/usr/include/ITK-4.12/itkImageAlgorithm.hxx is in libinsighttoolkit4-dev 4.12.2-dfsg1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkImageAlgorithm_hxx
#define itkImageAlgorithm_hxx
#include "itkImageAlgorithm.h"
#include "itkArray.h"
#include "itkImageRegionIterator.h"
#include "itkImageScanlineIterator.h"
namespace itk
{
template<typename InputImageType, typename OutputImageType >
void ImageAlgorithm::DispatchedCopy( const InputImageType *inImage, OutputImageType *outImage,
const typename InputImageType::RegionType &inRegion,
const typename OutputImageType::RegionType &outRegion,
FalseType )
{
if ( inRegion.GetSize()[0] == outRegion.GetSize()[0] )
{
itk::ImageScanlineConstIterator<InputImageType> it( inImage, inRegion );
itk::ImageScanlineIterator<OutputImageType> ot( outImage, outRegion );
while( !it.IsAtEnd() )
{
while( !it.IsAtEndOfLine() )
{
ot.Set( static_cast< typename OutputImageType::PixelType >( it.Get() ) );
++ot;
++it;
}
ot.NextLine();
it.NextLine();
}
return;
}
itk::ImageRegionConstIterator<InputImageType> it( inImage, inRegion );
itk::ImageRegionIterator<OutputImageType> ot( outImage, outRegion );
while( !it.IsAtEnd() )
{
ot.Set( static_cast< typename OutputImageType::PixelType >( it.Get() ) );
++ot;
++it;
}
}
template<typename InputImageType, typename OutputImageType>
void ImageAlgorithm::DispatchedCopy( const InputImageType *inImage,
OutputImageType *outImage,
const typename InputImageType::RegionType &inRegion,
const typename OutputImageType::RegionType &outRegion,
TrueType )
{
typedef typename InputImageType::RegionType _RegionType;
typedef typename InputImageType::IndexType _IndexType;
// Get the number of bytes of each pixel in the buffer.
const size_t NumberOfInternalComponents = ImageAlgorithm::PixelSize<InputImageType>::Get( inImage );
// We wish to copy whole lines, otherwise just use the basic implementation.
// Check that the number of internal components match
if ( inRegion.GetSize()[0] != outRegion.GetSize()[0]
|| NumberOfInternalComponents != ImageAlgorithm::PixelSize<OutputImageType>::Get( outImage ) )
{
ImageAlgorithm::DispatchedCopy<InputImageType, OutputImageType>( inImage, outImage, inRegion, outRegion );
return;
}
const typename InputImageType::InternalPixelType *in = inImage->GetBufferPointer();
typename OutputImageType::InternalPixelType *out = outImage->GetBufferPointer();
const _RegionType &inBufferedRegion = inImage->GetBufferedRegion();
const _RegionType &outBufferedRegion = outImage->GetBufferedRegion();
// Compute the number of continuous pixel which can be copied.
size_t numberOfPixel = 1;
unsigned int movingDirection = 0;
do
{
numberOfPixel *= inRegion.GetSize(movingDirection );
++movingDirection;
}
// The copy regions must extend to the full buffered region, to
// ensure continuity of pixels between dimensions.
while ( movingDirection < _RegionType::ImageDimension
&& inRegion.GetSize( movingDirection - 1 ) == inBufferedRegion.GetSize( movingDirection - 1 )
&& outRegion.GetSize( movingDirection - 1 ) == outBufferedRegion.GetSize( movingDirection - 1 )
&& inBufferedRegion.GetSize(movingDirection - 1) == outBufferedRegion.GetSize(movingDirection - 1) );
const size_t sizeOfChunkInInternalComponents = numberOfPixel*NumberOfInternalComponents;
_IndexType inCurrentIndex = inRegion.GetIndex();
_IndexType outCurrentIndex = outRegion.GetIndex();
while ( inRegion.IsInside( inCurrentIndex ) )
{
size_t inOffset = 0; // in pixels
size_t outOffset = 0;
size_t inSubDimensionQuantity = 1; // in pixels
size_t outSubDimensionQuantity = 1;
for (unsigned int i = 0; i < _RegionType::ImageDimension; ++i )
{
inOffset += inSubDimensionQuantity*static_cast<size_t>( inCurrentIndex[i] - inBufferedRegion.GetIndex(i) );
inSubDimensionQuantity *= inBufferedRegion.GetSize(i);
outOffset += outSubDimensionQuantity*static_cast<size_t>( outCurrentIndex[i] - outBufferedRegion.GetIndex(i) );
outSubDimensionQuantity *= outBufferedRegion.GetSize(i);
}
const typename InputImageType::InternalPixelType* inBuffer = in + inOffset*NumberOfInternalComponents;
typename OutputImageType::InternalPixelType* outBuffer = out + outOffset*NumberOfInternalComponents;
CopyHelper(inBuffer,
inBuffer+sizeOfChunkInInternalComponents ,
outBuffer);
if ( movingDirection == _RegionType::ImageDimension )
{
break;
}
// increment index to next chunk
++inCurrentIndex[movingDirection];
for ( unsigned int i = movingDirection; i + 1 < _RegionType::ImageDimension; ++i )
{
// When reaching the end of the moving index in the copy region
// dimension, carry to higher dimensions.
