/usr/include/sdsl/coder_fibonacci.hpp is in libsdsl-dev 2.0.3-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 | /* sdsl - succinct data structures library
Copyright (C) 2009 Simon Gog
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/ .
*/
/*! \file coder_fibonacci.hpp
\brief coder_fibonacci.hpp contains the class sdsl::coder::fibonacci
\author Simon Gog
*/
#ifndef SDSL_CODER_FIBONACCI_INCLUDED
#define SDSL_CODER_FIBONACCI_INCLUDED
#include "int_vector.hpp"
namespace sdsl
{
namespace coder
{
//! A class to encode and decode between Fibonacci and binary code.
class fibonacci
{
public:
static struct impl {
uint64_t fib12bit_to_bin[(1<<12)*8];
//! End position of the first Fibonacci encoded number in the 13-bit word.
/*! fib2bin_shift[x] = 0 if bit-pattern `11` does not occur in x. Otherwise
fib2bin_shift[x] = end position of the first Fibonacci encoded word.
E.g. Fib2binShift[3] = 2 and Fib2binShift[6] = 3.
Space: 256.0 kBytes
*/
uint8_t fib2bin_shift[(1<<13)];
//! Array contains precomputed values for the decoding of a prefix sum of Fibonacci encoded integers
/*! The 5 most significant bits contain information about how far to shift to get to the next encoded integer.
If this 5 bits equal zero, there is no whole Fibonacci number encoded in the 16 bits...
space for Fib2bin_greedy-table 128.0 kBytes
maxentry = 1596 index of maxentry = 54613
*/
uint16_t fib2bin_16_greedy[(1<<16)];
//! Array contains precomputed values for the decoding of a number in the Fibonacci system.
uint64_t fib2bin_0_95[(1<<12)*8];
impl() {
for (uint32_t x=0; x <= 0x1FFF; ++x) {
if (bits::cnt11(x)) {
fib2bin_shift[x] = bits::sel11(x, 1)+1;
} else {
fib2bin_shift[x] = 0;
}
}
for (uint32_t x=0; x < 1<<16; ++x) {
uint16_t w = 0;
uint32_t offset=0;
if (uint32_t cnt = bits::cnt11(x)) {
uint32_t y=x;
uint32_t fib_pos=1;
do {
if (y&1) {
w += bits::lt_fib[fib_pos-1];
if (y&2) {
--cnt; ++offset;
fib_pos=0;
y>>=1;
}
}
++fib_pos; ++offset;
y>>=1;
} while (cnt);
}
fib2bin_16_greedy[x] = (offset<<11) | w;
}
for (uint32_t p=0; p<8; ++p) {
for (uint32_t x=0; x<=0xFFF; ++x) {
uint64_t w = 0;
for (uint32_t j=0; j < 12 and 12*p+j < 92; ++j) {
if ((x>>j)&1ULL) {
w += bits::lt_fib[12*p+j];
if (x>>(j+1)&1ULL) {
break;
}
}
}
fib2bin_0_95[(p<<12) | x] = w;
}
}
}
} data;
typedef uint64_t size_type;
static const uint8_t min_codeword_length = 2; // 11 represents 1 and is the code word with minimum length
//! Get the number of bits that are necessary to encode the value w in Fibonacci code.
/*! \param w 64bit integer to get the length of its fibonacci encoding. Inclusive the terminating 1 of the code.
*/
static uint8_t encoding_length(uint64_t w);
//! Decode n Fibonacci encoded bits beginning at start_idx in the bitstring "data"
/* \param data Bitstring
\param start_idx Starting index of the decoding.
\param n Number of values to decode from the bitstring.
\param it Iterator
*/
template<bool t_sumup, bool t_inc, class t_iter>
static uint64_t decode(const uint64_t* data, const size_type start_idx, size_type n, t_iter it=(t_iter)nullptr);
template<bool t_sumup, bool t_inc, class t_iter>
static uint64_t decode1(const uint64_t* data, const size_type start_idx, size_type n, t_iter it=(t_iter)nullptr);
//! Decode n Fibonacci encoded integers beginning at start_idx in the bitstring "data" and return the sum of these values.
/*! \param data Pointer to the beginning of the Fibonacci encoded bitstring.
\param start_idx Index of the first bit to encode the values from.
\param n Number of values to decode from the bitstring. Attention: There have to be at least n encoded values in the bitstring.
