This file is indexed.

/usr/include/fst/compose.h is in libfst-dev 1.6.3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Class to compute the composition of two FSTs.

#ifndef FST_LIB_COMPOSE_H_
#define FST_LIB_COMPOSE_H_

#include <algorithm>

#include <fst/log.h>

#include <fst/cache.h>
#include <fst/compose-filter.h>
#include <fst/fst-decl.h>  // For optional argument declarations
#include <fst/lookahead-filter.h>
#include <fst/matcher.h>
#include <fst/state-table.h>
#include <fst/test-properties.h>


namespace fst {

// Delayed composition options templated on the arc type, the matcher,
// the composition filter, and the composition state table.  By
// default, the matchers, filter, and state table are constructed by
// composition. If set below, the user can instead pass in these
// objects; in that case, ComposeFst takes their ownership. This
// version controls composition implemented between generic Fst<Arc>
// types and a shared matcher type M for Fst<Arc>. This should be
// adequate for most applications, giving a reasonable tradeoff
// between efficiency and code sharing (but see ComposeFstImplOptions).
template <class Arc, class M = Matcher<Fst<Arc>>,
          class Filter = SequenceComposeFilter<M>,
          class StateTable =
              GenericComposeStateTable<Arc, typename Filter::FilterState>>
struct ComposeFstOptions : public CacheOptions {
  M *matcher1;              // FST1 matcher.
  M *matcher2;              // FST2 matcher.
  Filter *filter;           // Composition filter.
  StateTable *state_table;  // Composition state table.

  explicit ComposeFstOptions(const CacheOptions &opts = CacheOptions(),
                             M *matcher1 = nullptr, M *matcher2 = nullptr,
                             Filter *filter = nullptr,
                             StateTable *state_table = nullptr)
      : CacheOptions(opts),
        matcher1(matcher1),
        matcher2(matcher2),
        filter(filter),
        state_table(state_table) {}
};

// Forward declaration of ComposeFstMatcher.
template <class C, class F, class T>
class ComposeFstMatcher;

// Delayed composition options templated on the two matcher types, the
// composition filter, the composition state table and the cache store. By
// default, the matchers, filter, state table and cache store are constructed
// by composition. If set below, the user can instead pass in these objects; in
// that case, ComposeFst takes their ownership. This version controls
// composition implemented using arbitrary matchers (of the same arc type but
// otherwise arbitrary FST type). The user must ensure the matchers are
// compatible. These options permit the most efficient use, but shares the
// least code. This is for advanced use only in the most demanding or
// specialized applications that can benefit from it; otherwise, prefer
// ComposeFstOptions).
template <class M1, class M2, class Filter = SequenceComposeFilter<M1, M2>,
          class StateTable = GenericComposeStateTable<
              typename M1::Arc, typename Filter::FilterState>,
          class CacheStore = DefaultCacheStore<typename M1::Arc>>
struct ComposeFstImplOptions : public CacheImplOptions<CacheStore> {
  M1 *matcher1;    // FST1 matcher (see matcher.h)....
  M2 *matcher2;    // FST2 matcher.
  Filter *filter;  // Composition filter (see compose-filter.h).
  StateTable
    *state_table;        // Composition state table (see compose-state-table.h).
  bool own_state_table;   // ComposeFstImpl takes ownership of 'state_table'?
  bool allow_noncommute;  // Allow non-commutative weights

  explicit ComposeFstImplOptions(const CacheOptions &opts,
                                 M1 *matcher1 = nullptr, M2 *matcher2 = nullptr,
                                 Filter *filter = nullptr,
                                 StateTable *state_table = nullptr)
      : CacheImplOptions<CacheStore>(opts),
        matcher1(matcher1),
        matcher2(matcher2),
        filter(filter),
        state_table(state_table),
        own_state_table(true),
        allow_noncommute(false) {}

  explicit ComposeFstImplOptions(const CacheImplOptions<CacheStore> &opts,
                                 M1 *matcher1 = nullptr, M2 *matcher2 = nullptr,
                                 Filter *filter = nullptr,
                                 StateTable *state_table = nullptr)
      : CacheImplOptions<CacheStore>(opts),
        matcher1(matcher1),
        matcher2(matcher2),
        filter(filter),
        state_table(state_table),
        own_state_table(true),
        allow_noncommute(false) {}

  ComposeFstImplOptions()
      : matcher1(nullptr),
        matcher2(nullptr),
        filter(nullptr),
        state_table(nullptr),
        own_state_table(true),
        allow_noncommute(false) {}
};

namespace internal {

// Implementation of delayed composition. This base class is common to the
// variants with different matchers, composition filters and state tables.
template <class Arc, class CacheStore = DefaultCacheStore<Arc>,
          class F = ComposeFst<Arc, CacheStore>>
class ComposeFstImplBase
    : public CacheBaseImpl<typename CacheStore::State, CacheStore> {
 public:
  using FST = F;
  using Label = typename Arc::Label;
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;

  using State = typename CacheStore::State;
  using CacheImpl = CacheBaseImpl<State, CacheStore>;

  using FstImpl<Arc>::SetType;
  using FstImpl<Arc>::SetProperties;
  using FstImpl<Arc>::Properties;
  using FstImpl<Arc>::SetInputSymbols;
  using FstImpl<Arc>::SetOutputSymbols;

  using CacheImpl::HasStart;
  using CacheImpl::HasFinal;
  using CacheImpl::HasArcs;
  using CacheImpl::SetFinal;
  using CacheImpl::SetStart;

