This file is indexed.

/usr/include/ITK-4.12/itkImageAlgorithm.hxx is in libinsighttoolkit4-dev 4.12.2-dfsg1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkImageAlgorithm_hxx
#define itkImageAlgorithm_hxx

#include "itkImageAlgorithm.h"
#include "itkArray.h"
#include "itkImageRegionIterator.h"
#include "itkImageScanlineIterator.h"


namespace itk
{

template<typename InputImageType, typename OutputImageType >
void ImageAlgorithm::DispatchedCopy( const InputImageType *inImage, OutputImageType *outImage,
                                     const typename InputImageType::RegionType &inRegion,
                                     const typename OutputImageType::RegionType &outRegion,
                                     FalseType )
{
  if ( inRegion.GetSize()[0] == outRegion.GetSize()[0] )
    {
    itk::ImageScanlineConstIterator<InputImageType> it( inImage, inRegion );
    itk::ImageScanlineIterator<OutputImageType> ot( outImage, outRegion );

    while( !it.IsAtEnd() )
      {
      while( !it.IsAtEndOfLine() )
        {
        ot.Set( static_cast< typename OutputImageType::PixelType >( it.Get() ) );
        ++ot;
        ++it;
        }
      ot.NextLine();
      it.NextLine();
      }
    return;
    }

  itk::ImageRegionConstIterator<InputImageType> it( inImage, inRegion );
  itk::ImageRegionIterator<OutputImageType> ot( outImage, outRegion );

  while( !it.IsAtEnd() )
    {
    ot.Set( static_cast< typename OutputImageType::PixelType >( it.Get() ) );
    ++ot;
    ++it;
    }
}

template<typename InputImageType, typename OutputImageType>
void ImageAlgorithm::DispatchedCopy( const InputImageType *inImage,
                                     OutputImageType *outImage,
                                     const typename InputImageType::RegionType &inRegion,
                                     const typename OutputImageType::RegionType &outRegion,
                                     TrueType )
{
  typedef typename InputImageType::RegionType _RegionType;
  typedef typename InputImageType::IndexType  _IndexType;

  // Get the number of bytes of each pixel in the buffer.
  const size_t NumberOfInternalComponents = ImageAlgorithm::PixelSize<InputImageType>::Get( inImage );

  // We wish to copy whole lines, otherwise just use the basic implementation.
  // Check that the number of internal components match
  if ( inRegion.GetSize()[0] != outRegion.GetSize()[0]
       || NumberOfInternalComponents != ImageAlgorithm::PixelSize<OutputImageType>::Get( outImage ) )
    {
    ImageAlgorithm::DispatchedCopy<InputImageType, OutputImageType>( inImage, outImage, inRegion, outRegion );
    return;
    }

  const typename InputImageType::InternalPixelType *in = inImage->GetBufferPointer();
  typename OutputImageType::InternalPixelType *out = outImage->GetBufferPointer();

  const _RegionType &inBufferedRegion = inImage->GetBufferedRegion();
  const _RegionType &outBufferedRegion = outImage->GetBufferedRegion();

  // Compute the number of continuous pixel which can be copied.
  size_t numberOfPixel = 1;
  unsigned int    movingDirection = 0;
  do
    {
    numberOfPixel *= inRegion.GetSize(movingDirection );
    ++movingDirection;
    }
  // The copy regions must extend to the full buffered region, to
  // ensure continuity of pixels between dimensions.
  while ( movingDirection < _RegionType::ImageDimension
          && inRegion.GetSize( movingDirection - 1 ) == inBufferedRegion.GetSize( movingDirection - 1 )
          && outRegion.GetSize( movingDirection - 1 ) == outBufferedRegion.GetSize( movingDirection - 1 )
          && inBufferedRegion.GetSize(movingDirection - 1) == outBufferedRegion.GetSize(movingDirection - 1) );

  const size_t sizeOfChunkInInternalComponents = numberOfPixel*NumberOfInternalComponents;

  _IndexType inCurrentIndex = inRegion.GetIndex();
  _IndexType outCurrentIndex = outRegion.GetIndex();

  while ( inRegion.IsInside( inCurrentIndex ) )
    {
    size_t inOffset = 0; // in pixels
    size_t outOffset = 0;

    size_t inSubDimensionQuantity = 1; // in pixels
    size_t outSubDimensionQuantity = 1;

    for (unsigned int i = 0; i < _RegionType::ImageDimension; ++i )
      {
      inOffset += inSubDimensionQuantity*static_cast<size_t>( inCurrentIndex[i] - inBufferedRegion.GetIndex(i) );
      inSubDimensionQuantity *= inBufferedRegion.GetSize(i);

      outOffset += outSubDimensionQuantity*static_cast<size_t>( outCurrentIndex[i] - outBufferedRegion.GetIndex(i) );
      outSubDimensionQuantity *= outBufferedRegion.GetSize(i);
      }

    const typename InputImageType::InternalPixelType* inBuffer = in + inOffset*NumberOfInternalComponents;
    typename OutputImageType::InternalPixelType* outBuffer = out + outOffset*NumberOfInternalComponents;

