/usr/include/sdsl/cst_sct3.hpp is in libsdsl-dev 2.0.3-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 | /* sdsl - succinct data structures library
Copyright (C) 2010 Simon Gog
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/ .
*/
/*! \file cst_sct3.hpp
\brief cst_sct3.hpp contains an implementation of the interval based CST.
\author Simon Gog
*/
#ifndef INCLUDED_SDSL_CST_SCT3
#define INCLUDED_SDSL_CST_SCT3
#include "int_vector.hpp"
#include "suffix_tree_helper.hpp"
#include "iterators.hpp"
#include "lcp.hpp"
#include "bp_support.hpp"
#include "csa_wt.hpp" // for std initialization of cst_sct3
#include "cst_iterators.hpp"
#include "rank_support.hpp"
#include "select_support.hpp"
#include "util.hpp"
#include "sdsl_concepts.hpp"
#include <iostream>
#include <algorithm>
#include <cassert>
#include <cstring> // for strlen
#include <iomanip>
#include <iterator>
#include <stack> // for the calculation of the balanced parentheses sequence
#include <ostream>
#include <type_traits>
namespace sdsl
{
// Declaration of the CST's node type
template<class t_int = int_vector<>::size_type>
struct bp_interval;
//! A class for the Compressed Suffix Tree (CST) proposed by Ohlebusch and Gog.
/*!
* \tparam t_csa Type of a CSA (member of this type is accessible via
* member `csa`, default class is sdsl::csa_sada).
* \tparam t_lcp Type of a LCP structure (member is accessible via member
* `lcp`, default class is sdsl::lcp_support_sada),
* \tparam t_bp_support Type of a BPS structure (member accessible via member
* `bp_support`, default class is sdsl::bp_support_sada),
* \tparam t_rank Type of rank structure which supports the bitvector
* which indicates the leftmost child of the nodes.
*
* It also contains a sdsl::bit_vector which represents the BP sequence of the
* Super-Cartesian tree of the LCP array. This bitvector can be accessed via
* the member `bp`. Another sdsl::bit_vector stores information, if a node is
* the leftmost child of another node. This bitvector can be access via the
* member first_child_bv and takes n bits.
*
* A node \f$v\f$ of the csa_sct is represented by an sdsl::bp_interval. The
* size of the sdsl::cst_sct3 is smaller than the size of a sdsl::cst_sada
* since the tree topology needs only \f$2n+n=3n\f$ bits in contrast to the
* \f$4n\f$ bits in sdsl::cst_sada.
*
* \par Reference
* Enno Ohlebusch, Johannes Fischer, Simon Gog:
* CST++.
* SPIRE 2010: 322-333
*
* \par Applications of the CST
* The compressed suffix tree could be used for string matching and many other
* application in sequence analysis. 17 applications are in the book
* "Algorithms on Strings, Trees, and Sequences" of Dan Gusfield.
*
* @ingroup cst
*/
template<class t_csa = csa_wt<>,
class t_lcp = lcp_dac<>,
class t_bp_support = bp_support_sada<>,
class t_bv = bit_vector,
class t_rank = typename std::conditional<
std::is_same<t_bv, bit_vector>::value,
rank_support_v5<>, typename t_bv::rank_1_type
>::type,
class t_sel = typename std::conditional<
std::is_same<t_bv, bit_vector>::value and
std::is_same<typename t_csa::alphabet_category, byte_alphabet_tag>::value,
select_support_scan<>, typename t_bv::select_1_type
>::type
>
class cst_sct3
{
public:
typedef cst_dfs_const_forward_iterator<cst_sct3> const_iterator;
typedef cst_bottom_up_const_forward_iterator<cst_sct3> const_bottom_up_iterator;
typedef typename t_csa::size_type size_type;
typedef ptrdiff_t difference_type;
typedef t_csa csa_type;
typedef typename t_lcp::template type<cst_sct3> lcp_type;
typedef t_bp_support bp_support_type;
typedef typename t_csa::char_type char_type;
typedef typename t_csa::string_type string_type;
typedef bp_interval<size_type> node_type; //!< Type for the nodes in the tree
typedef t_bv bv_type;
typedef t_rank rank_type;
typedef t_sel sel_type;
typedef typename t_csa::alphabet_type::comp_char_type comp_char_type;
typedef typename t_csa::alphabet_type::sigma_type sigma_type;
typedef typename t_csa::alphabet_category alphabet_category;
typedef cst_tag index_category;
private:
csa_type m_csa;
lcp_type m_lcp;
bit_vector m_bp;
bp_support_type m_bp_support;
bv_type m_first_child;
rank_type m_first_child_rank;
sel_type m_first_child_select;
size_type m_nodes;
void copy(const cst_sct3& cst) {
m_csa = cst.m_csa;
copy_lcp(m_lcp, cst.m_lcp, *this);
m_bp = cst.m_bp;
m_bp_support = cst.m_bp_support;
m_bp_support.set_vector(&m_bp);
m_first_child = cst.m_first_child;
m_first_child_rank = cst.m_first_child_rank;
m_first_child_rank.set_vector(&m_first_child);
m_first_child_select = cst.m_first_child_select;
m_first_child_select.set_vector(&m_first_child);
m_nodes = cst.m_nodes;
}
// Get the first l index of a [i,j] interval.