  ComposeFstImplBase(const CacheImplOptions<CacheStore> &opts)
      : CacheImpl(opts) {}

  ComposeFstImplBase(const CacheOptions &opts) : CacheImpl(opts) {}

  ComposeFstImplBase(const ComposeFstImplBase &impl) : CacheImpl(impl, true) {
    SetType(impl.Type());
    SetProperties(impl.Properties(), kCopyProperties);
    SetInputSymbols(impl.InputSymbols());
    SetOutputSymbols(impl.OutputSymbols());
  }

  virtual ComposeFstImplBase *Copy() const = 0;

  ~ComposeFstImplBase() override {}

  StateId Start() {
    if (!HasStart()) {
      const auto start = ComputeStart();
      if (start != kNoStateId) SetStart(start);
    }
    return CacheImpl::Start();
  }

  Weight Final(StateId s) {
    if (!HasFinal(s)) SetFinal(s, ComputeFinal(s));
    return CacheImpl::Final(s);
  }

  virtual void Expand(StateId s) = 0;

  size_t NumArcs(StateId s) {
    if (!HasArcs(s)) Expand(s);
    return CacheImpl::NumArcs(s);
  }

  size_t NumInputEpsilons(StateId s) {
    if (!HasArcs(s)) Expand(s);
    return CacheImpl::NumInputEpsilons(s);
  }

  size_t NumOutputEpsilons(StateId s) {
    if (!HasArcs(s)) Expand(s);
    return CacheImpl::NumOutputEpsilons(s);
  }

  void InitArcIterator(StateId s, ArcIteratorData<Arc> *data) {
    if (!HasArcs(s)) Expand(s);
    CacheImpl::InitArcIterator(s, data);
  }

  virtual MatcherBase<Arc> *InitMatcher(const F &fst,
                                        MatchType match_type) const {
    // Use the default matcher if no override is provided.
    return nullptr;
  }

 protected:
  virtual StateId ComputeStart() = 0;
  virtual Weight ComputeFinal(StateId s) = 0;
};

// Implementation of delayed composition templated on the matchers (see
// matcher.h), composition filter (see compose-filter.h) and the composition
// state table (see compose-state-table.h).
template <class CacheStore, class Filter, class StateTable>
class ComposeFstImpl
    : public ComposeFstImplBase<typename CacheStore::Arc, CacheStore> {
 public:
  using Matcher1 = typename Filter::Matcher1;
  using Matcher2 = typename Filter::Matcher2;

  using FST1 = typename Matcher1::FST;
  using FST2 = typename Matcher2::FST;

  using Arc = typename CacheStore::Arc;
  using Label = typename Arc::Label;
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;

  using FilterState = typename Filter::FilterState;
  using State = typename CacheStore::State;

  using CacheImpl = CacheBaseImpl<State, CacheStore>;

  using StateTuple = typename StateTable::StateTuple;

  friend class ComposeFstMatcher<CacheStore, Filter, StateTable>;

  using FstImpl<Arc>::SetInputSymbols;
  using FstImpl<Arc>::SetOutputSymbols;
  using FstImpl<Arc>::SetType;
  using FstImpl<Arc>::SetProperties;

  template <class M1, class M2>
  ComposeFstImpl(const FST1 &fst1, const FST2 &fst2,
                 const ComposeFstImplOptions<M1, M2, Filter, StateTable,
                                             CacheStore> &opts);

  ComposeFstImpl(const ComposeFstImpl &impl)
      : ComposeFstImplBase<Arc, CacheStore>(impl),
        filter_(new Filter(*impl.filter_, true)),
        matcher1_(filter_->GetMatcher1()),
        matcher2_(filter_->GetMatcher2()),
        fst1_(matcher1_->GetFst()),
        fst2_(matcher2_->GetFst()),
        state_table_(new StateTable(*impl.state_table_)),
        own_state_table_(true),
        match_type_(impl.match_type_) {}

  ~ComposeFstImpl() override {
    if (own_state_table_) delete state_table_;
  }

  ComposeFstImpl *Copy() const override { return new ComposeFstImpl(*this); }

  uint64 Properties() const override { return Properties(kFstProperties); }

  // Sets error if found, and returns other FST impl properties.
  uint64 Properties(uint64 mask) const override {
    if ((mask & kError) &&
        (fst1_.Properties(kError, false) || fst2_.Properties(kError, false) ||
         (matcher1_->Properties(0) & kError) ||
         (matcher2_->Properties(0) & kError) |
             (filter_->Properties(0) & kError) ||
         state_table_->Error())) {
      SetProperties(kError, kError);
    }
    return FstImpl<Arc>::Properties(mask);
  }