*/
static uint64_t decode_prefix_sum(const uint64_t* data, const size_type start_idx, size_type n);
//! Decode n Fibonacci encoded integers beginning at start_idx and ending at end_idx (exclusive) in the bitstring "data" and return the sum of these values.
/*! \sa decode_prefix_sum
*/
static uint64_t decode_prefix_sum(const uint64_t* data, const size_type start_idx, const size_type end_idx, size_type n);
template<class int_vector1, class int_vector2>
static bool encode(const int_vector1& v, int_vector2& z);
template<class int_vector>
static uint64_t* raw_data(int_vector& v) {
return v.m_data;
};
//! Encode one positive integer x to an int_vector at bit position start_idx.
/*! \param x Positive integer to encode.
\param z Raw data of vector to write the encoded form of x.
\param offset Start offset to write the encoded form of x in z. \f$0\leq offset< 64\f$.
*/
static void encode(uint64_t x, uint64_t*& z, uint8_t& offset);
template<class int_vector1, class int_vector2>
static bool decode(const int_vector1& z, int_vector2& v);
};
inline uint8_t fibonacci::encoding_length(uint64_t w)
{
if (w == 0) {
return 93;
}
// This limit for the leftmost 1bit in the resulting fib code could be improved using a table
uint8_t len_1 = bits::hi(w); // len-1 of the fib code
while (++len_1 < (uint8_t)(sizeof(bits::lt_fib)/sizeof(bits::lt_fib[0])) && w >= bits::lt_fib[len_1]);
return len_1+1;
}
template<class int_vector1, class int_vector2>
inline bool fibonacci::encode(const int_vector1& v, int_vector2& z)
{
uint64_t z_bit_size = 0;
uint64_t w;
const uint64_t zero_val = v.width() < 64 ? (1ULL)<<v.width() : 0;
for (typename int_vector1::const_iterator it=v.begin(), end = v.end(); it != end; ++it) {
if ((w=*it) == 0) {
if (v.width() < 64) {
w = zero_val;
}
}
z_bit_size += encoding_length(w);
}
z.bit_resize(z_bit_size);
if (z_bit_size & 0x3F) { // if z_bit_size % 64 != 0
*(z.m_data + (z_bit_size>>6)) = 0; // initialize last word
}
uint64_t* z_data = z.m_data;
uint8_t offset = 0;
uint64_t fibword_high = 0x0000000000000001ULL, fibword_low;
uint64_t t;
for (typename int_vector1::const_iterator it=v.begin(), end = v.end(); it != end; ++it) {
w = *it;
if (w == 0) {
w = zero_val;
}
int8_t len_1 = encoding_length(w)-1,j;
fibword_low = 0x0000000000000001ULL;
if (len_1 >= 64) { // length > 65
fibword_high = 0x0000000000000001ULL;
j = len_1-1;
if (w == 0) { // handle special case
fibword_high <<= 1;
fibword_high |= 1;
fibword_high <<= 1;
w -= bits::lt_fib[len_1-1];
j -= 2;
}
for (; j>63; --j) {
fibword_high <<= 1;
if (w >= (t=bits::lt_fib[j])) {
w -= t;
fibword_high |= 1;
if (w and j>64) {
fibword_high <<= 1;
--j;
} else {
fibword_high <<= (64-j);
break;
}
}
}
j = 64;
} else {
j = len_1-1;
}
for (; j >= 0; --j) {
fibword_low <<= 1;
if (w >= (t=bits::lt_fib[j])) {
w -= t;
fibword_low |= 1;
if (w) {
fibword_low <<= 1;
--j;
} else {
fibword_low <<= (j);
break;
}
}
}
if (len_1 >=64) {
bits::write_int_and_move(z_data, fibword_low, offset, 64);
bits::write_int_and_move(z_data, fibword_high, offset, len_1 - 63);
} else {
bits::write_int_and_move(z_data, fibword_low, offset, (len_1&0x3F) +1);
}
}
z.width(v.width());
return true;
}
inline void fibonacci::encode(uint64_t x, uint64_t*& z, uint8_t& offset)
{
uint64_t fibword_high = 0x0000000000000001ULL, fibword_low;
uint64_t t;
int8_t len_1 = encoding_length(x)-1,j;
fibword_low = 0x0000000000000001ULL;
if (len_1 >= 64) { // length > 65
fibword_high = 0x0000000000000001ULL;
j = len_1-1;
if (x == 0) { // handle special case
fibword_high <<= 1;
