This file is indexed.

/usr/include/ITK-4.12/itkShapeLabelObject.h is in libinsighttoolkit4-dev 4.12.2-dfsg1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkShapeLabelObject_h
#define itkShapeLabelObject_h

#include "itkLabelObject.h"
#include "itkLabelMap.h"
#include "itkAffineTransform.h"

namespace itk
{
/** \class ShapeLabelObject
 *  \brief A Label object to store the common attributes related to the shape of the object
 *
 * ShapeLabelObject stores  the common attributes related to the shape of the object
 *
 * \author Gaetan Lehmann. Biologie du Developpement et de la Reproduction, INRA de Jouy-en-Josas, France.
 *
 * This implementation was taken from the Insight Journal paper:
 * https://hdl.handle.net/1926/584  or
 * http://www.insight-journal.org/browse/publication/176
 *
 * \ingroup DataRepresentation
 * \ingroup ITKLabelMap
 */
template< typename TLabel, unsigned int VImageDimension >
class ShapeLabelObject:public LabelObject< TLabel, VImageDimension >
{
public:
  /** Standard class typedefs */
  typedef ShapeLabelObject                       Self;
  typedef LabelObject< TLabel, VImageDimension > Superclass;
  typedef typename Superclass::LabelObjectType   LabelObjectType;
  typedef SmartPointer< Self >                   Pointer;
  typedef SmartPointer< const Self >             ConstPointer;
  typedef WeakPointer< const Self >              ConstWeakPointer;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Run-time type information (and related methods). */
  itkTypeMacro(ShapeLabelObject, LabelObject);

  typedef LabelMap< Self > LabelMapType;

  itkStaticConstMacro(ImageDimension, unsigned int, VImageDimension);

  typedef typename Superclass::IndexType IndexType;

  typedef TLabel LabelType;

  typedef typename Superclass::LineType LineType;

  typedef typename Superclass::LengthType LengthType;

  typedef typename Superclass::AttributeType AttributeType;

  /** The number of pixels. */
  itkStaticConstMacro(NUMBER_OF_PIXELS, AttributeType, 100);

  /** PhysicalSize is the size of the object in physical units.
    * It is equal to the NumberOfPixels multiplied by the
    * physical pixel size. Its type is double. */
  itkStaticConstMacro(PHYSICAL_SIZE, AttributeType, 101);

  /** Centroid is the position of the center of the shape in
    * physical coordinates. It is not constrained to be in the
    * object, and thus can be outside if the object is not convex.*/
  itkStaticConstMacro(CENTROID, AttributeType, 104);

  itkStaticConstMacro(BOUNDING_BOX, AttributeType, 105);

  /** NumberOfPixelsOnBorder is the number of pixels in the objects
    * which are on the border of the image. A pixel on several borders
    * (a pixel in a corner) is counted only one time, so the size on
    * border can't be greater than the size of the object. This attribute
    * is particularly useful to remove the objects which are touching
    * too much the border. Its type is unsigned long.*/
  itkStaticConstMacro(NUMBER_OF_PIXELS_ON_BORDER, AttributeType, 106);

  /** PerimeterOnBorder is the physical size of the objects which are on
    * the border of the image. In 2D, it is a distance, in 3D, a surface,
    * etc. Contrary to the PhysicalSize attribute which is directly linked to
    * the NumberOfPixels, this attribute is not directly linked to the
    * NumberOfPixelsOnBorder attribute. This attribute is particularly useful
    * to remove the objects which are touching too much the border.
    * Its type is double.*/
  itkStaticConstMacro(PERIMETER_ON_BORDER, AttributeType, 107);

  /** FeretDiameter is the diameter in physical units of the sphere which
    * include all the object. The feret diameter is not computed by default,
    * because of its high computation. Its type is double.*/
  itkStaticConstMacro(FERET_DIAMETER, AttributeType, 108);

  /** PrincipalMoments contains the principal moments.*/
  itkStaticConstMacro(PRINCIPAL_MOMENTS, AttributeType, 109);

  /** BinaryPrincipalAxes contains the principal axes of the object.*/
  itkStaticConstMacro(PRINCIPAL_AXES, AttributeType, 110);

