/usr/include/ITK-4.12/itkVariableLengthVector.h is in libinsighttoolkit4-dev 4.12.2-dfsg1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkVariableLengthVector_h
#define itkVariableLengthVector_h
#include <cassert>
#include <algorithm>
#include "itkNumericTraits.h"
#include "itkStaticAssert.h"
#include "itkMetaProgrammingLibrary.h"
#include "itkEnableIf.h"
#include "itkIsBaseOf.h"
#include "itkIsNumber.h"
#include "itkPromoteType.h"
#include "itkBinaryOperationConcept.h"
namespace itk
{
template <typename TExpr1, typename TExpr2, typename TBinaryOp>
struct VariableLengthVectorExpression;
/** \class VariableLengthVector
* \brief Represents an array whose length can be defined at run-time.
*
* This class is templated over the data type. This data-type is meant
* to be a scalar, such as float, double etc...
*
* \note
* ITK itself provides several classes that can serve as \c Arrays.
* \li FixedArray - Compile time fixed length arrays that's intended to
* represent an enumerated collection of \c n entities.
*
* \li Array - Run time resizeable array that is intended to hold a
* collection of \c n entities
*
* \li Vector - Compile time fixed length array that is intended to hold
* a collection of \c n data types. A vector usually has a mathematical meaning.
* It should only be used when mathematical operations such as addition,
* multiplication by a scalar, product etc make sense.
*
* \li VariableLengthVector - Run time array that is intended to hold a collection
* of scalar data types. Again, it should be used only when mathematical
* operations on it are relevant. If not, use an Array.
*
* \li Point - Represents the spatial coordinates of a spatial location. Operators
* on Point reflect geometrical concepts.
*
* \par For the reasons listed above, you cannot instantiate
* \code VariableLengthVector< bool > \endcode.
*
* \par
* Design Considerations: We do not derive from \c vnl_vector to avoid being
* limited by the explicit template instantiations of vnl_vector and other
* hacks that vnl folks have been forced to use.
*
* \note
* This work is part of the National Alliance for Medical Image Computing
* (NAMIC), funded by the National Institutes of Health through the NIH Roadmap
* for Medical Research, Grant U54 EB005149.
*
* \sa CovariantVector
* \sa SymmetricSecondRankTensor
* \sa RGBPixel
* \sa DiffusionTensor3D
* \ingroup DataRepresentation
* \ingroup ITKCommon
*
* \wiki
* \wikiexample{SimpleOperations/VariableLengthVector,Variable length vector}
* \endwiki
*
* \invariant If \c m_LetArrayManageMemory is true, \c m_Data is deletable
* (whether it's null or pointing to something with no elements. i.e. \c
* m_NumElements may be 0 and yet \c m_Data may be not null.)
*/
template< typename TValue >
class ITK_TEMPLATE_EXPORT VariableLengthVector
{
public:
/**\name Policies
* The following Policies will be used by \c itk::VariableLengthVector::SetSize
*/
//@{
/** \c VariableLengthVector empty base-class for allocation policies.
* All Allocation Policies are expected to inherit from this empty base
* class.
*
* \sa \c itk::VariableLengthVector::SetSize
* \sa \c NeverReallocate
* \sa \c ShrinkToFit
* \sa \c DontShrinkToFit
* \ingroup ITKCommon
* \ingroup DataRepresentation
*/
struct AllocateRootPolicy {};
/** \c VariableLengthVector Allocation Policy: Always reallocate memory.
* This policy, when used from \c VariableLengthVector::SetSize(), always
* implies that the previous internal buffer will be reallocated. Even if
* enough memory was available.
* \return true (always)
*
* \sa \c itk::VariableLengthVector::SetSize
* \sa \c NeverReallocate
* \sa \c ShrinkToFit
* \sa \c DontShrinkToFit
* \ingroup ITKCommon
* \ingroup DataRepresentation
*/
struct AlwaysReallocate : AllocateRootPolicy
{
bool operator()(unsigned int itkNotUsed(newSize), unsigned int itkNotUsed(oldSize)) const ITK_NOEXCEPT
{
return true;
}
};
/** \c VariableLengthVector Allocation Policy: Never reallocate memory.
* This policy, when used from \c VariableLengthVector::SetSize(), always
* implies that the previous internal buffer will be kept. Even if not enough
* memory was available.
*
* The typical use case of this policy is to make sure a \c
* VariableLengthVector is not a proxy object.
* \return false (always)
*
* \pre <tt>oldSize == newSize</tt>, checked by assertion
*
* \sa \c itk::VariableLengthVector::SetSize
* \sa \c AlwaysReallocate
* \sa \c ShrinkToFit
* \sa \c DontShrinkToFit
* \ingroup ITKCommon
* \ingroup DataRepresentation
*/
struct NeverReallocate : AllocateRootPolicy
{
bool operator()(unsigned int newSize, unsigned int oldSize) const ITK_NOEXCEPT
{
(void) newSize;
(void) oldSize;
itkAssertInDebugAndIgnoreInReleaseMacro(newSize == oldSize && "SetSize is expected to never change the VariableLengthVector size...");
return true;
}
};
/** \c VariableLengthVector Allocation Policy: reallocate memory only when
* size changes.
* This policy, when used from \c VariableLengthVector::SetSize(), will
* reallocate the internal buffer only if the size of the \c
* VariableLengthVector changes.
* \return whether \c newSize differs from \c oldSize
*
* \note The name is related to \c DontShrinkToFit reallocation policy that
* will avoid reallocating when enough memory has already been allocated.
*
* \sa \c itk::VariableLengthVector::SetSize
* \sa \c AlwaysReallocate
* \sa \c NeverReallocate
* \sa \c DontShrinkToFit
* \ingroup ITKCommon
* \ingroup DataRepresentation
*/
struct ShrinkToFit : AllocateRootPolicy
{
bool operator()(unsigned int newSize, unsigned int oldSize) const ITK_NOEXCEPT
{ return newSize != oldSize; }
};
/** \c VariableLengthVector Allocation Policy: reallocate memory only when
* size increases.
* This policy, when used from \c VariableLengthVector::SetSize(), will
* reallocate the internal buffer only if the new size requested for the \c
* VariableLengthVector increases.
* \return whether \c newSize is bigger than \c oldSize
*
* \warning Unlike classes like \c std::vector<>, \c VariableLengthVector has
* no capacity concept: the size of the \c VariableLengthVector is its
* capacity. However, this will help a class without capacity to emulate one.
