/usr/include/dune/grid-glue/merging/contactmerge.cc is in libdune-grid-glue-dev 2.5.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 | // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#include <dune/grid-glue/common/crossproduct.hh>
#include <dune/grid-glue/common/projection.hh>
namespace Dune {
namespace GridGlue {
template<int dimworld, typename T>
void ContactMerge<dimworld, T>::computeIntersections(const Dune::GeometryType& grid1ElementType,
const std::vector<Dune::FieldVector<T,dimworld> >& grid1ElementCorners,
std::bitset<(1<<dim)>& neighborIntersects1,
unsigned int grid1Index,
const Dune::GeometryType& grid2ElementType,
const std::vector<Dune::FieldVector<T,dimworld> >& grid2ElementCorners,
std::bitset<(1<<dim)>& neighborIntersects2,
unsigned int grid2Index,
std::vector<RemoteSimplicialIntersection>& intersections)
{
using std::get;
std::vector<std::array<LocalCoords,2> > polytopeCorners;
// Initialize
neighborIntersects1.reset();
neighborIntersects2.reset();
const int nCorners1 = grid1ElementCorners.size();
const int nCorners2 = grid2ElementCorners.size();
if (nCorners1 != dimworld)
DUNE_THROW(Dune::Exception, "element1 must have " << dimworld << " corners, but has " << nCorners1);
if (nCorners2 != dimworld)
DUNE_THROW(Dune::Exception, "element2 must have " << dimworld << " corners, but has " << nCorners2);
// The grid1 projection directions
std::vector<WorldCoords> directions1(nCorners1);
for (size_t i=0; i<directions1.size(); i++)
directions1[i] = nodalDomainDirections_[this->grid1ElementCorners_[grid1Index][i]];
// The grid2 projection directions
std::vector<WorldCoords> directions2(nCorners2);
for (size_t i=0; i<directions2.size(); i++)
directions2[i] = nodalTargetDirections_[this->grid2ElementCorners_[grid2Index][i]];
// The difference between the closest point projection and the normal projection is just the ordering
// of the involved surfaces. The closest point projection is done along the outer normal field of grid2
// (due to being a best approximation) and the outer normal projection is using the outer normal field
// of grid1 instead.
std::array<decltype(std::cref(grid1ElementCorners)),2> cornersRef ={std::cref(grid1ElementCorners), std::cref(grid2ElementCorners)};
std::array<decltype(std::cref(directions1)),2> directionsRef ={std::cref(directions1), std::cref(directions2)};
std::array<Dune::GeometryType,2> elementTypes = {grid1ElementType, grid2ElementType};
// Determine which is the grid we use for outer normal projection
const size_t domGrid = (type_==ProjectionType::OUTER_NORMAL) ? 0 : 1;
const size_t tarGrid = (type_==ProjectionType::OUTER_NORMAL) ? 1 : 0;
/////////////////////////////////////////////////////
// Compute all corners of the intersection polytope
/////////////////////////////////////////////////////
const auto corners = std::tie(cornersRef[domGrid].get(),cornersRef[tarGrid].get());
const auto normals = std::tie(directionsRef[domGrid].get(), directionsRef[tarGrid].get());
Projection<WorldCoords> p(overlap_, maxNormalProduct_);
p.project(corners, normals);
/* projection */
{
const auto& success = get<0>(p.success());
const auto& images = get<0>(p.images());
for (unsigned i = 0; i < dimworld; ++i) {
if (success[i]) {
std::array<LocalCoords, 2> corner;
corner[domGrid] = localCornerCoords(i, elementTypes[domGrid]);
for (unsigned j = 0; j < dim; ++j)
corner[tarGrid][j] = images[i][j];
polytopeCorners.push_back(corner);
}
}
}
/* inverse projection */
{
const auto& success = get<1>(p.success());
const auto& preimages = get<1>(p.images());
for (unsigned i = 0; i < dimworld; ++i) {
if (success[i]) {
std::array<LocalCoords, 2> corner;
for (unsigned j = 0; j < dim; ++j)
corner[domGrid][j] = preimages[i][j];
corner[tarGrid] = localCornerCoords(i, elementTypes[tarGrid]);
polytopeCorners.push_back(corner);
}
}
}
/* edge intersections */
