/usr/include/pdal/GDALUtils.hpp is in libpdal-dev 1.6.0-1build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 | /******************************************************************************
* Copyright (c) 2011, Michael P. Gerlek (mpg@flaxen.com)
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following
* conditions are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Hobu, Inc. or Flaxen Geo Consulting nor the
* names of its contributors may be used to endorse or promote
* products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
****************************************************************************/
#pragma once
#include <pdal/pdal_internal.hpp>
#include <pdal/Dimension.hpp>
#include <pdal/SpatialReference.hpp>
#include <pdal/util/Bounds.hpp>
#include <pdal/Log.hpp>
#include <array>
#include <functional>
#include <mutex>
#include <sstream>
#include <vector>
#include <cpl_conv.h>
#include <gdal_priv.h>
#include <ogr_api.h>
#include <ogr_srs_api.h>
namespace pdal
{
class SpatialReference;
namespace gdal
{
template<typename ITER>
using ITER_VAL = typename std::iterator_traits<ITER>::value_type;
PDAL_DLL void registerDrivers();
PDAL_DLL void unregisterDrivers();
PDAL_DLL bool reprojectBounds(BOX3D& box, const std::string& srcSrs,
const std::string& dstSrs);
PDAL_DLL bool reprojectBounds(BOX2D& box, const std::string& srcSrs,
const std::string& dstSrs);
PDAL_DLL bool reprojectPoint(double& x, double& y, double& z,
const std::string& srcSrs, const std::string& dstSrs);
PDAL_DLL std::string lastError();
typedef std::shared_ptr<void> RefPtr;
class SpatialRef
{
public:
SpatialRef()
{ newRef(OSRNewSpatialReference("")); }
SpatialRef(const std::string& srs)
{
newRef(OSRNewSpatialReference(""));
OSRSetFromUserInput(get(), srs.data());
}
void setFromLayer(OGRLayerH layer)
{
if (layer)
{
OGRSpatialReferenceH s = OGR_L_GetSpatialRef(layer);
if (s)
{
OGRSpatialReferenceH clone = OSRClone(s);
newRef(clone);
}
}
}
operator bool () const
{ return m_ref.get() != NULL; }
OGRSpatialReferenceH get() const
{ return m_ref.get(); }
std::string wkt() const
{
char *pszWKT = NULL;
OSRExportToWkt(m_ref.get(), &pszWKT);
bool valid = (bool)*pszWKT;
std::string output(pszWKT);
CPLFree(pszWKT);
return output;
}
bool empty() const
{
return wkt().empty();
}
private:
void newRef(void *v)
{
m_ref = RefPtr(v, [](void* t){ OSRDestroySpatialReference(t); } );
}
RefPtr m_ref;
};
class Geometry
{
public:
Geometry()
{}
Geometry(const std::string& wkt, const SpatialRef& srs)
{
OGRGeometryH geom;
char *p_wkt = const_cast<char *>(wkt.data());
OGRSpatialReferenceH ref = srs.get();
if (srs.empty())
{
ref = NULL;
}
bool isJson = wkt.find("{") != wkt.npos ||
wkt.find("}") != wkt.npos;
if (!isJson)
{
OGRErr err = OGR_G_CreateFromWkt(&p_wkt, ref, &geom);
if (err != OGRERR_NONE)
{
std::cout << "wkt: " << wkt << std::endl;
std::ostringstream oss;
oss << "unable to construct OGR Geometry";
oss << " '" << CPLGetLastErrorMsg() << "'";
throw pdal::pdal_error(oss.str());
}
}
else
{
// Assume it is GeoJSON and try constructing from that
geom = OGR_G_CreateGeometryFromJson(p_wkt);
if (!geom)
throw pdal_error("Unable to create geometry from "
"input GeoJSON");
OGR_G_AssignSpatialReference(geom, ref);
}
newRef(geom);
}
operator bool () const
{ return get() != NULL; }
OGRGeometryH get() const
{ return m_ref.get(); }
void transform(const SpatialRef& out_srs)
{
OGR_G_TransformTo(m_ref.get(), out_srs.get());
}
std::string wkt() const
{
char* p_wkt = 0;
OGRErr err = OGR_G_ExportToWkt(m_ref.get(), &p_wkt);
return std::string(p_wkt);
}
void setFromGeometry(OGRGeometryH geom)
{
if (geom)
newRef(OGR_G_Clone(geom));
}
private:
void newRef(void *v)
{
m_ref = RefPtr(v, [](void* t){ OGR_G_DestroyGeometry(t); } );
}
RefPtr m_ref;
};
// This is a little confusing because we have a singleton error handler with
// a single log pointer, but we set the log pointer/debug state as if we
// were taking advantage of GDAL's thread-specific error handing.