* The consequence is that reallocations will occur with scenarios such as
* the following:
\code
VariableLengthVector<...> v;
v.SetSize(42);
v.SetSize(12); // no reallocation
v.SetSize(42); // pointless reallocation (given this policy)
\endcode
*
* \sa \c itk::VariableLengthVector::SetSize
* \sa \c AlwaysReallocate
* \sa \c NeverReallocate
* \sa \c ShrinkToFit
* \ingroup ITKCommon
* \ingroup DataRepresentation
*/
struct DontShrinkToFit : AllocateRootPolicy
{
bool operator()(unsigned int newSize, unsigned int oldSize) const ITK_NOEXCEPT
{ return newSize > oldSize; }
};
/** \c VariableLengthVector empty base-class for values Keeping policies.
* All Values Keeping Policies are expected to inherit from this empty base
* class.
*
* The preconditions common to all sub classes are:
* \pre This policy is only meant to be executed in case of reallocation,
* i.e. \c oldBuffer and \c newBuffer are expected to differ (unchecked).
* \pre This presumes \c TValue assignment is a \c noexcept operation.
* \pre \c newBuffer is not null (pre-conditions imposed by some
* implementations of \c std::copy())
* \pre `[oldBuffer, oldBuffer+oldSize)` is a valid range
*
* \sa \c itk::VariableLengthVector::SetSize
* \sa \c KeepOldValues
* \sa \c DumpOldValues
* \ingroup ITKCommon
* \ingroup DataRepresentation
*/
struct KeepValuesRootPolicy {};
/** \c VariableLengthVector Invariability Policy: Always keep old values.
* This policy, when used from \c VariableLengthVector::SetSize(), always
* copies <tt>min(newSize,oldSize)</tt> previous values from the previous
* internal buffer to the new one
*
* \pre This policy is only meant to be executed in case of reallocation,
* i.e. \c oldBuffer and \c newBuffer are expected to differ (unchecked).
* \pre This presumes \c TValue assignment is a \c noexcept operation.
* \pre \c newBuffer is not null (pre-conditions imposed by some
* implementations of \c std::copy())
* \pre `[oldBuffer, oldBuffer+oldSize)` is a valid range
*
* This behaviour mimics \c std::vector<>::resize() behaviour. However, it
* makes to sense from \c VariableLengthVector::operator=()
*
* \sa \c itk::VariableLengthVector::SetSize
* \sa \c KeepValuesRootPolicy
* \sa \c DumpOldValues
* \ingroup ITKCommon
* \ingroup DataRepresentation
*/
struct KeepOldValues : KeepValuesRootPolicy
{
template <typename TValue2>
void operator()(
unsigned int newSize, unsigned int oldSize,
TValue2 * oldBuffer, TValue2 * newBuffer) const ITK_NOEXCEPT
{
itkAssertInDebugAndIgnoreInReleaseMacro(newBuffer);
const std::size_t nb = std::min(newSize, oldSize);
itkAssertInDebugAndIgnoreInReleaseMacro(nb == 0 || (nb > 0 && oldBuffer != ITK_NULLPTR));
std::copy(oldBuffer, oldBuffer+nb, newBuffer);
}
};
/** \c VariableLengthVector Invariability Policy: Never keep old values.
* This policy, when used from \c VariableLengthVector::SetSize(), is a no-op.
* It won't try to copy previous values from the previous internal buffer to
* the new one.
*
* \pre This policy is only meant to be executed in case of reallocation,
* i.e. \c oldBuffer and \c newBuffer are expected to differ (unchecked).
*
* This behaviour particularly fits \c VariableLengthVector::operator=()
*
* \sa \c itk::VariableLengthVector::SetSize
* \sa \c KeepValuesRootPolicy
* \sa \c DumpOldValues
* \ingroup ITKCommon
* \ingroup DataRepresentation
*/
struct DumpOldValues : KeepValuesRootPolicy
{
template <typename TValue2>
void operator()(
unsigned int itkNotUsed(newSize), unsigned int itkNotUsed(oldSize),
TValue2 * itkNotUsed(oldBuffer), TValue2 * itkNotUsed(newBuffer)) const ITK_NOEXCEPT
{
}
};
//@}
/** The element type stored at each location in the Array. */
typedef TValue ValueType;
typedef TValue ComponentType;
typedef typename NumericTraits< ValueType >::RealType RealValueType;
typedef VariableLengthVector Self;
/** Typedef used to indicate the number of elements in the vector */
typedef unsigned int ElementIdentifier;
/** Default constructor. It is created with an empty array
* it has to be allocated later by assignment, \c SetSize() or \c Reserve().
* \post \c m_Data is null
* \post \c m_NumElements is 0
* \post \c m_LetArrayManageMemory is true
*/
VariableLengthVector();
/** Constructor with size.
* Size can only be changed by assignment, \c SetSize() or \c Reserve().
* \post \c m_Data is not null and points to an array of \c m_NumElements,
* even if \c m_NumElements is 0
* \post values are left uninitialized.
* \post \c m_NumElements is \c dimension
* \post \c m_LetArrayManageMemory is true
*/
explicit VariableLengthVector(unsigned int dimension);
/** Constructor that initializes array with contents from a user supplied
* buffer.
* The pointer to the buffer and the length is specified. By default, the
* array does not manage the memory of the buffer. It merely points to that
* location and it is the user's responsibility to delete it.
* If \c LetArrayManageMemory is true, then this class will free the
* memory when this object is destroyed.
*
* \post `m_Data == data`
* \post values are left unmodified
* \post `m_NumElements == sz`
* \post `m_LetArrayManageMemory == LetArrayManageMemory`
*/
VariableLengthVector(ValueType *data, unsigned int sz,
bool LetArrayManageMemory = false);
/** Constructor that initializes array with contents from a user supplied
* buffer.
* The pointer to the buffer and the length is specified. By default, the
* array does not manage the memory of the buffer. It merely points to that
* location and it is the user's responsibility to delete it.
* If \c LetArrayManageMemory is true, then this class will free the
* memory when this object is destroyed.
*
* \warning This overload receives a non-modiable array, and yet it will let
* the end-user try to modify it through \c VariableLengthVector interface.
* Use this constructor with care as this may lead to undefined behaviour.
