This file is indexed.

/usr/include/sdsl/rmq_succinct_sada.hpp is in libsdsl-dev 2.0.3-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/* sdsl - succinct data structures library
    Copyright (C) 2009 Simon Gog

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see http://www.gnu.org/licenses/ .
*/
/*! \file rmq_succinct_sada.hpp
    \brief rmq_succinct_sada.hpp contains the class rmq_succinct_sada which supports range minimum or range maximum queries on a random access container in constant time and \f$4 n+o(n) bits\f$ space.
    \author Simon Gog
*/
#ifndef INCLUDED_SDSL_RMQ_SUCCINCT_SADA
#define INCLUDED_SDSL_RMQ_SUCCINCT_SADA

#include "rmq_support.hpp"
#include "int_vector.hpp"
#include "bp_support_sada.hpp"
#include "rank_support.hpp"
#include "select_support.hpp"
#include "suffix_tree_helper.hpp"
#include "util.hpp"
#include <utility> // for pair
#include <stack>

//! Namespace for the succinct data structure library.
namespace sdsl
{


template<bool t_min = true,
         class t_bp_support = bp_support_sada<256, 32, rank_support_v5<1>, select_support_scan<1> >,
         class t_rank_10 = rank_support_v<10,2>, class t_select_10 = select_support_mcl<10,2> >
class rmq_succinct_sada;

template<class t_bp_support = bp_support_sada<256, 32, rank_support_v5<>, select_support_scan<1> >,
         class t_rank_10 = rank_support_v<10,2>, class t_select_10 = select_support_mcl<10,2> >
struct range_maximum_support_sada
{
    typedef rmq_succinct_sada<false, t_bp_support, t_rank_10, t_select_10> type;
};

//! A class to support range minimum or range maximum queries on a random access container.
/*!
 *  \tparam t_min        Specifies whether the data structure should answer range min/max queries (mimumum=true)
 *  \tparam t_bp_support Type of Support structure for the BPS-DFS
 *  \tparam t_rank_10    Type of rank structure for it pattern `10`.
 *  \tparam t_select_10  Type of select structure for bit pattern `10`.
 * \par Time complexity
 *        \f$ \Order{1} \f$ for the range min/max queries if the BPS  supports constant time operations.
 * \par Space complexity:
 *        \f$ 4n+o(n) \f$ bits for the data structure ( \f$ n=size() \f$ ).
 *
 * \par Reference
 *      TODO: Kunihiko Sadakane
 *
 */
template<bool t_min, class t_bp_support, class t_rank_10, class t_select_10>
class rmq_succinct_sada
{
        bit_vector    m_ect_bp;         //!< A bit vector which contains the BP-DFS
        t_bp_support  m_ect_bp_support; //!< Support structure for the BP-DFS
        t_rank_10     m_ect_bp_rank10;  //!< A rank support for bit pattern `10`
        t_select_10   m_ect_bp_select10;//!< A select support for bit pattern `10`

    public:
        typedef typename bit_vector::size_type size_type;
        typedef typename bit_vector::size_type value_type;

        typedef t_bp_support bp_support_type;
        typedef t_rank_10    rank_support10_type;
        typedef t_select_10  select_support10_type;

        const bit_vector&            ect_bp          = m_ect_bp;
        const bp_support_type&       ect_bp_support  = m_ect_bp_support;
        const rank_support10_type&   ect_bp_rank10   = m_ect_bp_rank10;
        const select_support10_type& ect_bp_select10 = m_ect_bp_select10;

    private:

        typedef rmq_succinct_sct<t_min> rmq_construct_helper_type;

        // helper class for the construction
        struct state {
            size_type l, r;  // left and right interval
            size_type m;     // index of the rmq
            uint8_t   visit; // 1==first, 2==second, 3==third visit
            state(size_type fl=0, size_type fr=0, size_type fm=0, uint8_t fvisit=0)
                : l(fl), r(fr), m(fm), visit(fvisit) {}
        };

        //! Constructor
        /*! \tparam t_rac A random access container.
         *  \param  v     Ponter to container object.
         */
        template<class t_rac>
        void construct_bp_of_extended_cartesian_tree(const t_rac* v, const rmq_construct_helper_type& rmq_helper) {
            m_ect_bp.resize(4*v->size());
            if (v->size() > 0) {
                size_type bp_cnt = 0;
                size_type l = 0, r = v->size()-1;
                std::stack<state> state_stack;
                state_stack.push(state(l, r, rmq_helper(l, r), 1));
                while (!state_stack.empty()) {
                    state s = state_stack.top(); state_stack.pop();
                    if (1 == s.visit) {
                        m_ect_bp[bp_cnt++] = 1; // write beginning of inner node
                        state_stack.push(state(s.l, s.r, s.m, 2));
                        if (s.m > s.l) {
                            state_stack.push(state(s.l, s.m-1, rmq_helper(s.l, s.m-1), 1));
                        }
                    } else if (2 == s.visit) {
                        m_ect_bp[bp_cnt++] = 1; // write leaf
                        m_ect_bp[bp_cnt++] = 0;
                        state_stack.push(state(s.l, s.r, s.m, 3));
                        if (s.m < s.r) {
                            state_stack.push(state(s.m+1, s.r, rmq_helper(s.m+1, s.r), 1));
                        }
                    } else if (3 == s.visit) {
                        m_ect_bp[bp_cnt++] = 0; // write end of inner node
                    }
                }
                assert(bp_cnt == 4*v->size());
            }
        }

