This file is indexed.

/usr/include/ITK-4.12/itkLiThresholdCalculator.hxx is in libinsighttoolkit4-dev 4.12.2-dfsg1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#ifndef itkLiThresholdCalculator_hxx
#define itkLiThresholdCalculator_hxx

#include "itkLiThresholdCalculator.h"
#include "itkProgressReporter.h"
#include "itkMath.h"

namespace itk
{

template<typename THistogram, typename TOutput>
void
LiThresholdCalculator<THistogram, TOutput>
::GenerateData(void)
{
  const HistogramType * histogram = this->GetInput();

  if ( histogram->GetTotalFrequency() == 0 )
    {
    itkExceptionMacro(<< "Histogram is empty");
    }
  ProgressReporter progress(this, 0, histogram->GetSize(0) );
  if( histogram->GetSize(0) == 1 )
    {
    this->GetOutput()->Set( static_cast<OutputType>( histogram->GetMeasurement(0,0) ) );
    }

  unsigned int size = histogram->GetSize(0);

  long int histthresh;
  int ih;
  int num_pixels;
  double sum_back; // sum of the background pixels at a given threshold
  double sum_obj;  // sum of the object pixels at a given threshold
  int num_back; // number of background pixels at a given threshold
  int num_obj;  // number of object pixels at a given threshold
  double old_thresh;
  double new_thresh;
  double mean_back; // mean of the background pixels at a given threshold
  double mean_obj;  // mean of the object pixels at a given threshold
  double mean;  // mean gray-level in the image
  double tolerance; // threshold tolerance
  double temp;

  tolerance = 0.5;
  num_pixels = histogram->GetTotalFrequency();

  // Calculate the mean gray-level
  mean = 0.0;
  for ( ih = 0; (unsigned)ih < size; ih++ ) //0 + 1?
    {
    mean += histogram->GetMeasurement(ih, 0) * histogram->GetFrequency(ih, 0);
    }
  mean /= num_pixels;

  // Initial estimate
  new_thresh = mean;

  do {
  old_thresh = new_thresh;
  typename HistogramType::MeasurementVectorType ot(1);
  ot.Fill((int) (old_thresh + 0.5));
    {
    typename HistogramType::IndexType local_index;
    histogram->GetIndex(ot, local_index);
    histthresh = local_index[0];
    }

  // Calculate the means of background and object pixels

  // Background
  sum_back = 0;
  num_back = 0;
  for ( ih = 0; ih <= histthresh; ih++ )
    {
    sum_back += histogram->GetMeasurement(ih, 0) * histogram->GetFrequency(ih, 0);
    num_back += histogram->GetFrequency(ih, 0);
    }
  mean_back = ( num_back == 0 ? 0.0 : ( sum_back / ( double ) num_back ) );

  // Object
  sum_obj = 0;
  num_obj = 0;
  for ( ih = histthresh + 1; (unsigned)ih < size; ih++ )
    {
    sum_obj += histogram->GetMeasurement(ih, 0) * histogram->GetFrequency(ih, 0);
    num_obj += histogram->GetFrequency(ih, 0);
    }
  mean_obj = ( num_obj == 0 ? 0.0 : ( sum_obj / ( double ) num_obj ) );

  // Calculate the new threshold: Equation (7) in Ref. 2
  //new_thresh = simple_round ( ( mean_back - mean_obj ) / ( Math.log ( mean_back ) - Math.log ( mean_obj ) ) );
  //simple_round ( double x ) {
  // return ( int ) ( IS_NEG ( x ) ? x - .5 : x + .5 );
  //}
  //
  //#define IS_NEG( x ) ( ( x ) < -DBL_EPSILON )
  //
  temp = ( mean_back - mean_obj ) / ( std::log ( mean_back ) - std::log ( mean_obj ) );

  double epsilon = itk::NumericTraits<double>::epsilon();
  if( temp < -epsilon )
    {
    new_thresh = (int) (temp - 0.5);
    }
  else
    {
    new_thresh = (int) (temp + 0.5);
    }
  //  Stop the iterations when the difference between the new and old threshold
  // values is less than the tolerance
  }
  while ( std::abs ( new_thresh - old_thresh ) > tolerance );

  this->GetOutput()->Set( static_cast<OutputType>( histogram->GetMeasurement( histthresh, 0 ) ) );
}

} // end namespace itk

#endif