* Prefer using `VariableLengthVector<const TValue>` instead of
* `VariableLengthVector<TValue>` in case we which to use this constructor.
*
* \post `m_Data == data`
* \post values are left unmodified
* \post `m_NumElements == sz`
* \post `m_LetArrayManageMemory == LetArrayManageMemory`
*/
VariableLengthVector(const ValueType *data, unsigned int sz,
bool LetArrayManageMemory = false);
/** Copy constructor. The reason why the copy constructor and the assignment
* operator are templated is that it will allow implicit casts to be
* performed. For instance:
\code
VariableLengthVector< int > vI;
VariableLengthVector< float > vF( vI );
or for instance vF = static_cast< VariableLengthVector< float > >( vI );
\endcode
* \note However that static casting in this way will imply the allocation of
* a temporary \c VariableLengthVector. Prefer to directly use the assignment
* converting operator in code where uses of \c static_cast<> would be
* required.
*
* \post \c m_Data is not null and points to an array of \c m_NumElements,
* if \c m_NumElements is 0, otherwise it's null.
* \post values are left uninitialized.
* \post \c m_NumElements is \c v.GetSize()
* \post \c m_LetArrayManageMemory is true
*/
template< typename T >
VariableLengthVector(const VariableLengthVector< T > & v)
{
m_NumElements = v.Size();
m_LetArrayManageMemory = true;
if (m_NumElements != 0)
{
m_Data = this->AllocateElements(m_NumElements);
itkAssertInDebugAndIgnoreInReleaseMacro(m_Data != ITK_NULLPTR);
for ( ElementIdentifier i = 0; i < m_NumElements; ++i )
{
this->m_Data[i] = static_cast< ValueType >( v[i] );
}
}
else
{
m_Data = ITK_NULLPTR;
}
}
/** Copy constructor. Overrides the default non-templated copy constructor
* that the compiler provides.
* \post \c m_Data is not null and points to an array of \c m_NumElements,
* if \c m_NumElements is 0, otherwise it's null.
* \post values are left uninitialized.
* \post \c m_NumElements is \c v.GetSize()
* \post \c m_LetArrayManageMemory is true
*/
VariableLengthVector(const VariableLengthVector< TValue > & v);
/** Swaps two \c VariableLengthVector 's.
* \pre Expects either none of the \c VariableLengthVector to act as a proxy,
* or both, checked with an assertion.
* \post \c *this and \c old contents are swapped.
* \param[in,out] v other \c VariableLengthVector to be swapped with.
* \throw None
* \sa \c itk::swap()
*/
void Swap(Self & v) ITK_NOEXCEPT
{
itkAssertInDebugAndIgnoreInReleaseMacro(m_LetArrayManageMemory == v.m_LetArrayManageMemory);
using std::swap;
swap(v.m_Data , m_Data);
swap(v.m_NumElements, m_NumElements);
}
#if defined(ITK_HAS_CXX11_RVREF)
/** C++11 Move Constructor.
* \post \c v is destructible and assignable.
* \post `m_NumElements == 0`
* \post `m_LetArrayManageMemory == true`
* \post `m_Data == nullptr`
* \post Built object contains old \c v data.
*/
VariableLengthVector(Self && v) ITK_NOEXCEPT;
/** C++11 Move assignement operator.
* \pre \c v shall not be the same as the current object
* \post \c v is destructible and assignable.
* \post `m_NumElements == 0`
* \post `m_LetArrayManageMemory == true`
* \post `m_Data == nullptr`
* \post Current object contains old \c v data.
*/
Self & operator=(Self && v) ITK_NOEXCEPT;
#endif
/** Constructor from an Expression Template vector.
* \tparam TExpr1 Type of the left sub-expression
* \tparam TExpr2 Type of the right sub-expression
* \tparam TBinaryOp Binary Operation to apply to both sub-expressions.
* \param[in] rhs Non evaluated Expression Template.
*
* Builds the new \c VariableLengthVector with an expression template. The
* code loops over all components from the template expression, and evaluates
* them on the fly to fill the content of the new vector.
*
* \post \c m_Data is not null and points to an array of \c m_NumElements,
* even if \c m_NumElements is 0
* \post `*this == rhs`
* \post \c m_NumElements is \c rhs.GetSize()
* \post \c m_LetArrayManageMemory is true
*/
template <typename TExpr1, typename TExpr2, typename TBinaryOp>
VariableLengthVector(VariableLengthVectorExpression<TExpr1, TExpr2, TBinaryOp> const& rhs);
/** Assignment from an Expression Template vector.
* \tparam TExpr1 Type of the left sub-expression
* \tparam TExpr2 Type of the right sub-expression
* \tparam TBinaryOp Binary Operation to apply to both sub-expressions.
* \param[in] rhs Non evaluated Expression Template.
*
* Resets the new \c VariableLengthVector with an expression template. The
* code loops over all components from the template expression, and evaluates
* them on the fly to fill the content of the current vector.
*
* \post if called on a \c VariableLengthVector proxy, the referenced values
* are left unchanged.
* \post \c m_Data is not null and points to an array of \c m_NumElements,
* if \c m_NumElements is not 0. \c m_Data may be null otherwise (an empty
* vector is assigned into another empty vector)
* \post \c m_LetArrayManageMemory is true
* \post `GetSize() == rhs.GetSize()`
* \post `*this == rhs`
*/
template <typename TExpr1, typename TExpr2, typename TBinaryOp>
Self & operator=(VariableLengthVectorExpression<TExpr1, TExpr2, TBinaryOp> const& rhs);
/** Set the all the elements of the array to the specified value.
* \pre This function may be called on empty vectors, it's a no-op.
*/
void Fill(TValue const & v) ITK_NOEXCEPT;
/** Converting assignment operator.
* \note Ensures a <em>String Exception Guarantee</em>: resists to
* self-assignment, and no changes are made if memory cannot be allocated to
* hold the new elements. This presumes \c TValue assignment is a \c
* noexcept operation.
*
* \post if called on a \c VariableLengthVector proxy, the referenced values
* are left unchanged.
