This file is indexed.

/usr/include/pdal/GDALUtils.hpp is in libpdal-dev 1.6.0-1build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
/******************************************************************************
* Copyright (c) 2011, Michael P. Gerlek (mpg@flaxen.com)
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following
* conditions are met:
*
*     * Redistributions of source code must retain the above copyright
*       notice, this list of conditions and the following disclaimer.
*     * Redistributions in binary form must reproduce the above copyright
*       notice, this list of conditions and the following disclaimer in
*       the documentation and/or other materials provided
*       with the distribution.
*     * Neither the name of Hobu, Inc. or Flaxen Geo Consulting nor the
*       names of its contributors may be used to endorse or promote
*       products derived from this software without specific prior
*       written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
****************************************************************************/

#pragma once

#include <pdal/pdal_internal.hpp>
#include <pdal/Dimension.hpp>
#include <pdal/SpatialReference.hpp>
#include <pdal/util/Bounds.hpp>

#include <pdal/Log.hpp>

#include <array>
#include <functional>
#include <mutex>
#include <sstream>
#include <vector>

#include <cpl_conv.h>
#include <gdal_priv.h>
#include <ogr_api.h>
#include <ogr_srs_api.h>

namespace pdal
{

class SpatialReference;

namespace gdal
{

template<typename ITER>
using ITER_VAL = typename std::iterator_traits<ITER>::value_type;

PDAL_DLL void registerDrivers();
PDAL_DLL void unregisterDrivers();
PDAL_DLL bool reprojectBounds(BOX3D& box, const std::string& srcSrs,
    const std::string& dstSrs);
PDAL_DLL bool reprojectBounds(BOX2D& box, const std::string& srcSrs,
    const std::string& dstSrs);
PDAL_DLL bool reprojectPoint(double& x, double& y, double& z,
    const std::string& srcSrs, const std::string& dstSrs);
PDAL_DLL std::string lastError();

typedef std::shared_ptr<void> RefPtr;

class SpatialRef
{
public:
    SpatialRef()
        { newRef(OSRNewSpatialReference("")); }
    SpatialRef(const std::string& srs)
    {
        newRef(OSRNewSpatialReference(""));
        OSRSetFromUserInput(get(), srs.data());
    }

    void setFromLayer(OGRLayerH layer)
    {
        if (layer)
        {
            OGRSpatialReferenceH s = OGR_L_GetSpatialRef(layer);
            if (s)
            {
                OGRSpatialReferenceH clone = OSRClone(s);
                newRef(clone);
            }
        }
    }
    operator bool () const
        { return m_ref.get() != NULL; }
    OGRSpatialReferenceH get() const
        { return m_ref.get(); }
    std::string wkt() const
    {
        char *pszWKT = NULL;
        OSRExportToWkt(m_ref.get(), &pszWKT);
        bool valid = (bool)*pszWKT;
        std::string output(pszWKT);
        CPLFree(pszWKT);
        return output;
    }

    bool empty() const
    {
        return wkt().empty();
    }

private:
    void newRef(void *v)
    {
        m_ref = RefPtr(v, [](void* t){ OSRDestroySpatialReference(t); } );
    }

    RefPtr m_ref;
};

class Geometry
{
public:
    Geometry()
        {}
    Geometry(const std::string& wkt, const SpatialRef& srs)
    {
        OGRGeometryH geom;

        char *p_wkt = const_cast<char *>(wkt.data());
        OGRSpatialReferenceH ref = srs.get();
        if (srs.empty())
        {
            ref = NULL;
        }
        bool isJson = wkt.find("{") != wkt.npos ||
                      wkt.find("}") != wkt.npos;

        if (!isJson)
        {
            OGRErr err = OGR_G_CreateFromWkt(&p_wkt, ref, &geom);
            if (err != OGRERR_NONE)
            {
                std::cout << "wkt: " << wkt << std::endl;
                std::ostringstream oss;
                oss << "unable to construct OGR Geometry";
                oss << " '" << CPLGetLastErrorMsg() << "'";
                throw pdal::pdal_error(oss.str());
            }
        }
        else
        {
            // Assume it is GeoJSON and try constructing from that
            geom = OGR_G_CreateGeometryFromJson(p_wkt);

            if (!geom)
                throw pdal_error("Unable to create geometry from "
                    "input GeoJSON");