  // Arranges it so that the first arg to OrderedExpand is the Fst
  // that will be matched on.
  void Expand(StateId s) override {
    const auto &tuple = state_table_->Tuple(s);
    const auto s1 = tuple.StateId1();
    const auto s2 = tuple.StateId2();
    filter_->SetState(s1, s2, tuple.GetFilterState());
    if (MatchInput(s1, s2)) {
      OrderedExpand(s, fst2_, s2, fst1_, s1, matcher2_, true);
    } else {
      OrderedExpand(s, fst1_, s1, fst2_, s2, matcher1_, false);
    }
  }

  const FST1 &GetFst1() const { return fst1_; }

  const FST2 &GetFst2() const { return fst2_; }

  const Matcher1 *GetMatcher1() const { return matcher1_; }

  Matcher1 *GetMatcher1() { return matcher1_; }

  const Matcher2 *GetMatcher2() const { return matcher2_; }

  Matcher2 *GetMatcher2() { return matcher2_; }

  const Filter *GetFilter() const { return filter_.get(); }

  Filter *GetFilter() { return filter_.get(); }

  const StateTable *GetStateTable() const { return state_table_; }

  StateTable *GetStateTable() { return state_table_; }

  MatcherBase<Arc> *InitMatcher(const ComposeFst<Arc, CacheStore> &fst,
                                MatchType match_type) const override {
    const auto test_props = match_type == MATCH_INPUT
                                ? kFstProperties & ~kILabelInvariantProperties
                                : kFstProperties & ~kOLabelInvariantProperties;
    // If both matchers support 'match_type' and we have a guarantee that a
    // call to 'filter_->FilterArc(arc1, arc2)' will not modify the ilabel of
    // arc1 when MATCH_INPUT or the olabel or arc2 when MATCH_OUTPUT, then
    // ComposeFstMatcher can be used.
    if ((matcher1_->Type(false) == match_type) &&
        (matcher2_->Type(false) == match_type) &&
        (filter_->Properties(test_props) == test_props)) {
      return new ComposeFstMatcher<CacheStore, Filter, StateTable>(fst, this,
                                                                   match_type);
    }
    return nullptr;
  }

 private:
  // This does that actual matching of labels in the composition. The
  // arguments are ordered so matching is called on state 'sa' of
  // 'fsta' for each arc leaving state 'sb' of 'fstb'. The 'match_input' arg
  // determines whether the input or output label of arcs at 'sb' is
  // the one to match on.
  template <class FST, class Matcher>
  void OrderedExpand(StateId s, const Fst<Arc> &, StateId sa, const FST &fstb,
                     StateId sb, Matcher *matchera, bool match_input) {
    matchera->SetState(sa);
    // First processes non-consuming symbols (e.g., epsilons) on FSTA.
    const Arc loop(match_input ? 0 : kNoLabel, match_input ? kNoLabel : 0,
                   Weight::One(), sb);
    MatchArc(s, matchera, loop, match_input);
    // Then processes matches on FSTB.
    for (ArcIterator<FST> iterb(fstb, sb); !iterb.Done(); iterb.Next()) {
      MatchArc(s, matchera, iterb.Value(), match_input);
    }
    CacheImpl::SetArcs(s);
  }

  // Matches a single transition from 'fstb' against 'fata' at 's'.
  template <class Matcher>
  void MatchArc(StateId s, Matcher *matchera, const Arc &arc,
                bool match_input) {
    if (matchera->Find(match_input ? arc.olabel : arc.ilabel)) {
      for (; !matchera->Done(); matchera->Next()) {
        auto arca = matchera->Value();
        auto arcb = arc;
        if (match_input) {
          const auto &fs = filter_->FilterArc(&arcb, &arca);
          if (fs != FilterState::NoState()) AddArc(s, arcb, arca, fs);
        } else {
          const auto &fs = filter_->FilterArc(&arca, &arcb);
          if (fs != FilterState::NoState()) AddArc(s, arca, arcb, fs);
        }
      }
    }
  }

  // Add a matching transition at 's'.
  void AddArc(StateId s, const Arc &arc1, const Arc &arc2,
              const FilterState &f) {
    const StateTuple tuple(arc1.nextstate, arc2.nextstate, f);
    const Arc oarc(arc1.ilabel, arc2.olabel, Times(arc1.weight, arc2.weight),
                   state_table_->FindState(tuple));
    CacheImpl::PushArc(s, oarc);
  }

  StateId ComputeStart() override {
    const auto s1 = fst1_.Start();
    if (s1 == kNoStateId) return kNoStateId;
    const auto s2 = fst2_.Start();
    if (s2 == kNoStateId) return kNoStateId;
    const auto &fs = filter_->Start();
    const StateTuple tuple(s1, s2, fs);
    return state_table_->FindState(tuple);
  }

  Weight ComputeFinal(StateId s) override {
    const auto &tuple = state_table_->Tuple(s);
    const auto s1 = tuple.StateId1();
    auto final1 = matcher1_->Final(s1);
    if (final1 == Weight::Zero()) return final1;
    const auto s2 = tuple.StateId2();
    auto final2 = matcher2_->Final(s2);
    if (final2 == Weight::Zero()) return final2;
    filter_->SetState(s1, s2, tuple.GetFilterState());
    filter_->FilterFinal(&final1, &final2);
    return Times(final1, final2);
  }