  /** Elongation is the  ratio of the largest principal moment to the
    * second largest principal moment. Its value is greater or equal to 1.
    * Its type is double.*/
  itkStaticConstMacro(ELONGATION, AttributeType, 111);

  /** The perimeter of the object.*/
  itkStaticConstMacro(PERIMETER, AttributeType, 112);

  itkStaticConstMacro(ROUNDNESS, AttributeType, 113);

  /** EquivalentRadius is the equivalent radius of the hypersphere of the
    * same size than the label object. The value depends on the image spacing.
    * Its type is double.*/
  itkStaticConstMacro(EQUIVALENT_SPHERICAL_RADIUS, AttributeType, 114);

  /** EquivalentPerimeter is the equivalent perimeter of the hypersphere of
    * the same size than the label object. The value depends on the image spacing.
    * Its type is double.*/
  itkStaticConstMacro(EQUIVALENT_SPHERICAL_PERIMETER, AttributeType, 115);

  /** EquivalentEllipsoidPerimeter is the size of the ellipsoid of the same size
    * and the same ratio on all the axes than the label object. The value depends
    * on the image spacing.*/
  itkStaticConstMacro(EQUIVALENT_ELLIPSOID_DIAMETER, AttributeType, 116);

  itkStaticConstMacro(FLATNESS, AttributeType, 117);

  itkStaticConstMacro(PERIMETER_ON_BORDER_RATIO, AttributeType, 118);


  /** Origin of the oriented bounding box defined by the principle
    * axes, and the oriented bounding box size */
  itkStaticConstMacro(ORIENTED_BOUNDING_BOX_ORIGIN, AttributeType, 119);


  /** Size of the oriented bounding box defined by the principle axes,
    * and the bounding box origin.
    *
    * The combination of the OBB origin, OBB size and OBB direction (
    * principal axes ) defines a coordinate system suitable to use
    * resample the OBB onto it's own image.
    */
  itkStaticConstMacro(ORIENTED_BOUNDING_BOX_SIZE, AttributeType, 120);

  static AttributeType GetAttributeFromName(const std::string & s)
  {
    if ( s == "NumberOfPixels" )
      {
      return NUMBER_OF_PIXELS;
      }
    else if ( s == "PhysicalSize" )
      {
      return PHYSICAL_SIZE;
      }
    else if ( s == "Centroid" )
      {
      return CENTROID;
      }
    else if ( s == "BoundingBox" )
      {
      return BOUNDING_BOX;
      }
    else if ( s == "NumberOfPixelsOnBorder" )
      {
      return NUMBER_OF_PIXELS_ON_BORDER;
      }
    else if ( s == "PerimeterOnBorder" )
      {
      return PERIMETER_ON_BORDER;
      }
    else if ( s == "FeretDiameter" )
      {
      return FERET_DIAMETER;
      }
    else if ( s == "PrincipalMoments" )
      {
      return PRINCIPAL_MOMENTS;
      }
    else if ( s == "PrincipalAxes" )
      {
      return PRINCIPAL_AXES;
      }
    else if ( s == "Elongation" )
      {
      return ELONGATION;
      }
    else if ( s == "Perimeter" )
      {
      return PERIMETER;
      }
    else if ( s == "Roundness" )
      {
      return ROUNDNESS;
      }
    else if ( s == "EquivalentSphericalRadius" )
      {
      return EQUIVALENT_SPHERICAL_RADIUS;
      }
    else if ( s == "EquivalentSphericalPerimeter" )
      {
      return EQUIVALENT_SPHERICAL_PERIMETER;
      }
    else if ( s == "EquivalentEllipsoidDiameter" )
      {
      return EQUIVALENT_ELLIPSOID_DIAMETER;
      }
    else if ( s == "Flatness" )
      {
      return FLATNESS;
      }
    else if ( s == "PerimeterOnBorderRatio" )
      {
      return PERIMETER_ON_BORDER_RATIO;
      }
    else if ( s == "OrientedBoundingBoxSize")
      {
      return ORIENTED_BOUNDING_BOX_ORIGIN;
      }
    else if ( s == "OrientedBoundingBoxOrigin")
      {
      return ORIENTED_BOUNDING_BOX_SIZE;
      }
    // can't recognize the name
    return Superclass::GetAttributeFromName(s);
  }

