This file is indexed.

/usr/include/ignition/math2/ignition/math/Quaternion.hh is in libignition-math2-dev 2.9.0+dfsg1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
/*
 * Copyright (C) 2012-2014 Open Source Robotics Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
*/
#ifndef IGNITION_MATH_QUATERNION_HH_
#define IGNITION_MATH_QUATERNION_HH_

#include <ignition/math/Helpers.hh>
#include <ignition/math/Angle.hh>
#include <ignition/math/Vector3.hh>
#include <ignition/math/Matrix3.hh>

namespace ignition
{
  namespace math
  {
    template <typename T> class Matrix3;

    /// \class Quaternion Quaternion.hh ignition/math/Quaternion.hh
    /// \brief A quaternion class
    template<typename T>
    class Quaternion
    {
      /// \brief math::Quaternion(1, 0, 0, 0)
      public: static const Quaternion Identity;

      /// \brief math::Quaternion(0, 0, 0, 0)
      public: static const Quaternion Zero;

      /// \brief Default Constructor
      public: Quaternion()
      : qw(1), qx(0), qy(0), qz(0)
      {
        // quaternion not normalized, because that breaks
        // Pose::CoordPositionAdd(...)
      }

      /// \brief Constructor
      /// \param[in] _w W param
      /// \param[in] _x X param
      /// \param[in] _y Y param
      /// \param[in] _z Z param
      public: Quaternion(const T &_w, const T &_x, const T &_y, const T &_z)
      : qw(_w), qx(_x), qy(_y), qz(_z)
      {}

      /// \brief Constructor from Euler angles in radians
      /// \param[in] _roll  roll
      /// \param[in] _pitch pitch
      /// \param[in] _yaw   yaw
      public: Quaternion(const T &_roll, const T &_pitch, const T &_yaw)
      {
        this->Euler(Vector3<T>(_roll, _pitch, _yaw));
      }

      /// \brief Constructor from axis angle
      /// \param[in] _axis the rotation axis
      /// \param[in] _angle the rotation angle in radians
      public: Quaternion(const Vector3<T> &_axis, const T &_angle)
      {
        this->Axis(_axis, _angle);
      }

      /// \brief Constructor
      /// \param[in] _rpy euler angles
      // cppcheck-suppress noExplicitConstructor
      public: Quaternion(const Vector3<T> &_rpy)
      {
        this->Euler(_rpy);
      }

      /// \brief Construct from rotation matrix.
      /// \param[in] _mat rotation matrix (must be orthogonal, the function
      ///                 doesn't check it)
      public: explicit Quaternion(const Matrix3<T> &_mat)
      {
        this->Matrix(_mat);
      }

      /// \brief Copy constructor
      /// \param[in] _qt Quaternion<T> to copy
      public: Quaternion(const Quaternion<T> &_qt)
      {
        this->qw = _qt.qw;
        this->qx = _qt.qx;
        this->qy = _qt.qy;
        this->qz = _qt.qz;
      }

      /// \brief Destructor
      public: ~Quaternion() {}

      /// \brief Equal operator
      /// \param[in] _qt Quaternion<T> to copy
      public: Quaternion<T> &operator=(const Quaternion<T> &_qt)
      {
        this->qw = _qt.qw;
        this->qx = _qt.qx;
        this->qy = _qt.qy;
        this->qz = _qt.qz;

        return *this;
      }

      /// \brief Invert the quaternion
      public: void Invert()
      {
        this->Normalize();
        // this->qw = this->qw;
        this->qx = -this->qx;
        this->qy = -this->qy;
        this->qz = -this->qz;
      }

      /// \brief Get the inverse of this quaternion
      /// \return Inverse quaternion
      public: inline Quaternion<T> Inverse() const
              {
                T s = 0;
                Quaternion<T> q(this->qw, this->qx, this->qy, this->qz);

                // use s to test if quaternion is valid
                s = q.qw * q.qw + q.qx * q.qx + q.qy * q.qy + q.qz * q.qz;

                if (equal<T>(s, static_cast<T>(0)))
                {
                  q.qw = 1.0;
                  q.qx = 0.0;
                  q.qy = 0.0;
                  q.qz = 0.0;
                }
                else
                {
                  // deal with non-normalized quaternion
                  // div by s so q * qinv = identity
                  q.qw =  q.qw / s;
                  q.qx = -q.qx / s;
                  q.qy = -q.qy / s;
                  q.qz = -q.qz / s;
                }
                return q;
              }

      /// \brief Return the logarithm
      /// \return the log
      public: Quaternion<T> Log() const
      {
        // If q = cos(A)+sin(A)*(x*i+y*j+z*k) where (x, y, z) is unit length,
        // then log(q) = A*(x*i+y*j+z*k).  If sin(A) is near zero, use log(q) =
        // sin(A)*(x*i+y*j+z*k) since sin(A)/A has limit 1.

