This file is indexed.

/usr/include/ITK-4.12/itkSyNImageRegistrationMethod.hxx is in libinsighttoolkit4-dev 4.12.2-dfsg1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkSyNImageRegistrationMethod_hxx
#define itkSyNImageRegistrationMethod_hxx

#include "itkSyNImageRegistrationMethod.h"

#include "itkComposeDisplacementFieldsImageFilter.h"
#include "itkGaussianOperator.h"
#include "itkImageMaskSpatialObject.h"
#include "itkImportImageFilter.h"
#include "itkInvertDisplacementFieldImageFilter.h"
#include "itkIterationReporter.h"
#include "itkMultiplyImageFilter.h"
#include "itkVectorNeighborhoodOperatorImageFilter.h"
#include "itkWindowConvergenceMonitoringFunction.h"

namespace itk
{
/**
 * Constructor
 */
template<typename TFixedImage, typename TMovingImage, typename TOutputTransform, typename TVirtualImage, typename TPointSet>
SyNImageRegistrationMethod<TFixedImage, TMovingImage, TOutputTransform, TVirtualImage, TPointSet>
::SyNImageRegistrationMethod() :
  m_LearningRate( 0.25 ),
  m_ConvergenceThreshold( 1.0e-6 ),
  m_ConvergenceWindowSize( 10 ),
  m_GaussianSmoothingVarianceForTheUpdateField( 3.0 ),
  m_GaussianSmoothingVarianceForTheTotalField( 0.5 )
{
  this->m_NumberOfIterationsPerLevel.SetSize( 3 );
  this->m_NumberOfIterationsPerLevel[0] = 20;
  this->m_NumberOfIterationsPerLevel[1] = 30;
  this->m_NumberOfIterationsPerLevel[2] = 40;
  this->m_DownsampleImagesForMetricDerivatives = true;
  this->m_AverageMidPointGradients = false;
  this->m_FixedToMiddleTransform = ITK_NULLPTR;
  this->m_MovingToMiddleTransform = ITK_NULLPTR;
}

template<typename TFixedImage, typename TMovingImage, typename TOutputTransform, typename TVirtualImage, typename TPointSet>
SyNImageRegistrationMethod<TFixedImage, TMovingImage, TOutputTransform, TVirtualImage, TPointSet>
::~SyNImageRegistrationMethod()
{
}

template<typename TFixedImage, typename TMovingImage, typename TOutputTransform, typename TVirtualImage, typename TPointSet>
void
SyNImageRegistrationMethod<TFixedImage, TMovingImage, TOutputTransform, TVirtualImage, TPointSet>
::InitializeRegistrationAtEachLevel( const SizeValueType level )
{
  Superclass::InitializeRegistrationAtEachLevel( level );

  if( level == 0 )
    {
    // If FixedToMiddle and MovingToMiddle transforms are not set already for state restoration
    //
    if( this->m_FixedToMiddleTransform.IsNull() || this->m_MovingToMiddleTransform.IsNull() )
      {
      // Initialize the FixedToMiddleTransform as an Identity displacement field transform
      //
      this->m_FixedToMiddleTransform = OutputTransformType::New();
      this->m_MovingToMiddleTransform = OutputTransformType::New();

      VirtualImageBaseConstPointer virtualDomainImage = this->GetCurrentLevelVirtualDomainImage();

      const DisplacementVectorType zeroVector( 0.0 );

      typename DisplacementFieldType::Pointer fixedDisplacementField = DisplacementFieldType::New();
      fixedDisplacementField->CopyInformation( virtualDomainImage );
      fixedDisplacementField->SetRegions( virtualDomainImage->GetBufferedRegion() );
      fixedDisplacementField->Allocate();
      fixedDisplacementField->FillBuffer( zeroVector );

      typename DisplacementFieldType::Pointer fixedInverseDisplacementField = DisplacementFieldType::New();
      fixedInverseDisplacementField->CopyInformation( virtualDomainImage );
      fixedInverseDisplacementField->SetRegions( virtualDomainImage->GetBufferedRegion() );
      fixedInverseDisplacementField->Allocate();
      fixedInverseDisplacementField->FillBuffer( zeroVector );

      this->m_FixedToMiddleTransform->SetDisplacementField( fixedDisplacementField );
      this->m_FixedToMiddleTransform->SetInverseDisplacementField( fixedInverseDisplacementField );

      typename DisplacementFieldType::Pointer movingDisplacementField = DisplacementFieldType::New();
      movingDisplacementField->CopyInformation( virtualDomainImage );
      movingDisplacementField->SetRegions( virtualDomainImage->GetBufferedRegion() );
      movingDisplacementField->Allocate();
      movingDisplacementField->FillBuffer( zeroVector );

      typename DisplacementFieldType::Pointer movingInverseDisplacementField = DisplacementFieldType::New();
      movingInverseDisplacementField->CopyInformation( virtualDomainImage );
      movingInverseDisplacementField->SetRegions( virtualDomainImage->GetBufferedRegion() );
      movingInverseDisplacementField->Allocate();
      movingInverseDisplacementField->FillBuffer( zeroVector );

