size_type>     point_type;
        typedef std::vector<point_type>              point_vec_type;
        typedef std::pair<size_type, point_vec_type> r2d_res_type;

        struct node_type;


    protected:

        size_type              m_size  = 0;
        size_type              m_sigma = 0;    //<- \f$ |\Sigma| \f$
        bit_vector_type        m_tree;         // bit vector to store the wavelet tree
        rank_1_type            m_tree_rank;    // rank support for the wavelet tree bit vector
        select_1_type          m_tree_select1; // select support for the wavelet tree bit vector
        select_0_type          m_tree_select0;
        uint32_t               m_max_level = 0;
        int_vector<64>         m_zero_cnt;     // m_zero_cnt[i] contains the number of zeros in level i
        int_vector<64>         m_rank_level;   // m_rank_level[i] contains m_tree_rank(i*size())
        mutable int_vector<64> m_path_off;     // array keeps track of path offset in select-like methods
        mutable int_vector<64> m_path_rank_off;// array keeps track of rank values for the offsets

        void copy(const wm_int& wt) {
            m_size          = wt.m_size;
            m_sigma         = wt.m_sigma;
            m_tree          = wt.m_tree;
            m_tree_rank     = wt.m_tree_rank;
            m_tree_rank.set_vector(&m_tree);
            m_tree_select1  = wt.m_tree_select1;
            m_tree_select1.set_vector(&m_tree);
            m_tree_select0  = wt.m_tree_select0;
            m_tree_select0.set_vector(&m_tree);
            m_max_level     = wt.m_max_level;
            m_zero_cnt      = wt.m_zero_cnt;
            m_rank_level    = wt.m_rank_level;
            m_path_off      = wt.m_path_off;
            m_path_rank_off = wt.m_path_rank_off;
        }

    private:

        void init_buffers(uint32_t max_level) {
            m_path_off = int_vector<64>(max_level+1);
            m_path_rank_off = int_vector<64>(max_level+1);
        }

    public:

        const size_type&       sigma = m_sigma;         //!< Effective alphabet size of the wavelet tree.
        const bit_vector_type& tree  = m_tree;          //!< A concatenation of all bit vectors of the wavelet tree.
        const uint32_t&        max_level = m_max_level; //!< Maximal level of the wavelet tree.

        //! Default constructor
        wm_int() {
            init_buffers(m_max_level);
        };

        //! Semi-external constructor
        /*! \param buf         File buffer of the int_vector for which the wm_int should be build.
         *  \param size        Size of the prefix of v, which should be indexed.
         *  \param max_level   Maximal level of the wavelet tree. If set to 0, determined automatically.
         *    \par Time complexity
         *        \f$ \Order{n\log|\Sigma|}\f$, where \f$n=size\f$
         *        I.e. we need \Order{n\log n} if rac is a permutation of 0..n-1.
         *    \par Space complexity
         *        \f$ n\log|\Sigma| + O(1)\f$ bits, where \f$n=size\f$.
         */
        template<uint8_t int_width>
        wm_int(int_vector_buffer<int_width>& buf, size_type size,
               uint32_t max_level=0) : m_size(size) {
            init_buffers(m_max_level);
            if (0 == m_size)
                return;
            size_type n = buf.size();  // set n
            if (n < m_size) {
                throw std::logic_error("n="+util::to_string(n)+" < "+util::to_string(m_size)+"=m_size");
                return;
            }
            m_sigma = 0; // init sigma

            int_vector<int_width> rac(m_size, 0, buf.width());  // initialize rac

            value_type x = 1;  // variable for the biggest value in rac
            for (size_type i=0; i < m_size; ++i) { // detect the largest value in rac
                if (buf[i] > x)
                    x = buf[i];
                rac[i] = buf[i];
            }

            if (max_level == 0) {
                m_max_level = bits::hi(x)+1; // we need max_level bits to represent all values in the range [0..x]
            } else {
                m_max_level = max_level;
            }
            init_buffers(m_max_level);


            std::string tree_out_buf_file_name = tmp_file(buf.filename(), "_m_tree");
            osfstream tree_out_buf(tree_out_buf_file_name, std::ios::binary | std::ios::trunc | std::ios::out);   // open buffer for tree
            size_type bit_size = m_size*m_max_level;
            tree_out_buf.write((char*) &bit_size, sizeof(bit_size));    // write size of bit_vector