  // Determines which side to match on per composition state.
  bool MatchInput(StateId s1, StateId s2) {
    switch (match_type_) {
      case MATCH_INPUT:
        return true;
      case MATCH_OUTPUT:
        return false;
      default:  // MATCH_BOTH
        const auto priority1 = matcher1_->Priority(s1);
        const auto priority2 = matcher2_->Priority(s2);
        if (priority1 == kRequirePriority && priority2 == kRequirePriority) {
          FSTERROR() << "ComposeFst: Both sides can't require match";
          SetProperties(kError, kError);
          return true;
        }
        if (priority1 == kRequirePriority) return false;
        if (priority2 == kRequirePriority) {
          return true;
        }
        return priority1 <= priority2;
    }
  }

  // Identifies and verifies the capabilities of the matcher to be used for
  // composition.
  void SetMatchType();

  std::unique_ptr<Filter> filter_;
  Matcher1 *matcher1_;  // Borrowed reference.
  Matcher2 *matcher2_;  // Borrowed reference.
  const FST1 &fst1_;
  const FST2 &fst2_;
  StateTable *state_table_;
  bool own_state_table_;

  MatchType match_type_;
};

template <class CacheStore, class Filter, class StateTable>
template <class M1, class M2>
ComposeFstImpl<CacheStore, Filter, StateTable>::ComposeFstImpl(
    const FST1 &fst1, const FST2 &fst2,
    const ComposeFstImplOptions<M1, M2, Filter, StateTable, CacheStore> &opts)
    : ComposeFstImplBase<Arc, CacheStore>(opts),
      filter_(opts.filter
                  ? opts.filter
                  : new Filter(fst1, fst2, opts.matcher1, opts.matcher2)),
      matcher1_(filter_->GetMatcher1()),
      matcher2_(filter_->GetMatcher2()),
      fst1_(matcher1_->GetFst()),
      fst2_(matcher2_->GetFst()),
      state_table_(opts.state_table ? opts.state_table
                                    : new StateTable(fst1_, fst2_)),
      own_state_table_(opts.state_table ? opts.own_state_table : true) {
  SetType("compose");
  if (!CompatSymbols(fst2.InputSymbols(), fst1.OutputSymbols())) {
    FSTERROR() << "ComposeFst: Output symbol table of 1st argument "
               << "does not match input symbol table of 2nd argument";
    SetProperties(kError, kError);
  }
  SetInputSymbols(fst1_.InputSymbols());
  SetOutputSymbols(fst2_.OutputSymbols());
  SetMatchType();
  VLOG(2) << "ComposeFstImpl: Match type: " << match_type_;
  if (match_type_ == MATCH_NONE) SetProperties(kError, kError);
  const auto fprops1 = fst1.Properties(kFstProperties, false);
  const auto fprops2 = fst2.Properties(kFstProperties, false);
  const auto mprops1 = matcher1_->Properties(fprops1);
  const auto mprops2 = matcher2_->Properties(fprops2);
  const auto cprops = ComposeProperties(mprops1, mprops2);
  SetProperties(filter_->Properties(cprops), kCopyProperties);
  if (state_table_->Error()) SetProperties(kError, kError);
}

template <class CacheStore, class Filter, class StateTable>
void ComposeFstImpl<CacheStore, Filter, StateTable>::SetMatchType() {
  // Ensures any required matching is possible and known.
  if ((matcher1_->Flags() & kRequireMatch) &&
      matcher1_->Type(true) != MATCH_OUTPUT) {
    FSTERROR() << "ComposeFst: 1st argument cannot perform required matching "
               << "(sort?).";
    match_type_ = MATCH_NONE;
    return;
  }
  if ((matcher2_->Flags() & kRequireMatch) &&
      matcher2_->Type(true) != MATCH_INPUT) {
    FSTERROR() << "ComposeFst: 2nd argument cannot perform required matching "
               << "(sort?).";
    match_type_ = MATCH_NONE;
    return;
  }
  // Finds which sides to match on (favoring minimal testing of capabilities).
  const auto type1 = matcher1_->Type(false);
  const auto type2 = matcher2_->Type(false);
  if (type1 == MATCH_OUTPUT && type2 == MATCH_INPUT) {
    match_type_ = MATCH_BOTH;
  } else if (type1 == MATCH_OUTPUT) {
    match_type_ = MATCH_OUTPUT;
  } else if (type2 == MATCH_INPUT) {
    match_type_ = MATCH_INPUT;
  } else if (matcher1_->Type(true) == MATCH_OUTPUT) {
    match_type_ = MATCH_OUTPUT;
  } else if (matcher2_->Type(true) == MATCH_INPUT) {
    match_type_ = MATCH_INPUT;
  } else {
    FSTERROR() << "ComposeFst: 1st argument cannot match on output labels "
               << "and 2nd argument cannot match on input labels (sort?).";
    match_type_ = MATCH_NONE;
  }
}

