This file is indexed.

/usr/include/ignition/math2/ignition/math/Matrix3.hh is in libignition-math2-dev 2.9.0+dfsg1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
/*
 * Copyright (C) 2012-2014 Open Source Robotics Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
*/

#ifndef IGNITION_MATH_MATRIX3_HH_
#define IGNITION_MATH_MATRIX3_HH_

#include <algorithm>
#include <cstring>
#include <ignition/math/Vector3.hh>
#include <ignition/math/Quaternion.hh>

namespace ignition
{
  namespace math
  {
    template <typename T> class Quaternion;

    /// \class Matrix3 Matrix3.hh ignition/math/Matrix3.hh
    /// \brief A 3x3 matrix class
    template<typename T>
    class Matrix3
    {
      /// \brief Identity matrix
      public: static const Matrix3<T> Identity;

      /// \brief Zero matrix
      public: static const Matrix3<T> Zero;

      /// \brief Constructor
      public: Matrix3()
      {
        std::memset(this->data, 0, sizeof(this->data[0][0])*9);
      }

      /// \brief Copy constructor
      /// \param _m Matrix to copy
      public: Matrix3(const Matrix3<T> &_m)
      {
        std::memcpy(this->data, _m.data, sizeof(this->data[0][0])*9);
      }

      /// \brief Constructor
      /// \param[in] _v00 Row 0, Col 0 value
      /// \param[in] _v01 Row 0, Col 1 value
      /// \param[in] _v02 Row 0, Col 2 value
      /// \param[in] _v10 Row 1, Col 0 value
      /// \param[in] _v11 Row 1, Col 1 value
      /// \param[in] _v12 Row 1, Col 2 value
      /// \param[in] _v20 Row 2, Col 0 value
      /// \param[in] _v21 Row 2, Col 1 value
      /// \param[in] _v22 Row 2, Col 2 value
      public: Matrix3(T _v00, T _v01, T _v02,
                      T _v10, T _v11, T _v12,
                      T _v20, T _v21, T _v22)
      {
        this->data[0][0] = _v00;
        this->data[0][1] = _v01;
        this->data[0][2] = _v02;
        this->data[1][0] = _v10;
        this->data[1][1] = _v11;
        this->data[1][2] = _v12;
        this->data[2][0] = _v20;
        this->data[2][1] = _v21;
        this->data[2][2] = _v22;
      }

      /// \brief Construct Matrix3 from a quaternion.
      /// \param[in] _q Quaternion.
      // cppcheck-suppress noExplicitConstructor
      public: Matrix3(const Quaternion<T> &_q)
      {
        Quaternion<T> qt = _q;
        qt.Normalize();
        this->Set(1 - 2*qt.Y()*qt.Y() - 2 *qt.Z()*qt.Z(),
                  2 * qt.X()*qt.Y() - 2*qt.Z()*qt.W(),
                  2 * qt.X() * qt.Z() + 2 * qt.Y() * qt.W(),
                  2 * qt.X() * qt.Y() + 2 * qt.Z() * qt.W(),
                  1 - 2*qt.X()*qt.X() - 2 * qt.Z()*qt.Z(),
                  2 * qt.Y() * qt.Z() - 2 * qt.X() * qt.W(),
                  2 * qt.X() * qt.Z() - 2 * qt.Y() * qt.W(),
                  2 * qt.Y() * qt.Z() + 2 * qt.X() * qt.W(),
                  1 - 2 * qt.X()*qt.X() - 2 * qt.Y()*qt.Y());
      }