* \post \c m_LetArrayManageMemory is true
* \post <tt>GetSize() == v.GetSize()</tt>, modulo precision
* \post <tt>*this == v</tt>
*/
template< typename T >
Self & operator=(const VariableLengthVector< T > & v)
{
// No self assignment test is done. Indeed:
// - the operator already resists self assignment through a strong exception
// guarantee
// - the test becomes a pessimization as we never write
// VLV<const TValue> vcref(v.GetDataPointer(), v.GetSize());
// ...;
// v = vcref;
ElementIdentifier const N = v.Size();
this->SetSize( N, DontShrinkToFit(), DumpOldValues() );
for ( ElementIdentifier i = 0; i < N; ++i )
{
this->m_Data[i] = static_cast< ValueType >( v[i] );
}
return *this;
}
/** Copy-Assignment operator.
* \note Ensures a <em>String Exception Guarantee</em>: resists to
* self-assignment, and no changes are made if memory cannot be allocated to
* hold the new elements. This is expecting \c TValue assignment is a \c
* noexcept operation.
*
* \post if called on a \c VariableLengthVector proxy, the referenced values
* are left unchanged.
* \post \c m_Data is not null and points to an array of \c m_NumElements,
* if \c m_NumElements is not 0. \c m_Data may be null otherwise (an empty
* vector is assigned into another empty vector)
* \post \c m_LetArrayManageMemory is true
* \post <tt>GetSize() == v.GetSize()</tt>
* \post <tt>*this == v</tt>
*/
Self & operator=(const Self & v);
/** Fast Assignment.
* \pre \c m_LetArrayManageMemory is true: the \c VariableLengthVector is not
* a proxy, checked with an assertion. Call <tt>SetSize(GetSize(), NeverReallocate(),
* DumpOldValues())</tt> to ensure a vector is not a proxy anymore.
* \pre current size is identical to the one from the right hand side
* operand, checked with an assertion.
* \pre Doesn't not support empty vectors.
*/
Self & FastAssign(const Self & v) ITK_NOEXCEPT;
/** Assignment operator from a numeric value.
* \pre This assumes \c m_LetArrayManageMemory is true, but it is unchecked.
* If this operator is called on a \c VariableLengthVector proxy, referenced
* values will be overwritten.
* \post Elements in `[m_Data, m_Data+GetSize())` will be equal to \c v, modulo
* precision
*/
Self & operator=(TValue const & v) ITK_NOEXCEPT;
/** Return the number of elements in the Array */
unsigned int Size(void) const ITK_NOEXCEPT { return m_NumElements; }
unsigned int GetSize(void) const ITK_NOEXCEPT { return m_NumElements; }
unsigned int GetNumberOfElements(void) const ITK_NOEXCEPT { return m_NumElements; }
/** Return reference to the element at specified index. No range checking. */
TValue & operator[](unsigned int i) ITK_NOEXCEPT { return this->m_Data[i]; }
/** Return reference to the element at specified index. No range checking. */
TValue const & operator[](unsigned int i) const ITK_NOEXCEPT { return this->m_Data[i]; }
/** Get one element */
const TValue & GetElement(unsigned int i) const ITK_NOEXCEPT { return m_Data[i]; }
/** Set one element */
void SetElement(unsigned int i, const TValue & value) ITK_NOEXCEPT { m_Data[i] = value; }
/** Resizes the vector.
* \tparam TReallocatePolicy Policy that determines precisely the conditions
* under which the internal buffer shall be reallocated. It shall inherit
* from \c AllocateRootPolicy.
* \tparam TKeepValuesPolicy Policy that determines whether old elements
* shall be kept. It shall inherit from \c KeepValuesRootPolicy.
*
* \internal
* The purpose of this overload is to fine tune what \c SetSize() does. Some
* users seem to need to always reallocate, or to maintain old elements.
* However, some usages require fast resizing. In the assignment operators
* cases, we don't need to reallocate anything if we have enough memory, and
* we certainly do not need to maintain previous values as they'll get
* overridden with new ones.
* \internal
* If we could assert that \c VariableLengthVector proxies would (shall!)
* never be assigned anything, we could benefit from a version that won't
* check \c m_LetArrayManageMemory.
*
* \pre `m_NumElements == sz` if \c TReallocatePolicy is \c NeverReallocate
* \post `m_NumElements == sz`
* \post \c m_LetArrayManageMemory is true
* \post In case of reallocation, old \c m_Data buffer is deleted.
* \post If \c TKeepValuesPolicy is \c KeepOldValues, old values are
* garanteed to be kept, otherwise, it'll depend on the reallocation policy
* and the old and new vector size.
* \sa \c AlwaysReallocate
* \sa \c NeverReallocate
* \sa \c ShrinkToFit
* \sa \c DontShrinkToFit
* \sa \c KeepOldValues
* \sa \c DumpOldValues
*/
template <typename TReallocatePolicy, typename TKeepValuesPolicy>
void SetSize(unsigned int sz,
TReallocatePolicy reallocatePolicy,
TKeepValuesPolicy keepValues);
/** Set the size to that given.
*
* If \c destroyExistingData is \c false:
* If the array already contains data, the existing data is copied over and
* new space is allocated, if necessary. If the length to reserve is less
* than the current number of elements, then an appropriate number of elements
* are discarded.
* If \c true, the size is set destructively to the length given. If the
* length is different from the current length, existing data will be lost.
* The default is \c true. */
void SetSize(unsigned int sz, bool destroyExistingData = true)
{
// Stays compatible with previous code version
// And works around the fact C++03 template functions can't have default
// arguments on template types.
if (destroyExistingData)
{
SetSize(sz, AlwaysReallocate(), KeepOldValues());
}
else
{
SetSize(sz, ShrinkToFit(), KeepOldValues());
}
}
/** Destroy data that is allocated internally, if \c LetArrayManageMemory is
* true. */
void DestroyExistingData() ITK_NOEXCEPT;
/** Set the pointer from which the data is imported.
* If "LetArrayManageMemory" is false, then the application retains
* the responsibility of freeing the memory for this data. If
* "LetArrayManageMemory" is true, then this class will free the
* memory when this object is destroyed.
* \warning The size of the new \c data shall match vector current size.
* Prefer the other overload.
* \post old \c m_Data is deleted iff \c m_LetArrayManageMemory is true
* \post `m_Data == data`
* \post `m_LetArrayManageMemory ==LetArrayManageMemory`
* \post \c Size() is left unmodified.
*/
void SetData(TValue *data, bool LetArrayManageMemory = false) ITK_NOEXCEPT;
/** Similar to the previous method. In the above method, the size must be
* separately set prior to using user-supplied data. This introduces an
* unnecessary allocation step to be performed. This method avoids it
* and should be used to import data wherever possible to avoid this.