        Quaternion<T> result;
        result.qw = 0.0;

        if (std::abs(this->qw) < 1.0)
        {
          T fAngle = acos(this->qw);
          T fSin = sin(fAngle);
          if (std::abs(fSin) >= 1e-3)
          {
            T fCoeff = fAngle/fSin;
            result.qx = fCoeff*this->qx;
            result.qy = fCoeff*this->qy;
            result.qz = fCoeff*this->qz;
            return result;
          }
        }

        result.qx = this->qx;
        result.qy = this->qy;
        result.qz = this->qz;

        return result;
      }

      /// \brief Return the exponent
      /// \return the exp
      public: Quaternion<T> Exp() const
      {
        // If q = A*(x*i+y*j+z*k) where (x, y, z) is unit length, then
        // exp(q) = cos(A)+sin(A)*(x*i+y*j+z*k).  If sin(A) is near zero,
        // use exp(q) = cos(A)+A*(x*i+y*j+z*k) since A/sin(A) has limit 1.

        T fAngle = sqrt(this->qx*this->qx+
            this->qy*this->qy+this->qz*this->qz);
        T fSin = sin(fAngle);

        Quaternion<T> result;
        result.qw = cos(fAngle);

        if (std::abs(fSin) >= 1e-3)
        {
          T fCoeff = fSin/fAngle;
          result.qx = fCoeff*this->qx;
          result.qy = fCoeff*this->qy;
          result.qz = fCoeff*this->qz;
        }
        else
        {
          result.qx = this->qx;
          result.qy = this->qy;
          result.qz = this->qz;
        }

        return result;
      }

      /// \brief Normalize the quaternion
      public: void Normalize()
      {
        T s = 0;

        s = T(sqrt(this->qw * this->qw + this->qx * this->qx +
            this->qy * this->qy + this->qz * this->qz));

        if (equal<T>(s, static_cast<T>(0)))
        {
          this->qw = T(1.0);
          this->qx = T(0.0);
          this->qy = T(0.0);
          this->qz = T(0.0);
        }
        else
        {
          this->qw /= s;
          this->qx /= s;
          this->qy /= s;
          this->qz /= s;
        }
      }

      /// \brief Set the quaternion from an axis and angle
      /// \param[in] _x X axis
      /// \param[in] _y Y axis
      /// \param[in] _z Z axis
      /// \param[in] _a Angle in radians
      public: void Axis(T _ax, T _ay, T _az, T _aa)
      {
        T l;

        l = _ax * _ax + _ay * _ay + _az * _az;

        if (equal<T>(l, static_cast<T>(0)))
        {
          this->qw = 1;
          this->qx = 0;
          this->qy = 0;
          this->qz = 0;
        }
        else
        {
          _aa *= 0.5;
          l = sin(_aa) / sqrt(l);
          this->qw = cos(_aa);
          this->qx = _ax * l;
          this->qy = _ay * l;
          this->qz = _az * l;
        }

        this->Normalize();
      }

      /// \brief Set the quaternion from an axis and angle
      /// \param[in] _axis Axis
      /// \param[in] _a Angle in radians
      public: void Axis(const Vector3<T> &_axis, T _a)
      {
        this->Axis(_axis.X(), _axis.Y(), _axis.Z(), _a);
      }

      /// \brief Set this quaternion from 4 floating numbers
      /// \param[in] _u u
      /// \param[in] _x x
      /// \param[in] _y y
      /// \param[in] _z z
      public: void Set(T _w, T _x, T _y, T _z)
      {
        this->qw = _w;
        this->qx = _x;
        this->qy = _y;
        this->qz = _z;
      }

      /// \brief Set the quaternion from Euler angles. The order of operations
      /// is roll, pitch, yaw around a fixed body frame axis
      /// (the original frame of the object before rotation is applied).
      /// Roll is a rotation about x, pitch is about y, yaw is about z.
      /// \param[in] _vec Euler angle
      public: void Euler(const Vector3<T> &_vec)
      {
        this->Euler(_vec.X(), _vec.Y(), _vec.Z());
      }