      /// \brief Desctructor
      public: virtual ~Matrix3() {}

      /// \brief Set values
      /// \param[in] _v00 Row 0, Col 0 value
      /// \param[in] _v01 Row 0, Col 1 value
      /// \param[in] _v02 Row 0, Col 2 value
      /// \param[in] _v10 Row 1, Col 0 value
      /// \param[in] _v11 Row 1, Col 1 value
      /// \param[in] _v12 Row 1, Col 2 value
      /// \param[in] _v20 Row 2, Col 0 value
      /// \param[in] _v21 Row 2, Col 1 value
      /// \param[in] _v22 Row 2, Col 2 value
      public: void Set(T _v00, T _v01, T _v02,
                       T _v10, T _v11, T _v12,
                       T _v20, T _v21, T _v22)
      {
        this->data[0][0] = _v00;
        this->data[0][1] = _v01;
        this->data[0][2] = _v02;
        this->data[1][0] = _v10;
        this->data[1][1] = _v11;
        this->data[1][2] = _v12;
        this->data[2][0] = _v20;
        this->data[2][1] = _v21;
        this->data[2][2] = _v22;
      }

      /// \brief Set the matrix from three axis (1 per column)
      /// \param[in] _xAxis The x axis
      /// \param[in] _yAxis The y axis
      /// \param[in] _zAxis The z axis
      public: void Axes(const Vector3<T> &_xAxis,
                        const Vector3<T> &_yAxis,
                        const Vector3<T> &_zAxis)
      {
        this->Col(0, _xAxis);
        this->Col(1, _yAxis);
        this->Col(2, _zAxis);
      }

      /// \brief Set the matrix from an axis and angle
      /// \param[in] _axis the axis
      /// \param[in] _angle ccw rotation around the axis in radians
      public: void Axis(const Vector3<T> &_axis, T _angle)
      {
        T c = cos(_angle);
        T s = sin(_angle);
        T C = 1-c;

        this->data[0][0] = _axis.X()*_axis.X()*C + c;
        this->data[0][1] = _axis.X()*_axis.Y()*C - _axis.Z()*s;
        this->data[0][2] = _axis.X()*_axis.Z()*C + _axis.Y()*s;

        this->data[1][0] = _axis.Y()*_axis.X()*C + _axis.Z()*s;
        this->data[1][1] = _axis.Y()*_axis.Y()*C + c;
        this->data[1][2] = _axis.Y()*_axis.Z()*C - _axis.X()*s;

        this->data[2][0] = _axis.Z()*_axis.X()*C - _axis.Y()*s;
        this->data[2][1] = _axis.Z()*_axis.Y()*C + _axis.X()*s;
        this->data[2][2] = _axis.Z()*_axis.Z()*C + c;
      }

      /// \brief Set the matrix to represent rotation from
      /// vector _v1 to vector _v2, so that
      /// _v2.Normalize() == this * _v1.Normalize() holds.
      ///
      /// \param[in] _v1 The first vector
      /// \param[in] _v2 The second vector
      public: void From2Axes(const Vector3<T> &_v1, const Vector3<T> &_v2)
      {
        const T _v1LengthSquared = _v1.SquaredLength();
        if (_v1LengthSquared <= 0.0)
        {
          // zero vector - we can't handle this
          this->Set(1, 0, 0, 0, 1, 0, 0, 0, 1);
          return;
        }

        const T _v2LengthSquared = _v2.SquaredLength();
        if (_v2LengthSquared <= 0.0)
        {
          // zero vector - we can't handle this
          this->Set(1, 0, 0, 0, 1, 0, 0, 0, 1);
          return;
        }

        const T dot = _v1.Dot(_v2) / sqrt(_v1LengthSquared * _v2LengthSquared);
        if (fabs(dot - 1.0) <= 1e-6)
        {
          // the vectors are parallel
          this->Set(1, 0, 0, 0, 1, 0, 0, 0, 1);
          return;
        }
        else if (fabs(dot + 1.0) <= 1e-6)
        {
          // the vectors are opposite
          this->Set(-1, 0, 0, 0, -1, 0, 0, 0, -1);
          return;
        }

        const Vector3<T> cross = _v1.Cross(_v2).Normalize();

        this->Axis(cross, acos(dot));
      }

      /// \brief Set a column
      /// \param[in] _c The colum index (0, 1, 2)
      /// \param[in] _v The value to set in each row of the column
      public: void Col(unsigned int _c, const Vector3<T> &_v)
      {
        if (_c >= 3)
          throw IndexException();

        this->data[0][_c] = _v.X();
        this->data[1][_c] = _v.Y();
        this->data[2][_c] = _v.Z();
      }