/* I.e. given an interval [i,j], the function returns the position of
* the smallest entry lcp[k] with \f$ i<k\leq j \f$
* \par Time complexity
* \f$ \Order{1} \f$
*/
inline size_type first_l_index(const node_type& node, size_type& kpos, size_type& ckpos)const {
if (node.cipos > node.jp1pos) { // corresponds to m_lcp[i] <= m_lcp[j+1]
ckpos = node.jp1pos-1;
} else { // corresponds to m_lcp[i] > m_lcp[j+1]
ckpos = node.cipos-1;
}
assert(m_bp[ckpos]==0);
kpos = m_bp_support.find_open(ckpos);
return m_bp_support.rank(kpos)-1;
}
// Get the i-th l-index of a node
// if there exists no ith l-index return node.j+1
/* \param v Node
* \param i l-index in [1..degree()]
* \paran
*/
size_type select_l_index(const node_type& v, size_type i, size_type& kpos, size_type& ckpos)const {
assert(i > 0);
if (v.cipos > v.jp1pos) { // corresponds to m_lcp[i] <= m_lcp[j+1]
ckpos = v.jp1pos-1;
} else { // corresponds to m_lcp[i] > m_lcp[j+1]
ckpos = v.cipos-1;
}
assert(m_bp[ckpos] == 0); // at least the first l-index should be present, i.e. node is not leaf
if (1 == i) {
kpos = m_bp_support.find_open(ckpos);
return m_bp_support.rank(kpos)-1;
} else { // i > 1
// numbers of closing parentheses - 1 = index of first child in m_first_child
size_type r = ckpos - m_bp_support.rank(ckpos);
if (r+1 >= i) { // if there exist more than i l-indices
// check if m_first_child[r-i+1..r-1] consists of zeros
if (i < degree(v)) { // there exists an i-th l-index
ckpos -= (i-1);
assert(m_bp[ckpos] == 0);
kpos = m_bp_support.find_open(ckpos);
return m_bp_support.rank(kpos)-1;
}
}
// if i >= degree(node)
kpos = v.jp1pos;
if (kpos < m_bp.size())
ckpos = m_bp_support.find_close(kpos);
else
ckpos = m_bp.size();
return v.j+1;
}
}
// Position of the first l-index of a l-[i,j] interval in the BP.
/* \par Time complexity
* \f$ \Order{1} \f$
*/
inline size_type closing_pos_of_first_l_index(const node_type& node)const {
if (node.cipos > node.jp1pos) { // corresponds to m_lcp[i] <= m_lcp[j+1]
return node.jp1pos-1;
} else { // corresponds to m_lcp[i] > m_lcp[j+1]
return node.cipos-1;
}
}
// Get the next smaller value.
/*
* \param i Position in the original vector.
* \param ipos Position of the corresponding opening parenthesis in BP.
* \return Position of the next smaller value in [i+1..n-1], and n when
* no such value exists.
* \par Time complexity
* \f$ \Order{1} \f$
*/
// possible optimization: calculate also position of nsv,
// i.e. next ( following position cipos
inline size_type nsv(SDSL_UNUSED size_type i, size_type ipos)const {
size_type cipos = m_bp_support.find_close(ipos);
size_type result = m_bp_support.rank(cipos);
return result;
}
// Get the previous smaller value.
/*
* \param i Position in the original vector.
* \param ipos Corresponding opening parenthesis in m_bp
* \param cipos Corresponding closing parenthesis to ipos
* \par Time complexity
* \f$ \Order{\frac{\sigma}{w}} \f$, where w=64 is the word size,
* can be implemented in \f$\Order{1}\f$ with rank and select.
*/
inline size_type psv(SDSL_UNUSED size_type i, size_type ipos,
size_type cipos, size_type& psvpos,
size_type& psvcpos)const {
// if lcp[i]==0 => psv is the 0-th index by definition
if ((cipos + (size_type)m_csa.sigma) >= m_bp.size()) {
psvpos = 0;
psvcpos = m_bp.size()-1;
return 0;
}
if (m_bp[cipos+1]) {
psvpos = m_bp_support.enclose(ipos);
psvcpos = m_bp_support.find_close(psvpos);
return m_bp_support.rank(psvpos)-1;
}
// r0 = index of clothing parenthesis in m_first_child
size_type r0 = cipos - m_bp_support.rank(cipos);
size_type next_first_child = 0;
const uint64_t* p = m_first_child.data() + (r0>>6);
uint64_t w = (*p) >> (r0&0x3F);
if (w) { // if w!=0
next_first_child = cipos + bits::lo(w);
if (cipos == next_first_child and m_bp[next_first_child+1]) {
psvpos = m_bp_support.enclose(ipos);
psvcpos = m_bp_support.find_close(psvpos);
return m_bp_support.rank(psvpos)-1;
}
} else {
size_type delta = 63-(r0&0x3F);
++p;
int steps = 4;
while (!(w=*p) and steps-- > 0) { // while w==0
++p;
delta += 64;
}
if (w != 0) {
delta += bits::lo(w) + 1;
} else {
auto pos = m_first_child_select(m_first_child_rank(r0+1)+1);
delta = pos - r0;
}
next_first_child = cipos + delta;
}
if (!m_bp[next_first_child+1]) { // if next parenthesis is a closing one
psvcpos = next_first_child+1;
psvpos = m_bp_support.find_open(psvcpos);
return m_bp_support.rank(psvpos)-1;
} else {
psvpos = m_bp_support.enclose(m_bp_support.find_open(next_first_child));
psvcpos = m_bp_support.find_close(psvpos);
return m_bp_support.rank(psvpos)-1;
}
}
// Range minimum query based on the rr_enclose method.