      this->m_MovingToMiddleTransform->SetDisplacementField( movingDisplacementField );
      this->m_MovingToMiddleTransform->SetInverseDisplacementField( movingInverseDisplacementField );
      }
    else
      {
      if( this->m_FixedToMiddleTransform->GetInverseDisplacementField()
         && this->m_MovingToMiddleTransform->GetInverseDisplacementField() )
         {
         itkDebugMacro( "SyN registration is initialized by restoring the state.");
         this->m_TransformParametersAdaptorsPerLevel[0]->SetTransform( this->m_MovingToMiddleTransform );
         this->m_TransformParametersAdaptorsPerLevel[0]->AdaptTransformParameters();
         this->m_TransformParametersAdaptorsPerLevel[0]->SetTransform( this->m_FixedToMiddleTransform );
         this->m_TransformParametersAdaptorsPerLevel[0]->AdaptTransformParameters();
         }
      else
        {
        itkExceptionMacro( "Invalid state restoration." );
        }
      }
    }
  else if( this->m_TransformParametersAdaptorsPerLevel[level] )
    {
    this->m_TransformParametersAdaptorsPerLevel[level]->SetTransform( this->m_MovingToMiddleTransform );
    this->m_TransformParametersAdaptorsPerLevel[level]->AdaptTransformParameters();
    this->m_TransformParametersAdaptorsPerLevel[level]->SetTransform( this->m_FixedToMiddleTransform );
    this->m_TransformParametersAdaptorsPerLevel[level]->AdaptTransformParameters();
    }
}

/*
 * Start the optimization at each level.  We just do a basic gradient descent operation.
 */
template<typename TFixedImage, typename TMovingImage, typename TOutputTransform, typename TVirtualImage, typename TPointSet>
void
SyNImageRegistrationMethod<TFixedImage, TMovingImage, TOutputTransform, TVirtualImage, TPointSet>
::StartOptimization()
{
  VirtualImageBaseConstPointer virtualDomainImage = this->GetCurrentLevelVirtualDomainImage();

  if( virtualDomainImage.IsNull() )
    {
    itkExceptionMacro( "The virtual domain image is not found." );
    }

  InitialTransformType* fixedInitialTransform = const_cast<InitialTransformType*>( this->GetFixedInitialTransform() );

  // Monitor the convergence
  typedef itk::Function::WindowConvergenceMonitoringFunction<RealType> ConvergenceMonitoringType;
  typename ConvergenceMonitoringType::Pointer convergenceMonitoring = ConvergenceMonitoringType::New();
  convergenceMonitoring->SetWindowSize( this->m_ConvergenceWindowSize );

  IterationReporter reporter( this, 0, 1 );

  while( this->m_CurrentIteration++ < this->m_NumberOfIterationsPerLevel[this->m_CurrentLevel] && !this->m_IsConverged )
    {
    typename CompositeTransformType::Pointer fixedComposite = CompositeTransformType::New();
    if ( fixedInitialTransform != ITK_NULLPTR )
      {
      fixedComposite->AddTransform( fixedInitialTransform );
      }
    fixedComposite->AddTransform( this->m_FixedToMiddleTransform->GetInverseTransform() );
    fixedComposite->FlattenTransformQueue();
    fixedComposite->SetOnlyMostRecentTransformToOptimizeOn();

    typename CompositeTransformType::Pointer movingComposite = CompositeTransformType::New();
    movingComposite->AddTransform( this->m_CompositeTransform );
    movingComposite->AddTransform( this->m_MovingToMiddleTransform->GetInverseTransform() );
    movingComposite->FlattenTransformQueue();
    movingComposite->SetOnlyMostRecentTransformToOptimizeOn();

    // Compute the update fields (to both moving and fixed images) and smooth

    MeasureType fixedMetricValue = 0.0;
    MeasureType movingMetricValue = 0.0;

    DisplacementFieldPointer fixedToMiddleSmoothUpdateField = this->ComputeUpdateField(
      this->m_FixedSmoothImages, this->m_FixedPointSets, fixedComposite,
      this->m_MovingSmoothImages, this->m_MovingPointSets, movingComposite,
      this->m_FixedImageMasks, this->m_MovingImageMasks, movingMetricValue );

    DisplacementFieldPointer movingToMiddleSmoothUpdateField = this->ComputeUpdateField(
      this->m_MovingSmoothImages, this->m_MovingPointSets, movingComposite,
      this->m_FixedSmoothImages, this->m_FixedPointSets, fixedComposite,
      this->m_MovingImageMasks, this->m_FixedImageMasks, fixedMetricValue );

    if ( this->m_AverageMidPointGradients )
      {
      ImageRegionIteratorWithIndex<DisplacementFieldType> ItF( fixedToMiddleSmoothUpdateField, fixedToMiddleSmoothUpdateField->GetLargestPossibleRegion() );
      for( ItF.GoToBegin(); !ItF.IsAtEnd(); ++ItF )
        {
        ItF.Set( ItF.Get() - movingToMiddleSmoothUpdateField->GetPixel( ItF.GetIndex() ) );
        movingToMiddleSmoothUpdateField->SetPixel( ItF.GetIndex(), -ItF.Get() );
        }
      }

    // Add the update field to both displacement fields (from fixed/moving to middle image) and then smooth

    typedef ComposeDisplacementFieldsImageFilter<DisplacementFieldType> ComposerType;

    typename ComposerType::Pointer fixedComposer = ComposerType::New();
    fixedComposer->SetDisplacementField( fixedToMiddleSmoothUpdateField );
    fixedComposer->SetWarpingField( this->m_FixedToMiddleTransform->GetDisplacementField() );
    fixedComposer->Update();

    DisplacementFieldPointer fixedToMiddleSmoothTotalFieldTmp = this->GaussianSmoothDisplacementField(
      fixedComposer->GetOutput(), this->m_GaussianSmoothingVarianceForTheTotalField );

    typename ComposerType::Pointer movingComposer = ComposerType::New();
    movingComposer->SetDisplacementField( movingToMiddleSmoothUpdateField );
    movingComposer->SetWarpingField( this->m_MovingToMiddleTransform->GetDisplacementField() );
    movingComposer->Update();

    DisplacementFieldPointer movingToMiddleSmoothTotalFieldTmp = this->GaussianSmoothDisplacementField(
      movingComposer->GetOutput(), this->m_GaussianSmoothingVarianceForTheTotalField );

    // Iteratively estimate the inverse fields.