            std::string zero_buf_file_name = tmp_file(buf.filename(), "_zero_buf");

            size_type tree_pos = 0;
            uint64_t tree_word = 0;

            m_zero_cnt = int_vector<64>(m_max_level, 0); // zeros at level i

            for (uint32_t k=0; k<m_max_level; ++k) {
                uint8_t        width = m_max_level-k-1;
                const uint64_t mask  = 1ULL<<width;
                uint64_t       x     = 0;
                size_type      zeros = 0;
                int_vector_buffer<> zero_buf(zero_buf_file_name, std::ios::out, 1024*1024, m_max_level);
                for (size_t i=0; i<m_size; ++i) {
                    x = rac[i];
                    if (x&mask) {
                        tree_word |= (1ULL << (tree_pos&0x3FULL));
                        zero_buf.push_back(x);
                    } else {
                        rac[zeros++ ] = x;
                    }
                    ++tree_pos;
                    if ((tree_pos & 0x3FULL) == 0) { // if tree_pos % 64 == 0 write old word
                        tree_out_buf.write((char*) &tree_word, sizeof(tree_word));
                        tree_word = 0;
                    }
                }
                m_zero_cnt[k] = zeros;
                for (size_t i=zeros; i<m_size; ++i) {
                    rac[i] = zero_buf[i-zeros];
                }
            }
            if ((tree_pos & 0x3FULL) != 0) { // if tree_pos % 64 > 0 => there are remaining entries we have to write
                tree_out_buf.write((char*) &tree_word, sizeof(tree_word));
            }
            sdsl::remove(zero_buf_file_name);
            tree_out_buf.close();
            m_sigma = std::unique(rac.begin(), rac.end()) - rac.begin();
            rac.resize(0);
            bit_vector tree;
            load_from_file(tree, tree_out_buf_file_name);
            sdsl::remove(tree_out_buf_file_name);
            m_tree = bit_vector_type(std::move(tree));
            util::init_support(m_tree_rank, &m_tree);
            util::init_support(m_tree_select0, &m_tree);
            util::init_support(m_tree_select1, &m_tree);
            m_rank_level = int_vector<64>(m_max_level, 0);
            for (uint32_t k=0; k<m_rank_level.size(); ++k) {
                m_rank_level[k] = m_tree_rank(k*m_size);
            }
        }

        //! Copy constructor
        wm_int(const wm_int& wt) {
            copy(wt);
        }

        //! Copy constructor
        wm_int(wm_int&& wt) {
            *this = std::move(wt);
        }

        //! Assignment operator
        wm_int& operator=(const wm_int& wt) {
            if (this != &wt) {
                copy(wt);
            }
            return *this;
        }

        //! Assignment move operator
        wm_int& operator=(wm_int&& wt) {
            if (this != &wt) {
                m_size          = wt.m_size;
                m_sigma         = wt.m_sigma;
                m_tree          = std::move(wt.m_tree);
                m_tree_rank     = std::move(wt.m_tree_rank);
                m_tree_rank.set_vector(&m_tree);
                m_tree_select1  = std::move(wt.m_tree_select1);
                m_tree_select1.set_vector(&m_tree);
                m_tree_select0  = std::move(wt.m_tree_select0);
                m_tree_select0.set_vector(&m_tree);
                m_max_level     = std::move(wt.m_max_level);
                m_zero_cnt      = std::move(wt.m_zero_cnt);
                m_rank_level    = std::move(wt.m_rank_level);
                m_path_off      = std::move(wt.m_path_off);
                m_path_rank_off = std::move(wt.m_path_rank_off);
            }
            return *this;
        }

        //! Swap operator
        void swap(wm_int& wt) {
            if (this != &wt) {
                std::swap(m_size, wt.m_size);
                std::swap(m_sigma,  wt.m_sigma);
                m_tree.swap(wt.m_tree);
                util::swap_support(m_tree_rank, wt.m_tree_rank, &m_tree, &(wt.m_tree));
                util::swap_support(m_tree_select1, wt.m_tree_select1, &m_tree, &(wt.m_tree));
                util::swap_support(m_tree_select0, wt.m_tree_select0, &m_tree, &(wt.m_tree));
                std::swap(m_max_level,  wt.m_max_level);
                m_zero_cnt.swap(wt.m_zero_cnt);
                m_rank_level.swap(wt.m_rank_level);
                m_path_off.swap(wt.m_path_off);
                m_path_rank_off.swap(wt.m_path_rank_off);
            }
        }