            OGR_G_AssignSpatialReference(geom, ref);
        }

        newRef(geom);
    }

    operator bool () const
        { return get() != NULL; }
    OGRGeometryH get() const
        { return m_ref.get(); }

    void transform(const SpatialRef& out_srs)
    {
        OGR_G_TransformTo(m_ref.get(), out_srs.get());
    }

    std::string wkt() const
    {
        char* p_wkt = 0;
        OGRErr err = OGR_G_ExportToWkt(m_ref.get(), &p_wkt);
        return std::string(p_wkt);
    }

    void setFromGeometry(OGRGeometryH geom)
        {
            if (geom)
                newRef(OGR_G_Clone(geom));
        }

private:
    void newRef(void *v)
    {
        m_ref = RefPtr(v, [](void* t){ OGR_G_DestroyGeometry(t); } );
    }
    RefPtr m_ref;
};


// This is a little confusing because we have a singleton error handler with
// a single log pointer, but we set the log pointer/debug state as if we
// were taking advantage of GDAL's thread-specific error handing.
//
// We lock the log/debug so that it doesn't
// get changed while another thread is using or setting.
class PDAL_DLL ErrorHandler
{
public:
    /**
      Get the singleton error handler.

      \return  Reference to the error handler.
    */
    static ErrorHandler& getGlobalErrorHandler();

    /**
      Set the log and debug state of the error handler.  This is
      a convenience and is equivalent to calling setLog() and setDebug().

      \param log  Log to write to.
      \param doDebug  Debug state of the error handler.
    */
    void set(LogPtr log, bool doDebug);

    /**
      Set the log to which error/debug messages should be written.

      \param log  Log to write to.
    */
    void setLog(LogPtr log);

    /**
      Set the debug state of the error handler.  Setting to true will also
      set the environment variable CPL_DEBUG to "ON".  This will force GDAL
      to emit debug error messages which will be logged by this handler.

      \param doDebug  Whether we're setting or clearing the debug state.
    */
    void setDebug(bool doDebug);

    /**
      Get the last error and clear the error last error value.

      \return  The last error number.
    */
    int errorNum();

    static void CPL_STDCALL trampoline(::CPLErr code, int num, char const* msg)
    {
        ErrorHandler::getGlobalErrorHandler().handle(code, num, msg);
    }

    ErrorHandler();

private:
    void handle(::CPLErr level, int num, const char *msg);

private:
    std::mutex m_mutex;
    bool m_debug;
    pdal::LogPtr m_log;
    int m_errorNum;
    bool m_cplSet;
};

class ErrorHandlerSuspender
{
public:
    ErrorHandlerSuspender()
        { CPLPushErrorHandler(CPLQuietErrorHandler); }
    ~ErrorHandlerSuspender()
        { (void)CPLPopErrorHandler(); }
};

enum class GDALError
{
    None,
    NotOpen,
    CantOpen,
    NoData,
    InvalidBand,
    NoTransform,
    NotInvertible,
    CantReadBlock,
    InvalidDriver,
    DriverNotFound,
    CantCreate,
    InvalidOption,
    CantWriteBlock,
    InvalidType
};

struct InvalidBand {};
struct CantReadBlock {};
struct CantWriteBlock
{
    CantWriteBlock()
    {}

    CantWriteBlock(const std::string& w) : what(w)
    {}

    std::string what;
};

class Raster;

/*
  Slight abstraction of a GDAL raster band.
*/
template<typename T>
class Band
{
friend class Raster;

private:
    GDALDataset *m_ds;               /// Dataset handle
    int m_bandNum;                   /// Band number.  Band numbers start at 1.
    double m_dstNoData;              /// Output no data value.
    GDALRasterBand *m_band;          /// Band handle
    int m_xTotalSize, m_yTotalSize;  /// Total size (x and y) of the raster
    int m_xBlockSize, m_yBlockSize;  /// Size (x and y) of blocks
    int m_xBlockCnt, m_yBlockCnt;    /// Number of blocks in each direction
    std::vector<T> m_buf;            /// Block read buffer.
    std::string m_name;              /// Band name.

    /**
      Create an object for reading a band of a GDAL dataset.