/* \par Time complexity
* \f$ \Order{\rrenclose} \f$
*/
inline size_type rmq(size_type l, size_type r)const {
size_type i = m_bp_support.select(l+1);
size_type j = m_bp_support.select(r+1);
size_type fc_i = m_bp_support.find_close(i);
if (j < fc_i) { // i < j < find_close(j) < find_close(i)
return l;
} else { // i < find_close(i) < j < find_close(j)
size_type ec = m_bp_support.rr_enclose(i,j);
if (ec == m_bp_support.size()) {// no restricted enclosing pair found
return r;
} else { // found range restricted enclosing pair
return m_bp_support.rank(ec)-1; // subtract 1, as the index is 0 based
}
}
}
public:
const csa_type& csa = m_csa;
const lcp_type& lcp = m_lcp;
const bit_vector& bp = m_bp;
const bp_support_type& bp_support = m_bp_support;
const bv_type& first_child_bv = m_first_child;
const rank_type& first_child_rank = m_first_child_rank;
const sel_type& first_child_select = m_first_child_select;
/*! \defgroup cst_sct3_constructors Constructors of cst_sct3 */
/* @{ */
//! Default constructor
cst_sct3() {}
//! Construct CST from cache config
cst_sct3(cache_config& cache, bool build_only_bps=false);
//! Copy constructor
/*!
* \param cst The cst_sct3 which should be copied.
* \par Time complexity
* \f$ \Order{n} \f$, where \f$n=\f$cst_sct3.size()
*/
cst_sct3(const cst_sct3& cst) {
copy(cst);
}
//! Move constructor
/*!
* \param cst The cst_sct3 which should be moved.
*/
cst_sct3(cst_sct3&& cst) {
*this = std::move(cst);
}
/* @} */
//! Number of leaves of the suffix tree.
/*! Required for the Container Concept of the STL.
* \sa max_size, empty
*/
size_type size()const {
return m_bp.size()>>1;
}
//! Returns the largest size that cst_sct3 can ever have.
/*! Required for the Container Concept of the STL.
* \sa size
*/
static size_type max_size() {
return t_csa::max_size();
}
//! Returns if the data structure is empty.
/*! Required for the Container Concept of the STL.
* \sa size
*/
bool empty()const {
return m_csa.empty();
}
//! Swap method for cst_sct3
/*! The swap method can be defined in terms of assignment.
This requires three assignments, each of which, for a container type, is linear
in the container's size. In a sense, then, a.swap(b) is redundant.
This implementation guaranties a run-time complexity that is constant rather than linear.
\param cst cst_sct3 to swap.
Required for the Assignable Conecpt of the STL.
*/
void swap(cst_sct3& cst) {
if (this != &cst) {
m_csa.swap(cst.m_csa);
m_bp.swap(cst.m_bp);
util::swap_support(m_bp_support, cst.m_bp_support, &m_bp, &(cst.m_bp));
m_first_child.swap(cst.m_first_child);
util::swap_support(m_first_child_rank, cst.m_first_child_rank, &m_first_child, &(cst.m_first_child));
util::swap_support(m_first_child_select, cst.m_first_child_select, &m_first_child, &(cst.m_first_child));
std::swap(m_nodes, cst.m_nodes);
// anything else has to be swapped before swapping lcp
swap_lcp(m_lcp, cst.m_lcp, *this, cst);
}
}
//! Returns a const_iterator to the first element of a depth first traversal of the tree.
/*! Required for the STL Container Concept.
* \sa end
*/
const_iterator begin()const {
if (0 == m_bp.size()) // special case: tree is uninitialized
return end();
return const_iterator(this, root(), false, true);
};
//! Returns a const_iterator to the first element of a depth first traversal of the subtree rooted at node v.
const_iterator begin(const node_type& v)const {
if (0 == m_bp.size() and root()==v)
return end();
return const_iterator(this, v, false, true);
}
//! Returns a const_iterator to the element after the last element of a depth first traversal of the tree.
/*! Required for the STL Container Concept.
* \sa begin.
*/
const_iterator end()const {
return const_iterator(this, root(), true, false);
}
//! Returns a const_iterator to the element past the end of a depth first traversal of the subtree rooted at node v.
const_iterator end(const node_type& v)const {
if (root() == v)
return end();
return ++const_iterator(this, v, true, true);
}
//! Returns an iterator to the first element of a bottom-up traversal of the tree.
const_bottom_up_iterator begin_bottom_up()const {
if (0 == m_bp.size()) // special case: tree is uninitialized
return end_bottom_up();
return const_bottom_up_iterator(this, leftmost_leaf(root()));
}
//! Returns an iterator to the element after the last element of a bottom-up traversal of the tree.
const_bottom_up_iterator end_bottom_up()const {
return const_bottom_up_iterator(this, root(), false);
}
//! Assignment Operator.
/*!
* Required for the Assignable Concept of the STL.
*/
cst_sct3& operator=(const cst_sct3& cst);
//! Assignment Move Operator.
/*!
* Required for the Assignable Concept of the STL.
*/
cst_sct3& operator=(cst_sct3&& cst);
//! Serialize to a stream.
/*! \param out Outstream to write the data structure.
* \return The number of written bytes.
*/
size_type serialize(std::ostream& out, structure_tree_node* v=nullptr, std::string name="")const;
//! Load from a stream.
/*! \param in Inputstream to load the data structure from.
*/
void load(std::istream& in);
/*! \defgroup cst_sct3_tree_methods Tree methods of cst_sct3 */
/* @{ */
//! Return the root of the suffix tree.
/*!
* \par Time complexity O(1)
* \f$ \Order{1} \f$
*/
node_type root() const {
return node_type(0, size()-1, 0, m_bp.size()-1, m_bp.size());
}
//! Decide if a node is a leaf.
/*!
* \param v A valid node.
* \returns A boolean value indicating if v is a leaf.
* \par Time complexity
* \f$ \Order{1} \f$
*/
bool is_leaf(const node_type& v)const {
return v.i==v.j;
}
//! Return the i-th leaf (1-based from left to right).
/*!
* \param i 1-based position of the leaf.
* \return The i-th leave.