    DisplacementFieldPointer fixedToMiddleSmoothTotalFieldInverse = this->InvertDisplacementField( fixedToMiddleSmoothTotalFieldTmp, this->m_FixedToMiddleTransform->GetInverseDisplacementField() );
    DisplacementFieldPointer fixedToMiddleSmoothTotalField = this->InvertDisplacementField( fixedToMiddleSmoothTotalFieldInverse, fixedToMiddleSmoothTotalFieldTmp );

    DisplacementFieldPointer movingToMiddleSmoothTotalFieldInverse = this->InvertDisplacementField( movingToMiddleSmoothTotalFieldTmp, this->m_MovingToMiddleTransform->GetInverseDisplacementField() );
    DisplacementFieldPointer movingToMiddleSmoothTotalField = this->InvertDisplacementField( movingToMiddleSmoothTotalFieldInverse, movingToMiddleSmoothTotalFieldTmp );

    // Assign the displacement fields and their inverses to the proper transforms.
    this->m_FixedToMiddleTransform->SetDisplacementField( fixedToMiddleSmoothTotalField );
    this->m_FixedToMiddleTransform->SetInverseDisplacementField( fixedToMiddleSmoothTotalFieldInverse );

    this->m_MovingToMiddleTransform->SetDisplacementField( movingToMiddleSmoothTotalField );
    this->m_MovingToMiddleTransform->SetInverseDisplacementField( movingToMiddleSmoothTotalFieldInverse );

    this->m_CurrentMetricValue = 0.5 * ( movingMetricValue + fixedMetricValue );

    convergenceMonitoring->AddEnergyValue( this->m_CurrentMetricValue );
    this->m_CurrentConvergenceValue = convergenceMonitoring->GetConvergenceValue();

    if( this->m_CurrentConvergenceValue < this->m_ConvergenceThreshold )
      {
      this->m_IsConverged = true;
      }
    reporter.CompletedStep();
    }
}

template<typename TFixedImage, typename TMovingImage, typename TOutputTransform, typename TVirtualImage, typename TPointSet>
typename SyNImageRegistrationMethod<TFixedImage, TMovingImage, TOutputTransform, TVirtualImage, TPointSet>::DisplacementFieldPointer
SyNImageRegistrationMethod<TFixedImage, TMovingImage, TOutputTransform, TVirtualImage, TPointSet>
::ComputeUpdateField( const FixedImagesContainerType fixedImages, const PointSetsContainerType fixedPointSets,
  const TransformBaseType * fixedTransform, const MovingImagesContainerType movingImages, const PointSetsContainerType movingPointSets,
  const TransformBaseType * movingTransform, const FixedImageMasksContainerType fixedImageMasks, const MovingImageMasksContainerType movingImageMasks,
  MeasureType & value )
{
  DisplacementFieldPointer metricGradientField = this->ComputeMetricGradientField(
      fixedImages, fixedPointSets, fixedTransform, movingImages, movingPointSets, movingTransform,
      fixedImageMasks, movingImageMasks, value );

  DisplacementFieldPointer updateField = this->GaussianSmoothDisplacementField( metricGradientField,
    this->m_GaussianSmoothingVarianceForTheUpdateField );

  DisplacementFieldPointer scaledUpdateField = this->ScaleUpdateField( updateField );

  return scaledUpdateField;
}

template<typename TFixedImage, typename TMovingImage, typename TOutputTransform, typename TVirtualImage, typename TPointSet>
typename SyNImageRegistrationMethod<TFixedImage, TMovingImage, TOutputTransform, TVirtualImage, TPointSet>::DisplacementFieldPointer
SyNImageRegistrationMethod<TFixedImage, TMovingImage, TOutputTransform, TVirtualImage, TPointSet>
::ComputeMetricGradientField( const FixedImagesContainerType fixedImages, const PointSetsContainerType fixedPointSets,
  const TransformBaseType * fixedTransform, const MovingImagesContainerType movingImages, const PointSetsContainerType movingPointSets,
  const TransformBaseType * movingTransform, const FixedImageMasksContainerType fixedImageMasks, const MovingImageMasksContainerType movingImageMasks,
  MeasureType & value )
{
  typename MultiMetricType::Pointer multiMetric = dynamic_cast<MultiMetricType *>( this->m_Metric.GetPointer() );