      /// \brief Set the quaternion from Euler angles.
      /// \param[in] _roll Roll angle (radians).
      /// \param[in] _pitch Pitch angle (radians).
      /// \param[in] _yaw Yaw angle (radians).
      public: void Euler(T _roll, T _pitch, T _yaw)
      {
        T phi, the, psi;

        phi = _roll / T(2.0);
        the = _pitch / T(2.0);
        psi = _yaw / T(2.0);

        this->qw = T(cos(phi) * cos(the) * cos(psi) +
          sin(phi) * sin(the) * sin(psi));
        this->qx = T(sin(phi) * cos(the) * cos(psi) -
          cos(phi) * sin(the) * sin(psi));
        this->qy = T(cos(phi) * sin(the) * cos(psi) +
          sin(phi) * cos(the) * sin(psi));
        this->qz = T(cos(phi) * cos(the) * sin(psi) -
          sin(phi) * sin(the) * cos(psi));

        this->Normalize();
      }

      /// \brief Return the rotation in Euler angles
      /// \return This quaternion as an Euler vector
      public: Vector3<T> Euler() const
      {
        Vector3<T> vec;

        T tol = static_cast<T>(1e-15);

        Quaternion<T> copy = *this;
        T squ;
        T sqx;
        T sqy;
        T sqz;

        copy.Normalize();

        squ = copy.qw * copy.qw;
        sqx = copy.qx * copy.qx;
        sqy = copy.qy * copy.qy;
        sqz = copy.qz * copy.qz;

        // Pitch
        T sarg = -2 * (copy.qx*copy.qz - copy.qw * copy.qy);
        vec.Y(sarg <= T(-1.0) ? T(-0.5*IGN_PI) :
            (sarg >= T(1.0) ? T(0.5*IGN_PI) : T(asin(sarg))));

        // If the pitch angle is PI/2 or -PI/2, we can only compute
        // the sum roll + yaw.  However, any combination that gives
        // the right sum will produce the correct orientation, so we
        // set yaw = 0 and compute roll.
        // pitch angle is PI/2
        if (std::abs(sarg - 1) < tol)
        {
          vec.Z(0);
          vec.X(T(atan2(2 * (copy.qx*copy.qy - copy.qz*copy.qw),
                      squ - sqx + sqy - sqz)));
        }
        // pitch angle is -PI/2
        else if (std::abs(sarg + 1) < tol)
        {
          vec.Z(0);
          vec.X(T(atan2(-2 * (copy.qx*copy.qy - copy.qz*copy.qw),
                       squ - sqx + sqy - sqz)));
        }
        else
        {
          // Roll
          vec.X(T(atan2(2 * (copy.qy*copy.qz + copy.qw*copy.qx),
                      squ - sqx - sqy + sqz)));

          // Yaw
          vec.Z(T(atan2(2 * (copy.qx*copy.qy + copy.qw*copy.qz),
                      squ + sqx - sqy - sqz)));
        }

        return vec;
      }

      /// \brief Convert euler angles to quatern.
      /// \param[in] _vec The vector of angles to convert.
      /// \return The converted quaternion.
      public: static Quaternion<T> EulerToQuaternion(const Vector3<T> &_vec)
      {
        Quaternion<T> result;
        result.Euler(_vec);
        return result;
      }

      /// \brief Convert euler angles to quatern.
      /// \param[in] _x rotation along x
      /// \param[in] _y rotation along y
      /// \param[in] _z rotation along z
      /// \return The converted quaternion.
      public: static Quaternion<T> EulerToQuaternion(T _x, T _y, T _z)
      {
        return EulerToQuaternion(Vector3<T>(_x, _y, _z));
      }

      /// \brief Get the Euler roll angle in radians
      /// \return the roll component
      public: T Roll() const
      {
        return this->Euler().X();
      }

      /// \brief Get the Euler pitch angle in radians
      /// \return the pitch component
      public: T Pitch() const
      {
        return this->Euler().Y();
      }

      /// \brief Get the Euler yaw angle in radians
      /// \return the yaw component
      public: T Yaw() const
      {
        return this->Euler().Z();
      }

      /// \brief Return rotation as axis and angle
      /// \param[in] _axis rotation axis
      /// \param[in] _angle ccw angle in radians
      public: void ToAxis(Vector3<T> &_axis, T &_angle) const
      {
        T len = this->qx*this->qx + this->qy*this->qy + this->qz*this->qz;
        if (equal<T>(len, static_cast<T>(0)))
        {
          _angle = 0.0;
          _axis.Set(1, 0, 0);
        }
        else
        {
          _angle = 2.0 * acos(this->qw);
          T invLen =  1.0 / sqrt(len);
          _axis.Set(this->qx*invLen, this->qy*invLen, this->qz*invLen);
        }
      }