      \param ds  GDAL dataset handle.
      \param dstNoData  The no data value to be used when writing the band.
      \param bandNum  Band number (1-indexed).
      \param name  Name of the raster band.
    */
    Band(GDALDataset *ds, int bandNum, double dstNoData = -9999.0,
            const std::string& name = "") :
        m_ds(ds), m_bandNum(bandNum), m_dstNoData(dstNoData),
        m_xBlockSize(0), m_yBlockSize(0)
    {
        m_band = m_ds->GetRasterBand(m_bandNum);
        if (!m_band)
            throw InvalidBand();

        if (name.size())
        {
            m_band->SetDescription(name.data());
            // We don't care about offset, but this sets the flag to indicate
            // that the metadata has changed.
            m_band->SetOffset(m_band->GetOffset(NULL) + .00001);
            m_band->SetOffset(m_band->GetOffset(NULL) - .00001);
        }

        m_xTotalSize = m_band->GetXSize();
        m_yTotalSize = m_band->GetYSize();

        m_band->GetBlockSize(&m_xBlockSize, &m_yBlockSize);
        m_buf.resize(m_xBlockSize * m_yBlockSize);

        m_xBlockCnt = ((m_xTotalSize - 1) / m_xBlockSize) + 1;
        m_yBlockCnt = ((m_yTotalSize - 1) / m_yBlockSize) + 1;
    }

    /*
      Read the band into the vector.  Reads a block at a time.  Each
      block is either fully populated with data or a partial block.
      Partial blocks appear at the X and Y margins when the total size in
      the doesn't divide evenly by the block size for both the X and Y
      dimensions.

      \param  Data Vector into which the data should be read.  The vector is
        resized as necessary.
    */
    void read(std::vector<T>& data)
    {
        data.resize(m_xTotalSize * m_yTotalSize);

        for (int y = 0; y < m_yBlockCnt; ++y)
            for (int x = 0; x < m_xBlockCnt; ++x)
                readBlock(x, y, data);
    }

    /*
       Read a block's worth of data.

       Read data into a block-sized buffer.  Then copy data from the
       block buffer into the destination array at the proper location to
       build a complete raster.

       \param x  X coordinate of the block to read.
       \param y  Y coordinate of the block to read.
       \param data  Pointer to the data vector that contains the
          raster information.
     */
    void readBlock(int x, int y, std::vector<T>& data)
    {
        uint8_t *buf = reinterpret_cast<uint8_t *>(m_buf.data());
        if (m_band->ReadBlock(x, y, buf) != CPLE_None)
            throw CantReadBlock();

        int xWidth = 0;
        if (x == m_xBlockCnt - 1)
            xWidth = m_xTotalSize % m_xBlockSize;
        if (xWidth == 0)
            xWidth = m_xBlockSize;

        int yHeight = 0;
        if (y == m_yBlockCnt - 1)
            yHeight = m_yTotalSize % m_yBlockSize;
        if (yHeight == 0)
            yHeight = m_yBlockSize;

        auto bi = m_buf.begin();
        // Go through rows copying data.  Increment the buffer pointer by the
        // width of the row.
        for (int row = 0; row < yHeight; ++row)
        {
            int wholeRows = m_xTotalSize * ((y * m_yBlockSize) + row);
            int partialRows = m_xBlockSize * x;
            auto di = data.begin() + (wholeRows + partialRows);
            std::copy(bi, bi + xWidth, di);

            // Blocks are always full-sized, even if only some of the data
            // is valid, so we use m_xBlockSize instead of xWidth.
            bi += m_xBlockSize;
        }
    }

    /*
      Write linearized data pointed to by \c data into the band.

      \param data  Pointer to beginning of band
    */
    template <typename SOURCE_ITER>
    void write(SOURCE_ITER si, ITER_VAL<SOURCE_ITER> srcNoData)
    {
        for (int y = 0; y < m_yBlockCnt; ++y)
            for (int x = 0; x < m_xBlockCnt; ++x)
                writeBlock(x, y, si, srcNoData);
    }

    T getNoData() const
    {
        // The destination nodata value was set when the raster was opened.
        // Make sure it's valid for the band type and convert.
        T t;
        if (!Utils::numericCast(m_dstNoData, t))
        {
            throw CantWriteBlock("Invalid nodata value " +
                Utils::toString(m_dstNoData) + " for output data_type '" +
                Utils::typeidName<T>() + "'.");
        }
        return t;
    }

    template <typename SOURCE_ITER>
    void writeBlock(int x, int y, SOURCE_ITER sourceBegin,
        ITER_VAL<SOURCE_ITER> srcNoData)
    {
        int xWidth = 0;
        if (x == m_xBlockCnt - 1)
            xWidth = m_xTotalSize % m_xBlockSize;
        if (xWidth == 0)
            xWidth = m_xBlockSize;

        int yHeight = 0;
        if (y == m_yBlockCnt - 1)
            yHeight = m_yTotalSize % m_yBlockSize;
       if (yHeight == 0)
            yHeight = m_yBlockSize;