if ( static_cast<SizeValueType>(inCurrentIndex[i] - inRegion.GetIndex(i)) >= inRegion.GetSize(i) )
{
inCurrentIndex[i] = inRegion.GetIndex(i);
++inCurrentIndex[i + 1];
}
}
// increment index to next chunk
++outCurrentIndex[movingDirection];
for ( unsigned int i = movingDirection; i + 1 < _RegionType::ImageDimension; ++i )
{
if ( static_cast<SizeValueType>(outCurrentIndex[i] - outRegion.GetIndex(i)) >= outRegion.GetSize(i) )
{
outCurrentIndex[i] = outRegion.GetIndex(i);
++outCurrentIndex[i + 1];
}
}
}
}
template<typename InputImageType, typename OutputImageType>
typename OutputImageType::RegionType
ImageAlgorithm::EnlargeRegionOverBox(const typename InputImageType::RegionType & inputRegion,
const InputImageType* inputImage,
const OutputImageType* outputImage)
{
typename OutputImageType::RegionType outputRegion;
// Get the index of the corners of the input region,
// map them to physical space, and convert them
// to index for this image.
// The region has 2^ImageDimension corners, each
// of them either on the inferior or superior edge
// along each dimension.
unsigned int numberOfCorners = 1;
for (unsigned int dim=0; dim < OutputImageType::ImageDimension; ++dim)
{
numberOfCorners *= 2;
}
typedef ContinuousIndex<double, OutputImageType::ImageDimension> ContinuousIndexType;
std::vector<ContinuousIndexType> corners(numberOfCorners);
for (unsigned int count=0; count < numberOfCorners; ++count)
{
ContinuousIndexType currentCornerIndex;
currentCornerIndex.Fill(0);
unsigned int localCount = count;
// For each dimension, set the current index to either
// the highest or lowest index along this dimension.
// Since we need all the space covered by the input image to
// be taken into account, including the half-pixel border,
// we start half a pixel before index 0 and stop half a pixel
// after size
for (unsigned int dim=0; dim < OutputImageType::ImageDimension; ++dim)
{
if (localCount % 2)
{
currentCornerIndex[dim] = inputRegion.GetIndex(dim) + inputRegion.GetSize(dim) + 0.5;
}
else
{
currentCornerIndex[dim] = inputRegion.GetIndex(dim) - 0.5;
}
localCount /= 2;
}
typedef Point< SpacePrecisionType, OutputImageType::ImageDimension > PointType;
PointType point;
inputImage->TransformContinuousIndexToPhysicalPoint(currentCornerIndex, point);
outputImage->TransformPhysicalPointToContinuousIndex(point, corners[count]);
}
// Compute a rectangular region from the vector of corner indexes
for (unsigned int dim=0; dim < OutputImageType::ImageDimension; ++dim)
{
// Initialize index to the highest possible value
outputRegion.SetIndex(dim, NumericTraits< IndexValueType >::max() );
// For each dimension, set the output index to the minimum
// of the corners' indexes, and the output size to their maximum
for (unsigned int count=0; count < numberOfCorners; ++count)
{
IndexValueType continuousIndexFloor = Math::Floor<IndexValueType>( corners[count][dim] );
if (continuousIndexFloor < outputRegion.GetIndex(dim))
{
outputRegion.SetIndex(dim, continuousIndexFloor);
}
IndexValueType continuousIndexCeil = Math::Ceil<IndexValueType>( corners[count][dim] );
if (continuousIndexCeil > static_cast<IndexValueType>(outputRegion.GetSize(dim)))
{
outputRegion.SetSize(dim, continuousIndexCeil);
}
}
// The size is actually the difference between maximum and minimum index,
// so subtract the index
outputRegion.SetSize(dim, outputRegion.GetSize(dim) - outputRegion.GetIndex(dim) );
}
// Make sure this region remains contained in the LargestPossibleRegion
outputRegion.Crop(outputImage->GetLargestPossibleRegion());
return outputRegion;
}
} // end namespace itk
#endif
|