/usr/include/ITK-4.12/vnl/vnl_math.h is in libinsighttoolkit4-dev 4.12.2-dfsg1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 | // This is core/vnl/vnl_math.h
#ifndef vnl_math_h_
#define vnl_math_h_
#ifdef VCL_NEEDS_PRAGMA_INTERFACE
#pragma interface
#endif
//:
// \file
// \brief Namespace with standard math functions
//
// The vnl_math namespace provides a standard set of the simple mathematical
// functions (min, max, sqr, sgn, rnd, abs), and some predefined constants
// such as pi and e, which are not defined by the ANSI C++ standard.
//
// There are complex versions defined in vnl_complex.h
//
// That's right, M_PI is nonstandard!
//
// Aside from e, pi and their associates the namespace also defines eps,
// the IEEE double machine precision. This is the smallest number
// eps such that 1+eps != 1.
//
// The operations are overloaded for int, float and double arguments,
// which in combination with inlining can make them more efficient than
// their counterparts in the standard C library.
//
// \author Andrew W. Fitzgibbon, Oxford RRG
// \date July 13, 1996
//
// \verbatim
// Modifications
// 21 May 1998 AWF Removed conditional VCL_IMPLEMENT_STATIC_CONSTS, sometimes gcc needs them.
// LSB (Modifications) 23 Jan 2001 Documentation tidied
// Peter Vanroose - 7 Sep 2002 - maxdouble etc. replaced by vnl_numeric_traits<T>::maxval
// Amitha Perera - 13 Sep 2002 - make constant initialization standards compliant.
// Peter Vanroose -22 Oct 2012 - was a class, now is a namespace
// also renamed functions vnl_math_isnan etc. to vnl_math::isnan
// Peter Vanroose -15 Nov 2012 - the deprecated vnl_math_* #defines are now only available when VNL_CONFIG_LEGACY_METHODS==1
// \endverbatim
#include <cmath>
#include <algorithm>
#include <vcl_compiler.h>
#include "dll.h"
#include <vxl_config.h>
#include <vnl/vnl_config.h> // for VNL_CONFIG_ENABLE_SSE2_ROUNDING
#include <vcl_config_compiler.h> //for VXL_CONSTEXPR_VAR definition
#include "vnl/vnl_export.h"
#ifdef VNL_CHECK_FPU_ROUNDING_MODE
# include <vcl_cassert.h>
#endif
#if VNL_CONFIG_LEGACY_METHODS
# include <vcl_deprecated.h>
#endif
// Figure out when the fast implementation can be used
#if VNL_CONFIG_ENABLE_SSE2_ROUNDING && defined(__SSE2__)
# if !VXL_HAS_EMMINTRIN_H
# error "Required file emmintrin.h for SSE2 not found"
# else
# include <emmintrin.h> // sse 2 intrinsics
# define USE_SSE2_IMPL 1
# endif
#else
# define USE_SSE2_IMPL 0
#endif
// Turn on fast impl when using GCC on Intel-based machines with the following exception:
#if defined(__GNUC__) && ((defined(__i386__) || defined(__i386) || defined(__x86_64__) || defined(__x86_64)))
# define GCC_USE_FAST_IMPL 1
#else
# define GCC_USE_FAST_IMPL 0
#endif
// Turn on fast impl when using msvc on 32 bits windows
#if defined(VCL_VC) && !defined(_WIN64)
# define VC_USE_FAST_IMPL 1
#else
# define VC_USE_FAST_IMPL 0
#endif
//: Type-accessible infinities for use in templates.
template <class T> VNL_TEMPLATE_EXPORT T vnl_huge_val(T);
extern VNL_EXPORT long double vnl_huge_val(long double);
extern VNL_EXPORT double vnl_huge_val(double);
extern VNL_EXPORT float vnl_huge_val(float);
extern VNL_EXPORT long int vnl_huge_val(long int);
extern VNL_EXPORT int vnl_huge_val(int);
extern VNL_EXPORT short vnl_huge_val(short);
extern VNL_EXPORT char vnl_huge_val(char);
//: real numerical constants
// Strictly speaking, the static declaration of the constant variables is
// redundant with the implicit behavior in C++ of objects declared const
// as defined at:
// "C++98 7.1.1/6: ...Objects declared const and not explicitly declared
// extern have internal linkage."