  static std::string GetNameFromAttribute(const AttributeType & a)
  {
    std::string name;
    switch ( a )
      {
      case NUMBER_OF_PIXELS:
        name = "NumberOfPixels";
        break;
      case PHYSICAL_SIZE:
        name = "PhysicalSize";
        break;
      case CENTROID:
        name = "Centroid";
        break;
      case BOUNDING_BOX:
        name = "BoundingBox";
        break;
      case NUMBER_OF_PIXELS_ON_BORDER:
        name = "NumberOfPixelsOnBorder";
        break;
      case PERIMETER_ON_BORDER:
        name = "PerimeterOnBorder";
        break;
      case FERET_DIAMETER:
        name = "FeretDiameter";
        break;
      case PRINCIPAL_MOMENTS:
        name = "PrincipalMoments";
        break;
      case PRINCIPAL_AXES:
        name = "PrincipalAxes";
        break;
      case ELONGATION:
        name = "Elongation";
        break;
      case PERIMETER:
        name = "Perimeter";
        break;
      case ROUNDNESS:
        name = "Roundness";
        break;
      case EQUIVALENT_SPHERICAL_RADIUS:
        name = "EquivalentSphericalRadius";
        break;
      case EQUIVALENT_SPHERICAL_PERIMETER:
        name = "EquivalentSphericalPerimeter";
        break;
      case EQUIVALENT_ELLIPSOID_DIAMETER:
        name = "EquivalentEllipsoidDiameter";
        break;
      case FLATNESS:
        name = "Flatness";
        break;
      case PERIMETER_ON_BORDER_RATIO:
        name = "PerimeterOnBorderRatio";
        break;
      case ORIENTED_BOUNDING_BOX_ORIGIN:
        name = "OrientedBoundingBoxOrigin";
        break;
      case ORIENTED_BOUNDING_BOX_SIZE:
        name = "OrientedBoundingBoxSize";
        break;
      default:
        // can't recognize the name
        name = Superclass::GetNameFromAttribute(a);
        break;
      }
    return name;
  }

  typedef ImageRegion< VImageDimension > RegionType;

  typedef Point< double, VImageDimension > CentroidType;

  typedef Matrix< double, VImageDimension, VImageDimension > MatrixType;

  typedef Vector< double, VImageDimension > VectorType;


private:

  template <size_t VX, unsigned short VY>
    struct IntegerPow
  {
    static const size_t Result = VX*IntegerPow<VX, VY-1>::Result;
  };

  template <size_t VX>
    struct IntegerPow<VX,0>
  {
    static const size_t Result = 1;
  };

public:

  typedef MatrixType                       OrientedBoundingBoxDirectionType;

  typedef Point< double, VImageDimension > OrientedBoundingBoxPointType;

  typedef Vector<double, VImageDimension>  OrientedBoundingBoxSizeType;

  typedef FixedArray<OrientedBoundingBoxPointType, IntegerPow<2,ImageDimension>::Result> OrientedBoundingBoxVerticesType;


  const RegionType & GetBoundingBox() const
  {
    return m_BoundingBox;
  }

  void SetBoundingBox(const RegionType & v)
  {
    m_BoundingBox = v;
  }

  const double & GetPhysicalSize() const
  {
    return m_PhysicalSize;
  }

  void SetPhysicalSize(const double & v)
  {
    m_PhysicalSize = v;
  }

  const SizeValueType & GetNumberOfPixels() const
  {
    return m_NumberOfPixels;
  }

  void SetNumberOfPixels(const SizeValueType & v)
  {
    m_NumberOfPixels = v;
  }

  const CentroidType & GetCentroid() const
  {
    return m_Centroid;
  }

  void SetCentroid(const CentroidType & centroid)
  {
    m_Centroid = centroid;
  }

  const SizeValueType & GetNumberOfPixelsOnBorder() const
  {
    return m_NumberOfPixelsOnBorder;
  }

  void SetNumberOfPixelsOnBorder(const SizeValueType & v)
  {
    m_NumberOfPixelsOnBorder = v;
  }

  const double & GetPerimeterOnBorder() const
  {
    return m_PerimeterOnBorder;
  }