    CopyHelper(inBuffer,
              inBuffer+sizeOfChunkInInternalComponents ,
              outBuffer);

    if ( movingDirection == _RegionType::ImageDimension )
      {
      break;
      }

    // increment index to next chunk
    ++inCurrentIndex[movingDirection];
    for ( unsigned int i = movingDirection; i + 1 < _RegionType::ImageDimension; ++i )
      {
      // When reaching the end of the moving index in the copy region
      // dimension, carry to higher dimensions.
      if ( static_cast<SizeValueType>(inCurrentIndex[i]  - inRegion.GetIndex(i)) >= inRegion.GetSize(i) )
        {
        inCurrentIndex[i] = inRegion.GetIndex(i);
        ++inCurrentIndex[i + 1];
        }
      }

    // increment index to next chunk
    ++outCurrentIndex[movingDirection];
    for ( unsigned int i = movingDirection; i + 1 < _RegionType::ImageDimension; ++i )
      {
      if ( static_cast<SizeValueType>(outCurrentIndex[i]  - outRegion.GetIndex(i)) >= outRegion.GetSize(i) )
        {
        outCurrentIndex[i] = outRegion.GetIndex(i);
        ++outCurrentIndex[i + 1];
        }
      }

    }
}

template<typename InputImageType, typename OutputImageType>
typename OutputImageType::RegionType
ImageAlgorithm::EnlargeRegionOverBox(const typename InputImageType::RegionType & inputRegion,
                                     const InputImageType* inputImage,
                                     const OutputImageType* outputImage)
{
  typename OutputImageType::RegionType outputRegion;

  // Get the index of the corners of the input region,
  // map them to physical space, and convert them
  // to index for this image.
  // The region has 2^ImageDimension corners, each
  // of them either on the inferior or superior edge
  // along each dimension.
  unsigned int numberOfCorners = 1;
  for (unsigned int dim=0; dim < OutputImageType::ImageDimension; ++dim)
    {
    numberOfCorners *= 2;
    }
  typedef ContinuousIndex<double, OutputImageType::ImageDimension> ContinuousIndexType;
  std::vector<ContinuousIndexType> corners(numberOfCorners);

  for (unsigned int count=0; count < numberOfCorners; ++count)
    {
    ContinuousIndexType currentCornerIndex;
    currentCornerIndex.Fill(0);
    unsigned int localCount = count;

    // For each dimension, set the current index to either
    // the highest or lowest index along this dimension.
    // Since we need all the space covered by the input image to
    // be taken into account, including the half-pixel border,
    // we start half a pixel before index 0 and stop half a pixel
    // after size
    for (unsigned int dim=0; dim < OutputImageType::ImageDimension; ++dim)
      {
      if (localCount % 2)
        {
        currentCornerIndex[dim] = inputRegion.GetIndex(dim) + inputRegion.GetSize(dim) + 0.5;
        }
      else
        {
        currentCornerIndex[dim] = inputRegion.GetIndex(dim) - 0.5;
        }

      localCount /= 2;
      }

    typedef Point< SpacePrecisionType, OutputImageType::ImageDimension > PointType;
    PointType point;
    inputImage->TransformContinuousIndexToPhysicalPoint(currentCornerIndex, point);
    outputImage->TransformPhysicalPointToContinuousIndex(point, corners[count]);
    }

  // Compute a rectangular region from the vector of corner indexes
  for (unsigned int dim=0; dim < OutputImageType::ImageDimension; ++dim)
    {
    // Initialize index to the highest possible value
    outputRegion.SetIndex(dim, NumericTraits< IndexValueType >::max() );

    // For each dimension, set the output index to the minimum
    // of the corners' indexes, and the output size to their maximum
    for (unsigned int count=0; count < numberOfCorners; ++count)
      {
      IndexValueType continuousIndexFloor = Math::Floor<IndexValueType>( corners[count][dim] );
      if (continuousIndexFloor < outputRegion.GetIndex(dim))
        {
        outputRegion.SetIndex(dim, continuousIndexFloor);
        }
      IndexValueType continuousIndexCeil = Math::Ceil<IndexValueType>( corners[count][dim] );
      if (continuousIndexCeil > static_cast<IndexValueType>(outputRegion.GetSize(dim)))
        {
        outputRegion.SetSize(dim, continuousIndexCeil);
        }
      }

    // The size is actually the difference between maximum and minimum index,
    // so subtract the index
    outputRegion.SetSize(dim, outputRegion.GetSize(dim) - outputRegion.GetIndex(dim) );
    }

  // Make sure this region remains contained in the LargestPossibleRegion
  outputRegion.Crop(outputImage->GetLargestPossibleRegion());
  return outputRegion;
}

} // end namespace itk

#endif