fibword_high |= 1;
fibword_high <<= 1;
x -= bits::lt_fib[len_1-1];
j -= 2;
}
for (; j>63; --j) {
fibword_high <<= 1;
if (x >= (t=bits::lt_fib[j])) {
x -= t;
fibword_high |= 1;
if (x and j>64) {
fibword_high <<= 1;
--j;
} else {
fibword_high <<= (64-j);
break;
}
}
}
j = 64;
} else {
j = len_1-1;
}
for (; j >= 0; --j) {
fibword_low <<= 1;
if (x >= (t=bits::lt_fib[j])) {
x -= t;
fibword_low |= 1;
if (x) {
fibword_low <<= 1;
--j;
} else {
fibword_low <<= (j);
break;
}
}
}
if (len_1 >=64) {
bits::write_int_and_move(z, fibword_low, offset, 64);
bits::write_int_and_move(z, fibword_high, offset, len_1 - 63);
} else {
bits::write_int_and_move(z, fibword_low, offset, (len_1&0x3F) +1);
}
}
template<class int_vector1, class int_vector2>
bool fibonacci::decode(const int_vector1& z, int_vector2& v)
{
uint64_t n = 0, carry = 0; // n = number of values to be decoded
const uint64_t* data = z.data();
// Determine size of v
if (z.empty()) {// if z is empty we are ready with decoding
v.width(z.width());
v.resize(0);
return true;
}
for (typename int_vector1::size_type i=0; i < (z.capacity()>>6)-1; ++i, ++data) {
n += bits::cnt11(*data, carry);
}
if (z.capacity() != z.bit_size()) {
n += bits::cnt11((*data) & bits::lo_set[z.bit_size()&0x3F], carry);
} else {
n += bits::cnt11(*data, carry);
}
v.width(z.width()); v.resize(n);
return decode<false, true>(z.data(), 0, n, v.begin());
}
template<bool t_sumup, bool t_inc, class t_iter>
inline uint64_t fibonacci::decode(const uint64_t* data, const size_type start_idx, size_type n, t_iter it)
{
data += (start_idx >> 6);
uint64_t w = 0, value = 0;
int8_t buffered = 0; // bits buffered in w, in 0..64
int8_t read = start_idx & 0x3F; // read bits in current *data 0..63
int8_t shift = 0;
uint32_t fibtable = 0;
while (n) {// while not all values are decoded
while (buffered < 13 and bits::cnt11(w) < n) {
w |= (((*data)>>read)<<buffered);
if (read >= buffered) {
++data;
buffered += 64-read;
read = 0;
} else { // read < buffered
read += 64-buffered;
buffered = 64;
}
}
value += fibonacci::data.fib2bin_0_95[(fibtable<<12) | (w&0xFFF)];
shift = fibonacci::data.fib2bin_shift[w&0x1FFF];
if (shift > 0) {// if end of decoding
w >>= shift;
buffered -= shift;
if (t_inc) *(it++) = value;
if (!t_sumup and n!=1) value = 0;
fibtable = 0;
--n;
} else { // not end of decoding
w >>= 12;
buffered -= 12;
++fibtable;
}
}
return value;
}
template<bool t_sumup, bool t_inc, class t_iter>
inline uint64_t fibonacci::decode1(const uint64_t* data, const size_type start_idx, size_type n, t_iter it)
{
data += (start_idx >> 6);
uint64_t w = 0, value = 0;
int8_t buffered = 0; // bits buffered in w, in 0..64
int8_t read = start_idx & 0x3F; // read bits in current *data 0..63
int8_t shift = 0;
uint32_t fibtable = 0;
uint8_t blocknr = (start_idx>>6)%9;
while (n) {// while not all values are decoded
while (buffered < 13 and bits::cnt11(w) < n) {
w |= (((*data)>>read)<<buffered);
if (read >= buffered) {
++blocknr;
++data;
if (blocknr==8) {
++data;
blocknr=0;
}
buffered += 64-read;
read = 0;
} else { // read < buffered
read += 64-buffered;
buffered = 64;
}
}
value += fibonacci::data.fib2bin_0_95[(fibtable<<12) | (w&0xFFF)];
shift = fibonacci::data.fib2bin_shift[w&0x1FFF];
if (shift > 0) {// if end of decoding
w >>= shift;
buffered -= shift;
if (t_inc) *(it++) = value;
if (!t_sumup)
value = 0;
fibtable = 0;
--n;
} else { // not end of decoding
w >>= 12;
buffered -= 12;
++fibtable;
}
}
return value;
}
} // end namespace coder
} // end namespace sdsl
#endif
|