      /// \brief Set from a rotation matrix.
      /// \param[in] _mat rotation matrix (must be orthogonal, the function
      ///                 doesn't check it)
      ///
      /// Implementation inspired by
      /// http://www.euclideanspace.com/maths/geometry/rotations/
      /// conversions/matrixToQuaternion/
      void Matrix(const Matrix3<T> &_mat)
      {
        const T trace = _mat(0, 0) + _mat(1, 1) + _mat(2, 2);
        if (trace > 0.0000001)
        {
          qw = sqrt(1 + trace) / 2;
          const T s = 1.0 / (4 * qw);
          qx = (_mat(2, 1) - _mat(1, 2)) * s;
          qy = (_mat(0, 2) - _mat(2, 0)) * s;
          qz = (_mat(1, 0) - _mat(0, 1)) * s;
        }
        else if (_mat(0, 0) > _mat(1, 1) && _mat(0, 0) > _mat(2, 2))
        {
          qx = sqrt(1.0 + _mat(0, 0) - _mat(1, 1) - _mat(2, 2)) / 2;
          const T s = 1.0 / (4 * qx);
          qw = (_mat(2, 1) - _mat(1, 2)) * s;
          qy = (_mat(1, 0) + _mat(0, 1)) * s;
          qz = (_mat(0, 2) + _mat(2, 0)) * s;
        }
        else if (_mat(1, 1) > _mat(2, 2))
        {
          qy = sqrt(1.0 - _mat(0, 0) + _mat(1, 1) - _mat(2, 2)) / 2;
          const T s = 1.0 / (4 * qy);
          qw = (_mat(0, 2) - _mat(2, 0)) * s;
          qx = (_mat(0, 1) + _mat(1, 0)) * s;
          qz = (_mat(1, 2) + _mat(2, 1)) * s;
        }
        else
        {
          qz = sqrt(1.0 - _mat(0, 0) - _mat(1, 1) + _mat(2, 2)) / 2;
          const T s = 1.0 / (4 * qz);
          qw = (_mat(1, 0) - _mat(0, 1)) * s;
          qx = (_mat(0, 2) + _mat(2, 0)) * s;
          qy = (_mat(1, 2) + _mat(2, 1)) * s;
        }
      }

      /// \brief Set this quaternion to represent rotation from
      /// vector _v1 to vector _v2, so that
      /// _v2.Normalize() == this * _v1.Normalize() holds.
      ///
      /// \param[in] _v1 The first vector
      /// \param[in] _v2 The second vector
      ///
      /// Implementation inspired by
      /// http://stackoverflow.com/a/11741520/1076564
      public: void From2Axes(const Vector3<T> &_v1, const Vector3<T> &_v2)
      {
        // generally, we utilize the fact that a quat (w, x, y, z) represents
        // rotation of angle 2*w about axis (x, y, z)
        //
        // so we want to take get a vector half-way between no rotation and the
        // double rotation, which is
        // [ (1, (0, 0, 0)) + (_v1 dot _v2, _v1 x _v2) ] / 2
        // if _v1 and _v2 are unit quaternions
        //
        // since we normalize the result anyway, we can omit the division,
        // getting the result:
        // [ (1, (0, 0, 0)) + (_v1 dot _v2, _v1 x _v2) ].Normalized()
        //
        // if _v1 and _v2 are not normalized, the magnitude (1 + _v1 dot _v2)
        // is multiplied by k = norm(_v1)*norm(_v2)

        const T kCosTheta = _v1.Dot(_v2);
        const T k = sqrt(_v1.SquaredLength() * _v2.SquaredLength());

        if (fabs(kCosTheta/k + 1) < 1e-6)
        {
          // the vectors are opposite
          // any vector orthogonal to _v1
          Vector3<T> other;
          {
            const Vector3<T> _v1Abs(_v1.Abs());
            if (_v1Abs.X() < _v1Abs.Y())
            {
              if (_v1Abs.X() < _v1Abs.Z())
              {
                other = {1, 0, 0};
              }
              else
              {
                other = {0, 0, 1};
              }
            }
            else
            {
              if (_v1Abs.Y() < _v1Abs.Z())
              {
                other = {0, 1, 0};
              }
              else
              {
                other = {0, 0, 1};
              }
            }
          }

          const Vector3<T> axis(_v1.Cross(other).Normalize());

          qw = 0;
          qx = axis.X();
          qy = axis.Y();
          qz = axis.Z();
        }
        else
        {
          // the vectors are in general position
          const Vector3<T> axis(_v1.Cross(_v2));
          qw = kCosTheta + k;
          qx = axis.X();
          qy = axis.Y();
          qz = axis.Z();
          this->Normalize();
        }
      }