}  // namespace internal

// Computes the composition of two transducers. This version is a delayed FST.
// If FST1 transduces string x to y with weight a and FST2 transduces y to z
// with weight b, then their composition transduces string x to z with weight
// Times(x, z).
//
// The output labels of the first transducer or the input labels of the second
// transducer must be sorted (with the default matcher). The weights need to
// form a commutative semiring (valid for TropicalWeight and LogWeight).
//
// Complexity:
//
// Assuming the first FST is unsorted and the second is sorted,
//
//   Time: O(v1 v2 d1 (log d2 + m2)),
//   Space: O(v1 v2)
//
// where vi = # of states visited, di = maximum out-degree, and mi the
// maximum multiplicity of the states visited, for the ith FST. Constant time
// and space to visit an input state or arc is assumed and exclusive of caching.
//
// Caveats:
// - ComposeFst does not trim its output (since it is a delayed operation).
// - The efficiency of composition can be strongly affected by several factors:
//   - the choice of which transducer is sorted - prefer sorting the FST
//     that has the greater average out-degree.
//   - the amount of non-determinism
//   - the presence and location of epsilon transitions - avoid epsilon
//     transitions on the output side of the first transducer or
//     the input side of the second transducer or prefer placing
//     them later in a path since they delay matching and can
//     introduce non-coaccessible states and transitions.
//
// This class attaches interface to implementation and handles reference
// counting, delegating most methods to ImplToFst. The CacheStore specifies the
// cache store (default declared in fst-decl.h).
template <class A, class CacheStore /* = DefaultCacheStore<A> */>
class ComposeFst
    : public ImplToFst<internal::ComposeFstImplBase<A, CacheStore>> {
 public:
  using Arc = A;
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;

  using Store = CacheStore;
  using State = typename CacheStore::State;

  using Impl = internal::ComposeFstImplBase<A, CacheStore>;

  friend class ArcIterator<ComposeFst<Arc, CacheStore>>;
  friend class StateIterator<ComposeFst<Arc, CacheStore>>;

  // Compose specifying only caching options.
  ComposeFst(const Fst<Arc> &fst1, const Fst<Arc> &fst2,
             const CacheOptions &opts = CacheOptions())
      : ImplToFst<Impl>(CreateBase(fst1, fst2, opts)) {}

  // Compose specifying one shared matcher type M. Requires that the input FSTs
  // and matcher FST types be Fst<Arc>. Recommended for best code-sharing and
  // matcher compatiblity.
  template <class Matcher, class Filter, class StateTuple>
  ComposeFst(const Fst<Arc> &fst1, const Fst<Arc> &fst2,
             const ComposeFstOptions<Arc, Matcher, Filter, StateTuple> &opts)
      : ImplToFst<Impl>(CreateBase1(fst1, fst2, opts)) {}

  // Compose specifying two matcher types Matcher1 and Matcher2. Requires input
  // FST (of the same Arc type, but o.w. arbitrary) match the corresponding
  // matcher FST types). Recommended only for advanced use in demanding or
  // specialized applications due to potential code bloat and matcher
  // incompatibilities.
  template <class Matcher1, class Matcher2, class Filter, class StateTuple>
  ComposeFst(const typename Matcher1::FST &fst1,
             const typename Matcher2::FST &fst2,
             const ComposeFstImplOptions<Matcher1, Matcher2, Filter, StateTuple,
                                         CacheStore> &opts)
      : ImplToFst<Impl>(CreateBase2(fst1, fst2, opts)) {}

  // See Fst<>::Copy() for doc.
  ComposeFst(const ComposeFst<A, CacheStore> &fst, bool safe = false)
      : ImplToFst<Impl>(safe ? std::shared_ptr<Impl>(fst.GetImpl()->Copy())
                             : fst.GetSharedImpl()) {}

  // Get a copy of this ComposeFst. See Fst<>::Copy() for further doc.
  ComposeFst<A, CacheStore> *Copy(bool safe = false) const override {
    return new ComposeFst<A, CacheStore>(*this, safe);
  }

  inline void InitStateIterator(StateIteratorData<Arc> *data) const override;

  void InitArcIterator(StateId s, ArcIteratorData<Arc> *data) const override {
    GetMutableImpl()->InitArcIterator(s, data);
  }

  MatcherBase<Arc> *InitMatcher(MatchType match_type) const override {
    return GetImpl()->InitMatcher(*this, match_type);
  }

 protected:
  using ImplToFst<Impl>::GetImpl;
  using ImplToFst<Impl>::GetMutableImpl;

  explicit ComposeFst(std::shared_ptr<Impl> impl) : ImplToFst<Impl>(impl) {}

  // Create compose implementation specifying two matcher types.
  template <class Matcher1, class Matcher2, class Filter, class StateTuple>
  static std::shared_ptr<Impl> CreateBase2(
      const typename Matcher1::FST &fst1, const typename Matcher2::FST &fst2,
      const ComposeFstImplOptions<Matcher1, Matcher2, Filter, StateTuple,
                                  CacheStore> &opts) {
    auto impl = std::make_shared<
        internal::ComposeFstImpl<CacheStore, Filter, StateTuple>>(fst1, fst2,
                                                                  opts);
    if (!(Weight::Properties() & kCommutative) && !opts.allow_noncommute) {
      const auto props1 = fst1.Properties(kUnweighted, true);
      const auto props2 = fst2.Properties(kUnweighted, true);
      if (!(props1 & kUnweighted) && !(props2 & kUnweighted)) {
        FSTERROR() << "ComposeFst: Weights must be a commutative semiring: "
                   << Weight::Type();
        impl->SetProperties(kError, kError);
      }
    }
    return impl;
  }