  void SetPerimeterOnBorder(const double & v)
  {
    m_PerimeterOnBorder = v;
  }

  const double & GetFeretDiameter() const
  {
    return m_FeretDiameter;
  }

  void SetFeretDiameter(const double & v)
  {
    m_FeretDiameter = v;
  }

  const VectorType & GetPrincipalMoments() const
  {
    return m_PrincipalMoments;
  }

  void SetPrincipalMoments(const VectorType & v)
  {
    m_PrincipalMoments = v;
  }

  const MatrixType & GetPrincipalAxes() const
  {
    return m_PrincipalAxes;
  }

  void SetPrincipalAxes(const MatrixType & v)
  {
    m_PrincipalAxes = v;
  }

  const double & GetElongation() const
  {
    return m_Elongation;
  }

  void SetElongation(const double & v)
  {
    m_Elongation = v;
  }

  const double & GetPerimeter() const
  {
    return m_Perimeter;
  }

  void SetPerimeter(const double & v)
  {
    m_Perimeter = v;
  }

  const double & GetRoundness() const
  {
    return m_Roundness;
  }

  void SetRoundness(const double & v)
  {
    m_Roundness = v;
  }

  const double & GetEquivalentSphericalRadius() const
  {
    return m_EquivalentSphericalRadius;
  }

  void SetEquivalentSphericalRadius(const double & v)
  {
    m_EquivalentSphericalRadius = v;
  }

  const double & GetEquivalentSphericalPerimeter() const
  {
    return m_EquivalentSphericalPerimeter;
  }

  void SetEquivalentSphericalPerimeter(const double & v)
  {
    m_EquivalentSphericalPerimeter = v;
  }

  const VectorType & GetEquivalentEllipsoidDiameter() const
  {
    return m_EquivalentEllipsoidDiameter;
  }

  void SetEquivalentEllipsoidDiameter(const VectorType & v)
  {
    m_EquivalentEllipsoidDiameter = v;
  }

  const double & GetFlatness() const
  {
    return m_Flatness;
  }

  void SetFlatness(const double & v)
  {
    m_Flatness = v;
  }

  const double & GetPerimeterOnBorderRatio() const
  {
    return m_PerimeterOnBorderRatio;
  }

  void SetPerimeterOnBorderRatio(const double & v)
  {
    m_PerimeterOnBorderRatio = v;
  }

  const OrientedBoundingBoxPointType & GetOrientedBoundingBoxOrigin() const
  {
    return m_OrientedBoundingBoxOrigin;
  }

  void SetOrientedBoundingBoxOrigin(const OrientedBoundingBoxPointType & v)
  {
    m_OrientedBoundingBoxOrigin = v;
  }

  const OrientedBoundingBoxSizeType & GetOrientedBoundingBoxSize() const
  {
    return m_OrientedBoundingBoxSize;
  }

  void SetOrientedBoundingBoxSize(const OrientedBoundingBoxSizeType & v)
  {
    m_OrientedBoundingBoxSize = v;
  }


  // some helper methods - not really required, but really useful!


  /** Get the direction matrix for the oriented bounding box
    * coordinates. This is an alias for the principal axes. */
  const OrientedBoundingBoxDirectionType & GetOrientedBoundingBoxDirection() const
  {
    return this->GetPrincipalAxes();
  }

  /** Get an array of point verities which define the corners of the
    * oriented bounding box.
    *
    * The first element in the array contains the minimum coordination
    * values while the last contains the maximum. Use the index of the
    * array in binary to determine min/max for the indexed vertex.
    * For example, in 2D, binary  counting will give[0,0], [0,1],
    * [1,0], [1,1], which corresponds to [minX,minY], [minX,maxY],
    * [maxX,minY], [maxX,maxY].
    */
  OrientedBoundingBoxVerticesType GetOrientedBoundingBoxVertices() const
  {

    const OrientedBoundingBoxPointType min = this->GetOrientedBoundingBoxOrigin();
    OrientedBoundingBoxPointType max = this->GetOrientedBoundingBoxOrigin();

    for( unsigned int i = 0; i < ImageDimension; ++i)
      {
      max[i] += m_OrientedBoundingBoxSize[i];
      }

    OrientedBoundingBoxVerticesType vertices;