//
// We lock the log/debug so that it doesn't
// get changed while another thread is using or setting.
class PDAL_DLL ErrorHandler
{
public:
/**
Get the singleton error handler.
\return Reference to the error handler.
*/
static ErrorHandler& getGlobalErrorHandler();
/**
Set the log and debug state of the error handler. This is
a convenience and is equivalent to calling setLog() and setDebug().
\param log Log to write to.
\param doDebug Debug state of the error handler.
*/
void set(LogPtr log, bool doDebug);
/**
Set the log to which error/debug messages should be written.
\param log Log to write to.
*/
void setLog(LogPtr log);
/**
Set the debug state of the error handler. Setting to true will also
set the environment variable CPL_DEBUG to "ON". This will force GDAL
to emit debug error messages which will be logged by this handler.
\param doDebug Whether we're setting or clearing the debug state.
*/
void setDebug(bool doDebug);
/**
Get the last error and clear the error last error value.
\return The last error number.
*/
int errorNum();
static void CPL_STDCALL trampoline(::CPLErr code, int num, char const* msg)
{
ErrorHandler::getGlobalErrorHandler().handle(code, num, msg);
}
ErrorHandler();
private:
void handle(::CPLErr level, int num, const char *msg);
private:
std::mutex m_mutex;
bool m_debug;
pdal::LogPtr m_log;
int m_errorNum;
bool m_cplSet;
};
class ErrorHandlerSuspender
{
public:
ErrorHandlerSuspender()
{ CPLPushErrorHandler(CPLQuietErrorHandler); }
~ErrorHandlerSuspender()
{ (void)CPLPopErrorHandler(); }
};
enum class GDALError
{
None,
NotOpen,
CantOpen,
NoData,
InvalidBand,
NoTransform,
NotInvertible,
CantReadBlock,
InvalidDriver,
DriverNotFound,
CantCreate,
InvalidOption,
CantWriteBlock,
InvalidType
};
struct InvalidBand {};
struct CantReadBlock {};
struct CantWriteBlock
{
CantWriteBlock()
{}
CantWriteBlock(const std::string& w) : what(w)
{}
std::string what;
};
class Raster;
/*
Slight abstraction of a GDAL raster band.
*/
template<typename T>
class Band
{
friend class Raster;
private:
GDALDataset *m_ds; /// Dataset handle
int m_bandNum; /// Band number. Band numbers start at 1.
double m_dstNoData; /// Output no data value.
GDALRasterBand *m_band; /// Band handle
int m_xTotalSize, m_yTotalSize; /// Total size (x and y) of the raster
int m_xBlockSize, m_yBlockSize; /// Size (x and y) of blocks
int m_xBlockCnt, m_yBlockCnt; /// Number of blocks in each direction
std::vector<T> m_buf; /// Block read buffer.
std::string m_name; /// Band name.
/**
Create an object for reading a band of a GDAL dataset.
\param ds GDAL dataset handle.
\param dstNoData The no data value to be used when writing the band.
\param bandNum Band number (1-indexed).
\param name Name of the raster band.