  // Create compose implementation specifying one matcher type; requires that
  // input and matcher FST types be Fst<Arc>.
  template <class Matcher, class Filter, class StateTuple>
  static std::shared_ptr<Impl> CreateBase1(
      const Fst<Arc> &fst1, const Fst<Arc> &fst2,
      const ComposeFstOptions<Arc, Matcher, Filter, StateTuple> &opts) {
    ComposeFstImplOptions<Matcher, Matcher, Filter, StateTuple, CacheStore>
        nopts(opts, opts.matcher1, opts.matcher2, opts.filter,
              opts.state_table);
    return CreateBase2(fst1, fst2, nopts);
  }

  // Create compose implementation specifying no matcher type.
  static std::shared_ptr<Impl> CreateBase(const Fst<Arc> &fst1,
                                          const Fst<Arc> &fst2,
                                          const CacheOptions &opts) {
    switch (LookAheadMatchType(fst1, fst2)) {  // Check for lookahead matchers
      default:
      case MATCH_NONE: {  // Default composition (no look-ahead).
        ComposeFstOptions<Arc> nopts(opts);
        return CreateBase1(fst1, fst2, nopts);
      }
      case MATCH_OUTPUT: {  // Lookahead on fst1.
        using M = typename DefaultLookAhead<Arc, MATCH_OUTPUT>::FstMatcher;
        using F = typename DefaultLookAhead<Arc, MATCH_OUTPUT>::ComposeFilter;
        ComposeFstOptions<Arc, M, F> nopts(opts);
        return CreateBase1(fst1, fst2, nopts);
      }
      case MATCH_INPUT: {  // Lookahead on fst2
        using M = typename DefaultLookAhead<Arc, MATCH_INPUT>::FstMatcher;
        using F = typename DefaultLookAhead<Arc, MATCH_INPUT>::ComposeFilter;
        ComposeFstOptions<Arc, M, F> nopts(opts);
        return CreateBase1(fst1, fst2, nopts);
      }
    }
  }

 private:
  ComposeFst &operator=(const ComposeFst &fst) = delete;
};

// Specialization for ComposeFst.
template <class Arc, class CacheStore>
class StateIterator<ComposeFst<Arc, CacheStore>>
    : public CacheStateIterator<ComposeFst<Arc, CacheStore>> {
 public:
  explicit StateIterator(const ComposeFst<Arc, CacheStore> &fst)
      : CacheStateIterator<ComposeFst<Arc, CacheStore>>(fst,
                                                        fst.GetMutableImpl()) {}
};

// Specialization for ComposeFst.
template <class Arc, class CacheStore>
class ArcIterator<ComposeFst<Arc, CacheStore>>
    : public CacheArcIterator<ComposeFst<Arc, CacheStore>> {
 public:
  using StateId = typename Arc::StateId;

  ArcIterator(const ComposeFst<Arc, CacheStore> &fst, StateId s)
      : CacheArcIterator<ComposeFst<Arc, CacheStore>>(fst.GetMutableImpl(), s) {
    if (!fst.GetImpl()->HasArcs(s)) fst.GetMutableImpl()->Expand(s);
  }
};

template <class Arc, class CacheStore>
inline void ComposeFst<Arc, CacheStore>::InitStateIterator(
    StateIteratorData<Arc> *data) const {
  data->base = new StateIterator<ComposeFst<Arc, CacheStore>>(*this);
}

// Specialized matcher for ComposeFst. Supports MATCH_INPUT or MATCH_OUTPUT,
// iff the underlying matchers for the two FSTS being composed support
// MATCH_INPUT or MATCH_OUTPUT, respectively.
template <class CacheStore, class Filter, class StateTable>
class ComposeFstMatcher : public MatcherBase<typename CacheStore::Arc> {
 public:
  using Arc = typename CacheStore::Arc;
  using Label = typename Arc::Label;
  using StateId = typename Arc::StateId;
  using Weight = typename Arc::Weight;

  using Matcher1 = typename Filter::Matcher1;
  using Matcher2 = typename Filter::Matcher2;
  using FilterState = typename Filter::FilterState;

  using StateTuple = typename StateTable::StateTuple;

  ComposeFstMatcher(
      const ComposeFst<Arc, CacheStore> &fst,
      const internal::ComposeFstImpl<CacheStore, Filter, StateTable> *impl,
      MatchType match_type)
      : fst_(fst),
        impl_(impl),
        s_(kNoStateId),
        match_type_(match_type),
        matcher1_(impl->matcher1_->Copy()),
        matcher2_(impl->matcher2_->Copy()),
        current_loop_(false),
        loop_(kNoLabel, 0, Weight::One(), kNoStateId),
        error_(false) {
    if (match_type_ == MATCH_OUTPUT) std::swap(loop_.ilabel, loop_.olabel);
  }