      /// \brief returns the element wise difference of two matrices
      public: Matrix3<T> operator-(const Matrix3<T> &_m) const
      {
        return Matrix3<T>(
            this->data[0][0] - _m(0, 0),
            this->data[0][1] - _m(0, 1),
            this->data[0][2] - _m(0, 2),
            this->data[1][0] - _m(1, 0),
            this->data[1][1] - _m(1, 1),
            this->data[1][2] - _m(1, 2),
            this->data[2][0] - _m(2, 0),
            this->data[2][1] - _m(2, 1),
            this->data[2][2] - _m(2, 2));
      }

      /// \brief returns the element wise sum of two matrices
      public: Matrix3<T> operator+(const Matrix3<T> &_m) const
      {
        return Matrix3<T>(
            this->data[0][0]+_m(0, 0),
            this->data[0][1]+_m(0, 1),
            this->data[0][2]+_m(0, 2),
            this->data[1][0]+_m(1, 0),
            this->data[1][1]+_m(1, 1),
            this->data[1][2]+_m(1, 2),
            this->data[2][0]+_m(2, 0),
            this->data[2][1]+_m(2, 1),
            this->data[2][2]+_m(2, 2));
      }

      /// \brief returns the element wise scalar multiplication
      public: Matrix3<T> operator*(const T &_s) const
      {
        return Matrix3<T>(
          _s * this->data[0][0], _s * this->data[0][1], _s * this->data[0][2],
          _s * this->data[1][0], _s * this->data[1][1], _s * this->data[1][2],
          _s * this->data[2][0], _s * this->data[2][1], _s * this->data[2][2]);
      }

      /// \brief Matrix multiplication operator
      /// \param[in] _m Matrix3<T> to multiply
      /// \return product of this * _m
      public: Matrix3<T> operator*(const Matrix3<T> &_m) const
      {
        return Matrix3<T>(
            // first row
            this->data[0][0]*_m(0, 0)+
            this->data[0][1]*_m(1, 0)+
            this->data[0][2]*_m(2, 0),

            this->data[0][0]*_m(0, 1)+
            this->data[0][1]*_m(1, 1)+
            this->data[0][2]*_m(2, 1),

            this->data[0][0]*_m(0, 2)+
            this->data[0][1]*_m(1, 2)+
            this->data[0][2]*_m(2, 2),

            // second row
            this->data[1][0]*_m(0, 0)+
            this->data[1][1]*_m(1, 0)+
            this->data[1][2]*_m(2, 0),

            this->data[1][0]*_m(0, 1)+
            this->data[1][1]*_m(1, 1)+
            this->data[1][2]*_m(2, 1),

            this->data[1][0]*_m(0, 2)+
            this->data[1][1]*_m(1, 2)+
            this->data[1][2]*_m(2, 2),

            // third row
            this->data[2][0]*_m(0, 0)+
            this->data[2][1]*_m(1, 0)+
            this->data[2][2]*_m(2, 0),

            this->data[2][0]*_m(0, 1)+
            this->data[2][1]*_m(1, 1)+
            this->data[2][2]*_m(2, 1),

            this->data[2][0]*_m(0, 2)+
            this->data[2][1]*_m(1, 2)+
            this->data[2][2]*_m(2, 2));
      }

      /// \brief Multiplication operator with Vector3 on the right
      /// treated like a column vector.
      /// \param _vec Vector3
      /// \return Resulting vector from multiplication
      public: Vector3<T> operator*(const Vector3<T> &_vec) const
      {
        return Vector3<T>(
            this->data[0][0]*_vec.X() + this->data[0][1]*_vec.Y() +
            this->data[0][2]*_vec.Z(),
            this->data[1][0]*_vec.X() + this->data[1][1]*_vec.Y() +
            this->data[1][2]*_vec.Z(),
            this->data[2][0]*_vec.X() + this->data[2][1]*_vec.Y() +
            this->data[2][2]*_vec.Z());
      }