      /// \brief Scale a Quaternion<T>ion
      /// \param[in] _scale Amount to scale this rotation
      public: void Scale(T _scale)
      {
        Quaternion<T> b;
        Vector3<T> axis;
        T angle;

        // Convert to axis-and-angle
        this->ToAxis(axis, angle);
        angle *= _scale;

        this->Axis(axis.X(), axis.Y(), axis.Z(), angle);
      }

      /// \brief Addition operator
      /// \param[in] _qt quaternion for addition
      /// \return this quaternion + _qt
      public: Quaternion<T> operator+(const Quaternion<T> &_qt) const
      {
        Quaternion<T> result(this->qw + _qt.qw, this->qx + _qt.qx,
                             this->qy + _qt.qy, this->qz + _qt.qz);
        return result;
      }

      /// \brief Addition operator
      /// \param[in] _qt quaternion for addition
      /// \return this quaternion + qt
      public: Quaternion<T> operator+=(const Quaternion<T> &_qt)
      {
        *this = *this + _qt;

        return *this;
      }

      /// \brief Subtraction operator
      /// \param[in] _qt quaternion to subtract
      /// \return this quaternion - _qt
      public: Quaternion<T> operator-(const Quaternion<T> &_qt) const
      {
        Quaternion<T> result(this->qw - _qt.qw, this->qx - _qt.qx,
                       this->qy - _qt.qy, this->qz - _qt.qz);
        return result;
      }

      /// \brief Subtraction operator
      /// \param[in] _qt Quaternion<T> for subtraction
      /// \return This quaternion - qt
      public: Quaternion<T> operator-=(const Quaternion<T> &_qt)
      {
        *this = *this - _qt;
        return *this;
      }

      /// \brief Multiplication operator
      /// \param[in] _q Quaternion<T> for multiplication
      /// \return This quaternion multiplied by the parameter
      public: inline Quaternion<T> operator*(const Quaternion<T> &_q) const
              {
                return Quaternion<T>(
                  this->qw*_q.qw-this->qx*_q.qx-this->qy*_q.qy-this->qz*_q.qz,
                  this->qw*_q.qx+this->qx*_q.qw+this->qy*_q.qz-this->qz*_q.qy,
                  this->qw*_q.qy-this->qx*_q.qz+this->qy*_q.qw+this->qz*_q.qx,
                  this->qw*_q.qz+this->qx*_q.qy-this->qy*_q.qx+this->qz*_q.qw);
              }

      /// \brief Multiplication operator by a scalar.
      /// \param[in] _f factor
      /// \return quaternion multiplied by the scalar
      public: Quaternion<T> operator*(const T &_f) const
      {
        return Quaternion<T>(this->qw*_f, this->qx*_f,
                             this->qy*_f, this->qz*_f);
      }

      /// \brief Multiplication operator
      /// \param[in] _qt Quaternion<T> for multiplication
      /// \return This quaternion multiplied by the parameter
      public: Quaternion<T> operator*=(const Quaternion<T> &qt)
      {
        *this = *this * qt;
        return *this;
      }

      /// \brief Vector3 multiplication operator
      /// \param[in] _v vector to multiply
      /// \return The result of the vector multiplication
      public: Vector3<T> operator*(const Vector3<T> &_v) const
      {
        Vector3<T> uv, uuv;
        Vector3<T> qvec(this->qx, this->qy, this->qz);
        uv = qvec.Cross(_v);
        uuv = qvec.Cross(uv);
        uv *= (2.0f * this->qw);
        uuv *= 2.0f;

        return _v + uv + uuv;
      }

      /// \brief Equal to operator
      /// \param[in] _qt Quaternion<T> for comparison
      /// \return True if equal
      public: bool operator==(const Quaternion<T> &_qt) const
      {
        return equal(this->qx, _qt.qx, static_cast<T>(0.001)) &&
               equal(this->qy, _qt.qy, static_cast<T>(0.001)) &&
               equal(this->qz, _qt.qz, static_cast<T>(0.001)) &&
               equal(this->qw, _qt.qw, static_cast<T>(0.001));
      }