        T dstNoData = getNoData();
        auto di = m_buf.begin();
        // Go through rows copying data.  Increment the destination iterator
        // by the width of the row.
        for (int row = 0; row < yHeight; ++row)
        {
            // Find the offset location in the source container.
            int wholeRowElts = m_xTotalSize * ((y * m_yBlockSize) + row);
            int partialRowElts = m_xBlockSize * x;

            auto si = sourceBegin + (wholeRowElts + partialRowElts);
            std::transform(si, si + m_xBlockSize, di,
                [srcNoData, dstNoData](ITER_VAL<SOURCE_ITER> s){
                    T t;

                    if (srcNoData == s ||
                        (std::isnan(srcNoData) && std::isnan(s)))
                        t = dstNoData;
                    else
                    {
                        if (!Utils::numericCast(s, t))
                        {
                        throw CantWriteBlock("Unable to convert data for "
                            "raster type as requested: " + Utils::toString(s) +
                            " -> " + Utils::typeidName<T>());
                        }
                    }
                    return t;
                });

            // Blocks are always full-sized, even if only some of the data
            // is valid, so we use m_xBlockSize instead of xWidth.
            di += m_xBlockSize;
        }
        if (m_band->WriteBlock(x, y, m_buf.data()) != CPLE_None)
            throw CantWriteBlock();
    }
};

class PDAL_DLL Raster
{
public:
    /**
      Constructor.

      \param filename  Filename of raster file.
      \param drivername  Optional name of driver to use to open raster file.
    */
    Raster(const std::string& filename, const std::string& drivername = "");

    /**
      Constructor.

      \param filename  Filename of raster file.
      \param drivername  Optional name of driver to use to open raster file.
      \param srs  SpatialReference of the raster.
      \param pixelToPos  Transformation matrix to convert raster positions to
        geolocations.
    */
    Raster(const std::string& filename, const std::string& drivername,
        const SpatialReference& srs, const std::array<double, 6> pixelToPos);


    /**
      Destructor.  Closes an open raster.
    */
    ~Raster();

    /**
      Open raster file for reading.
    */
    GDALError open();

    /**
      Open a raster for writing.

      \param width  Width of the raster in cells (X direction)
      \param height  Height of the raster in cells (Y direction)
      \param numBands  Number of bands in the raster.
      \param type  Datatype (int, float, etc.) of the raster data.
      \param noData  Value that indiciates no data in the output raster cell.
      \param options  GDAL driver options.
    */
    GDALError open(int width, int height, int numBands, Dimension::Type type,
        double noData, StringList options = StringList());

    /**
      Close the raster and deallocate the underlying dataset.
    */
    void close();

    /**
      Read an entire raster band (layer) into a vector.

      \param band  Vector into which data will be read.  The vector will
        be resized appropriately to hold the data.
      \param nBand  Band number to read.  Band numbers start at 1.
      \return Error code or GDALError::None.
    */
    template<typename T>
    GDALError readBand(std::vector<T>& points, int nBand)
    {
        try
        {
            Band<T>(m_ds, nBand).read(points);
        }
        catch (InvalidBand)
        {
            std::stringstream oss;
            oss << "Unable to get band " << nBand << " from raster '" <<
                m_filename << "'.";
            m_errorMsg = oss.str();
            return GDALError::InvalidBand;
        }
        catch (CantReadBlock)
        {
            std::ostringstream oss;
            oss << "Unable to read block for for raster '" << m_filename <<
                "'.";
            m_errorMsg = oss.str();
            return GDALError::CantReadBlock;
        }
        return GDALError::None;
    }

    /**
      Write an entire raster band (layer) into raster to be written with GDAL.