      /// \brief Matrix multiplication operator for scaling.
      /// \param[in] _s Scaling factor.
      /// \param[in] _m Input matrix.
      /// \return A scaled matrix.
      public: friend inline Matrix3<T> operator*(T _s, const Matrix3<T> &_m)
      {
        return _m * _s;
      }

      /// \brief Matrix left multiplication operator for Vector3.
      /// Treats the Vector3 like a row vector multiplying the matrix
      /// from the left.
      /// \param[in] _v Input vector.
      /// \param[in] _m Input matrix.
      /// \return The product vector.
      public: friend inline Vector3<T> operator*(const Vector3<T> &_v,
                                                 const Matrix3<T> &_m)
      {
        return Vector3<T>(
            _m(0, 0)*_v.X() + _m(1, 0)*_v.Y() + _m(2, 0)*_v.Z(),
            _m(0, 1)*_v.X() + _m(1, 1)*_v.Y() + _m(2, 1)*_v.Z(),
            _m(0, 2)*_v.X() + _m(1, 2)*_v.Y() + _m(2, 2)*_v.Z());
      }

      /// \brief Equality test with tolerance.
      /// \param[in] _m the matrix to compare to
      /// \param[in] _tol equality tolerance.
      /// \return true if the elements of the matrices are equal within
      /// the tolerence specified by _tol.
      public: bool Equal(const Matrix3 &_m, const T &_tol) const
      {
        return equal<T>(this->data[0][0], _m(0, 0), _tol)
            && equal<T>(this->data[0][1], _m(0, 1), _tol)
            && equal<T>(this->data[0][2], _m(0, 2), _tol)
            && equal<T>(this->data[1][0], _m(1, 0), _tol)
            && equal<T>(this->data[1][1], _m(1, 1), _tol)
            && equal<T>(this->data[1][2], _m(1, 2), _tol)
            && equal<T>(this->data[2][0], _m(2, 0), _tol)
            && equal<T>(this->data[2][1], _m(2, 1), _tol)
            && equal<T>(this->data[2][2], _m(2, 2), _tol);
      }

      /// \brief Equality test operator
      /// \param[in] _m Matrix3<T> to test
      /// \return True if equal (using the default tolerance of 1e-6)
      public: bool operator==(const Matrix3<T> &_m) const
      {
        return this->Equal(_m, static_cast<T>(1e-6));
      }

      /// \brief Inequality test operator
      /// \param[in] _m Matrix3<T> to test
      /// \return True if not equal (using the default tolerance of 1e-6)
      public: bool operator!=(const Matrix3<T> &_m) const
      {
        return !(*this == _m);
      }

      /// \brief Array subscript operator
      /// \param[in] _row row index
      /// \return a pointer to the row
      public: inline const T &operator()(size_t _row, size_t _col) const
      {
        if (_row >= 3 || _col >= 3)
          throw IndexException();
        return this->data[_row][_col];
      }

      /// \brief Array subscript operator
      /// \param[in] _row row index
      /// \return a pointer to the row
      public: inline T &operator()(size_t _row, size_t _col)
      {
        if (_row >= 3 || _col >=3)
          throw IndexException();
        return this->data[_row][_col];
      }

      /// \brief Return the determinant of the matrix
      /// \return Determinant of this matrix.
      public: T Determinant() const
      {
        T t0 = this->data[2][2]*this->data[1][1]
             - this->data[2][1]*this->data[1][2];

        T t1 = -(this->data[2][2]*this->data[1][0]
                -this->data[2][0]*this->data[1][2]);

        T t2 = this->data[2][1]*this->data[1][0]
             - this->data[2][0]*this->data[1][1];

        return t0 * this->data[0][0]
             + t1 * this->data[0][1]
             + t2 * this->data[0][2];
      }