      /// \brief Not equal to operator
      /// \param[in] _qt Quaternion<T> for comparison
      /// \return True if not equal
      public: bool operator!=(const Quaternion<T> &_qt) const
      {
        return !equal(this->qx, _qt.qx, static_cast<T>(0.001)) ||
               !equal(this->qy, _qt.qy, static_cast<T>(0.001)) ||
               !equal(this->qz, _qt.qz, static_cast<T>(0.001)) ||
               !equal(this->qw, _qt.qw, static_cast<T>(0.001));
      }

      /// \brief Unary minus operator
      /// \return negates each component of the quaternion
      public: Quaternion<T> operator-() const
      {
        return Quaternion<T>(-this->qw, -this->qx, -this->qy, -this->qz);
      }

      /// \brief Rotate a vector using the quaternion
      /// \param[in] _vec vector to rotate
      /// \return the rotated vector
      public: inline Vector3<T> RotateVector(const Vector3<T> &_vec) const
      {
        Quaternion<T> tmp(static_cast<T>(0),
            _vec.X(), _vec.Y(), _vec.Z());
        tmp = (*this) * (tmp * this->Inverse());
        return Vector3<T>(tmp.qx, tmp.qy, tmp.qz);
      }

      /// \brief Do the reverse rotation of a vector by this quaternion
      /// \param[in] _vec the vector
      /// \return the reversed vector
      public: Vector3<T> RotateVectorReverse(Vector3<T> _vec) const
      {
        Quaternion<T> tmp(0.0, _vec.X(), _vec.Y(), _vec.Z());

        tmp =  this->Inverse() * (tmp * (*this));

        return Vector3<T>(tmp.qx, tmp.qy, tmp.qz);
      }

      /// \brief See if a quaternion is finite (e.g., not nan)
      /// \return True if quaternion is finite
      public: bool IsFinite() const
      {
        // std::isfinite works with floating point values, need to explicit
        // cast to avoid ambiguity in vc++.
        return std::isfinite(static_cast<double>(this->qw)) &&
               std::isfinite(static_cast<double>(this->qx)) &&
               std::isfinite(static_cast<double>(this->qy)) &&
               std::isfinite(static_cast<double>(this->qz));
      }

      /// \brief Correct any nan values in this quaternion
      public: inline void Correct()
      {
        // std::isfinite works with floating point values, need to explicit
        // cast to avoid ambiguity in vc++.
        if (!std::isfinite(static_cast<double>(this->qx)))
          this->qx = 0;
        if (!std::isfinite(static_cast<double>(this->qy)))
          this->qy = 0;
        if (!std::isfinite(static_cast<double>(this->qz)))
          this->qz = 0;
        if (!std::isfinite(static_cast<double>(this->qw)))
          this->qw = 1;

        if (equal(this->qw, static_cast<T>(0)) &&
            equal(this->qx, static_cast<T>(0)) &&
            equal(this->qy, static_cast<T>(0)) &&
            equal(this->qz, static_cast<T>(0)))
        {
          this->qw = 1;
        }
      }

      /// \brief Return the X axis
      /// \return the X axis of the vector
      public: Vector3<T> XAxis() const
      {
        T fTy  = 2.0f*this->qy;
        T fTz  = 2.0f*this->qz;

        T fTwy = fTy*this->qw;
        T fTwz = fTz*this->qw;
        T fTxy = fTy*this->qx;
        T fTxz = fTz*this->qx;
        T fTyy = fTy*this->qy;
        T fTzz = fTz*this->qz;

        return Vector3<T>(1.0f-(fTyy+fTzz), fTxy+fTwz, fTxz-fTwy);
      }

      /// \brief Return the Y axis
      /// \return the Y axis of the vector
      public: Vector3<T> YAxis() const
      {
        T fTx  = 2.0f*this->qx;
        T fTy  = 2.0f*this->qy;
        T fTz  = 2.0f*this->qz;
        T fTwx = fTx*this->qw;
        T fTwz = fTz*this->qw;
        T fTxx = fTx*this->qx;
        T fTxy = fTy*this->qx;
        T fTyz = fTz*this->qy;
        T fTzz = fTz*this->qz;