* Set the pointer from which the data is imported.
* If "LetArrayManageMemory" is false, then the application retains
* the responsibility of freeing the memory for this data. If
* "LetArrayManageMemory" is true, then this class will free the
* memory when this object is destroyed.
* \post old \c m_Data is deleted iff \c m_LetArrayManageMemory is true
* \post `m_Data == data`
* \post `m_LetArrayManageMemory ==LetArrayManageMemory`
* \post `m_NumElements == sz`
*/
void SetData(TValue *data, unsigned int sz, bool LetArrayManageMemory = false) ITK_NOEXCEPT;
/** This destructor is not virtual for performance reasons. However, this
* means that subclasses cannot allocate memory.
*
* \internal
* More precisally, this class has value semantics (copiable, assignable,
* comparable). It's hardly compatible with public inheritance: slicing would
* always be there somewhere to annoy us if we try to inherit publicaly from
* such a class.
* As a consequence, having the destructor virtual makes hardly any sense.
*/
~VariableLengthVector();
/** Reserves memory of a certain length.
*
* If the array already contains data, the existing data is copied over and
* new space is allocated, if necessary. If the length to reserve is less
* than the current number of elements, then an appropriate number of elements
* are discarded.
* \post \c m_Data is not null and can hold \c size elements.
* \post \c m_LetArrayManageMemory may be left unchanged if there already are
* enough elements.
*
* \note You may prefer instead
* `SetSize(N, DontShrinkToFit(), KeepOldValues());` that ensures that the
* array is not a proxy at the end of the operation.
*/
void Reserve(ElementIdentifier size);
/** Allocate memory of certain size and return it.
* \return a non-null pointer to an array of \c size elements (0 is a valid
* parameter).
*/
TValue * AllocateElements(ElementIdentifier size) const;
const TValue * GetDataPointer() const ITK_NOEXCEPT { return m_Data; }
/** Prefix operator that subtracts 1 from each element of the
* vector. */
Self & operator--() ITK_NOEXCEPT
{
for ( ElementIdentifier i = 0; i < m_NumElements; i++ )
{
this->m_Data[i] -= static_cast< ValueType >( 1.0 );
}
return *this;
}
/** Prefix operator that adds 1 to each element of the vector. */
Self & operator++() ITK_NOEXCEPT // prefix operator ++v;
{
for ( ElementIdentifier i = 0; i < m_NumElements; i++ )
{
this->m_Data[i] += static_cast< ValueType >( 1.0 );
}
return *this;
}
/** Postfix operator that subtracts 1 from each element of the
* vector. */
Self operator--(int) // postfix operator v--;
{
Self tmp(*this);
--tmp;
return tmp;
}
/** Postfix operator that adds 1 to each element of the vector. */
Self operator++(int) // postfix operator v++;
{
Self tmp(*this);
++tmp;
return tmp;
}
/** Element-wise subtraction of vector 'v' from the current
* vector. The vectors do not have to have the same element
* type. The input vector elements are cast to the current vector
* element type before the subtraction is performed.
*
* \throw None
* \note For efficiency, the length of the vectors is not checked;
* they are assumed to have the same length. */
template< typename T >
Self & operator-=
(const VariableLengthVector< T > & v) ITK_NOEXCEPT
{
itkAssertInDebugAndIgnoreInReleaseMacro( m_NumElements == v.GetSize() );
for ( ElementIdentifier i = 0; i < m_NumElements; i++ )
{
m_Data[i] -= static_cast< ValueType >( v[i] );
}
return *this;
}
/** Subtract scalar 's' from each element of the current vector. */
Self & operator-=(TValue s) ITK_NOEXCEPT
{
for ( ElementIdentifier i = 0; i < m_NumElements; i++ )
{
m_Data[i] -= s;
}
return *this;
}
/** Element-wise addition of vector 'v' to the current vector. The
* vectors do not have to have the same element type. The input
* vector elements are cast to the current vector element type
* before the addition is performed.
*
* \throw None
* \note For efficiency, the length of the vectors is not checked;
* they are assumed to have the same length. */
template< typename T >
Self & operator+=
(const VariableLengthVector< T > & v) ITK_NOEXCEPT
{
itkAssertInDebugAndIgnoreInReleaseMacro( m_NumElements == v.GetSize() );
for ( ElementIdentifier i = 0; i < m_NumElements; i++ )
{
m_Data[i] += static_cast< ValueType >( v[i] );
}
return *this;
}
/** Add scalar 's' to each element of the vector. */
Self & operator+=(TValue s) ITK_NOEXCEPT
{
for ( ElementIdentifier i = 0; i < m_NumElements; i++ )
{
m_Data[i] += s;
}
return *this;
}
/** Compound addition operator with a expression template vector.
* \tparam TExpr1 Type of the left sub-expression
* \tparam TExpr2 Type of the right sub-expression
* \tparam TBinaryOp Binary Operation to apply to both sub-expressions.
* \param[in] rhs Non evaluated Expression Template.
*
* \pre `Size() == rhs.Size()`, checked with an assertion
* \note The elements of the expression template are evaluated one by one.
*/
template <typename TExpr1, typename TExpr2, typename TBinaryOp>
Self& operator+=(VariableLengthVectorExpression<TExpr1,TExpr2,TBinaryOp> const& rhs) ITK_NOEXCEPT
{
itkAssertInDebugAndIgnoreInReleaseMacro(rhs.Size() == Size());
for ( ElementIdentifier i = 0; i < m_NumElements; ++i )
{
m_Data[i] += static_cast<ValueType>(rhs[i]);
}
return *this;
}
/** Compound substraction operator with a expression template vector.
* \tparam TExpr1 Type of the left sub-expression
* \tparam TExpr2 Type of the right sub-expression
* \tparam TBinaryOp Binary Operation to apply to both sub-expressions.
* \param[in] rhs Non evaluated Expression Template.
*
* \pre `Size() == rhs.Size()`, checked with an assertion
* \note The elements of the expression template are evaluated one by one.
*/
template <typename TExpr1, typename TExpr2, typename TBinaryOp>
Self& operator-=(VariableLengthVectorExpression<TExpr1,TExpr2,TBinaryOp> const& rhs) ITK_NOEXCEPT
{
itkAssertInDebugAndIgnoreInReleaseMacro(rhs.Size() == Size());
for ( ElementIdentifier i = 0; i < m_NumElements; ++i )
{
m_Data[i] -= static_cast<ValueType>(rhs[i]);
}
return *this;
}
/** Multiply each element of the vector by a scalar 's'. The scalar
* value is cast to the current vector element type prior to
* multiplication.