//
// Explicit use of the static keyword is used to make the code easier to
// understand.
namespace vnl_math
{
//: pi, e and all that
static VXL_CONSTEXPR_VAR double e = 2.71828182845904523536;
static VXL_CONSTEXPR_VAR double log2e = 1.44269504088896340736;
static VXL_CONSTEXPR_VAR double log10e = 0.43429448190325182765;
static VXL_CONSTEXPR_VAR double ln2 = 0.69314718055994530942;
static VXL_CONSTEXPR_VAR double ln10 = 2.30258509299404568402;
static VXL_CONSTEXPR_VAR double pi = 3.14159265358979323846;
static VXL_CONSTEXPR_VAR double twopi = 6.28318530717958647692;
static VXL_CONSTEXPR_VAR double pi_over_2 = 1.57079632679489661923;
static VXL_CONSTEXPR_VAR double pi_over_4 = 0.78539816339744830962;
static VXL_CONSTEXPR_VAR double pi_over_180 = 0.01745329251994329577;
static VXL_CONSTEXPR_VAR double one_over_pi = 0.31830988618379067154;
static VXL_CONSTEXPR_VAR double two_over_pi = 0.63661977236758134308;
static VXL_CONSTEXPR_VAR double deg_per_rad = 57.2957795130823208772;
static VXL_CONSTEXPR_VAR double sqrt2pi = 2.50662827463100024161;
static VXL_CONSTEXPR_VAR double two_over_sqrtpi = 1.12837916709551257390;
static VXL_CONSTEXPR_VAR double one_over_sqrt2pi = 0.39894228040143267794;
static VXL_CONSTEXPR_VAR double sqrt2 = 1.41421356237309504880;
static VXL_CONSTEXPR_VAR double sqrt1_2 = 0.70710678118654752440;
static VXL_CONSTEXPR_VAR double sqrt1_3 = 0.57735026918962573106;
static VXL_CONSTEXPR_VAR double euler = 0.57721566490153286061;
//: IEEE double machine precision
static VXL_CONSTEXPR_VAR double eps = 2.2204460492503131e-16;
static VXL_CONSTEXPR_VAR double sqrteps = 1.490116119384766e-08;
//: IEEE single machine precision
static VXL_CONSTEXPR_VAR float float_eps = 1.192092896e-07f;
static VXL_CONSTEXPR_VAR float float_sqrteps = 3.4526698307e-4f;
//: Convert an angle to [0, 2Pi) range
VNL_EXPORT double angle_0_to_2pi(double angle);
//: Convert an angle to [-Pi, Pi) range
VNL_EXPORT double angle_minuspi_to_pi(double angle);
}
// We do not want to make assumptions about unknown types that happen
// to have conversions to one of the fundamental types. The templated
// versions of isnan, isinf, and isfinite below serve as catch-alls to
// cause linker errors if these functions are invoked with an unknown
// type. However, due to compiler bugs, the templates sometimes match
// too often (see documentation of VCL_TEMPLATE_MATCHES_TOO_OFTEN) and
// are selected over reference-binding overloads like those in
// vnl_rational.h. We add the catch-all templates only if the
// compiler does not have this bug. -- Brad King
// Note that the three template functions below should not be declared "inline"
// since that would override the non-inline specialisations. - PVr.
//
namespace vnl_math
{
#if VXL_FULLCXX11SUPPORT
// Prefer to use perfect forwarding to the std library if C++11 features are available.