        return Vector3<T>(fTxy-fTwz, 1.0f-(fTxx+fTzz), fTyz+fTwx);
      }

      /// \brief Return the Z axis
      /// \return the Z axis of the vector
      public: Vector3<T> ZAxis() const
      {
        T fTx  = 2.0f*this->qx;
        T fTy  = 2.0f*this->qy;
        T fTz  = 2.0f*this->qz;
        T fTwx = fTx*this->qw;
        T fTwy = fTy*this->qw;
        T fTxx = fTx*this->qx;
        T fTxz = fTz*this->qx;
        T fTyy = fTy*this->qy;
        T fTyz = fTz*this->qy;

        return Vector3<T>(fTxz+fTwy, fTyz-fTwx, 1.0f-(fTxx+fTyy));
      }

      /// \brief Round all values to _precision decimal places
      /// \param[in] _precision the precision
      public: void Round(int _precision)
      {
        this->qx = precision(this->qx, _precision);
        this->qy = precision(this->qy, _precision);
        this->qz = precision(this->qz, _precision);
        this->qw = precision(this->qw, _precision);
      }

      /// \brief Dot product
      /// \param[in] _q the other quaternion
      /// \return the product
      public: T Dot(const Quaternion<T> &_q) const
      {
        return this->qw*_q.qw + this->qx * _q.qx +
               this->qy*_q.qy + this->qz*_q.qz;
      }

      /// \brief Spherical quadratic interpolation
      /// given the ends and an interpolation parameter between 0 and 1
      /// \param[in] _ft the interpolation parameter
      /// \param[in] _rkP the beginning quaternion
      /// \param[in] _rkA first intermediate quaternion
      /// \param[in] _rkB second intermediate quaternion
      /// \param[in] _rkQ the end quaternion
      /// \param[in] _shortestPath when true, the rotation may be inverted to
      /// get to minimize rotation
      /// \return The result of the quadratic interpolation
      public: static Quaternion<T> Squad(T _fT,
                  const Quaternion<T> &_rkP, const Quaternion<T> &_rkA,
                  const Quaternion<T> &_rkB, const Quaternion<T> &_rkQ,
                  bool _shortestPath = false)
      {
        T fSlerpT = 2.0f*_fT*(1.0f-_fT);
        Quaternion<T> kSlerpP = Slerp(_fT, _rkP, _rkQ, _shortestPath);
        Quaternion<T> kSlerpQ = Slerp(_fT, _rkA, _rkB);
        return Slerp(fSlerpT, kSlerpP, kSlerpQ);
      }

      /// \brief Spherical linear interpolation between 2 quaternions,
      /// given the ends and an interpolation parameter between 0 and 1
      /// \param[in] _ft the interpolation parameter
      /// \param[in] _rkP the beginning quaternion
      /// \param[in] _rkQ the end quaternion
      /// \param[in] _shortestPath when true, the rotation may be inverted to
      /// get to minimize rotation
      /// \return The result of the linear interpolation
      public: static Quaternion<T> Slerp(T _fT,
                  const Quaternion<T> &_rkP, const Quaternion<T> &_rkQ,
                  bool _shortestPath = false)
      {
        T fCos = _rkP.Dot(_rkQ);
        Quaternion<T> rkT;

        // Do we need to invert rotation?
        if (fCos < 0.0f && _shortestPath)
        {
          fCos = -fCos;
          rkT = -_rkQ;
        }
        else
        {
          rkT = _rkQ;
        }

        if (std::abs(fCos) < 1 - 1e-03)
        {
          // Standard case (slerp)
          T fSin = sqrt(1 - (fCos*fCos));
          T fAngle = atan2(fSin, fCos);
          // FIXME: should check if (std::abs(fSin) >= 1e-3)
          T fInvSin = 1.0f / fSin;
          T fCoeff0 = sin((1.0f - _fT) * fAngle) * fInvSin;
          T fCoeff1 = sin(_fT * fAngle) * fInvSin;
          return _rkP * fCoeff0 + rkT * fCoeff1;
        }
        else
        {
          // There are two situations:
          // 1. "rkP" and "rkQ" are very close (fCos ~= +1),
          // so we can do a linear interpolation safely.
          // 2. "rkP" and "rkQ" are almost inverse of each
          // other (fCos ~= -1), there
          // are an infinite number of possibilities interpolation.
          // but we haven't have method to fix this case, so just use
          // linear interpolation here.
          Quaternion<T> t = _rkP * (1.0f - _fT) + rkT * _fT;
          // taking the complement requires renormalisation
          t.Normalize();
          return t;
        }
      }