*/
Band(GDALDataset *ds, int bandNum, double dstNoData = -9999.0,
const std::string& name = "") :
m_ds(ds), m_bandNum(bandNum), m_dstNoData(dstNoData),
m_xBlockSize(0), m_yBlockSize(0)
{
m_band = m_ds->GetRasterBand(m_bandNum);
if (!m_band)
throw InvalidBand();
if (name.size())
{
m_band->SetDescription(name.data());
// We don't care about offset, but this sets the flag to indicate
// that the metadata has changed.
m_band->SetOffset(m_band->GetOffset(NULL) + .00001);
m_band->SetOffset(m_band->GetOffset(NULL) - .00001);
}
m_xTotalSize = m_band->GetXSize();
m_yTotalSize = m_band->GetYSize();
m_band->GetBlockSize(&m_xBlockSize, &m_yBlockSize);
m_buf.resize(m_xBlockSize * m_yBlockSize);
m_xBlockCnt = ((m_xTotalSize - 1) / m_xBlockSize) + 1;
m_yBlockCnt = ((m_yTotalSize - 1) / m_yBlockSize) + 1;
}
/*
Read the band into the vector. Reads a block at a time. Each
block is either fully populated with data or a partial block.
Partial blocks appear at the X and Y margins when the total size in
the doesn't divide evenly by the block size for both the X and Y
dimensions.
\param Data Vector into which the data should be read. The vector is
resized as necessary.
*/
void read(std::vector<T>& data)
{
data.resize(m_xTotalSize * m_yTotalSize);
for (int y = 0; y < m_yBlockCnt; ++y)
for (int x = 0; x < m_xBlockCnt; ++x)
readBlock(x, y, data);
}
/*
Read a block's worth of data.
Read data into a block-sized buffer. Then copy data from the
block buffer into the destination array at the proper location to
build a complete raster.
\param x X coordinate of the block to read.
\param y Y coordinate of the block to read.
\param data Pointer to the data vector that contains the
raster information.
*/
void readBlock(int x, int y, std::vector<T>& data)
{
uint8_t *buf = reinterpret_cast<uint8_t *>(m_buf.data());
if (m_band->ReadBlock(x, y, buf) != CPLE_None)
throw CantReadBlock();
int xWidth = 0;
if (x == m_xBlockCnt - 1)
xWidth = m_xTotalSize % m_xBlockSize;
if (xWidth == 0)
xWidth = m_xBlockSize;
int yHeight = 0;
if (y == m_yBlockCnt - 1)
yHeight = m_yTotalSize % m_yBlockSize;
if (yHeight == 0)
yHeight = m_yBlockSize;
auto bi = m_buf.begin();
// Go through rows copying data. Increment the buffer pointer by the
// width of the row.
for (int row = 0; row < yHeight; ++row)
{
int wholeRows = m_xTotalSize * ((y * m_yBlockSize) + row);
int partialRows = m_xBlockSize * x;
auto di = data.begin() + (wholeRows + partialRows);
std::copy(bi, bi + xWidth, di);
// Blocks are always full-sized, even if only some of the data
// is valid, so we use m_xBlockSize instead of xWidth.
bi += m_xBlockSize;
}
}
/*
Write linearized data pointed to by \c data into the band.
\param data Pointer to beginning of band
*/
template <typename SOURCE_ITER>
void write(SOURCE_ITER si, ITER_VAL<SOURCE_ITER> srcNoData)
{
for (int y = 0; y < m_yBlockCnt; ++y)
for (int x = 0; x < m_xBlockCnt; ++x)
writeBlock(x, y, si, srcNoData);
}
T getNoData() const
{
// The destination nodata value was set when the raster was opened.
// Make sure it's valid for the band type and convert.