//http://stackoverflow.com/questions/9864125/c11-how-to-alias-a-function
template <typename... Args>
auto isnan(Args&&... args) -> decltype(std::isnan(std::forward<Args>(args)...)) {
return std::isnan(std::forward<Args>(args)...);
}
template <typename... Args>
auto isinf(Args&&... args) -> decltype(std::isinf(std::forward<Args>(args)...)) {
return std::isinf(std::forward<Args>(args)...);
}
template <typename... Args>
auto isfinite(Args&&... args) -> decltype(std::isfinite(std::forward<Args>(args)...)) {
return std::isfinite(std::forward<Args>(args)...);
}
template <typename... Args>
auto isnormal(Args&&... args) -> decltype(std::isnormal(std::forward<Args>(args)...)) {
return std::isnormal(std::forward<Args>(args)...);
}
template <typename... Args>
auto max(Args&&... args) -> decltype(std::max(std::forward<Args>(args)...)) {
return std::max(std::forward<Args>(args)...);
}
template <typename... Args>
auto min(Args&&... args) -> decltype(std::min(std::forward<Args>(args)...)) {
return std::min(std::forward<Args>(args)...);
}
//cbrt is defined in C++11
template <typename... Args>
auto cuberoot(Args&&... args) -> decltype(std::cbrt(std::forward<Args>(args)...)) {
return std::cbrt(std::forward<Args>(args)...);
}
template <typename... Args>
auto hypot(Args&&... args) -> decltype(std::hypot(std::forward<Args>(args)...)) {
return std::hypot(std::forward<Args>(args)...);
}
#else
// isnan
inline bool isnan(char) { return false; }
inline bool isnan(short) { return false; }
inline bool isnan(int) { return false; }
inline bool isnan(long) { return false; }
inline bool isnan(signed char) { return false; }
inline bool isnan(unsigned char) { return false; }
inline bool isnan(unsigned short) { return false; }
inline bool isnan(unsigned int) { return false; }
inline bool isnan(unsigned long) { return false; }
#if VCL_HAS_LONG_LONG
inline bool isnan(long long) { return false; }
inline bool isnan(unsigned long long) { return false; }
#endif
VNL_EXPORT bool isnan(float);
VNL_EXPORT bool isnan(double);
VNL_EXPORT bool isnan(long double);
#if !VCL_TEMPLATE_MATCHES_TOO_OFTEN
template <class T> VNL_TEMPLATE_EXPORT bool isnan(T);
#endif
// isinf
inline bool isinf(char) { return false; }
inline bool isinf(short) { return false; }
inline bool isinf(int) { return false; }
inline bool isinf(long) { return false; }
inline bool isinf(signed char) { return false; }
inline bool isinf(unsigned char) { return false; }
inline bool isinf(unsigned short) { return false; }
inline bool isinf(unsigned int) { return false; }
inline bool isinf(unsigned long) { return false; }
#if VCL_HAS_LONG_LONG
inline bool isinf(long long) { return false; }
inline bool isinf(unsigned long long) { return false; }
#endif
VNL_EXPORT bool isinf(float);
VNL_EXPORT bool isinf(double);
VNL_EXPORT bool isinf(long double);
#if !VCL_TEMPLATE_MATCHES_TOO_OFTEN
template <class T> VNL_TEMPLATE_EXPORT bool isinf(T);
#endif
// isfinite
inline bool isfinite(char) { return true; }
inline bool isfinite(short) { return true; }
inline bool isfinite(int) { return true; }
inline bool isfinite(long) { return true; }
inline bool isfinite(signed char) { return true; }
inline bool isfinite(unsigned char) { return true; }
inline bool isfinite(unsigned short) { return true; }
inline bool isfinite(unsigned int) { return true; }
inline bool isfinite(unsigned long) { return true; }
#if VCL_HAS_LONG_LONG
inline bool isfinite(long long) { return true; }
inline bool isfinite(unsigned long long) { return true; }
#endif
VNL_EXPORT bool isfinite(float);
VNL_EXPORT bool isfinite(double);
VNL_EXPORT bool isfinite(long double);
#if !VCL_TEMPLATE_MATCHES_TOO_OFTEN
template <class T> VNL_TEMPLATE_EXPORT bool isfinite(T);
#endif
// If we must use windows.h, we should at least sanitise it first
#ifndef NOMINMAX
#define NOMINMAX
#endif
#ifdef max
#undef max
#endif
#ifdef min
#undef min
#endif
// max
template<class T> VNL_TEMPLATE_EXPORT
const T& max( const T& x, const T& y) { return std::max(x,y); }
template<class T> VNL_TEMPLATE_EXPORT
const T& min( const T& x, const T& y) { return std::min(x,y); }
// cuberoot
inline float cuberoot(const float &a) { return float((a<0) ? -std::exp(std::log(-a)/3) : std::exp(std::log(a)/3)); }
inline double cuberoot(const double &a) { return (a<0) ? -std::exp(std::log(-a)/3) : std::exp(std::log(a)/3); }
// hypotenuse
extern VNL_EXPORT int hypot(int x, int y);
extern VNL_EXPORT float hypot(float x, float y);
extern VNL_EXPORT double hypot(double x, double y);
extern VNL_EXPORT long double hypot(long double x, long double y);
#endif //If not C++11 features
#if USE_SSE2_IMPL // Fast sse2 implementation
// rnd_halfinttoeven -- round towards nearest integer
// halfway cases are rounded towards the nearest even integer, e.g.
