This file is indexed.

/usr/include/ignition/math2/ignition/math/Vector3.hh is in libignition-math2-dev 2.9.0+dfsg1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
/*
 * Copyright (C) 2014 Open Source Robotics Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
*/
#ifndef IGNITION_MATH_VECTOR3_HH_
#define IGNITION_MATH_VECTOR3_HH_

#include <iostream>
#include <fstream>
#include <cmath>
#include <algorithm>

#include <ignition/math/Helpers.hh>
#include <ignition/math/IndexException.hh>

namespace ignition
{
  namespace math
  {
    /// \class Vector3 Vector3.hh ignition/math/Vector3.hh
    /// \brief The Vector3 class represents the generic vector containing 3
    /// elements.  Since it's commonly used to keep coordinate system
    /// related information, its elements are labeled by x, y, z.
    template<typename T>
    class Vector3
    {
      /// \brief math::Vector3(0, 0, 0)
      public: static const Vector3 Zero;

      /// \brief math::Vector3(1, 1, 1)
      public: static const Vector3 One;

      /// \brief math::Vector3(1, 0, 0)
      public: static const Vector3 UnitX;

      /// \brief math::Vector3(0, 1, 0)
      public: static const Vector3 UnitY;

      /// \brief math::Vector3(0, 0, 1)
      public: static const Vector3 UnitZ;

      /// \brief Constructor
      public: Vector3()
      {
        this->data[0] = 0;
        this->data[1] = 0;
        this->data[2] = 0;
      }

      /// \brief Constructor
      /// \param[in] _x value along x
      /// \param[in] _y value along y
      /// \param[in] _z value along z
      public: Vector3(const T &_x, const T &_y, const T &_z)
      {
        this->data[0] = _x;
        this->data[1] = _y;
        this->data[2] = _z;
      }

      /// \brief Copy constructor
      /// \param[in] _v a vector
      public: Vector3(const Vector3<T> &_v)
      {
        this->data[0] = _v[0];
        this->data[1] = _v[1];
        this->data[2] = _v[2];
      }

      /// \brief Destructor
      public: virtual ~Vector3() {}

      /// \brief Return the sum of the values
      /// \return the sum
      public: T Sum() const
      {
        return this->data[0] + this->data[1] + this->data[2];
      }

      /// \brief Calc distance to the given point
      /// \param[in] _pt the point
      /// \return the distance
      public: T Distance(const Vector3<T> &_pt) const
      {
        return sqrt((this->data[0]-_pt[0])*(this->data[0]-_pt[0]) +
                    (this->data[1]-_pt[1])*(this->data[1]-_pt[1]) +
                    (this->data[2]-_pt[2])*(this->data[2]-_pt[2]));
      }

      /// \brief Calc distance to the given point
      /// \param[in] _x value along x
      /// \param[in] _y value along y
      /// \param[in] _z value along z
      /// \return the distance
      public: T Distance(T _x, T _y, T _z) const
      {
        return this->Distance(Vector3(_x, _y, _z));
      }

      /// \brief Returns the length (magnitude) of the vector
      /// \return the length
      public: T Length() const
      {
        return sqrt(this->SquaredLength());
      }

      /// \brief Return the square of the length (magnitude) of the vector
      /// \return the squared length
      public: T SquaredLength() const
      {
        return std::pow(this->data[0], 2)
             + std::pow(this->data[1], 2)
             + std::pow(this->data[2], 2);
      }

      /// \brief Normalize the vector length
      /// \return unit length vector
      public: Vector3 Normalize()
      {
        T d = this->Length();

        if (!equal<T>(d, static_cast<T>(0.0)))
        {
          this->data[0] /= d;
          this->data[1] /= d;
          this->data[2] /= d;
        }

        return *this;
      }

      /// \brief Return a normalized vector
      /// \return unit length vector
      public: Vector3 Normalized() const
      {
        Vector3<T> result = *this;
        result.Normalize();
        return result;
      }

      /// \brief Round to near whole number, return the result.
      /// \return the result
      public: Vector3 Round()
      {
        this->data[0] = nearbyint(this->data[0]);
        this->data[1] = nearbyint(this->data[1]);
        this->data[2] = nearbyint(this->data[2]);
        return *this;
      }

      /// \brief Get a rounded version of this vector
      /// \return a rounded vector
      public: Vector3 Rounded() const
      {
        Vector3<T> result = *this;
        result.Round();
        return result;
      }