  VirtualImageBaseConstPointer virtualDomainImage = this->GetCurrentLevelVirtualDomainImage();

  if( multiMetric )
    {
    for( SizeValueType n = 0; n < multiMetric->GetNumberOfMetrics(); n++ )
      {
      if( multiMetric->GetMetricQueue()[n]->GetMetricCategory() == MetricType::POINT_SET_METRIC )
        {
        multiMetric->GetMetricQueue()[n]->SetFixedObject( fixedPointSets[n] );
        multiMetric->GetMetricQueue()[n]->SetMovingObject( movingPointSets[n] );
        multiMetric->SetFixedTransform( const_cast<TransformBaseType *>( fixedTransform ) );
        multiMetric->SetMovingTransform( const_cast<TransformBaseType *>( movingTransform ) );

        dynamic_cast<PointSetMetricType *>( multiMetric->GetMetricQueue()[n].GetPointer() )->SetCalculateValueAndDerivativeInTangentSpace( true );
        }
      else if( multiMetric->GetMetricQueue()[n]->GetMetricCategory() == MetricType::IMAGE_METRIC )
        {
        if( !this->m_DownsampleImagesForMetricDerivatives )
          {
          multiMetric->GetMetricQueue()[n]->SetFixedObject( fixedImages[n] );
          multiMetric->GetMetricQueue()[n]->SetMovingObject( movingImages[n] );

          multiMetric->SetFixedTransform( const_cast<TransformBaseType *>( fixedTransform ) );
          multiMetric->SetMovingTransform( const_cast<TransformBaseType *>( movingTransform ) );

          dynamic_cast<ImageMetricType *>( multiMetric->GetMetricQueue()[n].GetPointer() )->SetFixedImageMask( fixedImageMasks[n] );
          dynamic_cast<ImageMetricType *>( multiMetric->GetMetricQueue()[n].GetPointer() )->SetMovingImageMask( movingImageMasks[n] );
          }
        else
          {
          typedef ResampleImageFilter<FixedImageType, FixedImageType, RealType> FixedResamplerType;
          typename FixedResamplerType::Pointer fixedResampler = FixedResamplerType::New();
          fixedResampler->SetInput( fixedImages[n] );
          fixedResampler->SetTransform( fixedTransform );
          fixedResampler->UseReferenceImageOn();
          fixedResampler->SetReferenceImage( virtualDomainImage );
          fixedResampler->SetDefaultPixelValue( 0 );
          fixedResampler->Update();

          typedef ResampleImageFilter<MovingImageType, MovingImageType, RealType> MovingResamplerType;
          typename MovingResamplerType::Pointer movingResampler = MovingResamplerType::New();
          movingResampler->SetInput( movingImages[n] );
          movingResampler->SetTransform( movingTransform );
          movingResampler->UseReferenceImageOn();
          movingResampler->SetReferenceImage( virtualDomainImage );
          movingResampler->SetDefaultPixelValue( 0 );
          movingResampler->Update();

          multiMetric->GetMetricQueue()[n]->SetFixedObject( fixedResampler->GetOutput() );
          multiMetric->GetMetricQueue()[n]->SetMovingObject( movingResampler->GetOutput() );

          if( fixedImageMasks[n] )
            {
            typedef NearestNeighborInterpolateImageFunction<FixedMaskImageType, RealType> NearestNeighborInterpolatorType;
            typename NearestNeighborInterpolatorType::Pointer nearestNeighborInterpolator = NearestNeighborInterpolatorType::New();
            nearestNeighborInterpolator->SetInputImage( dynamic_cast<ImageMaskSpatialObjectType *>( const_cast<FixedImageMaskType *>( fixedImageMasks[n].GetPointer() ) )->GetImage() );

            typedef ResampleImageFilter<FixedMaskImageType, FixedMaskImageType, RealType> FixedMaskResamplerType;
            typename FixedMaskResamplerType::Pointer fixedMaskResampler = FixedMaskResamplerType::New();
            fixedMaskResampler->SetInput( dynamic_cast<ImageMaskSpatialObjectType *>( const_cast<FixedImageMaskType *>( fixedImageMasks[n].GetPointer() ) )->GetImage() );
            fixedMaskResampler->SetTransform( fixedTransform );
            fixedMaskResampler->SetInterpolator( nearestNeighborInterpolator );
            fixedMaskResampler->UseReferenceImageOn();
            fixedMaskResampler->SetReferenceImage( virtualDomainImage );
            fixedMaskResampler->SetDefaultPixelValue( 0 );
            fixedMaskResampler->Update();

            typename ImageMaskSpatialObjectType::Pointer resampledFixedImageMask = ImageMaskSpatialObjectType::New();
            resampledFixedImageMask->SetImage( fixedMaskResampler->GetOutput() );

            dynamic_cast<ImageMetricType *>( multiMetric->GetMetricQueue()[n].GetPointer() )->SetFixedImageMask( resampledFixedImageMask );
            }

          if( movingImageMasks[n] )
            {
            typedef NearestNeighborInterpolateImageFunction<MovingMaskImageType, RealType> NearestNeighborInterpolatorType;
            typename NearestNeighborInterpolatorType::Pointer nearestNeighborInterpolator = NearestNeighborInterpolatorType::New();
            nearestNeighborInterpolator->SetInputImage( dynamic_cast<ImageMaskSpatialObjectType *>( const_cast<MovingImageMaskType *>( movingImageMasks[n].GetPointer() ) )->GetImage() );