* \throw None
*/
template< typename T >
Self & operator*=(T s) ITK_NOEXCEPT
{
const ValueType & sc = static_cast<ValueType>(s);
for ( ElementIdentifier i = 0; i < m_NumElements; i++ )
{
m_Data[i] *= sc;
}
return *this;
}
/** Multiply each element of the vector by a scalar 's'.
* \throw None
*/
Self & operator*=(TValue s) ITK_NOEXCEPT
{
for ( ElementIdentifier i = 0; i < m_NumElements; i++ )
{
m_Data[i] *= s;
}
return *this;
}
/** Divide vector elements by a scalar 's'. The vector does not
* have to have the same element type as the scalar type. Both the
* scalar and vector elements are cast to the RealValueType prior to
* division, and the result is cast to the ValueType.
* \throw None
*/
template< typename T >
Self & operator/=(T s) ITK_NOEXCEPT
{
const RealValueType sc = s;
for ( ElementIdentifier i = 0; i < m_NumElements; i++ )
{
m_Data[i] = static_cast< ValueType >(
static_cast< RealValueType >( m_Data[i] )
/ sc );
}
return *this;
}
/** Negates each vector element.
* \warning This operator has a non standard semantics. Instead of returning
* a new \c VariableLengthVector, it modifies the current object.
*/
Self & operator-() ITK_NOEXCEPT; // negation operator
bool operator==(const Self & v) const ITK_NOEXCEPT;
bool operator!=(const Self & v) const ITK_NOEXCEPT;
/** Returns vector's Euclidean Norm */
RealValueType GetNorm() const ITK_NOEXCEPT;
/** Returns vector's squared Euclidean Norm */
RealValueType GetSquaredNorm() const ITK_NOEXCEPT;
/** letArrayManageMemory getter. */
bool IsAProxy() const ITK_NOEXCEPT { return ! m_LetArrayManageMemory;}
private:
bool m_LetArrayManageMemory; // if true, the array is responsible
// for memory of data
TValue * m_Data; // Array to hold data
ElementIdentifier m_NumElements;
};
/// \cond HIDE_META_PROGRAMMING
namespace mpl {
/** Tells whether a type is an array type for which the support of arithmetic
* operations is done with Expression Template.
* \note For the moment, only \c itk::VariableLengthVector<> is supported. It
* could be extented to other types of ITK arrays.
* \ingroup MetaProgrammingLibrary
* \ingroup ITKCommon
* \sa \c VariableLengthVector
* \sa \c VariableLengthVectorExpression
*/
template <typename T>
struct IsArray : FalseType {};
/// \cond SPECIALIZATION_IMPLEMENTATION
template <typename T>
struct IsArray<itk::VariableLengthVector<T> > : TrueType {};
template <typename TExpr1, typename TExpr2, typename TBinaryOp>
struct IsArray<VariableLengthVectorExpression<TExpr1, TExpr2,TBinaryOp> > : TrueType {};
/// \endcond
} // namespace mpl
/// \endcond
namespace Details
{
/// \cond HIDE_META_PROGRAMMING
/** Helper Trait for VLV expression template: returns the value type.
* \tparam TExpr Expression type
* \return \c Type The value type behind \c TExpr (\c TExpr in case of a
* numerical type, \c TExpr::ValueType in case of the \c VariableLengthVector,
* etc.)
*
* Also defines \c Load() that permits to fetch the i-th element in case of an
* array, array expression, or just the number in case of a number.
* \ingroup ITKCommon
* \sa \c VariableLengthVector
* \sa \c VariableLengthVectorExpression
*/
template <typename TExpr> struct GetType
{
typedef TExpr Type;
/** Fetches the i-th element from an array (expression).
* \note the default unspecialized behaviour returns the input number \c v.
*/
static Type Load(Type const& v, unsigned int idx) ITK_NOEXCEPT
{ (void)idx; return v; }
};
/** Helper function for VLV expression templates: returns the common size.
* \param[in] lhs left hand side expression
* \param[in] rhs right hand side expression
* \note The default overload assumes both operands are \c VariableLengthVector
* (or expression) arrays
* \pre asserts both arrays have the same size.
* \ingroup ITKCommon
* \sa \c VariableLengthVector
* \sa \c VariableLengthVectorExpression
*/
template <typename TExpr1, typename TExpr2>
inline
typename mpl::EnableIf<mpl::And<mpl::IsArray<TExpr1>, mpl::IsArray<TExpr2> >, unsigned int>::Type
GetSize(TExpr1 const& lhs, TExpr2 const& rhs) ITK_NOEXCEPT
{
(void)rhs;
itkAssertInDebugAndIgnoreInReleaseMacro(lhs.Size() == rhs.Size());
return lhs.Size();
}
/// \cond SPECIALIZATION_IMPLEMENTATION
/** Helper function for VLV expression templates: returns the common size.
* \param[in] lhs left hand side expression
* \param[in] rhs right hand side expression
* \note This overload assumes that only the first operand is a \c
* VariableLengthVector (or expression) array.
* \ingroup ITKCommon
* \sa \c VariableLengthVector
* \sa \c VariableLengthVectorExpression
*/
template <typename TExpr1, typename TExpr2>
inline
typename mpl::EnableIf<mpl::And<mpl::IsArray<TExpr1>, mpl::Not<mpl::IsArray<TExpr2> > >, unsigned int>::Type
GetSize(TExpr1 const& lhs, TExpr2 const& itkNotUsed(rhs)) ITK_NOEXCEPT
{
return lhs.Size();
}
/** Helper function for VLV expression templates: returns the common size.
* \param[in] lhs left hand side expression
* \param[in] rhs right hand side expression
* \note This overload assumes that only the second operand is a \c
* VariableLengthVector (or expression) array.