T t;
if (!Utils::numericCast(m_dstNoData, t))
{
throw CantWriteBlock("Invalid nodata value " +
Utils::toString(m_dstNoData) + " for output data_type '" +
Utils::typeidName<T>() + "'.");
}
return t;
}
template <typename SOURCE_ITER>
void writeBlock(int x, int y, SOURCE_ITER sourceBegin,
ITER_VAL<SOURCE_ITER> srcNoData)
{
int xWidth = 0;
if (x == m_xBlockCnt - 1)
xWidth = m_xTotalSize % m_xBlockSize;
if (xWidth == 0)
xWidth = m_xBlockSize;
int yHeight = 0;
if (y == m_yBlockCnt - 1)
yHeight = m_yTotalSize % m_yBlockSize;
if (yHeight == 0)
yHeight = m_yBlockSize;
T dstNoData = getNoData();
auto di = m_buf.begin();
// Go through rows copying data. Increment the destination iterator
// by the width of the row.
for (int row = 0; row < yHeight; ++row)
{
// Find the offset location in the source container.
int wholeRowElts = m_xTotalSize * ((y * m_yBlockSize) + row);
int partialRowElts = m_xBlockSize * x;
auto si = sourceBegin + (wholeRowElts + partialRowElts);
std::transform(si, si + m_xBlockSize, di,
[srcNoData, dstNoData](ITER_VAL<SOURCE_ITER> s){
T t;
if (srcNoData == s ||
(std::isnan(srcNoData) && std::isnan(s)))
t = dstNoData;
else
{
if (!Utils::numericCast(s, t))
{
throw CantWriteBlock("Unable to convert data for "
"raster type as requested: " + Utils::toString(s) +
" -> " + Utils::typeidName<T>());
}
}
return t;
});
// Blocks are always full-sized, even if only some of the data
// is valid, so we use m_xBlockSize instead of xWidth.
di += m_xBlockSize;
}
if (m_band->WriteBlock(x, y, m_buf.data()) != CPLE_None)
throw CantWriteBlock();
}
};
class PDAL_DLL Raster
{
public:
/**
Constructor.
\param filename Filename of raster file.
\param drivername Optional name of driver to use to open raster file.
*/
Raster(const std::string& filename, const std::string& drivername = "");
/**
Constructor.
\param filename Filename of raster file.
\param drivername Optional name of driver to use to open raster file.
\param srs SpatialReference of the raster.
\param pixelToPos Transformation matrix to convert raster positions to
geolocations.
*/
Raster(const std::string& filename, const std::string& drivername,
const SpatialReference& srs, const std::array<double, 6> pixelToPos);
/**
Destructor. Closes an open raster.
*/
~Raster();
/**
Open raster file for reading.
*/
GDALError open();
/**
Open a raster for writing.
\param width Width of the raster in cells (X direction)
\param height Height of the raster in cells (Y direction)
\param numBands Number of bands in the raster.
\param type Datatype (int, float, etc.) of the raster data.
\param noData Value that indiciates no data in the output raster cell.
\param options GDAL driver options.
*/
GDALError open(int width, int height, int numBands, Dimension::Type type,
double noData, StringList options = StringList());
/**
Close the raster and deallocate the underlying dataset.
*/
void close();
/**
Read an entire raster band (layer) into a vector.
\param band Vector into which data will be read. The vector will
be resized appropriately to hold the data.
\param nBand Band number to read. Band numbers start at 1.
\return Error code or GDALError::None.
*/
template<typename T>
GDALError readBand(std::vector<T>& points, int nBand)
{
try
{
Band<T>(m_ds, nBand).read(points);
}
catch (InvalidBand)
{
std::stringstream oss;
oss << "Unable to get band " << nBand << " from raster '" <<
m_filename << "'.";
m_errorMsg = oss.str();
return GDALError::InvalidBand;
}
catch (CantReadBlock)
{
std::ostringstream oss;
oss << "Unable to read block for for raster '" << m_filename <<
"'.";
m_errorMsg = oss.str();
return GDALError::CantReadBlock;
}
return GDALError::None;
}
/**
Write an entire raster band (layer) into raster to be written with GDAL.
\param data Linearized raster data to be written.
\param noData No-data value in the source data.
\param nBand Band number to write.
\param name Name of the raster band.