* \par Time complexity
* \f$ \Order{1} \f$
* \pre \f$ 1 \leq i \leq size() \f$
*/
node_type select_leaf(size_type i)const {
assert(i > 0 and i <= size());
size_type ipos = m_bp_support.select(i);
size_type jp1pos;
if (i == size())
jp1pos = m_bp.size();
else if (m_bp[ipos+1])
jp1pos = ipos+1;
else
jp1pos = m_bp_support.select(i+1);
return node_type(i-1, i-1, ipos, m_bp_support.find_close(ipos), jp1pos);
}
//! Calculate the number of leaves in the subtree rooted at node v.
/*! \param v A valid node of the suffix tree.
* \return The number of leaves in the subtree rooted at node v.
* \par Time complexity
* \f$ \Order{1} \f$
*/
size_type size(const node_type& v)const {
return v.j-v.i+1;
}
//! Calculates the leftmost leaf in the subtree rooted at node v.
/*! \param v A valid node of the suffix tree.
* \return The leftmost leaf in the subtree rooted at node v.
* \par Time complexity
* \f$ \Order{1} \f$
*/
node_type leftmost_leaf(const node_type& v)const {
return select_leaf(v.i+1);
}
//! Calculates the rightmost leaf in the subtree rooted at node v.
/*! \param v A valid node of the suffix tree.
* \return The rightmost leaf in the subtree rooted at node v.
* \par Time complexity
* \f$ \Order{1} \f$
*/
node_type rightmost_leaf(const node_type& v)const {
return select_leaf(v.j+1);
}
//! Calculates the index of the leftmost leaf in the corresponding suffix array.
/*! \param v A valid node of the suffix tree.
* \return The index of the leftmost leaf in the corresponding suffix array.
* \par Time complexity
* \f$ \Order{1} \f$
* \par Note
* lb is an abbreviation for ,,left bound''
*/
size_type lb(const node_type& v)const {
return v.i;
}
//! Calculates the index of the rightmost leaf in the corresponding suffix array.
/*! \param v A valid node of the suffix tree.
* \return The index of the rightmost leaf in the corresponding suffix array.
* \par Time complexity
* \f$ \Order{1} \f$
* \par Note
* rb is an abbreviation for ,,right bound''
*/
size_type rb(const node_type& v)const {
return v.j;
}
//! Calculate the parent node of a node v.
/*! \param v A valid node of the suffix tree.
* \return The parent node of v or the root if v==root().
* \par Time complexity
* \f$ \Order{1}\f$
*/
node_type parent(const node_type& v) const {
if (v.cipos > v.jp1pos) { // LCP[i] <= LCP[j+1]
size_type psv_pos, psv_cpos, psv_v, nsv_v, nsv_p1pos;
psv_v = psv(v.j+1, v.jp1pos, m_bp_support.find_close(v.jp1pos), psv_pos, psv_cpos);
nsv_v = nsv(v.j+1, v.jp1pos)-1;
if (nsv_v == size()-1) {
nsv_p1pos = m_bp.size();
} else { // nsv_v < size()-1
nsv_p1pos = m_bp_support.select(nsv_v+2);
}
return node_type(psv_v, nsv_v, psv_pos, psv_cpos, nsv_p1pos);
} else { // LCP[i] > LCP[j+1]
size_type psv_pos, psv_cpos, psv_v;
psv_v = psv(v.i, v.ipos, v.cipos, psv_pos, psv_cpos);
return node_type(psv_v, v.j, psv_pos, psv_cpos, v.jp1pos);
}
}
//! Return a proxy object which allows iterating over the children of a node
/*! \param v A valid node of the suffix tree.
* \return The proxy object of v containing all children
* \par Time complexity
* \f$ \Order{1}\f$
*/
cst_node_child_proxy<cst_sct3> children(const node_type v) const {
return cst_node_child_proxy<cst_sct3>(this,v);
}
//! Returns the next sibling of node v.
/*!
* \param v A valid node v of the suffix tree.
* \return The next (right) sibling of node v or root() if v has no next (right) sibling.
* \par Time complexity
* \f$ \Order{1} \f$
*/
node_type sibling(const node_type& v)const {
//Procedure:(1) Determine, if v has a right sibling.
if (v.cipos < v.jp1pos) { // LCP[i] > LCP[j+1] => v has the same right border as parent(v) => no right sibling
return root();
}
// (2) There exists a right sibling, LCP[j+1] >= LCP[i] and j>i
// Now it holds: v.cipos > v.jp1pos
size_type cjp1posm1 = m_bp_support.find_close(v.jp1pos)-1; // v.cipos-2 ???
// m_bp[cjp1posm1] equals 1 => v is the last child
bool last_child = m_bp[cjp1posm1];
// otherwise if m_bp[cjp1posm1] equals 0 => we don't know if it is the last child
if (!last_child) {
size_type first_child_idx = cjp1posm1 - m_bp_support.rank(cjp1posm1);
last_child = m_first_child[first_child_idx]; // if first_child indicator is true => the new sibling is the rightmost sibling
}
if (last_child) {
size_type nsv_v = nsv(v.j+1, v.jp1pos)-1, nsv_p1pos;
if (nsv_v == size()-1) {
nsv_p1pos = m_bp.size();
} else {
nsv_p1pos = m_bp_support.select(nsv_v+2);
}
return node_type(v.j+1, nsv_v, v.jp1pos, m_bp_support.find_close(v.jp1pos), nsv_p1pos);
} else {
size_type new_j = m_bp_support.rank(m_bp_support.find_open(cjp1posm1))-2;
return node_type(v.j+1, new_j, v.jp1pos, m_bp_support.find_close(v.jp1pos), m_bp_support.select(new_j+2));
}
}
//! Get the i-th child of a node v.
/*!
* \param v A valid tree node of the cst.
* \param i 1-based index of the child which should be returned.
* \return The i-th child node of v or root() if v has no i-th child.
* \par Time complexity
* \f$ \Order{\frac{\sigma}{w}} \f$, where w=64 is the word size,
* can be implemented in \f$\Order{1}\f$ with rank and select.