      /// \brief Set the contents of the vector
      /// \param[in] _x value along x
      /// \param[in] _y value along y
      /// \param[in] _z value aling z
      public: inline void Set(T _x = 0, T _y = 0, T _z = 0)
      {
        this->data[0] = _x;
        this->data[1] = _y;
        this->data[2] = _z;
      }

      /// \brief Return the cross product of this vector with another vector.
      /// \param[in] _v a vector
      /// \return the cross product
      public: Vector3 Cross(const Vector3<T> &_v) const
      {
        return Vector3(this->data[1] * _v[2] - this->data[2] * _v[1],
                       this->data[2] * _v[0] - this->data[0] * _v[2],
                       this->data[0] * _v[1] - this->data[1] * _v[0]);
      }

      /// \brief Return the dot product of this vector and another vector
      /// \param[in] _v the vector
      /// \return the dot product
      public: T Dot(const Vector3<T> &_v) const
      {
        return this->data[0] * _v[0] +
               this->data[1] * _v[1] +
               this->data[2] * _v[2];
      }

      /// \brief Return the absolute dot product of this vector and
      /// another vector. This is similar to the Dot function, except the
      /// absolute value of each component of the vector is used.
      ///
      /// result = abs(x1 * x2) + abs(y1 * y2) + abs(z1 *z2)
      ///
      /// \param[in] _v the vector
      /// \return The absolute dot product
      public: T AbsDot(const Vector3<T> &_v) const
      {
        return std::abs(this->data[0] * _v[0]) +
               std::abs(this->data[1] * _v[1]) +
               std::abs(this->data[2] * _v[2]);
      }

      /// \brief Get the absolute value of the vector
      /// \return a vector with positive elements
      public: Vector3 Abs() const
      {
        return Vector3(std::abs(this->data[0]),
                       std::abs(this->data[1]),
                       std::abs(this->data[2]));
      }

      /// \brief Return a vector that is perpendicular to this one.
      /// \return an orthogonal vector
      public: Vector3 Perpendicular() const
      {
        static const T sqrZero = 1e-06 * 1e-06;

        Vector3<T> perp = this->Cross(Vector3(1, 0, 0));

        // Check the length of the vector
        if (perp.SquaredLength() < sqrZero)
        {
          perp = this->Cross(Vector3(0, 1, 0));
        }

        return perp;
      }

      /// \brief Get a normal vector to a triangle
      /// \param[in] _v1 first vertex of the triangle
      /// \param[in] _v2 second vertex
      /// \param[in] _v3 third vertex
      /// \return the normal
      public: static Vector3 Normal(const Vector3<T> &_v1,
                  const Vector3<T> &_v2, const Vector3<T> &_v3)
      {
        Vector3<T> a = _v2 - _v1;
        Vector3<T> b = _v3 - _v1;
        Vector3<T> n = a.Cross(b);
        return n.Normalize();
      }

      /// \brief Get distance to a line
      /// \param[in] _pt1 first point on the line
      /// \param[in] _pt2 second point on the line
      /// \return the minimum distance from this point to the line
      public: T DistToLine(const Vector3<T> &_pt1, const Vector3 &_pt2)
      {
        T d = ((*this) - _pt1).Cross((*this) - _pt2).Length();
        d = d / (_pt2 - _pt1).Length();
        return d;
      }

      /// \brief Set this vector's components to the maximum of itself and the
      ///        passed in vector
      /// \param[in] _v the maximum clamping vector
      public: void Max(const Vector3<T> &_v)
      {
        if (_v[0] > this->data[0])
          this->data[0] = _v[0];
        if (_v[1] > this->data[1])
          this->data[1] = _v[1];
        if (_v[2] > this->data[2])
          this->data[2] = _v[2];
      }

      /// \brief Set this vector's components to the minimum of itself and the
      ///        passed in vector
      /// \param[in] _v the minimum clamping vector
      public: void Min(const Vector3<T> &_v)
      {
        if (_v[0] < this->data[0])
          this->data[0] = _v[0];
        if (_v[1] < this->data[1])
          this->data[1] = _v[1];
        if (_v[2] < this->data[2])
          this->data[2] = _v[2];
      }

      /// \brief Get the maximum value in the vector
      /// \return the maximum element
      public: T Max() const
      {
        return std::max(std::max(this->data[0], this->data[1]), this->data[2]);
      }

      /// \brief Get the minimum value in the vector
      /// \return the minimum element
      public: T Min() const
      {
        return std::min(std::min(this->data[0], this->data[1]), this->data[2]);
      }