        //! Returns the size of the original vector.
        size_type size()const {
            return m_size;
        }

        //! Returns whether the wavelet tree contains no data.
        bool empty()const {
            return m_size == 0;
        }

        //! Recovers the i-th symbol of the original vector.
        /*! \param i The index of the symbol in the original vector.
         *  \returns The i-th symbol of the original vector.
         *  \par Precondition
         *       \f$ i < size() \f$
         */
        value_type operator[](size_type i)const {
            assert(i < size());
            value_type res = 0;
            for (uint32_t k=0; k < m_max_level; ++k) {
                res <<= 1;
                size_type rank_ones = m_tree_rank(i) - m_rank_level[k];
                if (m_tree[i]) { // one at position i => follow right child
                    i = (k+1)*m_size + m_zero_cnt[k] + rank_ones;
                    res |= 1;
                } else { // zero at position i => follow left child
                    auto rank_zeros = (i - k*m_size) - rank_ones;
                    i = (k+1)*m_size + rank_zeros;
                }
            }
            return res;
        };

        //! Calculates how many symbols c are in the prefix [0..i-1] of the supported vector.
        /*!
         *  \param i The exclusive index of the prefix range [0..i-1], so \f$i\in[0..size()]\f$.
         *  \param c The symbol to count the occurrences in the prefix.
         *    \returns The number of occurrences of symbol c in the prefix [0..i-1] of the supported vector.
         *  \par Time complexity
         *       \f$ \Order{\log |\Sigma|} \f$
         *  \par Precondition
         *       \f$ i \leq size() \f$
         */
        size_type rank(size_type i, value_type c)const {
            assert(i <= size());
            if (((1ULL)<<(m_max_level))<=c) { // c is greater than any symbol in wt
                return 0;
            }
            size_type b = 0; // start position of the interval
            uint64_t mask = (1ULL) << (m_max_level-1);
            for (uint32_t k=0; k < m_max_level and i; ++k) {
                size_type rank_b = m_tree_rank(b);
                size_type ones   = m_tree_rank(b + i) - rank_b; // ones in [b..i)
                size_type ones_p = rank_b - m_rank_level[k];    // ones in [level_b..b)
                if (c & mask) { // search for a one at this level
                    i = ones;
                    b = (k+1)*m_size + m_zero_cnt[k] + ones_p;
                } else { // search for a zero at this level
                    i = i-ones;
                    b = (k+1)*m_size + (b - k*m_size - ones_p);
                }
                mask >>= 1;
            }
            return i;
        };

        //! Calculates how many occurrences of symbol wt[i] are in the prefix [0..i-1] of the original sequence.
        /*!
         *  \param i The index of the symbol.
         *  \return  Pair (rank(wt[i],i),wt[i])
         *  \par Precondition
         *       \f$ i < size() \f$
         */
        std::pair<size_type, value_type>
        inverse_select(size_type i)const {
            assert(i < size());
            value_type c = 0;
            size_type b = 0; // start position of the interval
            uint64_t mask = (1ULL) << (m_max_level-1);
            for (uint32_t k=0; k < m_max_level; ++k) {
                size_type rank_b = m_tree_rank(b);
                size_type ones   = m_tree_rank(b + i) - rank_b; // ones in [b..i)
                size_type ones_p = rank_b - m_rank_level[k];    // ones in [level_b..b)
                c<<=1;
                if (m_tree[b+i]) { // go to the right child
                    i = ones;
                    b = (k+1)*m_size + m_zero_cnt[k] + ones_p;
                    c|=1;
                } else { // go to the left child
                    i = i-ones;
                    b = (k+1)*m_size + (b - k*m_size - ones_p);
                }
                mask >>= 1;
            }
            return std::make_pair(i,c);
        }