* \pre \f$ 1 \leq i \leq degree(v) \f$
*/
node_type select_child(const node_type& v, size_type i)const {
assert(i > 0);
if (is_leaf(v)) // if v is a leave, v has no child
return root();
if (1 == i) {
size_type k = 0, kpos = 0, k_find_close = 0;
// v is not a leave: v has at least two children
k = select_l_index(v, 1, kpos, k_find_close);// get first l-index k and the position of k
return node_type(v.i, k-1, v.ipos, v.cipos, kpos);
} else { // i > 1
size_type k1, kpos1, k_find_close1;
k1 = select_l_index(v, i-1, kpos1, k_find_close1);
if (k1 == v.j+1)
return root();
size_type k2, kpos2, k_find_close2;
k2 = select_l_index(v, i, kpos2, k_find_close2);
return node_type(k1, k2-1, kpos1, k_find_close1, kpos2);
}
}
//! Get the number of children of a node v.
/*!
* \param v A valid node v.
* \returns The number of children of node v.
* \par Time complexity
* \f$ \Order{\frac{\sigma}{w}} \f$, where w=64 is the word size,
* can be implemented in \f$\Order{1}\f$ with rank and select.
*/
size_type degree(const node_type& v)const {
if (is_leaf(v)) // if v is a leave, v has no child
return 0;
// v is not a leave: v has at least two children
size_type r = closing_pos_of_first_l_index(v);
size_type r0 = r - m_bp_support.rank(r);
const uint64_t* p = m_first_child.data() + (r0>>6);
uint8_t offset = r0&0x3F;
uint64_t w = (*p) & bits::lo_set[offset];
if (w) { // if there is a bit set in the current word
return offset-bits::hi(w)+1;
} else if (m_first_child.data() == p) { // no bit set and we are in the first word
return offset+2; // since would have to be bits::hi(w)=-1, child marked in previous word
} else {
size_type res = offset+2;
int steps = 4;
// search in previous four words for result
while (p > m_first_child.data() and steps-- > 0) {
w = *(--p);
if (0 == w)
res += 64;
else {
return res + (63-bits::hi(w));
}
}
// if not found: use rank + select to answer query
auto goal_rank = m_first_child_rank(r0);
if (goal_rank == 0) {
return r0+2;
} else {
return r0-m_first_child_select(goal_rank)+1;
}
}
}
//! Get the child w of node v which edge label (v,w) starts with character c.
/*!
* \param v A valid tree node of the cst.
* \param c First character on the edge label.
* \param char_pos Reference which will hold the position (0-based) of
* the matching char c in the sorted text/suffix array.
* \return The child node w which edge label (v,w) starts with c or
* root() if it does not exist.
* \par Time complexity
* \f$ \Order{(\saaccess+\isaaccess) \cdot \log\sigma + \lcpaccess} \f$
*/
node_type child(const node_type& v, const char_type c, size_type& char_pos)const {
if (is_leaf(v)) // if v is a leaf = (), v has no child
return root();
// else v = ( ( ))
comp_char_type cc = m_csa.char2comp[c];
if (cc==0 and c!=0) // TODO: change char2comp so that we don't need this special case
return root();
size_type char_ex_max_pos = m_csa.C[((size_type)1)+cc], char_inc_min_pos = m_csa.C[cc];
size_type d = depth(v);
// (1) check the first child
char_pos = get_char_pos(v.i, d, m_csa);
if (char_pos >= char_ex_max_pos) {// the first character of the first child interval is lex. greater than c
// => all other first characters of the child intervals are also greater than c => no solution
return root();
} else if (char_pos >= char_inc_min_pos) { // i.e. char_pos < char_ex_max_pos and char_pos >= char_inc_min_pos
return select_child(v, 1);
}
size_type child_cnt = degree(v);
// (2) check the last child
char_pos = get_char_pos(v.j, d, m_csa);
if (char_pos < char_inc_min_pos) {// the first character of the last child interval is lex. smaller than c
// => all other first characters of the child intervals are also smaller than c => no solution
return root();
} else if (char_pos < char_ex_max_pos) { // i.e. char_pos < char_ex_max_pos and char_pos >= char_inc_min_pos
return select_child(v, child_cnt);
}
// (3) binary search for c in the children [2..children)
size_type l_bound = 2, r_bound = child_cnt, mid, kpos, ckpos, l_index;
while (l_bound < r_bound) {
mid = (l_bound + r_bound) >> 1;
l_index = select_l_index(v, mid-1, kpos, ckpos);
char_pos = get_char_pos(l_index, d, m_csa);
if (char_inc_min_pos > char_pos) {
l_bound = mid+1;
} else if (char_ex_max_pos <= char_pos) {
r_bound = mid;
} else { // char_inc_min_pos <= char_pos < char_ex_max_pos => found child
// we know that the child is not the last child, see (2)
// find next l_index: we know that a new l_index exists: i.e. assert( 0 == m_bp[ckpos-1]);
size_type lp1_index = m_bp_support.rank(m_bp_support.find_open(ckpos-1))-1;
size_type jp1pos = m_bp.size();
if (lp1_index-1 < size()-1) {
jp1pos = m_bp_support.select(lp1_index+1);
}
return node_type(l_index, lp1_index-1, kpos, ckpos, jp1pos);
}
}
return root();
}
//! Get the child w of node v which edge label (v,w) starts with character c.
// \sa child(node_type v, const char_type c, size_type &char_pos)
node_type child(const node_type& v, const char_type c) {
size_type char_pos;
return child(v, c, char_pos);
}
//! Returns the d-th character (1-based indexing) of the edge-label pointing to v.
/*!\param v The node at which the edge path ends.
* \param d The position (1-based indexing) on the edge path from the
* root to v. \f$ d > 0 \wedge d <= depth(v) \f$
* \return The character at position d on the edge path from the root to v.