// rnd_halfinttoeven( 1.5) == 2
// rnd_halfinttoeven(-1.5) == -2
// rnd_halfinttoeven( 2.5) == 2
// rnd_halfinttoeven( 3.5) == 4
//
// We assume that the rounding mode is not changed from the default
// one (or at least that it is always restored to the default one).
inline int rnd_halfinttoeven(float x)
{
# if defined(VNL_CHECK_FPU_ROUNDING_MODE) && defined(__GNUC__)
assert(fegetround()==FE_TONEAREST);
# endif
return _mm_cvtss_si32(_mm_set_ss(x));
}
inline int rnd_halfinttoeven(double x)
{
# if defined(VNL_CHECK_FPU_ROUNDING_MODE) && defined(__GNUC__)
assert(fegetround()==FE_TONEAREST);
# endif
return _mm_cvtsd_si32(_mm_set_sd(x));
}
#elif GCC_USE_FAST_IMPL // Fast gcc asm implementation
inline int rnd_halfinttoeven(float x)
{
# ifdef VNL_CHECK_FPU_ROUNDING_MODE
assert(fegetround()==FE_TONEAREST);
# endif
int r;
__asm__ __volatile__ ("fistpl %0" : "=m"(r) : "t"(x) : "st");
return r;
}
inline int rnd_halfinttoeven(double x)
{
# ifdef VNL_CHECK_FPU_ROUNDING_MODE
assert(fegetround()==FE_TONEAREST);
# endif
int r;
__asm__ __volatile__ ("fistpl %0" : "=m"(r) : "t"(x) : "st");
return r;
}
#elif VC_USE_FAST_IMPL // Fast msvc asm implementation
inline int rnd_halfinttoeven(float x)
{
int r;
__asm {
fld x
fistp r
}
return r;
}
inline int rnd_halfinttoeven(double x)
{
int r;
__asm {
fld x
fistp r
}
return r;
}
#else // Vanilla implementation
inline int rnd_halfinttoeven(float x)
{
if (x>=0.f)
{
x+=0.5f;
const int r = static_cast<int>(x);
if ( x != static_cast<float>(r) ) return r;
return 2*(r/2);
}
else
{
x-=0.5f;
const int r = static_cast<int>(x);
if ( x != static_cast<float>(r) ) return r;
return 2*(r/2);
}
}
inline int rnd_halfinttoeven(double x)
{
if (x>=0.)
{
x+=0.5;
const int r = static_cast<int>(x);
if ( x != static_cast<double>(r) ) return r;
return 2*(r/2);
}
else
{
x-=0.5;
const int r = static_cast<int>(x);
if ( x != static_cast<double>(r) ) return r;
return 2*(r/2);
}
}
#endif
#if USE_SSE2_IMPL || GCC_USE_FAST_IMPL || VC_USE_FAST_IMPL
// rnd_halfintup -- round towards nearest integer
// halfway cases are rounded upward, e.g.
// rnd_halfintup( 1.5) == 2
// rnd_halfintup(-1.5) == -1
// rnd_halfintup( 2.5) == 3
//
// Be careful: argument absolute value must be less than INT_MAX/2
// for rnd_halfintup to be guaranteed to work.
// We also assume that the rounding mode is not changed from the default
// one (or at least that it is always restored to the default one).
inline int rnd_halfintup(float x) { return rnd_halfinttoeven(2*x+0.5f)>>1; }
inline int rnd_halfintup(double x) { return rnd_halfinttoeven(2*x+0.5)>>1; }
#else // Vanilla implementation
inline int rnd_halfintup(float x)
{
x+=0.5f;
return static_cast<int>(x>=0.f?x:(x==static_cast<int>(x)?x:x-1.f));
}
inline int rnd_halfintup(double x)
{
x+=0.5;
return static_cast<int>(x>=0.?x:(x==static_cast<int>(x)?x:x-1.));
}
#endif
#if USE_SSE2_IMPL || GCC_USE_FAST_IMPL || VC_USE_FAST_IMPL
// rnd -- round towards nearest integer
// halfway cases such as 0.5 may be rounded either up or down
// so as to maximize the efficiency, e.g.