      /// \brief Assignment operator
      /// \param[in] _v a new value
      /// \return this
      public: Vector3 &operator=(const Vector3<T> &_v)
      {
        this->data[0] = _v[0];
        this->data[1] = _v[1];
        this->data[2] = _v[2];

        return *this;
      }

      /// \brief Assignment operator
      /// \param[in] _value assigned to all elements
      /// \return this
      public: Vector3 &operator=(T _v)
      {
        this->data[0] = _v;
        this->data[1] = _v;
        this->data[2] = _v;

        return *this;
      }

      /// \brief Addition operator
      /// \param[in] _v vector to add
      /// \return the sum vector
      public: Vector3 operator+(const Vector3<T> &_v) const
      {
        return Vector3(this->data[0] + _v[0],
                       this->data[1] + _v[1],
                       this->data[2] + _v[2]);
      }

      /// \brief Addition assignment operator
      /// \param[in] _v vector to add
      /// \return the sum vector
      public: const Vector3 &operator+=(const Vector3<T> &_v)
      {
        this->data[0] += _v[0];
        this->data[1] += _v[1];
        this->data[2] += _v[2];

        return *this;
      }

      /// \brief Addition operators
      /// \param[in] _s the scalar addend
      /// \return sum vector
      public: inline Vector3<T> operator+(const T _s) const
      {
        return Vector3<T>(this->data[0] + _s,
                          this->data[1] + _s,
                          this->data[2] + _s);
      }

      /// \brief Addition operators
      /// \param[in] _s the scalar addend
      /// \param[in] _v input vector
      /// \return sum vector
      public: friend inline Vector3<T> operator+(const T _s,
                                                 const Vector3<T> &_v)
      {
        return {_v.X() + _s, _v.Y() + _s, _v.Z() + _s};
      }

      /// \brief Addition assignment operator
      /// \param[in] _s scalar addend
      /// \return this
      public: const Vector3<T> &operator+=(const T _s)
      {
        this->data[0] += _s;
        this->data[1] += _s;
        this->data[2] += _s;

        return *this;
      }

      /// \brief Negation operator
      /// \return negative of this vector
      public: inline Vector3 operator-() const
      {
        return Vector3(-this->data[0], -this->data[1], -this->data[2]);
      }

      /// \brief Subtraction operators
      /// \param[in] _pt a vector to substract
      /// \return a vector after the substraction
      public: inline Vector3<T> operator-(const Vector3<T> &_pt) const
      {
        return Vector3(this->data[0] - _pt[0],
                       this->data[1] - _pt[1],
                       this->data[2] - _pt[2]);
      }

      /// \brief Subtraction assignment operators
      /// \param[in] _pt subtrahend
      /// \return a vector after the substraction
      public: const Vector3<T> &operator-=(const Vector3<T> &_pt)
      {
        this->data[0] -= _pt[0];
        this->data[1] -= _pt[1];
        this->data[2] -= _pt[2];

        return *this;
      }

      /// \brief Subtraction operators
      /// \param[in] _s the scalar subtrahend
      /// \return difference vector
      public: inline Vector3<T> operator-(const T _s) const
      {
        return Vector3<T>(this->data[0] - _s,
                          this->data[1] - _s,
                          this->data[2] - _s);
      }

      /// \brief Subtraction operators
      /// \param[in] _s the scalar minuend
      /// \param[in] _v vector subtrahend
      /// \return difference vector
      public: friend inline Vector3<T> operator-(const T _s,
                                                 const Vector3<T> &_v)
      {
        return {_s - _v.X(), _s - _v.Y(), _s - _v.Z()};
      }

      /// \brief Subtraction assignment operator
      /// \param[in] _s scalar subtrahend
      /// \return this
      public: const Vector3<T> &operator-=(const T _s)
      {
        this->data[0] -= _s;
        this->data[1] -= _s;
        this->data[2] -= _s;

        return *this;
      }

      /// \brief Division operator
      /// \remarks this is an element wise division
      /// \param[in] _pt the vector divisor
      /// \return a vector
      public: const Vector3<T> operator/(const Vector3<T> &_pt) const
      {
        return Vector3(this->data[0] / _pt[0],
                       this->data[1] / _pt[1],
                       this->data[2] / _pt[2]);
      }