* \par Time complexity
* \f$ \Order{ \log\sigma + (\saaccess+\isaaccess) } \f$
* \pre \f$ 1 \leq d \leq depth(v) \f$
*/
char_type edge(const node_type& v, size_type d)const {
assert(1 <= d);
assert(d <= depth(v));
size_type order = get_char_pos(v.i, d-1, m_csa);
size_type c_begin = 1, c_end = ((size_type)m_csa.sigma)+1, mid;
while (c_begin < c_end) {
mid = (c_begin+c_end)>>1;
if (m_csa.C[mid] <= order) {
c_begin = mid+1;
} else {
c_end = mid;
}
}
return m_csa.comp2char[c_begin-1];
}
//! Calculate the LCA of two nodes `v` and `w`
/*!
* \param v The first node.
* \param w The second node.
* \return The lowest common ancestor of v and w.
* \par Time complexity
* \f$ \Order{\rrenclose}\ \f$
*/
node_type lca(node_type v, node_type w)const {
if (v.i > w.i or(v.i == w.i and v.j < w.j)) {
std::swap(v, w);
}
if (v.j >= w.j) { // v encloses w or v==w
return v;
} else { // v.i < v.j < w.i < w.j
size_type min_index = rmq(v.i+1, w.j);
size_type min_index_pos = m_bp_support.select(min_index+1);
size_type min_index_cpos = m_bp_support.find_close(min_index_pos);
if (min_index_cpos >= (m_bp.size() - m_csa.sigma)) { // if lcp[min_index]==0 => return root
return root();
}
size_type new_j = nsv(min_index, min_index_pos)-1;
size_type new_ipos, new_icpos;
size_type new_i = psv(min_index, min_index_pos, min_index_cpos, new_ipos, new_icpos);
size_type jp1pos = m_bp.size();
if (new_j < size()-1) {
jp1pos = m_bp_support.select(new_j+2);
}
return node_type(new_i, new_j, new_ipos, new_icpos, jp1pos);
}
}
//! Returns the string depth of node v.
/*!
* \param v A valid node of a cst_sct3.
* \return The string depth of node v.
* \par Time complexity
* \f$ \Order{1} \f$ for non-leaves and \f$\Order{t_{SA}}\f$ for leaves
*/
size_type depth(const node_type& v)const {
if (v.i == v.j) {
return size()-m_csa[v.i];
} else if (v == root()) {
return 0;
} else {
size_type kpos, ckpos;
size_type l = select_l_index(v, 1, kpos, ckpos);
return m_lcp[l];
}
}
//! Returns the node depth of node v
/*!
* \param v A valid node of a cst_sct3.
* \return The node depth of node v.
* \par Time complexity
* \f$ \Order{z} \f$, where \f$z\f$ is the resulting node depth.
* \par Note
* Can be implemented in O(1) with o(n) space. See
* Jansson, Sadakane, Sung:
* Ultra-succinct Representation of Ordered Trees
* SODA 2007
*/
size_type node_depth(node_type v)const {
size_type d = 0;
while (v != root()) {
++d;
v = parent(v);
}
return d;
}
//! Compute the suffix link of node v.
/*!
* \param v A valid node of a cst_sct3.
* \return The suffix link of node v.
* \par Time complexity
* \f$ \Order{ \rrenclose } \f$
*/
node_type sl(const node_type& v)const {
if (v == root())
return root();
// get interval with first char deleted
size_type i = m_csa.psi[v.i];
if (is_leaf(v)) {
if (v.i==0 and v.j==0) // if( v.l==1 )
return root();
else
return select_leaf(i+1);
}
size_type j = m_csa.psi[v.j];
assert(i < j);
size_type min_index = rmq(i+1, j); // rmq
size_type min_index_pos = m_bp_support.select(min_index+1);
size_type min_index_cpos = m_bp_support.find_close(min_index_pos);
if (min_index_cpos >= (m_bp.size() - m_csa.sigma)) { // if lcp[min_index]==0 => return root
return root();
}
size_type new_j = nsv(min_index, min_index_pos)-1;
size_type new_ipos, new_icpos;
size_type new_i = psv(min_index, min_index_pos, min_index_cpos, new_ipos, new_icpos);
size_type jp1pos = m_bp.size();
if (new_j < size()-1) {
jp1pos = m_bp_support.select(new_j+2);
}
return node_type(new_i, new_j, new_ipos, new_icpos, jp1pos);
}
//! Compute the Weiner link of node v and character c.
/*!
* \param v A valid not of a cst_sct3.
* \param c The character which should be prepended to the string of the current node.
* \return root() if the Weiner link of (v, c) does not exist,
* otherwise the Weiner link is returned.
* \par Time complexity
* \f$ \Order{ t_{rank\_bwt} } \f$
*/
node_type wl(const node_type& v, const char_type c) const {
size_type c_left = m_csa.bwt.rank(v.i, c);
size_type c_right = m_csa.bwt.rank(v.j+1, c);
if (c_left == c_right) // there exists no Weiner link
return root();
if (c_left+1 == c_right)
return select_leaf(m_csa.C[m_csa.char2comp[c]] + c_left + 1);
else {
size_type left = m_csa.C[m_csa.char2comp[c]] + c_left;
size_type right = m_csa.C[m_csa.char2comp[c]] + c_right - 1;
assert(left < right);
size_type ipos = m_bp_support.select(left+1);
size_type jp1pos = m_bp.size();
if (right < size()-1) {
jp1pos = m_bp_support.select(right+2);
}
return node_type(left, right, ipos,
m_bp_support.find_close(ipos), jp1pos);
}
}
//! Computes the suffix number of a leaf node v.
/*!\param v A valid leaf node of a cst_sct3.