*/
template<typename SOURCE_ITER>
GDALError writeBand(SOURCE_ITER si, ITER_VAL<SOURCE_ITER> srcNoData,
int nBand, const std::string& name = "")
{
try
{
switch(m_bandType)
{
case Dimension::Type::Unsigned8:
Band<uint8_t>(m_ds, nBand, m_dstNoData, name).
write(si, srcNoData);
break;
case Dimension::Type::Signed8:
Band<int8_t>(m_ds, nBand, m_dstNoData, name).
write(si, srcNoData);
break;
case Dimension::Type::Unsigned16:
Band<uint16_t>(m_ds, nBand, m_dstNoData, name).
write(si, srcNoData);
break;
case Dimension::Type::Signed16:
Band<int16_t>(m_ds, nBand, m_dstNoData, name).
write(si, srcNoData);
break;
case Dimension::Type::Unsigned32:
Band<uint32_t>(m_ds, nBand, m_dstNoData, name).
write(si, srcNoData);
break;
case Dimension::Type::Signed32:
Band<int32_t>(m_ds, nBand, m_dstNoData, name).
write(si, srcNoData);
break;
case Dimension::Type::Unsigned64:
Band<uint64_t>(m_ds, nBand, m_dstNoData, name).
write(si, srcNoData);
break;
case Dimension::Type::Signed64:
Band<int64_t>(m_ds, nBand, m_dstNoData, name).
write(si, srcNoData);
break;
case Dimension::Type::Float:
Band<float>(m_ds, nBand, m_dstNoData, name).
write(si, srcNoData);
break;
case Dimension::Type::Double:
Band<double>(m_ds, nBand, m_dstNoData, name).
write(si, srcNoData);
break;
case Dimension::Type::None:
throw CantWriteBlock();
}
}
catch (CantWriteBlock err)
{
std::ostringstream oss;
oss << "Unable to write block for for raster '" << m_filename <<
"'.";
if (err.what.size())
oss << "\n" << err.what;
m_errorMsg = oss.str();
return GDALError::CantWriteBlock;
}
return GDALError::None;
}
/**
Read the data for each band at x/y into a vector of doubles. x and y
are transformed to the basis of the raster before the data is fetched.
\param x X position to read
\param y Y position to read
\param data Vector in which to store data.
*/
GDALError read(double x, double y, std::vector<double>& data);
/**
Get a vector of dimensions that map to the bands of a raster.
*/
std::vector<pdal::Dimension::Type> getPDALDimensionTypes() const
{ return m_types; }
/**
Convert an X/Y raster position into geo-located position using the
raster's transformation matrix.
\param column raster column whose position should be calculated
\param row raster row whose position should be calculated
\param[out] Array containing the geo-located position of the pixel.
*/
void pixelToCoord(int column, int row, std::array<double, 2>& output) const;
/**
Get the spatial reference associated with the raster.
\return The associated spatial reference.
*/
SpatialReference getSpatialRef() const;
/**
Get the most recent error message.
*/
std::string errorMsg() const
{ return m_errorMsg; }
/**
Get the number of bands in the raster.
\return The number of bands in the raster.
*/
int bandCount() const
{ return m_numBands; }
/**
Get the width of the raster (X direction)
*/
int width() const
{ return m_width; }
/**
Get the height of the raster (Y direction)
*/
int height() const
{ return m_height; }
std::string const& filename() { return m_filename; }
private:
std::string m_filename;
int m_width;
int m_height;
int m_numBands;
std::string m_drivername;
std::array<double, 6> m_forwardTransform;
std::array<double, 6> m_inverseTransform;
SpatialReference m_srs;
GDALDataset *m_ds;
Dimension::Type m_bandType;
double m_dstNoData;
std::string m_errorMsg;
mutable std::vector<pdal::Dimension::Type> m_types;
std::vector<std::array<double, 2>> m_block_sizes;
GDALError validateType(Dimension::Type& type, GDALDriver *driver);
bool getPixelAndLinePosition(double x, double y,
int32_t& pixel, int32_t& line);
GDALError computePDALDimensionTypes();
};
} // namespace gdal
PDAL_DLL std::string transformWkt(std::string wkt, const SpatialReference& from,
const SpatialReference& to);
} // namespace pdal
|