        //! Calculates the i-th occurrence of the symbol c in the supported vector.
        /*!
         *  \param i The i-th occurrence.
         *  \param c The symbol c.
         *  \par Time complexity
         *       \f$ \Order{\log |\Sigma|} \f$
         *  \par Precondition
         *       \f$ 1 \leq i \leq rank(size(), c) \f$
         */
        size_type select(size_type i, value_type c)const {
            assert(1 <= i and i <= rank(size(), c));
            uint64_t mask = 1ULL << (m_max_level-1);
            m_path_off[0] = m_path_rank_off[0] = 0;
            size_type b = 0; // start position of the interval
            size_type r = i;
            for (uint32_t k=0; k < m_max_level and i; ++k) {
                size_type rank_b = m_tree_rank(b);
                size_type ones   = m_tree_rank(b + r) - rank_b; // ones in [b..i)
                size_type ones_p = rank_b - m_rank_level[k];    // ones in [0..b)
                if (c & mask) { // search for a one at this level
                    r = ones;
                    b = (k+1)*m_size + m_zero_cnt[k] + ones_p;
                } else { // search for a zero at this level
                    r = r-ones;
                    b = (k+1)*m_size + (b - k*m_size - ones_p);
                }
                mask >>= 1;
                m_path_off[k+1] = b;
                m_path_rank_off[k] = rank_b;
            }
            mask = 1ULL;
            for (uint32_t k=m_max_level; k>0; --k) {
                b = m_path_off[k-1];
                size_type rank_b = m_path_rank_off[k-1];
                if (c & mask) { // right child => search i'th one
                    i = m_tree_select1(rank_b + i) - b + 1;
                } else { // left child => search i'th zero
                    i = m_tree_select0(b - rank_b + i) - b + 1;
                }
                mask <<= 1;
            }
            return i-1;
        };

        //! range_search_2d searches points in the index interval [lb..rb] and value interval [vlb..vrb].
        /*! \param lb     Left bound of index interval (inclusive)
         *  \param rb     Right bound of index interval (inclusive)
         *  \param vlb    Left bound of value interval (inclusive)
         *  \param vrb    Right bound of value interval (inclusive)
         *  \param report Should the matching points be returned?
         *  \return Pair (#of found points, vector of points), the vector is empty when
         *          report = false.
         */
        std::pair<size_type, std::vector<std::pair<value_type, size_type>>>
        range_search_2d(size_type lb, size_type rb, value_type vlb, value_type vrb,
                        bool report=true) const {

            if (vrb > (1ULL << m_max_level))
                vrb = (1ULL << m_max_level);
            if (vlb > vrb)
                return make_pair(0, point_vec_type());
            size_type cnt_answers = 0;
            point_vec_type point_vec;
            if (lb <= rb) {
                size_type is[m_max_level+1];
                size_type rank_off[m_max_level+1];
                _range_search_2d(root(), range_type(lb, rb), vlb, vrb, 0, is,
                                 rank_off, point_vec, report, cnt_answers);
            }
            return make_pair(cnt_answers, point_vec);
        }

        void
        _range_search_2d(node_type v, range_type r, value_type vlb,
                         value_type vrb, size_type ilb, size_type is[],
                         size_type rank_off[], point_vec_type& point_vec,
                         bool report, size_type& cnt_answers)
        const {
            using std::get;
            if (get<0>(r) > get<1>(r))
                return;
            is[v.level] = v.offset + get<0>(r);

            if (v.level == m_max_level) {
                for (size_type j=1; j <= sdsl::size(r) and report; ++j) {
                    size_type i = j;
                    size_type c = v.sym;
                    for (uint32_t k=m_max_level; k>0; --k) {
                        size_type offset = is[k-1];
                        size_type rank_offset = rank_off[k-1];
                        if (c&1) {
                            i = m_tree_select1(rank_offset+i)-offset+1;
                        } else {
                            i = m_tree_select0(offset-rank_offset+i)-offset+1;
                        }
                        c >>= 1;
                    }
                    point_vec.emplace_back(is[0]+i-1, v.sym);
                }
                cnt_answers += sdsl::size(r);
                return;
            } else {
                rank_off[v.level] = m_tree_rank(is[v.level]);
            }
            size_type irb = ilb + (1ULL << (m_max_level-v.level));
            size_type mid = (irb + ilb)>>1;