            typedef ResampleImageFilter<MovingMaskImageType, MovingMaskImageType, RealType> MovingMaskResamplerType;
            typename MovingMaskResamplerType::Pointer movingMaskResampler = MovingMaskResamplerType::New();
            movingMaskResampler->SetInput( dynamic_cast<ImageMaskSpatialObjectType *>( const_cast<MovingImageMaskType *>( movingImageMasks[n].GetPointer() ) )->GetImage() );
            movingMaskResampler->SetTransform( movingTransform );
            movingMaskResampler->SetInterpolator( nearestNeighborInterpolator );
            movingMaskResampler->UseReferenceImageOn();
            movingMaskResampler->SetReferenceImage( virtualDomainImage );
            movingMaskResampler->SetDefaultPixelValue( 0 );
            movingMaskResampler->Update();

            typename ImageMaskSpatialObjectType::Pointer resampledMovingImageMask = ImageMaskSpatialObjectType::New();
            resampledMovingImageMask->SetImage( movingMaskResampler->GetOutput() );

            dynamic_cast<ImageMetricType *>( multiMetric->GetMetricQueue()[n].GetPointer() )->SetMovingImageMask( resampledMovingImageMask );
            }
          }
        }
      else
        {
        itkExceptionMacro( "Invalid metric." );
        }
      }
    }
  else
    {
    if( this->m_Metric->GetMetricCategory() == MetricType::POINT_SET_METRIC )
      {
      this->m_Metric->SetFixedObject( fixedPointSets[0] );
      this->m_Metric->SetMovingObject( movingPointSets[0] );

      dynamic_cast<PointSetMetricType *>( this->m_Metric.GetPointer() )->SetFixedTransform( const_cast<TransformBaseType *>( fixedTransform ) );
      dynamic_cast<PointSetMetricType *>( this->m_Metric.GetPointer() )->SetMovingTransform( const_cast<TransformBaseType *>( movingTransform ) );

      dynamic_cast<PointSetMetricType *>( this->m_Metric.GetPointer() )->SetCalculateValueAndDerivativeInTangentSpace( true );

      // The following boolean variable is on by default.  However, I set it explicitly here
      // to note behavioral differences between the Gaussian (original) SyN and B-spline
      // SyN.  A point-set is defined irregularly (i.e., not necessarily at voxel centers) over
      // the fixed and moving image domains.  For the Gaussian smoothing of the gradient field
      // with original SyN, the corresponding metric gradient values must be mapped to the closest
      // voxel locations in the reference domain.  The rest of the gradient values are zeroed
      // out prior to gaussian smoothing via convolution.  For the B-spline analog, the underlying
      // smoothing operation is done using the BSplineScatteredDataPointSettoImageFilter so we
      // don't need to artificially zero out "missing" values.

      dynamic_cast<PointSetMetricType *>( this->m_Metric.GetPointer() )->SetStoreDerivativeAsSparseFieldForLocalSupportTransforms( true );
      }
    else if( this->m_Metric->GetMetricCategory() == MetricType::IMAGE_METRIC )
      {

      if( !this->m_DownsampleImagesForMetricDerivatives )
        {
        this->m_Metric->SetFixedObject( fixedImages[0] );
        this->m_Metric->SetMovingObject( movingImages[0] );

        dynamic_cast<ImageMetricType *>( this->m_Metric.GetPointer() )->SetFixedTransform( const_cast<TransformBaseType *>( fixedTransform ) );
        dynamic_cast<ImageMetricType *>( this->m_Metric.GetPointer() )->SetMovingTransform( const_cast<TransformBaseType *>( movingTransform ) );

        dynamic_cast<ImageMetricType *>( this->m_Metric.GetPointer() )->SetFixedImageMask( fixedImageMasks[0] );
        dynamic_cast<ImageMetricType *>( this->m_Metric.GetPointer() )->SetMovingImageMask( movingImageMasks[0] );
        }
      else
        {
        typedef ResampleImageFilter<FixedImageType, FixedImageType, RealType> FixedResamplerType;
        typename FixedResamplerType::Pointer fixedResampler = FixedResamplerType::New();
        fixedResampler->SetInput( fixedImages[0] );
        fixedResampler->SetTransform( fixedTransform );
        fixedResampler->UseReferenceImageOn();
        fixedResampler->SetReferenceImage( virtualDomainImage );
        fixedResampler->SetDefaultPixelValue( 0 );
        fixedResampler->Update();

        typedef ResampleImageFilter<MovingImageType, MovingImageType, RealType> MovingResamplerType;
        typename MovingResamplerType::Pointer movingResampler = MovingResamplerType::New();
        movingResampler->SetInput( movingImages[0] );
        movingResampler->SetTransform( movingTransform );
        movingResampler->UseReferenceImageOn();
        movingResampler->SetReferenceImage( virtualDomainImage );
        movingResampler->SetDefaultPixelValue( 0 );
        movingResampler->Update();

        this->m_Metric->SetFixedObject( fixedResampler->GetOutput() );
        this->m_Metric->SetMovingObject( movingResampler->GetOutput() );

        if( fixedImageMasks[0] )
          {
          typedef NearestNeighborInterpolateImageFunction<FixedMaskImageType, RealType> NearestNeighborInterpolatorType;
          typename NearestNeighborInterpolatorType::Pointer nearestNeighborInterpolator = NearestNeighborInterpolatorType::New();
          nearestNeighborInterpolator->SetInputImage( dynamic_cast<ImageMaskSpatialObjectType *>( const_cast<FixedImageMaskType *>( fixedImageMasks[0].GetPointer() ) )->GetImage() );