// rnd_halfinttoeven( 1.5) == 1 or 2
// rnd_halfinttoeven(-1.5) == -2 or -1
// rnd_halfinttoeven( 2.5) == 2 or 3
// rnd_halfinttoeven( 3.5) == 3 or 4
//
// We assume that the rounding mode is not changed from the default
// one (or at least that it is always restored to the default one).
inline int rnd(float x) { return rnd_halfinttoeven(x); }
inline int rnd(double x) { return rnd_halfinttoeven(x); }
#else // Vanilla implementation
inline int rnd(float x) { return x>=0.f?static_cast<int>(x+.5f):static_cast<int>(x-.5f); }
inline int rnd(double x) { return x>=0.0?static_cast<int>(x+0.5):static_cast<int>(x-0.5); }
#endif
#if USE_SSE2_IMPL // Fast sse2 implementation
// floor -- round towards minus infinity
//
// Be careful: argument absolute value must be less than INT_MAX/2
// for floor to be guaranteed to work.
// We also assume that the rounding mode is not changed from the default
// one (or at least that it is always restored to the default one).
inline int floor(float x)
{
# if defined(VNL_CHECK_FPU_ROUNDING_MODE) && defined(__GNUC__)
assert(fegetround()==FE_TONEAREST);
# endif
return _mm_cvtss_si32(_mm_set_ss(2*x-.5f))>>1;
}
inline int floor(double x)
{
# if defined(VNL_CHECK_FPU_ROUNDING_MODE) && defined(__GNUC__)
assert(fegetround()==FE_TONEAREST);
# endif
return _mm_cvtsd_si32(_mm_set_sd(2*x-.5))>>1;
}
#elif GCC_USE_FAST_IMPL // Fast gcc asm implementation
inline int floor(float x)
{
# ifdef VNL_CHECK_FPU_ROUNDING_MODE
assert(fegetround()==FE_TONEAREST);
# endif
int r;
x = 2*x-.5f;
__asm__ __volatile__ ("fistpl %0" : "=m"(r) : "t"(x) : "st");
return r>>1;
}
inline int floor(double x)
{
# ifdef VNL_CHECK_FPU_ROUNDING_MODE
assert(fegetround()==FE_TONEAREST);
# endif
int r;
x = 2*x-.5;
__asm__ __volatile__ ("fistpl %0" : "=m"(r) : "t"(x) : "st");
return r>>1;
}
#elif VC_USE_FAST_IMPL // Fast msvc asm implementation
inline int floor(float x)
{
int r;
x = 2*x-.5f;
__asm {
fld x
fistp r
}
return r>>1;
}
inline int floor(double x)
{
int r;
x = 2*x-.5;
__asm {
fld x
fistp r
}
return r>>1;
}
#else // Vanilla implementation
inline int floor(float x)
{
return static_cast<int>(x>=0.f?x:(x==static_cast<int>(x)?x:x-1.f));
}
inline int floor(double x)
{
return static_cast<int>(x>=0.0?x:(x==static_cast<int>(x)?x:x-1.0));
}
#endif
#if USE_SSE2_IMPL // Fast sse2 implementation
// ceil -- round towards plus infinity
//
// Be careful: argument absolute value must be less than INT_MAX/2
// for ceil to be guaranteed to work.