    // Use binary index to map the vertices of the OBB to an array. For
    // example, in 2D, binary  counting will give[0,0], [0,1], [1,0],
    // [1,1], which corresponds to [minX,minY], [minX,maxY],
    // [maxX,minY], [maxX,maxY].
    for (unsigned int i = 0; i <  OrientedBoundingBoxVerticesType::Length; ++i)
      {
      const unsigned int msb = 1 << (ImageDimension-1);
      for ( unsigned int j = 0; j < ImageDimension; j++ )
        {
        if (i & msb>>j)
          {
          vertices[i][j] = max[j];
          }
        else
          {
          vertices[i][j] = min[j];
          }
        }
      }
    return vertices;
  }

  /** Affine transform for mapping to and from principal axis */
  typedef AffineTransform< double, VImageDimension > AffineTransformType;
  typedef typename AffineTransformType::Pointer      AffineTransformPointer;

  /** Get the affine transform from principal axes to physical axes
   * This method returns an affine transform which transforms from
   * the principal axes coordinate system to physical coordinates. */
  AffineTransformPointer GetPrincipalAxesToPhysicalAxesTransform() const
  {
    typename AffineTransformType::MatrixType matrix;
    typename AffineTransformType::OffsetType offset;
    for ( unsigned int i = 0; i < VImageDimension; i++ )
      {
      offset[i]  = m_Centroid[i];
      for ( unsigned int j = 0; j < VImageDimension; j++ )
        {
        matrix[j][i] = m_PrincipalAxes[i][j];    // Note the transposition
        }
      }

    AffineTransformPointer result = AffineTransformType::New();

    result->SetMatrix(matrix);
    result->SetOffset(offset);

    return result;
  }

  /** Get the affine transform from physical axes to principal axes
   * This method returns an affine transform which transforms from
   * the physical coordinate system to the principal axes coordinate
   * system. */
  AffineTransformPointer GetPhysicalAxesToPrincipalAxesTransform(void) const
  {
    typename AffineTransformType::MatrixType matrix;
    typename AffineTransformType::OffsetType offset;
    for ( unsigned int i = 0; i < VImageDimension; i++ )
      {
      offset[i]    = m_Centroid[i];
      for ( unsigned int j = 0; j < VImageDimension; j++ )
        {
        matrix[j][i] = m_PrincipalAxes[i][j];    // Note the transposition
        }
      }

    AffineTransformPointer result = AffineTransformType::New();
    result->SetMatrix(matrix);
    result->SetOffset(offset);

    AffineTransformPointer inverse = AffineTransformType::New();
    result->GetInverse(inverse);

    return inverse;
  }

  template< typename TSourceLabelObject >
  void CopyAttributesFrom( const TSourceLabelObject * src )
  {
    Superclass::template CopyAttributesFrom<TSourceLabelObject>(src);

    m_BoundingBox = src->GetBoundingBox();
    m_NumberOfPixels = src->GetNumberOfPixels();
    m_PhysicalSize = src->GetPhysicalSize();
    m_Centroid = src->GetCentroid();
    m_NumberOfPixelsOnBorder = src->GetNumberOfPixelsOnBorder();
    m_PerimeterOnBorder = src->GetPerimeterOnBorder();
    m_FeretDiameter = src->GetFeretDiameter();
    m_PrincipalMoments = src->GetPrincipalMoments();
    m_PrincipalAxes = src->GetPrincipalAxes();
    m_Elongation = src->GetElongation();
    m_Perimeter = src->GetPerimeter();
    m_Roundness = src->GetRoundness();
    m_EquivalentSphericalRadius = src->GetEquivalentSphericalRadius();
    m_EquivalentSphericalPerimeter = src->GetEquivalentSphericalPerimeter();
    m_EquivalentEllipsoidDiameter = src->GetEquivalentEllipsoidDiameter();
    m_Flatness = src->GetFlatness();
    m_PerimeterOnBorderRatio = src->GetPerimeterOnBorderRatio();
    m_OrientedBoundingBoxOrigin  = src->GetOrientedBoundingBoxOrigin();
    m_OrientedBoundingBoxSize  = src->GetOrientedBoundingBoxSize();
  }