          typedef ResampleImageFilter<FixedMaskImageType, FixedMaskImageType, RealType> FixedMaskResamplerType;
          typename FixedMaskResamplerType::Pointer fixedMaskResampler = FixedMaskResamplerType::New();
          fixedMaskResampler->SetInput( dynamic_cast<ImageMaskSpatialObjectType *>( const_cast<FixedImageMaskType *>( fixedImageMasks[0].GetPointer() ) )->GetImage() );
          fixedMaskResampler->SetTransform( fixedTransform );
          fixedMaskResampler->SetInterpolator( nearestNeighborInterpolator );
          fixedMaskResampler->UseReferenceImageOn();
          fixedMaskResampler->SetReferenceImage( virtualDomainImage );
          fixedMaskResampler->SetDefaultPixelValue( 0 );
          fixedMaskResampler->Update();

          typename ImageMaskSpatialObjectType::Pointer resampledFixedImageMask = ImageMaskSpatialObjectType::New();
          resampledFixedImageMask->SetImage( fixedMaskResampler->GetOutput() );

          dynamic_cast<ImageMetricType *>( this->m_Metric.GetPointer() )->SetFixedImageMask( resampledFixedImageMask );
          }

        if( movingImageMasks[0] )
          {
          typedef NearestNeighborInterpolateImageFunction<MovingMaskImageType, RealType> NearestNeighborInterpolatorType;
          typename NearestNeighborInterpolatorType::Pointer nearestNeighborInterpolator = NearestNeighborInterpolatorType::New();
          nearestNeighborInterpolator->SetInputImage( dynamic_cast<ImageMaskSpatialObjectType *>( const_cast<MovingImageMaskType *>( movingImageMasks[0].GetPointer() ) )->GetImage() );

          typedef ResampleImageFilter<MovingMaskImageType, MovingMaskImageType, RealType> MovingMaskResamplerType;
          typename MovingMaskResamplerType::Pointer movingMaskResampler = MovingMaskResamplerType::New();
          movingMaskResampler->SetInput( dynamic_cast<ImageMaskSpatialObjectType *>( const_cast<MovingImageMaskType *>( movingImageMasks[0].GetPointer() ) )->GetImage() );
          movingMaskResampler->SetTransform( movingTransform );
          movingMaskResampler->SetInterpolator( nearestNeighborInterpolator );
          movingMaskResampler->UseReferenceImageOn();
          movingMaskResampler->SetReferenceImage( virtualDomainImage );
          movingMaskResampler->SetDefaultPixelValue( 0 );
          movingMaskResampler->Update();

          typename ImageMaskSpatialObjectType::Pointer resampledMovingImageMask = ImageMaskSpatialObjectType::New();
          resampledMovingImageMask->SetImage( movingMaskResampler->GetOutput() );

          dynamic_cast<ImageMetricType *>( this->m_Metric.GetPointer() )->SetMovingImageMask( resampledMovingImageMask );
          }
        }
      }
    else
      {
      itkExceptionMacro( "Invalid metric." );
      }
    }

  if( this->m_DownsampleImagesForMetricDerivatives && this->m_Metric->GetMetricCategory() != MetricType::POINT_SET_METRIC )
    {
    const DisplacementVectorType zeroVector( 0.0 );

    typename DisplacementFieldType::Pointer identityField = DisplacementFieldType::New();
    identityField->CopyInformation( virtualDomainImage );
    identityField->SetRegions( virtualDomainImage->GetLargestPossibleRegion() );
    identityField->Allocate();
    identityField->FillBuffer( zeroVector );

    DisplacementFieldTransformPointer identityDisplacementFieldTransform = DisplacementFieldTransformType::New();
    identityDisplacementFieldTransform->SetDisplacementField( identityField );
    identityDisplacementFieldTransform->SetInverseDisplacementField( identityField );

    if( this->m_Metric->GetMetricCategory() == MetricType::MULTI_METRIC )
      {
      multiMetric->SetFixedTransform( identityDisplacementFieldTransform );
      multiMetric->SetMovingTransform( identityDisplacementFieldTransform );
      }
    else if( this->m_Metric->GetMetricCategory() == MetricType::IMAGE_METRIC )
      {
      dynamic_cast<ImageMetricType *>( this->m_Metric.GetPointer() )->SetFixedTransform( identityDisplacementFieldTransform );
      dynamic_cast<ImageMetricType *>( this->m_Metric.GetPointer() )->SetMovingTransform( identityDisplacementFieldTransform );
      }
    }

  this->m_Metric->Initialize();

  typedef typename ImageMetricType::DerivativeType MetricDerivativeType;
  const typename MetricDerivativeType::SizeValueType metricDerivativeSize = virtualDomainImage->GetLargestPossibleRegion().GetNumberOfPixels() * ImageDimension;
  MetricDerivativeType metricDerivative( metricDerivativeSize );

  metricDerivative.Fill( NumericTraits<typename MetricDerivativeType::ValueType>::ZeroValue() );
  this->m_Metric->GetValueAndDerivative( value, metricDerivative );

  // Ensure that the size of the optimizer weights is the same as the
  // number of local transform parameters (=ImageDimension)
  if( !this->m_OptimizerWeightsAreIdentity && this->m_OptimizerWeights.Size() == ImageDimension )
    {
    typename MetricDerivativeType::iterator it;
    for( it = metricDerivative.begin(); it != metricDerivative.end(); it += ImageDimension )
      {
      for( unsigned int d = 0; d < ImageDimension; d++ )
        {
        *(it + d) *= this->m_OptimizerWeights[d];
        }
      }
    }