// We also assume that the rounding mode is not changed from the default
// one (or at least that it is always restored to the default one).
inline int ceil(float x)
{
# if defined(VNL_CHECK_FPU_ROUNDING_MODE) && defined(__GNUC__)
assert(fegetround()==FE_TONEAREST);
# endif
return -(_mm_cvtss_si32(_mm_set_ss(-.5f-2*x))>>1);
}
inline int ceil(double x)
{
# if defined(VNL_CHECK_FPU_ROUNDING_MODE) && defined(__GNUC__)
assert(fegetround()==FE_TONEAREST);
# endif
return -(_mm_cvtsd_si32(_mm_set_sd(-.5-2*x))>>1);
}
#elif GCC_USE_FAST_IMPL // Fast gcc asm implementation
inline int ceil(float x)
{
# ifdef VNL_CHECK_FPU_ROUNDING_MODE
assert(fegetround()==FE_TONEAREST);
# endif
int r;
x = -.5f-2*x;
__asm__ __volatile__ ("fistpl %0" : "=m"(r) : "t"(x) : "st");
return -(r>>1);
}
inline int ceil(double x)
{
# ifdef VNL_CHECK_FPU_ROUNDING_MODE
assert(fegetround()==FE_TONEAREST);
# endif
int r;
x = -.5-2*x;
__asm__ __volatile__ ("fistpl %0" : "=m"(r) : "t"(x) : "st");
return -(r>>1);
}
#elif VC_USE_FAST_IMPL // Fast msvc asm implementation
inline int ceil(float x)
{
int r;
x = -.5f-2*x;
__asm {
fld x
fistp r
}
return -(r>>1);
}
inline int ceil(double x)
{
int r;
x = -.5-2*x;
__asm {
fld x
fistp r
}
return -(r>>1);
}
#else // Vanilla implementation
inline int ceil(float x)
{
return static_cast<int>(x<0.f?x:(x==static_cast<int>(x)?x:x+1.f));
}
inline int ceil(double x)
{
return static_cast<int>(x<0.0?x:(x==static_cast<int>(x)?x:x+1.0));
}
#endif
// abs
inline bool abs(bool x) { return x; }
inline unsigned char abs(unsigned char x) { return x; }
inline unsigned char abs(signed char x) { return x < 0 ? static_cast<unsigned char>(-x) : x; }
inline unsigned char abs(char x) { return static_cast<unsigned char>(x); }
inline unsigned short abs(short x) { return x < 0 ? static_cast<unsigned short>(-x) : x; }
inline unsigned short abs(unsigned short x) { return x; }
inline unsigned int abs(int x) { return x < 0 ? -x : x; }
inline unsigned int abs(unsigned int x) { return x; }
inline unsigned long abs(long x) { return x < 0L ? -x : x; }
inline unsigned long abs(unsigned long x) { return x; }
#if VCL_HAS_LONG_LONG
inline unsigned long long abs(long long x) { return x < 0LL ? -x : x; }
inline unsigned long long abs(unsigned long long x) { return x; }
#endif
inline float abs(float x) { return x < 0.0f ? -x : x; }
inline double abs(double x) { return x < 0.0 ? -x : x; }
inline long double abs(long double x) { return x < 0.0 ? -x : x; }
// sqr (square)
inline bool sqr(bool x) { return x; }
inline int sqr(int x) { return x*x; }
inline unsigned int sqr(unsigned int x) { return x*x; }
inline long sqr(long x) { return x*x; }
inline unsigned long sqr(unsigned long x) { return x*x; }
#if VCL_HAS_LONG_LONG
inline long long sqr(long long x) { return x*x; }
inline unsigned long long sqr(unsigned long long x) { return x*x; }
#endif
inline float sqr(float x) { return x*x; }
inline double sqr(double x) { return x*x; }
// cube
inline bool cube(bool x) { return x; }
inline int cube(int x) { return x*x*x; }
inline unsigned int cube(unsigned int x) { return x*x*x; }
inline long cube(long x) { return x*x*x; }
inline unsigned long cube(unsigned long x) { return x*x*x; }
#if VCL_HAS_LONG_LONG
inline long long cube(long long x) { return x*x*x; }
inline unsigned long long cube(unsigned long long x) { return x*x*x; }
#endif
inline float cube(float x) { return x*x*x; }
inline double cube(double x) { return x*x*x; }
// sgn (sign in -1, 0, +1)
inline int sgn(int x) { return x?((x>0)?1:-1):0; }
inline int sgn(long x) { return x?((x>0)?1:-1):0; }
#if VCL_HAS_LONG_LONG
inline int sgn(long long x) { return x?((x>0)?1:-1):0; }
#endif
inline int sgn(float x) { return (x != 0)?((x>0)?1:-1):0; }