      /// \brief Division assignment operator
      /// \remarks this is an element wise division
      /// \param[in] _pt the vector divisor
      /// \return a vector
      public: const Vector3<T> &operator/=(const Vector3<T> &_pt)
      {
        this->data[0] /= _pt[0];
        this->data[1] /= _pt[1];
        this->data[2] /= _pt[2];

        return *this;
      }

      /// \brief Division operator
      /// \remarks this is an element wise division
      /// \param[in] _v the divisor
      /// \return a vector
      public: const Vector3<T> operator/(T _v) const
      {
        return Vector3(this->data[0] / _v,
                       this->data[1] / _v,
                       this->data[2] / _v);
      }

      /// \brief Division assignment operator
      /// \remarks this is an element wise division
      /// \param[in] _v the divisor
      /// \return this
      public: const Vector3<T> &operator/=(T _v)
      {
        this->data[0] /= _v;
        this->data[1] /= _v;
        this->data[2] /= _v;

        return *this;
      }

      /// \brief Multiplication operator
      /// \remarks this is an element wise multiplication, not a cross product
      /// \param[in] _p multiplier operator
      /// \return a vector
      public: Vector3<T> operator*(const Vector3<T> &_p) const
      {
        return Vector3(this->data[0] * _p[0],
                       this->data[1] * _p[1],
                       this->data[2] * _p[2]);
      }

      /// \brief Multiplication assignment operators
      /// \remarks this is an element wise multiplication, not a cross product
      /// \param[in] _v a vector
      /// \return this
      public: const Vector3<T> &operator*=(const Vector3<T> &_v)
      {
        this->data[0] *= _v[0];
        this->data[1] *= _v[1];
        this->data[2] *= _v[2];

        return *this;
      }

      /// \brief Multiplication operators
      /// \param[in] _s the scaling factor
      /// \return a scaled vector
      public: inline Vector3<T> operator*(T _s) const
      {
        return Vector3<T>(this->data[0] * _s,
                          this->data[1] * _s,
                          this->data[2] * _s);
      }

      /// \brief Multiplication operators
      /// \param[in] _s the scaling factor
      /// \param[in] _v input vector
      /// \return a scaled vector
      public: friend inline Vector3<T> operator*(T _s, const Vector3<T> &_v)
      {
        return {_v.X() * _s, _v.Y() * _s, _v.Z() * _s};
      }

      /// \brief Multiplication operator
      /// \param[in] _v scaling factor
      /// \return this
      public: const Vector3<T> &operator*=(T _v)
      {
        this->data[0] *= _v;
        this->data[1] *= _v;
        this->data[2] *= _v;

        return *this;
      }

      /// \brief Equality test with tolerance.
      /// \param[in] _v the vector to compare to
      /// \param[in] _tol equality tolerance.
      /// \return true if the elements of the vectors are equal within
      /// the tolerence specified by _tol.
      public: bool Equal(const Vector3 &_v, const T &_tol) const
      {
        return equal<T>(this->data[0], _v[0], _tol)
            && equal<T>(this->data[1], _v[1], _tol)
            && equal<T>(this->data[2], _v[2], _tol);
      }

      /// \brief Equal to operator
      /// \param[in] _v The vector to compare against
      /// \return true if each component is equal within a
      /// default tolerence (1e-3), false otherwise
      public: bool operator==(const Vector3<T> &_v) const
      {
        return this->Equal(_v, static_cast<T>(1e-3));
      }

      /// \brief Not equal to operator
      /// \param[in] _v The vector to compare against
      /// \return false if each component is equal within a
      /// default tolerence (1e-3), true otherwise
      public: bool operator!=(const Vector3<T> &_v) const
      {
        return !(*this == _v);
      }

      /// \brief See if a point is finite (e.g., not nan)
      /// \return true if is finite or false otherwise
      public: bool IsFinite() const
      {
        // std::isfinite works with floating point values,
        // need to explicit cast to avoid ambiguity in vc++.
        return std::isfinite(static_cast<double>(this->data[0])) &&
               std::isfinite(static_cast<double>(this->data[1])) &&
               std::isfinite(static_cast<double>(this->data[2]));
      }

      /// \brief Corrects any nan values
      public: inline void Correct()
      {
        // std::isfinite works with floating point values,
        // need to explicit cast to avoid ambiguity in vc++.
        if (!std::isfinite(static_cast<double>(this->data[0])))
          this->data[0] = 0;
        if (!std::isfinite(static_cast<double>(this->data[1])))
          this->data[1] = 0;
        if (!std::isfinite(static_cast<double>(this->data[2])))
          this->data[2] = 0;
      }