      /// \brief Integrate quaternion for constant angular velocity vector
      /// along specified interval `_deltaT`.
      /// Implementation based on:
      /// http://physicsforgames.blogspot.com/2010/02/quaternions.html
      /// \param[in] _angularVelocity Angular velocity vector, specified in
      /// same reference frame as base of this quaternion.
      /// \param[in] _deltaT Time interval in seconds to integrate over.
      /// \return Quaternion at integrated configuration.
      public: Quaternion<T> Integrate(const Vector3<T> &_angularVelocity,
                                      const T _deltaT) const
      {
        Quaternion<T> deltaQ;
        Vector3<T> theta = _angularVelocity * _deltaT * 0.5;
        T thetaMagSq = theta.SquaredLength();
        T s;
        if (thetaMagSq * thetaMagSq / 24.0 < MIN_D)
        {
          deltaQ.W() = 1.0 - thetaMagSq / 2.0;
          s = 1.0 - thetaMagSq / 6.0;
        }
        else
        {
          double thetaMag = sqrt(thetaMagSq);
          deltaQ.W() = cos(thetaMag);
          s = sin(thetaMag) / thetaMag;
        }
        deltaQ.X() = theta.X() * s;
        deltaQ.Y() = theta.Y() * s;
        deltaQ.Z() = theta.Z() * s;
        return deltaQ * (*this);
      }

      /// \brief Get the w component.
      /// \return The w quaternion component.
      public: inline const T &W() const
      {
        return this->qw;
      }

      /// \brief Get the x component.
      /// \return The x quaternion component.
      public: inline const T &X() const
      {
        return this->qx;
      }

      /// \brief Get the y component.
      /// \return The y quaternion component.
      public: inline const T &Y() const
      {
        return this->qy;
      }

      /// \brief Get the z component.
      /// \return The z quaternion component.
      public: inline const T &Z() const
      {
        return this->qz;
      }


      /// \brief Get a mutable w component.
      /// \return The w quaternion component.
      public: inline T &W()
      {
        return this->qw;
      }

      /// \brief Get a mutable x component.
      /// \return The x quaternion component.
      public: inline T &X()
      {
        return this->qx;
      }

      /// \brief Get a mutable y component.
      /// \return The y quaternion component.
      public: inline T &Y()
      {
        return this->qy;
      }

      /// \brief Get a mutable z component.
      /// \return The z quaternion component.
      public: inline T &Z()
      {
        return this->qz;
      }

      /// \brief Set the x component.
      /// \param[in] _v The new value for the x quaternion component.
      public: inline void X(T _v)
      {
        this->qx = _v;
      }

      /// \brief Set the y component.
      /// \param[in] _v The new value for the y quaternion component.
      public: inline void Y(T _v)
      {
        this->qy = _v;
      }

      /// \brief Set the z component.
      /// \param[in] _v The new value for the z quaternion component.
      public: inline void Z(T _v)
      {
        this->qz = _v;
      }

      /// \brief Set the w component.
      /// \param[in] _v The new value for the w quaternion component.
      public: inline void W(T _v)
      {
        this->qw = _v;
      }

      /// \brief Stream insertion operator
      /// \param[in] _out output stream
      /// \param[in] _q quaternion to output
      /// \return the stream
      public: friend std::ostream &operator<<(std::ostream &_out,
                  const ignition::math::Quaternion<T> &_q)
      {
        Vector3<T> v(_q.Euler());
        _out << precision(v.X(), 6) << " " << precision(v.Y(), 6) << " "
             << precision(v.Z(), 6);
        return _out;
      }

      /// \brief Stream extraction operator
      /// \param[in] _in input stream
      /// \param[in] _q Quaternion<T> to read values into
      /// \return The istream
      public: friend std::istream &operator>>(std::istream &_in,
          ignition::math::Quaternion<T> &_q)
      {
        Angle roll, pitch, yaw;

        // Skip white spaces
        _in.setf(std::ios_base::skipws);
        _in >> roll >> pitch >> yaw;

        _q.Euler(Vector3<T>(*roll, *pitch, *yaw));

        return _in;
      }

      /// \brief w value of the quaternion
      private: T qw;

      /// \brief x value of the quaternion
      private: T qx;

      /// \brief y value of the quaternion
      private: T qy;

      /// \brief z value of the quaternion
      private: T qz;
    };

    template<typename T> const Quaternion<T>
      Quaternion<T>::Identity(1, 0, 0, 0);

    template<typename T> const Quaternion<T>
      Quaternion<T>::Zero(0, 0, 0, 0);

    typedef Quaternion<double> Quaterniond;
    typedef Quaternion<float> Quaternionf;
    typedef Quaternion<int> Quaternioni;
  }
}
#endif