  ComposeFstMatcher(
      const ComposeFstMatcher<CacheStore, Filter, StateTable> &matcher,
      bool safe = false)
      : fst_(matcher.fst_),
        impl_(matcher.impl_),
        s_(kNoStateId),
        match_type_(matcher.match_type_),
        matcher1_(matcher.matcher1_->Copy(safe)),
        matcher2_(matcher.matcher2_->Copy(safe)),
        current_loop_(false),
        loop_(kNoLabel, 0, Weight::One(), kNoStateId),
        error_(matcher.error_) {
    if (safe == true) {
      FSTERROR() << "ComposeFstMatcher: Safe copy not supported";
      error_ = true;
    }
    if (match_type_ == MATCH_OUTPUT) std::swap(loop_.ilabel, loop_.olabel);
  }

  ComposeFstMatcher<CacheStore, Filter, StateTable> *Copy(
      bool safe = false) const override {
    return new ComposeFstMatcher<CacheStore, Filter, StateTable>(*this, safe);
  }

  MatchType Type(bool test) const override {
    if ((matcher1_->Type(test) == MATCH_NONE) ||
        (matcher2_->Type(test) == MATCH_NONE)) {
      return MATCH_NONE;
    }
    if (((matcher1_->Type(test) == MATCH_UNKNOWN) &&
         (matcher2_->Type(test) == MATCH_UNKNOWN)) ||
        ((matcher1_->Type(test) == MATCH_UNKNOWN) &&
         (matcher2_->Type(test) == match_type_)) ||
        ((matcher1_->Type(test) == match_type_) &&
         (matcher2_->Type(test) == MATCH_UNKNOWN))) {
      return MATCH_UNKNOWN;
    }
    if ((matcher1_->Type(test) == match_type_) &&
        (matcher2_->Type(test) == match_type_)) {
      return match_type_;
    }
    return MATCH_NONE;
  }

  const Fst<Arc> &GetFst() const override { return fst_; }

  uint64 Properties(uint64 inprops) const override {
    auto outprops = inprops;
    if (error_) outprops |= kError;
    return outprops;
  }

  void SetState(StateId s) final {
    if (s_ == s) return;
    s_ = s;
    const auto &tuple = impl_->state_table_->Tuple(s);
    matcher1_->SetState(tuple.StateId1());
    matcher2_->SetState(tuple.StateId2());
    loop_.nextstate = s_;
  }

  bool Find(Label label) final {
    bool found = false;
    current_loop_ = false;
    if (label == 0) {
      current_loop_ = true;
      found = true;
    }
    if (match_type_ == MATCH_INPUT) {
      found = found || FindLabel(label, matcher1_.get(), matcher2_.get());
    } else {  // match_type_ == MATCH_OUTPUT
      found = found || FindLabel(label, matcher2_.get(), matcher1_.get());
    }
    return found;
  }

  bool Done() const final {
    return !current_loop_ && matcher1_->Done() && matcher2_->Done();
  }

  const Arc &Value() const final { return current_loop_ ? loop_ : arc_; }

  void Next() final {
    if (current_loop_) {
      current_loop_ = false;
    } else if (match_type_ == MATCH_INPUT) {
      FindNext(matcher1_.get(), matcher2_.get());
    } else {  // match_type_ == MATCH_OUTPUT
      FindNext(matcher2_.get(), matcher1_.get());
    }
  }

  ssize_t Priority(StateId s) final { return fst_.NumArcs(s); }

 private:
  // Processes a match with the filter and creates resulting arc.
  bool MatchArc(StateId s, Arc arc1,
                Arc arc2) {  // FIXME(kbg): copy but not assignment.
    const auto &fs = impl_->filter_->FilterArc(&arc1, &arc2);
    if (fs == FilterState::NoState()) return false;
    const StateTuple tuple(arc1.nextstate, arc2.nextstate, fs);
    arc_.ilabel = arc1.ilabel;
    arc_.olabel = arc2.olabel;
    arc_.weight = Times(arc1.weight, arc2.weight);
    arc_.nextstate = impl_->state_table_->FindState(tuple);
    return true;
  }

  // Finds the first match allowed by the filter.
  template <class MatcherA, class MatcherB>
  bool FindLabel(Label label, MatcherA *matchera, MatcherB *matcherb) {
    if (matchera->Find(label)) {
      matcherb->Find(match_type_ == MATCH_INPUT ? matchera->Value().olabel
                                                : matchera->Value().ilabel);
      return FindNext(matchera, matcherb);
    }
    return false;
  }