  // we rescale the update velocity field at each time point.
  // we first need to convert to a displacement field to look
  // at the max norm of the field.

  typename DisplacementFieldType::Pointer gradientField = DisplacementFieldType::New();
  gradientField->CopyInformation( virtualDomainImage );
  gradientField->SetRegions( virtualDomainImage->GetRequestedRegion() );
  gradientField->Allocate();

  ImageRegionIterator<DisplacementFieldType> ItG( gradientField, gradientField->GetRequestedRegion() );

  SizeValueType count = 0;
  for( ItG.GoToBegin(); !ItG.IsAtEnd(); ++ItG )
    {
    DisplacementVectorType displacement;
    for( SizeValueType d = 0; d < ImageDimension; d++ )
      {
      displacement[d] = metricDerivative[count++];
      }
    ItG.Set( displacement );
    }

  return gradientField;
}

template<typename TFixedImage, typename TMovingImage, typename TOutputTransform, typename TVirtualImage, typename TPointSet>
typename SyNImageRegistrationMethod<TFixedImage, TMovingImage, TOutputTransform, TVirtualImage, TPointSet>::DisplacementFieldPointer
SyNImageRegistrationMethod<TFixedImage, TMovingImage, TOutputTransform, TVirtualImage, TPointSet>
::ScaleUpdateField( const DisplacementFieldType * updateField )
{
  typename DisplacementFieldType::SpacingType spacing = updateField->GetSpacing();
  ImageRegionConstIterator<DisplacementFieldType> ItF( updateField, updateField->GetLargestPossibleRegion() );

  RealType maxNorm = NumericTraits<RealType>::NonpositiveMin();
  for( ItF.GoToBegin(); !ItF.IsAtEnd(); ++ItF )
    {
    DisplacementVectorType vector = ItF.Get();

    RealType localNorm = 0;
    for( SizeValueType d = 0; d < ImageDimension; d++ )
      {
      localNorm += itk::Math::sqr( vector[d] / spacing[d] );
      }
    localNorm = std::sqrt( localNorm );

    if( localNorm > maxNorm )
      {
      maxNorm = localNorm;
      }
    }

  RealType scale = this->m_LearningRate;
  if( maxNorm > NumericTraits<RealType>::ZeroValue() )
    {
    scale /= maxNorm;
    }

  typedef Image<RealType, ImageDimension> RealImageType;

  typedef MultiplyImageFilter<DisplacementFieldType, RealImageType, DisplacementFieldType> MultiplierType;
  typename MultiplierType::Pointer multiplier = MultiplierType::New();
  multiplier->SetInput( updateField );
  multiplier->SetConstant( scale );

  typename DisplacementFieldType::Pointer scaledUpdateField = multiplier->GetOutput();
  scaledUpdateField->Update();
  scaledUpdateField->DisconnectPipeline();

  return scaledUpdateField;
}

template<typename TFixedImage, typename TMovingImage, typename TOutputTransform, typename TVirtualImage, typename TPointSet>
typename SyNImageRegistrationMethod<TFixedImage, TMovingImage, TOutputTransform, TVirtualImage, TPointSet>::DisplacementFieldPointer
SyNImageRegistrationMethod<TFixedImage, TMovingImage, TOutputTransform, TVirtualImage, TPointSet>
::InvertDisplacementField( const DisplacementFieldType * field, const DisplacementFieldType * inverseFieldEstimate )
{
  typedef InvertDisplacementFieldImageFilter<DisplacementFieldType> InverterType;

  typename InverterType::Pointer inverter = InverterType::New();
  inverter->SetInput( field );
  inverter->SetInverseFieldInitialEstimate( inverseFieldEstimate );
  inverter->SetMaximumNumberOfIterations( 20 );
  inverter->SetMeanErrorToleranceThreshold( 0.001 );
  inverter->SetMaxErrorToleranceThreshold( 0.1 );
  inverter->Update();

  DisplacementFieldPointer inverseField = inverter->GetOutput();

  return inverseField;
}

template<typename TFixedImage, typename TMovingImage, typename TOutputTransform, typename TVirtualImage, typename TPointSet>
typename SyNImageRegistrationMethod<TFixedImage, TMovingImage, TOutputTransform, TVirtualImage, TPointSet>::DisplacementFieldPointer
SyNImageRegistrationMethod<TFixedImage, TMovingImage, TOutputTransform, TVirtualImage, TPointSet>
::GaussianSmoothDisplacementField( const DisplacementFieldType * field, const RealType variance )
{
  typedef ImageDuplicator<DisplacementFieldType> DuplicatorType;
  typename DuplicatorType::Pointer duplicator = DuplicatorType::New();
  duplicator->SetInputImage( field );
  duplicator->Update();

  DisplacementFieldPointer smoothField = duplicator->GetModifiableOutput();

  if( variance <= 0.0 )
    {
    return smoothField;
    }

  typedef GaussianOperator<RealType, ImageDimension> GaussianSmoothingOperatorType;
  GaussianSmoothingOperatorType gaussianSmoothingOperator;

  typedef VectorNeighborhoodOperatorImageFilter<DisplacementFieldType, DisplacementFieldType> GaussianSmoothingSmootherType;
  typename GaussianSmoothingSmootherType::Pointer smoother = GaussianSmoothingSmootherType::New();

  for( SizeValueType d = 0; d < ImageDimension; d++ )
    {
    // smooth along this dimension
    gaussianSmoothingOperator.SetDirection( d );
    gaussianSmoothingOperator.SetVariance( variance );
    gaussianSmoothingOperator.SetMaximumError( 0.001 );
    gaussianSmoothingOperator.SetMaximumKernelWidth( smoothField->GetRequestedRegion().GetSize()[d] );
    gaussianSmoothingOperator.CreateDirectional();