      \param data  Linearized raster data to be written.
      \param noData  No-data value in the source data.
      \param nBand  Band number to write.
      \param name  Name of the raster band.
    */
    template<typename SOURCE_ITER>
    GDALError writeBand(SOURCE_ITER si, ITER_VAL<SOURCE_ITER> srcNoData,
        int nBand, const std::string& name = "")
    {
        try
        {
            switch(m_bandType)
            {
                case Dimension::Type::Unsigned8:
                    Band<uint8_t>(m_ds, nBand, m_dstNoData, name).
                        write(si, srcNoData);
                    break;
                case Dimension::Type::Signed8:
                    Band<int8_t>(m_ds, nBand, m_dstNoData, name).
                        write(si, srcNoData);
                    break;
                case Dimension::Type::Unsigned16:
                    Band<uint16_t>(m_ds, nBand, m_dstNoData, name).
                        write(si, srcNoData);
                    break;
                case Dimension::Type::Signed16:
                    Band<int16_t>(m_ds, nBand, m_dstNoData, name).
                        write(si, srcNoData);
                    break;
                case Dimension::Type::Unsigned32:
                    Band<uint32_t>(m_ds, nBand, m_dstNoData, name).
                        write(si, srcNoData);
                    break;
                case Dimension::Type::Signed32:
                    Band<int32_t>(m_ds, nBand, m_dstNoData, name).
                        write(si, srcNoData);
                    break;
                case Dimension::Type::Unsigned64:
                    Band<uint64_t>(m_ds, nBand, m_dstNoData, name).
                        write(si, srcNoData);
                    break;
                case Dimension::Type::Signed64:
                    Band<int64_t>(m_ds, nBand, m_dstNoData, name).
                        write(si, srcNoData);
                    break;
                case Dimension::Type::Float:
                    Band<float>(m_ds, nBand, m_dstNoData, name).
                        write(si, srcNoData);
                    break;
                case Dimension::Type::Double:
                    Band<double>(m_ds, nBand, m_dstNoData, name).
                        write(si, srcNoData);
                    break;
                case Dimension::Type::None:
                    throw CantWriteBlock();
            }
        }
        catch (CantWriteBlock err)
        {
            std::ostringstream oss;
            oss << "Unable to write block for for raster '" << m_filename <<
                "'.";
            if (err.what.size())
                oss << "\n" << err.what;
            m_errorMsg = oss.str();
            return GDALError::CantWriteBlock;
        }
        return GDALError::None;
    }

    /**
      Read the data for each band at x/y into a vector of doubles.  x and y
      are transformed to the basis of the raster before the data is fetched.

      \param x  X position to read
      \param y  Y position to read
      \param data  Vector in which to store data.
    */
    GDALError read(double x, double y, std::vector<double>& data);

    /**
      Get a vector of dimensions that map to the bands of a raster.
    */
    std::vector<pdal::Dimension::Type> getPDALDimensionTypes() const
       { return m_types; }

    /**
      Convert an X/Y raster position into geo-located position using the
      raster's transformation matrix.

      \param column  raster column whose position should be calculated
      \param row  raster row whose position should be calculated
      \param[out]  Array containing the geo-located position of the pixel.
    */
    void pixelToCoord(int column, int row, std::array<double, 2>& output) const;

    /**
      Get the spatial reference associated with the raster.

      \return  The associated spatial reference.
    */
    SpatialReference getSpatialRef() const;

    /**
      Get the most recent error message.
    */
    std::string errorMsg() const
        { return m_errorMsg; }

    /**
      Get the number of bands in the raster.

      \return  The number of bands in the raster.
    */
    int bandCount() const
        { return m_numBands; }

    /**
      Get the width of the raster (X direction)
    */
    int width() const
        { return m_width; }

    /**
      Get the height of the raster (Y direction)
    */
    int height() const
        { return m_height; }

    std::string const& filename() { return m_filename; }

private:
    std::string m_filename;

    int m_width;
    int m_height;
    int m_numBands;
    std::string m_drivername;
    std::array<double, 6> m_forwardTransform;
    std::array<double, 6> m_inverseTransform;
    SpatialReference m_srs;
    GDALDataset *m_ds;
    Dimension::Type m_bandType;
    double m_dstNoData;

    std::string m_errorMsg;
    mutable std::vector<pdal::Dimension::Type> m_types;
    std::vector<std::array<double, 2>> m_block_sizes;

    GDALError validateType(Dimension::Type& type, GDALDriver *driver);
    bool getPixelAndLinePosition(double x, double y,
        int32_t& pixel, int32_t& line);
    GDALError computePDALDimensionTypes();
};

} // namespace gdal


PDAL_DLL std::string transformWkt(std::string wkt, const SpatialReference& from,
    const SpatialReference& to);

} // namespace pdal