  template< typename TSourceLabelObject >
  void CopyAllFrom(const TSourceLabelObject *src)
  {
    itkAssertOrThrowMacro ( ( src != ITK_NULLPTR ), "Null Pointer" );
    this->template CopyLinesFrom<TSourceLabelObject>( src );
    this->template CopyAttributesFrom<TSourceLabelObject>( src );
  }

protected:
  ShapeLabelObject()
  {
    m_NumberOfPixels = 0;
    m_PhysicalSize = 0;
    m_Centroid.Fill(0);
    m_NumberOfPixelsOnBorder = 0;
    m_PerimeterOnBorder = 0;
    m_FeretDiameter = 0;
    m_PrincipalMoments.Fill(0);
    m_PrincipalAxes.Fill(0);
    m_Elongation = 0;
    m_Perimeter = 0;
    m_Roundness = 0;
    m_EquivalentSphericalRadius = 0;
    m_EquivalentSphericalPerimeter = 0;
    m_EquivalentEllipsoidDiameter.Fill(0);
    m_Flatness = 0;
    m_PerimeterOnBorderRatio = 0;
    m_OrientedBoundingBoxSize.Fill(0);
    m_OrientedBoundingBoxOrigin.Fill(0);
  }

  void PrintSelf(std::ostream & os, Indent indent) const ITK_OVERRIDE
  {
    Superclass::PrintSelf(os, indent);

    os << indent << "NumberOfPixels: " << m_NumberOfPixels << std::endl;
    os << indent << "PhysicalSize: " << m_PhysicalSize << std::endl;
    os << indent << "Perimeter: " << m_Perimeter << std::endl;
    os << indent << "NumberOfPixelsOnBorder: " << m_NumberOfPixelsOnBorder << std::endl;
    os << indent << "PerimeterOnBorder: " << m_PerimeterOnBorder << std::endl;
    os << indent << "PerimeterOnBorderRatio: " << m_PerimeterOnBorderRatio << std::endl;
    os << indent << "Elongation: " << m_Elongation << std::endl;
    os << indent << "Flatness: " << m_Flatness << std::endl;
    os << indent << "Roundness: " << m_Roundness << std::endl;
    os << indent << "Centroid: " << m_Centroid << std::endl;
    os << indent << "BoundingBox: ";
    m_BoundingBox.Print(os, indent);
    os << indent << "EquivalentSphericalRadius: " << m_EquivalentSphericalRadius << std::endl;
    os << indent << "EquivalentSphericalPerimeter: " << m_EquivalentSphericalPerimeter << std::endl;
    os << indent << "EquivalentEllipsoidDiameter: " << m_EquivalentEllipsoidDiameter << std::endl;
    os << indent << "PrincipalMoments: " << m_PrincipalMoments << std::endl;
    os << indent << "PrincipalAxes: " << std::endl << m_PrincipalAxes;
    os << indent << "FeretDiameter: " << m_FeretDiameter << std::endl;
    os << indent << "m_OrientedBoundingBoxSize: " << m_OrientedBoundingBoxSize << std::endl;
    os << indent << "m_OrientedBoundingBoxOrigin: " << m_OrientedBoundingBoxOrigin << std::endl;
  }

private:
  ITK_DISALLOW_COPY_AND_ASSIGN(ShapeLabelObject);

  RegionType    m_BoundingBox;
  SizeValueType m_NumberOfPixels;
  double        m_PhysicalSize;
  CentroidType  m_Centroid;
  SizeValueType m_NumberOfPixelsOnBorder;
  double        m_PerimeterOnBorder;
  double        m_FeretDiameter;
  VectorType    m_PrincipalMoments;
  MatrixType    m_PrincipalAxes;
  double        m_Elongation;
  double        m_Perimeter;
  double        m_Roundness;
  double        m_EquivalentSphericalRadius;
  double        m_EquivalentSphericalPerimeter;
  VectorType    m_EquivalentEllipsoidDiameter;
  double        m_Flatness;
  double        m_PerimeterOnBorderRatio;

  OrientedBoundingBoxSizeType  m_OrientedBoundingBoxSize;
  OrientedBoundingBoxPointType m_OrientedBoundingBoxOrigin;
};
} // end namespace itk

#endif