            auto c_v = expand(v);
            auto c_r = expand(v, r);

            if (!sdsl::empty(get<0>(c_r)) and  vlb < mid and mid) {
                _range_search_2d(get<0>(c_v),get<0>(c_r), vlb,
                                 std::min(vrb,mid-1), ilb, is, rank_off,
                                 point_vec, report, cnt_answers);
            }
            if (!sdsl::empty(get<1>(c_r)) and vrb >= mid) {
                _range_search_2d(get<1>(c_v), get<1>(c_r), std::max(mid, vlb),
                                 vrb, mid, is, rank_off, point_vec, report,
                                 cnt_answers);
            }
        }

        //! Returns a const_iterator to the first element.
        const_iterator begin()const {
            return const_iterator(this, 0);
        }

        //! Returns a const_iterator to the element after the last element.
        const_iterator end()const {
            return const_iterator(this, size());
        }


        //! Serializes the data structure into the given ostream
        size_type serialize(std::ostream& out, structure_tree_node* v=nullptr, std::string name="")const {
            structure_tree_node* child = structure_tree::add_child(v, name, util::class_name(*this));
            size_type written_bytes = 0;
            written_bytes += write_member(m_size, out, child, "size");
            written_bytes += write_member(m_sigma, out, child, "sigma");
            written_bytes += m_tree.serialize(out, child, "tree");
            written_bytes += m_tree_rank.serialize(out, child, "tree_rank");
            written_bytes += m_tree_select1.serialize(out, child, "tree_select_1");
            written_bytes += m_tree_select0.serialize(out, child, "tree_select_0");
            written_bytes += write_member(m_max_level, out, child, "max_level");
            written_bytes += m_zero_cnt.serialize(out, child, "zero_cnt");
            written_bytes += m_rank_level.serialize(out, child, "rank_level");
            structure_tree::add_size(child, written_bytes);
            return written_bytes;
        }

        //! Loads the data structure from the given istream.
        void load(std::istream& in) {
            read_member(m_size, in);
            read_member(m_sigma, in);
            m_tree.load(in);
            m_tree_rank.load(in, &m_tree);
            m_tree_select1.load(in, &m_tree);
            m_tree_select0.load(in, &m_tree);
            read_member(m_max_level, in);
            m_zero_cnt.load(in);
            m_rank_level.load(in);
            init_buffers(m_max_level);
        }

        //! Represents a node in the wavelet tree
        struct node_type {
            size_type  offset   = 0;
            size_type  size     = 0;
            size_type  level    = 0;
            value_type sym      = 0;

            // Default constructor
            node_type(size_type o=0, size_type sz=0, size_type l=0,
                      value_type sy=0) :
                offset(o), size(sz), level(l), sym(sy) {}

            // Copy constructor
            node_type(const node_type&) = default;

            // Move copy constructor
            node_type(node_type&&) = default;

            // Assignment operator
            node_type& operator=(const node_type&) = default;

            // Move assignment operator
            node_type& operator=(node_type&&) = default;

            // Comparator operator
            bool operator==(const node_type& v) const {
                return offset == v.offset;
            }

            // Smaller operator
            bool operator<(const node_type& v) const {
                return offset < v.offset;
            }

            // Greater operator
            bool operator>(const node_type& v) const {
                return offset > v.offset;
            }
        };

        //! Checks if the node is a leaf node
        bool is_leaf(const node_type& v) const {
            return v.level == m_max_level;
        }

        value_type sym(const node_type& v) const {
            return v.sym;
        }

        bool empty(const node_type& v) const {
            return v.size == (size_type)0;
        }

        //! Return the root node
        node_type root() const {
            return node_type(0, m_size, 0, 0);
        }

        //! Returns the two child nodes of an inner node
        /*! \param v An inner node of a wavelet tree.
         *  \return Return a pair of nodes (left child, right child).
         *  \pre !is_leaf(v)
         */
        std::pair<node_type, node_type>
        expand(const node_type& v) const {
            node_type v_right = v;
            return expand(std::move(v_right));
        }