* \return The suffix array value corresponding to the leaf node v.
* \par Time complexity
* \f$ \Order{ \saaccess } \f$
*/
size_type sn(const node_type& v)const {
assert(is_leaf(v));
return m_csa[v.i];
}
//! Computes a unique identification number for a node of the suffx tree in the range [0..nodes()-1]
/*!
* \param v A valid node of a cst_sct3.
* \return A unique identification number for the node v in the range [0..nodes()-1]
* \par Time complexity
* \f$ \Order{1} \f$
*/
size_type id(const node_type& v)const {
if (is_leaf(v)) { // return id in the range from 0..csa.size()-1
return v.i;
}
size_type ckpos; // closing parentheses of the l-index
if (v.cipos > v.jp1pos) { // corresponds to m_lcp[i] <= m_lcp[j+1]
ckpos = v.jp1pos-1;
} else { // corresponds to m_lcp[i] > m_lcp[j+1]
ckpos = v.cipos-1;
}
assert(m_bp[ckpos]==0);
size_type r0ckpos = ckpos-m_bp_support.rank(ckpos); // determine the rank of the closing parenthesis
return size()+m_first_child_rank(r0ckpos);
}
//! Computes the node for such that id(v)=id.
/*!
* \param id An id in the range [0..nodes()-1].
* \return A node v of the CST such that id(v)=id.
* \par Time complexity
* \f$ \Order{1} \f$ for leaves and \f$ \Order{\log size()} \f$ for inner nodes
* \sa id(node_type v)
*/
node_type inv_id(size_type id) {
if (id < size()) { // the corresponding node is a leaf
return select_leaf(id+1);
} else { // the corresponding node is a inner node
// (1) get index of the closing parenthesis in m_first_child
size_type r0ckpos = 0;
{
//binary search for the position of the (id-size()+1)-th set bit in
id = id-size()+1;
size_type lb = 0, rb = m_bp.size(); // lb inclusive, rb exclusive
// invariant: arg(lb) < id, arg(rb) >= id
while (rb-lb > 1) {
size_type mid = lb + (rb-lb)/2;
size_type arg = m_first_child_rank(mid); // ones in the prefix [0..mid-1]
if (arg < id) {
lb = mid;
} else { // arg >= id
rb = mid;
}
}
r0ckpos = lb;
}
// (2) determine position clpos of the r0clpos-th closing parentheses in the parentheses sequence
size_type ckpos = 0;
{
// binary search for the position of the (r0ckpos+1)-th closing parenthesis
size_type lb = 0, rb = m_bp.size(); // lb inclusive, rb exclusive
// invariant: arg(lb) < r0ckpos+1, arg(rb) >= r0ckpos+1
while (rb-lb > 1) {
size_type mid = lb + (rb-lb)/2;
size_type arg = mid - m_bp_support.rank(mid-1); // zeros in the prefix [0..mid-1]
if (arg < r0ckpos+1) {
lb = mid;
} else { // arg >= x
rb = mid;
}
}
ckpos = lb;
}
if (ckpos == m_bp.size()-1) {
return root();
}
if (m_bp[ckpos+1]) { // jp1pos < cipos
size_type jp1pos= ckpos+1;
size_type j = m_bp_support.rank(jp1pos-1)-1;
size_type kpos = m_bp_support.find_open(ckpos);
size_type ipos = m_bp_support.enclose(kpos);
size_type cipos = m_bp_support.find_close(ipos);
size_type i = m_bp_support.rank(ipos-1);
return node_type(i, j, ipos, cipos, jp1pos);
} else { //
size_type cipos = ckpos+1;
size_type ipos = m_bp_support.find_open(cipos);
size_type i = m_bp_support.rank(ipos-1);
size_type j = nsv(i, ipos)-1;
size_type jp1pos= m_bp.size();
if (j != size()-1) {
jp1pos = m_bp_support.select(j+2);
}
return node_type(i, j, ipos, cipos, jp1pos);
}
}
}
//! Get the number of nodes of the suffix tree.
size_type nodes()const {
return m_nodes;
}
//! Get the node in the suffix tree which corresponds to the lcp-interval [lb..rb]
/* \param lb Left bound of the lcp-interval [lb..rb] (inclusive).
* \param rb Right bound of the lcp-interval [lb..rb] (inclusive).
* \return The node in the suffix tree corresponding lcp-interval [lb..rb]
* \par Time complexity
* \f$ \Order{1} \f$
*/
node_type node(size_type lb, size_type rb) const {
size_type ipos = m_bp_support.select(lb+1);
size_type jp1pos;
if (rb == size()-1) {
jp1pos = m_bp.size();
} else {
jp1pos = m_bp_support.select(rb+2);
}
return node_type(lb, rb, ipos, m_bp_support.find_close(ipos), jp1pos);
}
//! Maps an index i to the position in TLCP where LCP[i] can be found
/*!