* \ingroup ITKCommon
* \sa \c VariableLengthVector
* \sa \c VariableLengthVectorExpression
*/
template <typename TExpr1, typename TExpr2>
inline
typename mpl::EnableIf<mpl::And<mpl::IsArray<TExpr2>, mpl::Not<mpl::IsArray<TExpr1> > >, unsigned int>::Type
GetSize(TExpr1 const& itkNotUsed(lhs), TExpr2 const& rhs) ITK_NOEXCEPT
{
return rhs.Size();
}
template <typename T>
struct GetType<VariableLengthVector<T> >
{
typedef T Type;
static Type Load(VariableLengthVector<T> const& v, unsigned int idx) ITK_NOEXCEPT
{ return v[idx]; }
};
template <typename TExpr1, typename TExpr2, typename TBinaryOp>
struct GetType<VariableLengthVectorExpression<TExpr1, TExpr2, TBinaryOp> >
{
typedef typename VariableLengthVectorExpression<TExpr1, TExpr2, TBinaryOp>::ResType Type;
static Type Load(VariableLengthVectorExpression<TExpr1, TExpr2, TBinaryOp> const& v, unsigned int idx) ITK_NOEXCEPT
{ return v[idx]; }
};
/// \endcond
namespace op
{
/** Tells whether objects from two types can be added or substracted.
* The operation is authorized if and only if:
* - both are arrays,
* - or one operand is an array while the second is a number.
* \note As this traits is dedicated to help overload binary operators, it
* shall not be used to help overload `operator+()` between floats for instance.
* Hence, the case where both operands are numbers is rejected.
*
* \sa \c mpl::IsArray<> to know the exact array types recognized as \em array by this traits
* \ingroup MetaProgrammingLibrary
* \ingroup ITKCommon
*/
template <typename TExpr1, typename TExpr2>
struct CanBeAddedOrSubstracted
: mpl::Or< mpl::And<mpl::IsArray<TExpr1>, mpl::IsArray<TExpr2> >,
mpl::And<mpl::IsArray<TExpr1>, mpl::IsNumber<TExpr2> >,
mpl::And<mpl::IsNumber<TExpr1>, mpl::IsArray<TExpr2> >
>
{};
/** Tells whether objects from two types can be multiplied.
* The operation is authorized if and only if:
* - one operand is an array while the second is a number.
* \note As this traits is dedicated to help overload `operator*()`, it
* shall not be used to help overload the operator between floats for instance.
* Hence, the case where both operands are numbers is rejected.
*
* \sa \c mpl::IsArray<> to know the exact array types recognized as \em array by this traits
* \ingroup MetaProgrammingLibrary
* \ingroup ITKCommon
*/
template <typename TExpr1, typename TExpr2>
struct CanBeMultiplied
: mpl::Or< mpl::And<mpl::IsArray<TExpr1>, mpl::IsNumber<TExpr2> >,
mpl::And<mpl::IsNumber<TExpr1>, mpl::IsArray<TExpr2> >
>
{};
/** Tells whether objects from two types can be multiplied.
* The operation is authorized if and only if:
* - the first operand is an array while the second is a number.
* \note As this traits is dedicated to help overload `operator/()`, it
* shall not be used to help overload the operator between floats for instance.
* Hence, the case where both operands are numbers is rejected.
*
* \sa \c mpl::IsArray<> to know the exact array types recognized as \em array by this traits
* \ingroup MetaProgrammingLibrary
* \ingroup ITKCommon
*/
template <typename TExpr1, typename TExpr2>
struct CanBeDivided
: mpl::And<mpl::IsArray<TExpr1>, mpl::IsNumber<TExpr2> >
{};
} // op namespace
} // Details namespace
/// \endcond
/** Expression Template for \c VariableLengthVector.
* Contains an expression template that models a binary operation between two
* sub expressions (of type \c VariableLengthVector, or \c VariableLengthVectorExpression)
* \tparam TExpr1 Type of the left sub-expression
* \tparam TExpr2 Type of the right sub-expression
* \tparam TBinaryOp Binary Operation to apply to both sub-expressions.
*
* \note We permit to add a `VariableLengthVector<float>` with a
* `VariableLengthVector<double>`, the result will be of type
* `VariableLengthVector<double>`.
*
* \warning Explicitly static casting an expression to a
* \c VariableLengthVector<> will defeat the purpose of the optimization
* implemented here. It's thus best to let the expression automatically adjust
* to the type with the most precision.
* Eventually, when assigning to the final destination (a
* \c VariableLengthVector<>), a casting on-the-fly could be realized by the
* assignment operator, or by the copy constructor.
*
* \todo Add support for unary operations like `operator-()`.
*
* \ingroup DataRepresentation
* \ingroup ITKCommon
*/
template <typename TExpr1, typename TExpr2, typename TBinaryOp>
struct VariableLengthVectorExpression
{
VariableLengthVectorExpression(TExpr1 const& lhs, TExpr2 const& rhs) ITK_NOEXCEPT
: m_lhs(lhs), m_rhs(rhs)
{
// Not neccessary actually as end-user/developper is not expected to
// provide new BinaryOperations
itkStaticAssert(
(itk::mpl::IsBaseOf<Details::op::BinaryOperationConcept, TBinaryOp>::Value),
"The Binary Operation shall inherit from BinaryOperationConcept");
}
/// Returns the size of the vector expression.
unsigned int Size() const ITK_NOEXCEPT{ return Details::GetSize(m_lhs, m_rhs); }
/// Vector type of the Result Expression
typedef typename mpl::PromoteType<
typename Details::GetType<TExpr1>::Type,
typename Details::GetType<TExpr2>::Type>::Type ResType;
/// Real type of the elements
typedef typename NumericTraits< ResType > ::RealType RealValueType;
/** Element access operator.
* \pre `idx < Size()`
* \internal
* This is where the magic happens. Instead of building a new vector based on
* the two input vectors, we compute each element on-the-fly when
* requested(by a \c VariableLengthVector constructor or an assignment
* operator).
*
* \c Load() is in charge of fetching the i-th element of the sub-expressions
*/
ResType operator[](unsigned int idx) const ITK_NOEXCEPT
{
itkAssertInDebugAndIgnoreInReleaseMacro(idx < Size());
return TBinaryOp::Apply(
Details::GetType<TExpr1>::Load(m_lhs, idx),
Details::GetType<TExpr2>::Load(m_rhs, idx));
}
/** Returns vector's Euclidean Norm */
RealValueType GetNorm() const ITK_NOEXCEPT;
/** Returns vector's squared Euclidean Norm */
RealValueType GetSquaredNorm() const ITK_NOEXCEPT;
private:
TExpr1 const& m_lhs;
TExpr2 const& m_rhs;
};
/** Addition involving a \c VariableLengthVector.