{
for (unsigned i = 0; i < p.numberOfEdgeIntersections(); ++i) {
std::array<LocalCoords, 2> corner;
const auto& local = p.edgeIntersections()[i].local;
for (unsigned j = 0; j < dim; ++j) {
corner[domGrid][j] = local[0][j];
corner[tarGrid][j] = local[1][j];
}
polytopeCorners.push_back(corner);
}
}
// check which neighbors might also intersect
std::array<decltype(std::ref(neighborIntersects1)),2> neighborIntersectsRef = {std::ref(neighborIntersects1), std::ref(neighborIntersects2)};
const auto& refTar = Dune::ReferenceElements<T,dim>::general(elementTypes[tarGrid]);
for (int i=0; i<refTar.size(1); i++) {
// if all face corners hit the the other element then
// the neighbor might also intersect
bool intersects(true);
for (int k=0; k<refTar.size(i,1,dim); k++)
intersects &= get<1>(p.success())[refTar.subEntity(i,1,k,dim)];
if (intersects)
neighborIntersectsRef[tarGrid].get()[i] = true;
}
const auto& refDom = Dune::ReferenceElements<T,dim>::general(elementTypes[domGrid]);
for (int i=0; i<refDom.size(1); i++) {
// if all face corners hit the the other element then
// the neighbor might also intersect
bool intersects(true);
for (int k=0; k<refDom.size(i,1,dim); k++)
intersects &= get<0>(p.success())[refDom.subEntity(i,1,k,dim)];
if (intersects)
neighborIntersectsRef[domGrid].get()[i] = true;
}
// Compute the edge intersections
for (unsigned i = 0; i < p.numberOfEdgeIntersections(); ++i) {
const auto& edge = p.edgeIntersections()[i].edge;
neighborIntersects1[edge[domGrid]] = true;
neighborIntersects2[edge[tarGrid]] = true;
}
// remove possible doubles
removeDoubles(polytopeCorners);
// Compute an interior point of the polytope
int nPolyCorners = polytopeCorners.size();
// If the polytope is degenerated then there is no intersection
if (nPolyCorners<dimworld)
return;
// If the polytope is a simplex return it
if (nPolyCorners==dim+1) {
// std::cout<<"Add intersection: 1\n";
typename Base::RemoteSimplicialIntersection intersect;
intersect.grid1Entities_[0] = grid1Index;
intersect.grid2Entities_[0] = grid2Index;
for (int j=0;j<dim+1; j++) {
intersect.grid1Local_[0][j]=polytopeCorners[j][0];
intersect.grid2Local_[0][j]=polytopeCorners[j][1];
}
intersections.push_back(intersect);
return;
}
// At this point we must have dimworld>=3
///////////////////////////////////////////////////////////////////////////////
// Compute a point in the middle of the polytope and order all corners cyclic
//////////////////////////////////////////////////////////////////////////////
std::array<LocalCoords,2> center;
center[0] = 0; center[1] = 0;
for (int i=0; i<nPolyCorners; i++) {
center[0].axpy(1.0/nPolyCorners,polytopeCorners[i][0]);
center[1].axpy(1.0/nPolyCorners,polytopeCorners[i][1]);
}
// Order cyclic
std::vector<int> ordering;
computeCyclicOrder(polytopeCorners,center[0],ordering);
//////////////////////////////////////
// Add intersections
////////////////////////////////
for (size_t i=1; i<polytopeCorners.size()-1; i++) {
typename Base::RemoteSimplicialIntersection intersect;
intersect.grid1Entities_[0] = grid1Index;
intersect.grid2Entities_[0] = grid2Index;
for (int j=0;j<dim; j++) {
intersect.grid1Local_[0][j]=polytopeCorners[ordering[i+j]][0];
intersect.grid2Local_[0][j]=polytopeCorners[ordering[i+j]][1];
}
// last corner is the first for all intersections
intersect.grid1Local_[0][dim]=polytopeCorners[ordering[0]][0];
intersect.grid2Local_[0][dim]=polytopeCorners[ordering[0]][1];
intersections.push_back(intersect);
}
}
template<int dimworld, typename T>
void ContactMerge<dimworld, T>::computeCyclicOrder(const std::vector<std::array<LocalCoords,2> >& polytopeCorners,
const LocalCoords& center, std::vector<int>& ordering) const
{
ordering.resize(polytopeCorners.size());
for (size_t k=0; k<ordering.size(); k++)
ordering[k] = k;
//TODO Do I have to order triangles to get some correct orientation?