    // todo: make sure we only smooth within the buffered region
    smoother->SetOperator( gaussianSmoothingOperator );
    smoother->SetInput( smoothField );
    try
      {
      smoother->Update();
      }
    catch( ExceptionObject & exc )
      {
      std::string msg( "Caught exception: " );
      msg += exc.what();
      itkExceptionMacro( << msg );
      }

    smoothField = smoother->GetOutput();
    smoothField->Update();
    smoothField->DisconnectPipeline();
    }

  const DisplacementVectorType zeroVector( 0.0 );

  //make sure boundary does not move
  RealType weight1 = 1.0;
  if( variance < 0.5 )
    {
    weight1 = 1.0 - 1.0 * ( variance / 0.5 );
    }
  RealType weight2 = 1.0 - weight1;

  const typename DisplacementFieldType::RegionType region = field->GetLargestPossibleRegion();
  const typename DisplacementFieldType::SizeType size = region.GetSize();
  const typename DisplacementFieldType::IndexType startIndex = region.GetIndex();

  ImageRegionConstIteratorWithIndex<DisplacementFieldType> ItF( field, field->GetLargestPossibleRegion() );
  ImageRegionIteratorWithIndex<DisplacementFieldType> ItS( smoothField, smoothField->GetLargestPossibleRegion() );
  for( ItF.GoToBegin(), ItS.GoToBegin(); !ItF.IsAtEnd(); ++ItF, ++ItS )
    {
    typename DisplacementFieldType::IndexType index = ItF.GetIndex();
    bool isOnBoundary = false;
    for ( unsigned int d = 0; d < ImageDimension; d++ )
      {
      if( index[d] == startIndex[d] || index[d] == static_cast<IndexValueType>( size[d] ) - startIndex[d] - 1 )
        {
        isOnBoundary = true;
        break;
        }
      }
    if( isOnBoundary )
      {
      ItS.Set( zeroVector );
      }
    else
      {
      ItS.Set( ItS.Get() * weight1 + ItF.Get() * weight2 );
      }
    }

  return smoothField;
}

/*
 * Start the registration
 */
template<typename TFixedImage, typename TMovingImage, typename TOutputTransform, typename TVirtualImage, typename TPointSet>
void
SyNImageRegistrationMethod<TFixedImage, TMovingImage, TOutputTransform, TVirtualImage, TPointSet>
::GenerateData()
{
  this->AllocateOutputs();

  for( this->m_CurrentLevel = 0; this->m_CurrentLevel < this->m_NumberOfLevels; this->m_CurrentLevel++ )
    {
    this->InitializeRegistrationAtEachLevel( this->m_CurrentLevel );

    // The base class adds the transform to be optimized at initialization.
    // However, since this class handles its own optimization, we remove it
    // to optimize separately.  We then add it after the optimization loop.

    this->m_CompositeTransform->RemoveTransform();

    this->StartOptimization();

    this->m_CompositeTransform->AddTransform( this->m_OutputTransform );
    }

  typedef ComposeDisplacementFieldsImageFilter<DisplacementFieldType, DisplacementFieldType> ComposerType;

  typename ComposerType::Pointer composer = ComposerType::New();
  composer->SetDisplacementField( this->m_MovingToMiddleTransform->GetInverseDisplacementField() );
  composer->SetWarpingField( this->m_FixedToMiddleTransform->GetDisplacementField() );
  composer->Update();

  typename ComposerType::Pointer inverseComposer = ComposerType::New();
  inverseComposer->SetDisplacementField( this->m_FixedToMiddleTransform->GetInverseDisplacementField() );
  inverseComposer->SetWarpingField( this->m_MovingToMiddleTransform->GetDisplacementField() );
  inverseComposer->Update();

  this->m_OutputTransform->SetDisplacementField( composer->GetOutput() );
  this->m_OutputTransform->SetInverseDisplacementField( inverseComposer->GetOutput() );

  this->GetTransformOutput()->Set(this->m_OutputTransform);
}

/*
 * PrintSelf
 */
template<typename TFixedImage, typename TMovingImage, typename TOutputTransform, typename TVirtualImage, typename TPointSet>
void
SyNImageRegistrationMethod<TFixedImage, TMovingImage, TOutputTransform, TVirtualImage, TPointSet>
::PrintSelf( std::ostream & os, Indent indent ) const
{
  Superclass::PrintSelf( os, indent );

  os << indent << "Number of current iterations per level: " << this->m_NumberOfIterationsPerLevel << std::endl;
  os << indent << "Learning rate: " << this->m_LearningRate << std::endl;
  os << indent << "Convergence threshold: " << this->m_ConvergenceThreshold << std::endl;
  os << indent << "Convergence window size: " << this->m_ConvergenceWindowSize << std::endl;
  os << indent << "Gaussian smoothing variance for the update field: " << this->m_GaussianSmoothingVarianceForTheUpdateField << std::endl;
  os << indent << "Gaussian smoothing variance for the total field: " << this->m_GaussianSmoothingVarianceForTheTotalField << std::endl;
}

} // end namespace itk

#endif