  // Finds the next match allowed by the filter, returning true iff such a
  // match is found.
  template <class MatcherA, class MatcherB>
  bool FindNext(MatcherA *matchera, MatcherB *matcherb) {
    // State when entering this function:
    // 'matchera' is pointed to a match x, y for label x, and a match for y was
    // requested on 'matcherb'.
    while (!matchera->Done() || !matcherb->Done()) {
      if (matcherb->Done()) {
        // If no more matches for y on 'matcherb', moves forward on 'matchera'
        // until a match x, y' is found such that there is a match for y' on
        // 'matcherb'.
        matchera->Next();
        while (!matchera->Done() &&
               !matcherb->Find(match_type_ == MATCH_INPUT
                                   ? matchera->Value().olabel
                                   : matchera->Value().ilabel)) {
          matchera->Next();
        }
      }
      while (!matcherb->Done()) {
        // 'matchera' is pointing to a match x, y' ('arca') and 'matcherb' is
        // pointing to a match y', z' ('arcb'). If combining these two arcs is
        // allowed by the filter (hence resulting in an arc x, z') return true.
        // Position 'matcherb' on the next potential match for y' before
        // returning.
        const auto &arca = matchera->Value();
        const auto &arcb = matcherb->Value();
        // Position 'matcherb' on the next potential match for y'.
        matcherb->Next();
        // Returns true If combining these two arcs is allowed by the filter
        // (hence resulting in an arc x, z'); otherwise consider next match
        // for y' on 'matcherb'.
        if (MatchArc(s_, match_type_ == MATCH_INPUT ? arca : arcb,
                     match_type_ == MATCH_INPUT ? arcb : arca)) {
          return true;
        }
      }
    }
    // Both 'matchera' and 'matcherb' are done, no more match to analyse.
    return false;
  }
  const ComposeFst<Arc, CacheStore> &fst_;
  const internal::ComposeFstImpl<CacheStore, Filter, StateTable> *impl_;
  StateId s_;
  MatchType match_type_;
  std::unique_ptr<Matcher1> matcher1_;
  std::unique_ptr<Matcher2> matcher2_;
  bool current_loop_;
  Arc loop_;
  Arc arc_;
  bool error_;
};

// Useful alias when using StdArc.
using StdComposeFst = ComposeFst<StdArc>;

enum ComposeFilter {
  AUTO_FILTER,
  NULL_FILTER,
  TRIVIAL_FILTER,
  SEQUENCE_FILTER,
  ALT_SEQUENCE_FILTER,
  MATCH_FILTER
};

struct ComposeOptions {
  bool connect;               // Connect output?
  ComposeFilter filter_type;  // Pre-defined filter to use.

  explicit ComposeOptions(bool connect = true,
                          ComposeFilter filter_type = AUTO_FILTER)
      : connect(connect), filter_type(filter_type) {}
};

// Computes the composition of two transducers. This version writes
// the composed FST into a MutableFst. If FST1 transduces string x to
// y with weight a and FST2 transduces y to z with weight b, then
// their composition transduces string x to z with weight
// Times(x, z).
//
// The output labels of the first transducer or the input labels of
// the second transducer must be sorted.  The weights need to form a
// commutative semiring (valid for TropicalWeight and LogWeight).
//
// Complexity:
//
// Assuming the first FST is unsorted and the second is sorted:
//
//   Time: O(V1 V2 D1 (log D2 + M2)),
//   Space: O(V1 V2 D1 M2)
//
// where Vi = # of states, Di = maximum out-degree, and Mi is the maximum
// multiplicity, for the ith FST.
//
// Caveats:
//
// - Compose trims its output.
// - The efficiency of composition can be strongly affected by several factors:
//   - the choice of which transducer is sorted - prefer sorting the FST
//     that has the greater average out-degree.
//   - the amount of non-determinism
//   - the presence and location of epsilon transitions - avoid epsilon
//     transitions on the output side of the first transducer or
//     the input side of the second transducer or prefer placing
//     them later in a path since they delay matching and can
//     introduce non-coaccessible states and transitions.
template <class Arc>
void Compose(const Fst<Arc> &ifst1, const Fst<Arc> &ifst2,
             MutableFst<Arc> *ofst,
             const ComposeOptions &opts = ComposeOptions()) {
  using M = Matcher<Fst<Arc>>;
  // In each case, we cache only the last state for fastest copy.
  if (opts.filter_type == AUTO_FILTER) {
    CacheOptions nopts;
    nopts.gc_limit = 0;
    *ofst = ComposeFst<Arc>(ifst1, ifst2, nopts);
  } else if (opts.filter_type == NULL_FILTER) {
    ComposeFstOptions<Arc, M, NullComposeFilter<M>> copts;
    copts.gc_limit = 0;
    *ofst = ComposeFst<Arc>(ifst1, ifst2, copts);
  } else if (opts.filter_type == SEQUENCE_FILTER) {
    ComposeFstOptions<Arc, M, SequenceComposeFilter<M>> copts;
    copts.gc_limit = 0;
    *ofst = ComposeFst<Arc>(ifst1, ifst2, copts);
  } else if (opts.filter_type == ALT_SEQUENCE_FILTER) {
    ComposeFstOptions<Arc, M, AltSequenceComposeFilter<M>> copts;
    copts.gc_limit = 0;
    *ofst = ComposeFst<Arc>(ifst1, ifst2, copts);
  } else if (opts.filter_type == MATCH_FILTER) {
    ComposeFstOptions<Arc, M, MatchComposeFilter<M>> copts;
    copts.gc_limit = 0;
    *ofst = ComposeFst<Arc>(ifst1, ifst2, copts);
  } else if (opts.filter_type == TRIVIAL_FILTER) {
    ComposeFstOptions<Arc, M, TrivialComposeFilter<M>> copts;
    copts.gc_limit = 0;
    *ofst = ComposeFst<Arc>(ifst1, ifst2, copts);
  }
  if (opts.connect) Connect(ofst);
}

}  // namespace fst

#endif  // FST_LIB_COMPOSE_H_