if (polytopeCorners.size()<=3)
return;
// compute angles inside the polygon plane w.r.t to this axis
LocalCoords edge0 = polytopeCorners[1][0] - polytopeCorners[0][0];
// Compute a vector that is perpendicular to the edge but lies in the polytope plane
// So we have a unique ordering
LocalCoords edge1 = polytopeCorners[2][0] - polytopeCorners[0][0];
LocalCoords normal0 = edge1;
normal0.axpy(-(edge0*edge1),edge0);
std::vector<T> angles(polytopeCorners.size());
for (size_t i=0; i<polytopeCorners.size(); i++) {
LocalCoords edge = polytopeCorners[i][0] - center;
T x(edge*edge0);
T y(edge*normal0);
angles[i] = std::atan2(y, x);
if (angles[i]<0)
angles[i] += 2*M_PI;
}
// bubblesort
for (int i=polytopeCorners.size(); i>1; i--){
bool swapped = false;
for (int j=0; j<i-1; j++){
if (angles[j] > angles[j+1]){
swapped = true;
std::swap(angles[j], angles[j+1]);
std::swap(ordering[j], ordering[j+1]);
}
}
if (!swapped)
break;
}
}
template<int dimworld, typename T>
void ContactMerge<dimworld, T>::setupNodalDirections(const std::vector<WorldCoords>& coords1,
const std::vector<unsigned int>& elements1,
const std::vector<Dune::GeometryType>& elementTypes1,
const std::vector<WorldCoords>& coords2,
const std::vector<unsigned int>& elements2,
const std::vector<Dune::GeometryType>& elementTypes2)
{
if (domainDirections_) {
// Sample the provided analytical contact direction field
nodalDomainDirections_.resize(coords1.size());
for (size_t i=0; i<coords1.size(); i++)
nodalDomainDirections_[i] = domainDirections_(coords1[i]);
} else
computeOuterNormalField(coords1,elements1,elementTypes1, nodalDomainDirections_);
if (targetDirections_) {
// Sample the provided analytical target direction field
nodalTargetDirections_.resize(coords2.size());
for (size_t i=0; i<coords2.size(); i++)
nodalTargetDirections_[i] = targetDirections_(coords2[i]);
} else
computeOuterNormalField(coords2,elements2,elementTypes2, nodalTargetDirections_);
}
template<int dimworld, typename T>
void ContactMerge<dimworld, T>::computeOuterNormalField(const std::vector<WorldCoords>& coords,
const std::vector<unsigned int>& elements,
const std::vector<Dune::GeometryType>& elementTypes,
std::vector<WorldCoords>& normals)
{
normals.assign(coords.size(),WorldCoords(0));
int offset = 0;
for (size_t i=0; i<elementTypes.size(); i++) {
int nCorners = Dune::ReferenceElements<T,dim>::general(elementTypes[i]).size(dim);
// For segments 1, for triangles or quadrilaterals take the first 2
std::array<WorldCoords, dim> edges;
for (int j=1; j<=dim; j++)
edges[j-1] = coords[elements[offset + j]] - coords[elements[offset]];
WorldCoords elementNormal;
if (dim==1) {
elementNormal[0] = edges[0][1]; elementNormal[1] = -edges[0][0];
} else
elementNormal = crossProduct(edges[0], edges[1]);
elementNormal /= elementNormal.two_norm();
for (int j=0; j<nCorners;j++)
normals[elements[offset + j]] += elementNormal;
offset += nCorners;
}
for (size_t i=0; i<coords.size(); i++)
normals[i] /= normals[i].two_norm();
}
template<int dimworld, typename T>
void ContactMerge<dimworld, T>::removeDoubles(std::vector<std::array<LocalCoords,2> >& polytopeCorners)
{
size_t counter(1);
for (size_t i=1; i<polytopeCorners.size(); i++) {
bool contained = false;
for (size_t j=0; j<counter; j++)
if ( (polytopeCorners[j][0]-polytopeCorners[i][0]).two_norm()<1e-10) {
assert((polytopeCorners[j][1]-polytopeCorners[i][1]).two_norm()<1e-10);
contained = true;
break;
}
if (!contained) {
if (counter < i)
polytopeCorners[counter] = polytopeCorners[i];
counter++;
}
}
polytopeCorners.resize(counter);
}
} /* namespace GridGlue */
} /* namespace Dune */
|