        void copy(const rmq_succinct_sada& rm) {
            m_ect_bp = rm.m_ect_bp;
            m_ect_bp_support = rm.m_ect_bp_support;
            m_ect_bp_support.set_vector(&m_ect_bp);
            m_ect_bp_rank10 = rm.m_ect_bp_rank10;
            m_ect_bp_rank10.set_vector(&m_ect_bp);
            m_ect_bp_select10 = rm.m_ect_bp_select10;
            m_ect_bp_select10.set_vector(&m_ect_bp);
        }

    public:
        //! Default Constructor
        rmq_succinct_sada() {}

        //! Constructor
        template<class t_rac>
        rmq_succinct_sada(const t_rac* v=nullptr) {
            if (v != nullptr) {
                rmq_construct_helper_type rmq_helper(v);
                m_ect_bp.resize(4*v->size());
                construct_bp_of_extended_cartesian_tree(v, rmq_helper);
                m_ect_bp_support = bp_support_type(&m_ect_bp);
                util::init_support(m_ect_bp_rank10, &m_ect_bp);
                util::init_support(m_ect_bp_select10, &m_ect_bp);
            }
        }

        //! Copy constructor
        rmq_succinct_sada(const rmq_succinct_sada& rm) {
            if (this != &rm) { // if v is not the same object
                copy(rm);
            }
        }

        //! Move constructor
        rmq_succinct_sada(rmq_succinct_sada&& rm) {
            *this = rm;
        }

        //! Destructor
        ~rmq_succinct_sada() { }

        rmq_succinct_sada& operator=(const rmq_succinct_sada& rm) {
            if (this != &rm) {
                copy(rm);
            }
            return *this;
        }

        rmq_succinct_sada& operator=(rmq_succinct_sada&& rm) {
            if (this != &rm) {
                m_ect_bp = std::move(rm.m_ect_bp);
                m_ect_bp_support = std::move(rm.m_ect_bp_support);
                m_ect_bp_support.set_vector(&m_ect_bp);
                m_ect_bp_rank10 = std::move(rm.m_ect_bp_rank10);
                m_ect_bp_rank10.set_vector(&m_ect_bp);
                m_ect_bp_select10 = std::move(rm.m_ect_bp_select10);
                m_ect_bp_select10.set_vector(&m_ect_bp);
            }
            return *this;
        }

        //! Swap operator
        void swap(rmq_succinct_sada& rm) {
            m_ect_bp.swap(rm.m_ect_bp);
            util::swap_support(m_ect_bp_support, rm.m_ect_bp_support, &m_ect_bp, &(rm.m_ect_bp));
            util::swap_support(m_ect_bp_rank10, rm.m_ect_bp_rank10, &m_ect_bp, &(rm.m_ect_bp));
            util::swap_support(m_ect_bp_select10, rm.m_ect_bp_select10, &m_ect_bp, &(rm.m_ect_bp));
        }

        //! Range minimum/maximum query for the supported random access container v.
        /*!
         * \param l Leftmost position of the interval \f$[\ell..r]\f$.
         * \param r Rightmost position of the interval \f$[\ell..r]\f$.
         * \return The minimal index i with \f$\ell \leq i \leq r\f$ for which \f$ v[i] \f$ is minimal/maximal.
         * \pre
         *   - r < size()
         *   - \f$ \ell \leq r \f$
         * \par Time complexity
         *      \f$ \Order{1} \f$
         */
        size_type operator()(const size_type l, const size_type r)const {
            assert(l <= r); assert(r < size());
            if (l==r)
                return l;
            size_type x  = m_ect_bp_select10(l+1);
            size_type y  = m_ect_bp_select10(r+1);
            size_type z  = m_ect_bp_support.rmq(x, y);
            size_type f  = z + 1 - 2*(m_ect_bp[z]);
            return m_ect_bp_rank10(f-1);
        }

        size_type size()const {
            return m_ect_bp.size()/4;
        }

        size_type serialize(std::ostream& out, structure_tree_node* v=nullptr, std::string name="")const {
            structure_tree_node* child = structure_tree::add_child(v, name, util::class_name(*this));
            size_type written_bytes = 0;
            written_bytes += m_ect_bp.serialize(out, child, "ect_bp");
            written_bytes += m_ect_bp_support.serialize(out, child, "ect_bp_support");
            written_bytes += m_ect_bp_rank10.serialize(out, child, "ect_bp_rank10");
            written_bytes += m_ect_bp_select10.serialize(out, child, "ect_bp_select10");
            structure_tree::add_size(child, written_bytes);
            return written_bytes;
        }

        void load(std::istream& in) {
            m_ect_bp.load(in);
            m_ect_bp_support.load(in, &m_ect_bp);
            m_ect_bp_rank10.load(in, &m_ect_bp);
            m_ect_bp_select10.load(in, &m_ect_bp);
        }
};

} // end namespace sdsl
#endif