      /// \brief Return the inverse matrix
      /// \return Inverse of this matrix.
      public: Matrix3<T> Inverse() const
      {
        T t0 = this->data[2][2]*this->data[1][1] -
                    this->data[2][1]*this->data[1][2];

        T t1 = -(this->data[2][2]*this->data[1][0] -
                      this->data[2][0]*this->data[1][2]);

        T t2 = this->data[2][1]*this->data[1][0] -
                    this->data[2][0]*this->data[1][1];

        T invDet = 1.0 / (t0 * this->data[0][0] +
                               t1 * this->data[0][1] +
                               t2 * this->data[0][2]);

        return invDet * Matrix3<T>(
          t0,
          - (this->data[2][2] * this->data[0][1] -
             this->data[2][1] * this->data[0][2]),
          + (this->data[1][2] * this->data[0][1] -
             this->data[1][1] * this->data[0][2]),
          t1,
          + (this->data[2][2] * this->data[0][0] -
             this->data[2][0] * this->data[0][2]),
          - (this->data[1][2] * this->data[0][0] -
             this->data[1][0] * this->data[0][2]),
          t2,
          - (this->data[2][1] * this->data[0][0] -
             this->data[2][0] * this->data[0][1]),
          + (this->data[1][1] * this->data[0][0] -
             this->data[1][0] * this->data[0][1]));
      }

      /// \brief Transpose this matrix.
      public: void Transpose()
      {
        std::swap(this->data[0][1], this->data[1][0]);
        std::swap(this->data[0][2], this->data[2][0]);
        std::swap(this->data[1][2], this->data[2][1]);
      }

      /// \brief Return the transpose of this matrix
      /// \return Transpose of this matrix.
      public: Matrix3<T> Transposed() const
      {
        return Matrix3<T>(
          this->data[0][0], this->data[1][0], this->data[2][0],
          this->data[0][1], this->data[1][1], this->data[2][1],
          this->data[0][2], this->data[1][2], this->data[2][2]);
      }

      /// \brief Stream insertion operator
      /// \param[in] _out Output stream
      /// \param[in] _m Matrix to output
      /// \return the stream
      public: friend std::ostream &operator<<(
                  std::ostream &_out, const ignition::math::Matrix3<T> &_m)
      {
        _out << precision(_m(0, 0), 6) << " "
             << precision(_m(0, 1), 6) << " "
             << precision(_m(0, 2), 6) << " "
             << precision(_m(1, 0), 6) << " "
             << precision(_m(1, 1), 6) << " "
             << precision(_m(1, 2), 6) << " "
             << precision(_m(2, 0), 6) << " "
             << precision(_m(2, 1), 6) << " "
             << precision(_m(2, 2), 6);

        return _out;
      }
      /// \brief Stream extraction operator
      /// \param _in input stream
      /// \param _pt Matrix3 to read values into
      /// \return the stream
      public: friend std::istream &operator>>(
                  std::istream &_in, ignition::math::Matrix3<T> &_m)
      {
        // Skip white spaces
        _in.setf(std::ios_base::skipws);
        T d[9];
        _in >> d[0] >> d[1] >> d[2]
            >> d[3] >> d[4] >> d[5]
            >> d[6] >> d[7] >> d[8];

        _m.Set(d[0], d[1], d[2],
               d[3], d[4], d[5],
               d[6], d[7], d[8]);
        return _in;
      }

      /// \brief the 3x3 matrix
      private: T data[3][3];
    };

    template<typename T>
    const Matrix3<T> Matrix3<T>::Identity(
        1, 0, 0,
        0, 1, 0,
        0, 0, 1);

    template<typename T>
    const Matrix3<T> Matrix3<T>::Zero(
        0, 0, 0,
        0, 0, 0,
        0, 0, 0);

    typedef Matrix3<int> Matrix3i;
    typedef Matrix3<double> Matrix3d;
    typedef Matrix3<float> Matrix3f;
  }
}

#endif