* \param i The index in the LCP array
* \return The corresponding position in the TLCP array
*/
size_type tlcp_idx(size_type i) const {
size_type ipos = m_bp_support.select(i+1);
size_type cipos = m_bp_support.find_close(ipos);
return m_first_child_rank.rank(((ipos+cipos-1)>>1)-i);
}
/* @} */
};
// == template functions ==
template<class t_csa, class t_lcp, class t_bp_support, class t_bv, class t_rank, class t_sel>
cst_sct3<t_csa, t_lcp, t_bp_support, t_bv, t_rank, t_sel>::cst_sct3(cache_config& config, bool build_only_bps)
{
{
auto event = memory_monitor::event("bps-sct");
int_vector_buffer<> lcp_buf(cache_file_name(conf::KEY_LCP, config));
m_nodes = construct_supercartesian_tree_bp_succinct_and_first_child(lcp_buf, m_bp, m_first_child) + m_bp.size()/2;
if (m_bp.size() == 2) { // handle special case, when the tree consists only of the root node
m_nodes = 1;
}
}
{
auto event = memory_monitor::event("bpss-sct");
util::init_support(m_bp_support, &m_bp);
util::init_support(m_first_child_rank, &m_first_child);
util::init_support(m_first_child_select, &m_first_child);
}
if (!build_only_bps) {
auto event = memory_monitor::event("clcp");
cache_config tmp_config(false, config.dir, config.id, config.file_map);
construct_lcp(m_lcp, *this, tmp_config);
config.file_map = tmp_config.file_map;
}
if (!build_only_bps) {
auto event = memory_monitor::event("load csa");
load_from_cache(m_csa,std::string(conf::KEY_CSA)+"_"+util::class_to_hash(m_csa), config);
}
}
template<class t_csa, class t_lcp, class t_bp_support, class t_bv, class t_rank, class t_sel>
auto cst_sct3<t_csa, t_lcp, t_bp_support, t_bv, t_rank, t_sel>::serialize(std::ostream& out, structure_tree_node* v, std::string name) const -> size_type
{
structure_tree_node* child = structure_tree::add_child(v, name, util::class_name(*this));
size_type written_bytes = 0;
written_bytes += m_csa.serialize(out, child, "csa");
written_bytes += m_lcp.serialize(out, child, "lcp");
written_bytes += m_bp.serialize(out, child, "bp");
written_bytes += m_bp_support.serialize(out, child, "bp_support");
written_bytes += m_first_child.serialize(out, child, "mark_child");
written_bytes += m_first_child_rank.serialize(out, child, "mark_child_rank");
written_bytes += m_first_child_select.serialize(out, child, "mark_child_select");
written_bytes += write_member(m_nodes, out, child, "node_cnt");
structure_tree::add_size(child, written_bytes);
return written_bytes;
}
template<class t_csa, class t_lcp, class t_bp_support, class t_bv, class t_rank, class t_sel>
void cst_sct3<t_csa, t_lcp, t_bp_support, t_bv, t_rank, t_sel>::load(std::istream& in)
{
m_csa.load(in);
load_lcp(m_lcp, in, *this);
m_bp.load(in);
m_bp_support.load(in, &m_bp);
m_first_child.load(in);
m_first_child_rank.load(in);
m_first_child_rank.set_vector(&m_first_child);
m_first_child_select.load(in);
m_first_child_select.set_vector(&m_first_child);
read_member(m_nodes, in);
}
template<class t_csa, class t_lcp, class t_bp_support, class t_bv, class t_rank, class t_sel>
cst_sct3<t_csa, t_lcp, t_bp_support, t_bv, t_rank, t_sel>& cst_sct3<t_csa, t_lcp, t_bp_support, t_bv, t_rank, t_sel>::operator=(const cst_sct3& cst)
{
if (this != &cst) {
copy(cst);
}
return *this;
}
template<class t_csa, class t_lcp, class t_bp_support, class t_bv, class t_rank, class t_sel>
cst_sct3<t_csa, t_lcp, t_bp_support, t_bv, t_rank, t_sel>& cst_sct3<t_csa, t_lcp, t_bp_support, t_bv, t_rank, t_sel>::operator=(cst_sct3&& cst)
{
if (this != &cst) {
m_csa = std::move(cst.m_csa);
move_lcp(m_lcp, cst.m_lcp, *this);
m_bp = std::move(cst.m_bp);
m_bp_support = std::move(cst.m_bp_support);
m_bp_support.set_vector(&m_bp);
m_first_child = std::move(cst.m_first_child);
m_first_child_rank = std::move(cst.m_first_child_rank);
m_first_child_rank.set_vector(&m_first_child);
m_first_child_select = std::move(cst.m_first_child_select);
m_first_child_select.set_vector(&m_first_child);
m_nodes = std::move(cst.m_nodes);
}
return *this;
}
template<class t_int>
struct bp_interval {
t_int i; //!< The left border of the lcp-interval \f$\ell-[left..right]\f$.
t_int j; //!< The right border of the lcp-interval \f$\ell-[left..right]\f$.
t_int ipos; // position of the i+1th opening parenthesis in the balanced parentheses sequence
t_int cipos; // position of the matching closing parenthesis of the i+1th opening parenthesis in the balanced parentheses sequence
t_int jp1pos;// position of the j+2th opening parenthesis in the balanced parentheses sequence
//! Constructor
bp_interval(t_int i=0, t_int j=0, t_int ipos=0, t_int cipos=0, t_int jp1pos=0):i(i),j(j),ipos(ipos),cipos(cipos),jp1pos(jp1pos) {};
//! Copy constructor
bp_interval(const bp_interval& iv) = default;
//! Move copy constructor
bp_interval(bp_interval&& iv) = default;
bool operator<(const bp_interval& interval)const {
if (i!=interval.i)
return i<interval.i;
return j<interval.j;
}
//! Equality operator.
/*! Two lcp-intervals are equal if and only if all their corresponding member variables have the same values.
*/
bool operator==(const bp_interval& interval)const {
return i==interval.i and j==interval.j;
}
//! Inequality operator.
/*! Two lcp-intervals are not equal if and only if not all their corresponding member variables have the same values.
*/
bool operator!=(const bp_interval& interval)const {
return !(*this==interval);
}
//! Assignment operator.
bp_interval& operator=(const bp_interval& interval) = default;
//! Move assignment
bp_interval& operator=(bp_interval&& interval) = default;
};
template<class t_int>
inline std::ostream& operator<<(std::ostream& os, const bp_interval<t_int>& interval)
{
os<<"-["<<interval.i<<","<<interval.j<<"]("<<interval.ipos<<","<<interval.cipos<<","<<interval.jp1pos<<")";
return os;
}
} // end namespace sdsl
#endif
|