        //! Returns the two child nodes of an inner node
        /*! \param v An inner node of a wavelet tree.
         *  \return Return a pair of nodes (left child, right child).
         *  \pre !is_leaf(v)
         */
        std::pair<node_type, node_type>
        expand(node_type&& v) const {
            node_type v_left;
            size_type rank_b = m_tree_rank(v.offset);
            size_type ones   = m_tree_rank(v.offset+v.size)-rank_b; // ones in [b..size)
            size_type ones_p = rank_b - m_rank_level[v.level];      // ones in [level_b..b)

            v_left.offset = (v.level+1)*m_size + (v.offset - v.level*m_size) - ones_p;
            v_left.size   = v.size - ones;
            v_left.level  = v.level + 1;
            v_left.sym    = v.sym<<1;

            v.offset = (v.level+1)*m_size + m_zero_cnt[v.level] + ones_p;
            v.size   = ones;
            v.level  = v.level + 1;
            v.sym    = (v.sym<<1)|1;

            return std::make_pair(std::move(v_left), v);
        }

        //! Returns for each range its left and right child ranges
        /*! \param v      An inner node of an wavelet tree.
         *  \param ranges A vector of ranges. Each range [s,e]
         *                has to be contained in v=[v_s,v_e].
         *  \return A vector a range pairs. The first element of each
         *          range pair correspond to the original range
         *          mapped to the left child of v; the second element to the
         *          range mapped to the right child of v.
         *  \pre !is_leaf(v) and s>=v_s and e<=v_e
         */
        std::pair<range_vec_type, range_vec_type>
        expand(const node_type& v,
               const range_vec_type& ranges) const {
            auto ranges_copy = ranges;
            return expand(v, std::move(ranges_copy));
        }

        //! Returns for each range its left and right child ranges
        /*! \param v      An inner node of an wavelet tree.
         *  \param ranges A vector of ranges. Each range [s,e]
         *                has to be contained in v=[v_s,v_e].
         *  \return A vector a range pairs. The first element of each
         *          range pair correspond to the original range
         *          mapped to the left child of v; the second element to the
         *          range mapped to the right child of v.
         *  \pre !is_leaf(v) and s>=v_s and e<=v_e
         */
        std::pair<range_vec_type, range_vec_type>
        expand(const node_type& v,
               range_vec_type&& ranges) const {
            auto v_sp_rank = m_tree_rank(v.offset);  // this is already calculated in expand(v)
            range_vec_type res(ranges.size());
            size_t i = 0;
            for (auto& r : ranges) {
                auto sp_rank    = m_tree_rank(v.offset + r.first);
                auto right_size = m_tree_rank(v.offset + r.second + 1)
                                  - sp_rank;
                auto left_size  = (r.second-r.first+1)-right_size;

                auto right_sp = sp_rank - v_sp_rank;
                auto left_sp  = r.first - right_sp;

                r = range_type(left_sp, left_sp + left_size - 1);
                res[i++] = range_type(right_sp, right_sp + right_size - 1);
            }
            return make_pair(ranges, std::move(res));
        }

        //! Returns for a range its left and right child ranges
        /*! \param v An inner node of an wavelet tree.
         *  \param r A ranges [s,e], such that [s,e] is
         *           contained in v=[v_s,v_e].
         *  \return A range pair. The first element of the
         *          range pair correspond to the original range
         *          mapped to the left child of v; the second element to the
         *          range mapped to the right child of v.
         *  \pre !is_leaf(v) and s>=v_s and e<=v_e
         */
        std::pair<range_type, range_type>
        expand(const node_type& v, const range_type& r) const {
            auto v_sp_rank = m_tree_rank(v.offset);  // this is already calculated in expand(v)
            auto sp_rank    = m_tree_rank(v.offset + r.first);
            auto right_size = m_tree_rank(v.offset + r.second + 1)
                              - sp_rank;
            auto left_size  = (r.second-r.first+1)-right_size;

            auto right_sp = sp_rank - v_sp_rank;
            auto left_sp  = r.first - right_sp;

            return make_pair(range_type(left_sp, left_sp + left_size - 1),
                             range_type(right_sp, right_sp + right_size - 1));
        }

        //! return the path to the leaf for a given symbol
        std::pair<uint64_t,uint64_t> path(value_type c) const {
            return {m_max_level,c};
        }
};

}// end namespace sdsl
#endif