* This operation is generic and takes:
* - two arrays,
* - or one array and one number (on either side)
* \return an expression template proxy object.
* \throw None As no allocation will be performed.
* \relates itk::VariableLengthVector
* \sa \c mpl::IsArray<> to know the exact array types recognized as \em array by this traits
*/
template <typename TExpr1, typename TExpr2>
inline
typename mpl::EnableIf<Details::op::CanBeAddedOrSubstracted<TExpr1,TExpr2>, VariableLengthVectorExpression<TExpr1, TExpr2, Details::op::Plus> >::Type
operator+(TExpr1 const& lhs, TExpr2 const& rhs) ITK_NOEXCEPT
{ return VariableLengthVectorExpression<TExpr1, TExpr2, Details::op::Plus>(lhs, rhs); }
/** Substraction involving a \c VariableLengthVector.
* This operation is generic and takes:
* - two arrays,
* - or one array and one number (on either side)
* \return an expression template proxy object.
* \throw None As no allocation will be performed.
* \relates itk::VariableLengthVector
* \sa \c mpl::IsArray<> to know the exact array types recognized as \em array by this traits
*/
template <typename TExpr1, typename TExpr2>
inline
typename mpl::EnableIf<Details::op::CanBeAddedOrSubstracted<TExpr1,TExpr2>, VariableLengthVectorExpression<TExpr1, TExpr2, Details::op::Sub> >::Type
operator-(TExpr1 const& lhs, TExpr2 const& rhs) ITK_NOEXCEPT
{ return VariableLengthVectorExpression<TExpr1, TExpr2, Details::op::Sub>(lhs, rhs); }
/** Multiplication between a \c VariableLengthVector and a scalar.
* This operation is generic and takes one array and one number (on either
* side).
* \return an expression template proxy object.
* \throw None As no allocation will be performed.
* \relates itk::VariableLengthVector
* \sa \c mpl::IsArray<> to know the exact array types recognized as \em array by this traits
*/
template <typename TExpr1, typename TExpr2>
inline
typename mpl::EnableIf<Details::op::CanBeMultiplied<TExpr1,TExpr2>, VariableLengthVectorExpression<TExpr1, TExpr2, Details::op::Mult> >::Type
operator*(TExpr1 const& lhs, TExpr2 const& rhs) ITK_NOEXCEPT
{ return VariableLengthVectorExpression<TExpr1, TExpr2, Details::op::Mult>(lhs, rhs); }
/** Division of a \c VariableLengthVector by a scalar.
* This operation is generic and takes one array and one number.
* \return an expression template proxy object.
* \throw None As no allocation will be performed.
* \relates itk::VariableLengthVector
* \sa \c mpl::IsArray<> to know the exact array types recognized as \em array by this traits
*/
template <typename TExpr1, typename TExpr2>
inline
typename mpl::EnableIf<Details::op::CanBeDivided<TExpr1,TExpr2>, VariableLengthVectorExpression<TExpr1, TExpr2, Details::op::Div> >::Type
operator/(TExpr1 const& lhs, TExpr2 const& rhs) ITK_NOEXCEPT
{ return VariableLengthVectorExpression<TExpr1, TExpr2, Details::op::Div>(lhs, rhs); }
/** Serialization of \c VariableLengthVectorExpression
* \relates itk::VariableLengthVectorExpression
*/
template <typename TExpr1, typename TExpr2, typename TBinaryOp>
std::ostream & operator<<(std::ostream &os, VariableLengthVectorExpression<TExpr1, TExpr2, TBinaryOp> const& v)
{
os << "[";
if (v.Size() != 0)
{
os << v[0];
for (unsigned int i = 1, N = v.Size(); i != N; ++i)
{
os << ", " << v[i];
}
}
return os << "]";
}
/** Returns vector's Euclidean Norm.
* \tparam TExpr must be an array
* \sa \c mpl::IsArray<> to know the exact array types recognized as \em array by this traits
* \relates itk::VariableLengthVectorExpression
*/
template <typename TExpr>
inline
typename mpl::EnableIf<mpl::IsArray<TExpr>, typename TExpr::RealValueType>::Type
GetNorm(TExpr const& v) ITK_NOEXCEPT
{
return static_cast<typename TExpr::RealValueType>(
std::sqrt(static_cast<double>(GetSquaredNorm(v))));
}
/** Returns vector's squared Euclidean Norm.
* \tparam TExpr must be an array
* \sa \c mpl::IsArray<> to know the exact array types recognized as \em array by this traits
* \relates itk::VariableLengthVectorExpression
*/
template <typename TExpr>
inline
typename mpl::EnableIf<mpl::IsArray<TExpr>, typename TExpr::RealValueType>::Type
GetSquaredNorm(TExpr const& v) ITK_NOEXCEPT
{
typedef typename TExpr::RealValueType RealValueType;
RealValueType sum = 0.0;
for ( unsigned int i = 0, N=v.Size(); i < N; ++i )
{
const RealValueType value = v[i];
sum += value * value;
}
return sum;
}
/**\name Serialization */
//@{
/** Serialization of \c VariableLengthVector
* \relates itk::VariableLengthVector
*/
template< typename TValue >
std::ostream & operator<<(std::ostream & os, const VariableLengthVector< TValue > & arr)
{
const unsigned int length = arr.Size();
const signed int last = (unsigned int)length - 1;
os << "[";
for ( signed int i = 0; i < last; ++i )
{
os << arr[i] << ", ";
}
if ( length >= 1 )
{
os << arr[last];
}
os << "]";
return os;
}
//@}
/**\name Standard compliance functions */
//@{
/** \c swap() overload for \c VariableLengthVector
* \throw None
* \relates itk::VariableLengthVector
* \internal
* This overload follows C++ standard naming convention. This is required to
* permit \c VariableLengthVector to be exchanged by standard algorithms that
* take advantage of Koening Namespace Lookup (a.k.a. Argument Dependant
* Lookup). e.g.
\code
template <typename T> f(T & l, T & r)
{
using std::swap;
swap(l,r);
...
}
* \endcode
*/
template <typename T>
inline
void swap(VariableLengthVector<T> &l_, VariableLengthVector<T> &r_) ITK_NOEXCEPT
{
l_.Swap(r_);
}
//@}
} // namespace itk
#include "itkNumericTraitsVariableLengthVectorPixel.h"
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkVariableLengthVector.hxx"
#endif
#endif
|