inline int sgn(double x) { return (x != 0)?((x>0)?1:-1):0; }
// sgn0 (sign in -1, +1 only, useful for reals)
inline int sgn0(int x) { return (x>=0)?1:-1; }
inline int sgn0(long x) { return (x>=0)?1:-1; }
#if VCL_HAS_LONG_LONG
inline int sgn0(long long x) { return (x>=0)?1:-1; }
#endif
inline int sgn0(float x) { return (x>=0)?1:-1; }
inline int sgn0(double x) { return (x>=0)?1:-1; }
// squared_magnitude
inline unsigned int squared_magnitude(char x) { return int(x)*int(x); }
inline unsigned int squared_magnitude(unsigned char x) { return int(x)*int(x); }
inline unsigned int squared_magnitude(int x) { return x*x; }
inline unsigned int squared_magnitude(unsigned int x) { return x*x; }
inline unsigned long squared_magnitude(long x) { return x*x; }
inline unsigned long squared_magnitude(unsigned long x) { return x*x; }
#if VCL_HAS_LONG_LONG
inline unsigned long long squared_magnitude(long long x) { return x*x; }
inline unsigned long long squared_magnitude(unsigned long long x) { return x*x; }
#endif
inline float squared_magnitude(float x) { return x*x; }
inline double squared_magnitude(double x) { return x*x; }
inline long double squared_magnitude(long double x) { return x*x; }
// truncated remainder
inline int remainder_truncated(int x, int y) { return x % y; }
inline unsigned int remainder_truncated(unsigned int x, unsigned int y) { return x % y; }
inline long remainder_truncated(long x, long y) { return x % y; }
inline unsigned long remainder_truncated(unsigned long x, unsigned long y) { return x % y; }
inline long long remainder_truncated(long long x, long long y) { return x % y; }
inline unsigned long long remainder_truncated(unsigned long long x, unsigned long long y) { return x % y; }
inline float remainder_truncated(float x, float y) { return fmod(x,y); }
inline double remainder_truncated(double x, double y) { return fmod(x,y); }
inline long double remainder_truncated(long double x, long double y) { return fmod(x,y); }
// floored remainder
inline int remainder_floored(int x, int y) { return ((x % y) + y) % y; }
inline unsigned int remainder_floored(unsigned int x, unsigned int y) { return x % y; }
inline long remainder_floored(long x, long y) { return ((x % y) + y) % y; }
inline unsigned long remainder_floored(unsigned long x, unsigned long y) { return x % y; }
inline long long remainder_floored(long long x, long long y) { return ((x % y) + y) % y; }
inline unsigned long long remainder_floored(unsigned long long x, unsigned long long y) { return x % y; }
inline float remainder_floored(float x, float y) { return fmod(fmod(x,y)+y,y); }
inline double remainder_floored(double x, double y) { return fmod(fmod(x,y)+y,y); }
inline long double remainder_floored(long double x, long double y) { return fmod(fmod(x,y)+y,y); }
} // end of namespace vnl_math
#if VNL_CONFIG_LEGACY_METHODS // Legacy definitions, for backward compatibility; deprecated!
#define vnl_math_isnan vnl_math::isnan
#define vnl_math_isinf vnl_math::isinf
#define vnl_math_isfinite vnl_math::isfinite
#define vnl_math_rnd_halfinttoeven vnl_math::rnd_halfinttoeven
#define vnl_math_rnd_halfintup vnl_math::rnd_halfintup
#define vnl_math_rnd vnl_math::rnd
#define vnl_math_floor vnl_math::floor
#define vnl_math_ceil vnl_math::ceil
#define vnl_math_abs vnl_math::abs
#define vnl_math_max vnl_math::max
#define vnl_math_min vnl_math::min
#define vnl_math_sqr vnl_math::sqr
#define vnl_math_cube vnl_math::cube
#define vnl_math_sgn vnl_math::sgn
#define vnl_math_sgn0 vnl_math::sgn0
#define vnl_math_squared_magnitude vnl_math::squared_magnitude
#define vnl_math_cuberoot vnl_math::cuberoot
#define vnl_math_hypot vnl_math::hypot
#endif // VNL_CONFIG_LEGACY_METHODS
#endif // vnl_math_h_
|