      /// \brief Array subscript operator
      /// \param[in] _index The index, where 0 == x, 1 == y, 2 == z.
      /// \return The value. Throws an IndexException if _index is out of
      /// bounds.
      /// \throws IndexException if _index is >= 3.
      public: T operator[](size_t _index) const
      {
        if (_index > 2)
          throw IndexException();
        return this->data[_index];
      }

      /// \brief Round all values to _precision decimal places
      /// \param[in] _precision the decimal places
      public: void Round(int _precision)
      {
        this->data[0] = precision(this->data[0], _precision);
        this->data[1] = precision(this->data[1], _precision);
        this->data[2] = precision(this->data[2], _precision);
      }

      /// \brief Equality test
      /// \remarks This is equivalent to the == operator
      /// \param[in] _v the other vector
      /// \return true if the 2 vectors have the same values, false otherwise
      public: bool Equal(const Vector3<T> &_v) const
      {
        return equal<T>(this->data[0], _v[0]) &&
               equal<T>(this->data[1], _v[1]) &&
               equal<T>(this->data[2], _v[2]);
      }

      /// \brief Get the x value.
      /// \return The x component of the vector
      public: inline T X() const
      {
        return this->data[0];
      }

      /// \brief Get the y value.
      /// \return The y component of the vector
      public: inline T Y() const
      {
        return this->data[1];
      }

      /// \brief Get the z value.
      /// \return The z component of the vector
      public: inline T Z() const
      {
        return this->data[2];
      }

      /// \brief Get a mutable reference to the x value.
      /// \return The x component of the vector
      public: inline T &X()
      {
        return this->data[0];
      }

      /// \brief Get a mutable reference to the y value.
      /// \return The y component of the vector
      public: inline T &Y()
      {
        return this->data[1];
      }

      /// \brief Get a mutable reference to the z value.
      /// \return The z component of the vector
      public: inline T &Z()
      {
        return this->data[2];
      }

      /// \brief Set the x value.
      /// \param[in] _v Value for the x component.
      public: inline void X(const T &_v)
      {
        this->data[0] = _v;
      }

      /// \brief Set the y value.
      /// \param[in] _v Value for the y component.
      public: inline void Y(const T &_v)
      {
        this->data[1] = _v;
      }

      /// \brief Set the z value.
      /// \param[in] _v Value for the z component.
      public: inline void Z(const T &_v)
      {
        this->data[2] = _v;
      }

      /// \brief Less than operator.
      /// \param[in] _pt Vector to compare.
      /// \return True if this vector's X(), Y(), or Z() value is less
      /// than the given vector's corresponding values.
      public: bool operator<(const Vector3<T> &_pt) const
      {
        return this->data[0] < _pt[0] || this->data[1] < _pt[1] ||
               this->data[2] < _pt[2];
      }

      /// \brief Stream insertion operator
      /// \param _out output stream
      /// \param _pt Vector3 to output
      /// \return the stream
      public: friend std::ostream &operator<<(
                  std::ostream &_out, const ignition::math::Vector3<T> &_pt)
      {
        _out << precision(_pt[0], 6) << " " << precision(_pt[1], 6) << " "
          << precision(_pt[2], 6);
        return _out;
      }

      /// \brief Stream extraction operator
      /// \param _in input stream
      /// \param _pt vector3 to read values into
      /// \return the stream
      public: friend std::istream &operator>>(
                  std::istream &_in, ignition::math::Vector3<T> &_pt)
      {
        // Skip white spaces
        _in.setf(std::ios_base::skipws);
        T x, y, z;
        _in >> x >> y >> z;
        _pt.Set(x, y, z);
        return _in;
      }

      /// \brief The x, y, and z values
      private: T data[3];
    };

    template<typename T> const Vector3<T> Vector3<T>::Zero(0, 0, 0);
    template<typename T> const Vector3<T> Vector3<T>::One(1, 1, 1);
    template<typename T> const Vector3<T> Vector3<T>::UnitX(1, 0, 0);
    template<typename T> const Vector3<T> Vector3<T>::UnitY(0, 1, 0);
    template<typename T> const Vector3<T> Vector3<T>::UnitZ(0, 0, 1);

    typedef Vector3<int> Vector3i;
    typedef Vector3<double> Vector3d;
    typedef Vector3<float> Vector3f;
  }
}
#endif