/usr/include/deal.II/lac/sparsity_pattern.h is in libdeal.ii-dev 8.5.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 | // ---------------------------------------------------------------------
//
// Copyright (C) 2000 - 2016 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------
#ifndef dealii__sparsity_pattern_h
#define dealii__sparsity_pattern_h
#include <deal.II/base/config.h>
#include <deal.II/base/exceptions.h>
#include <deal.II/base/subscriptor.h>
// boost::serialization::make_array used to be in array.hpp, but was
// moved to a different file in BOOST 1.64
#include <boost/version.hpp>
#if BOOST_VERSION >= 106400
# include <boost/serialization/array_wrapper.hpp>
#else
# include <boost/serialization/array.hpp>
#endif
#include <boost/serialization/split_member.hpp>
#include <vector>
#include <iostream>
#include <algorithm>
DEAL_II_NAMESPACE_OPEN
class SparsityPattern;
class ChunkSparsityPattern;
template <typename number> class FullMatrix;
template <typename number> class SparseMatrix;
template <typename number> class SparseLUDecomposition;
template <typename number> class SparseILU;
template <typename VectorType> class VectorSlice;
namespace ChunkSparsityPatternIterators
{
class Accessor;
}
/*! @addtogroup Sparsity
*@{
*/
namespace internals
{
namespace SparsityPatternTools
{
/**
* Declare type for container size.
*/
typedef types::global_dof_index size_type;
/**
* Helper function to get the column index from a dereferenced iterator in
* the copy_from() function, if the inner iterator type points to plain
* unsigned integers.
*/
size_type
get_column_index_from_iterator (const size_type i);
/**
* Helper function to get the column index from a dereferenced iterator in
* the copy_from() function, if the inner iterator type points to pairs of
* unsigned integers and some other value.
*/
template <typename value>
size_type
get_column_index_from_iterator (const std::pair<size_type, value> &i);
/**
* Likewise, but sometimes needed for certain types of containers that
* make the first element of the pair constant (such as
* <tt>std::map</tt>).
*/
template <typename value>
size_type
get_column_index_from_iterator (const std::pair<const size_type, value> &i);
}
}
/**
* Iterators on objects of type SparsityPattern.
*/
namespace SparsityPatternIterators
{
// forward declaration
class Iterator;
/**
* Declare type for container size.
*/
typedef types::global_dof_index size_type;
/**
* Accessor class for iterators into sparsity patterns. This class is also
* the base class for both const and non-const accessor classes into sparse
* matrices.
*
* Note that this class only allows read access to elements, providing their
* row and column number (or alternatively the index within the complete
* sparsity pattern). It does not allow modifying the sparsity pattern
* itself.
*
* @author Wolfgang Bangerth
* @date 2004
*/
class Accessor
{
public:
/**
* Constructor.
*/
Accessor (const SparsityPattern *matrix,
const std::size_t index_within_sparsity);
/**
* Constructor. Construct the end accessor for the given sparsity pattern.
*/
Accessor (const SparsityPattern *matrix);
/**
* Row number of the element represented by this object. This function can
* only be called for entries for which is_valid_entry() is true.
*/
size_type row () const;
/**
* Index within the current row of the element represented by this object.
* This function can only be called for entries for which is_valid_entry()
* is true.
*/
size_type index () const;
/**
* Column number of the element represented by this object. This function
* can only be called for entries for which is_valid_entry() is true.
*/
size_type column () const;
/**
* Return whether the sparsity pattern entry pointed to by this iterator
* is valid or not. Note that after compressing the sparsity pattern, all
* entries are valid. However, before compression, the sparsity pattern
* allocated some memory to be used while still adding new nonzero
* entries; if you create iterators in this phase of the sparsity
* pattern's lifetime, you will iterate over elements that are not valid.
* If this is so, then this function will return false.
*/
bool is_valid_entry () const;
/**
* Comparison. True, if both iterators point to the same matrix position.
*/
bool operator == (const Accessor &) const;
/**
* Comparison operator. Result is true if either the first row number is
* smaller or if the row numbers are equal and the first index is smaller.
*
* This function is only valid if both iterators point into the same
* sparsity pattern.
*/
bool operator < (const Accessor &) const;
protected:
/**
* The sparsity pattern we operate on accessed.
*/
const SparsityPattern *sparsity_pattern;
/**
* Index in global sparsity pattern. This index represents the location
* the iterator/accessor points to within the array of the SparsityPattern
* class that stores the column numbers. It is also the index within the
* values array of a sparse matrix that stores the corresponding value of
* this site.
*/
std::size_t index_within_sparsity;
/**
* Move the accessor to the next nonzero entry in the matrix.
*/
void advance ();
/**
* Grant access to iterator class.
*/
friend class Iterator;
/**
* Grant access to accessor class of ChunkSparsityPattern.
*/
friend class ChunkSparsityPatternIterators::Accessor;
};
/**
* An iterator class for walking over the elements of a sparsity pattern.
*
* The typical use for these iterators is to iterate over the elements of a
* sparsity pattern (or, since they also serve as the basis for iterating
* over the elements of an associated matrix, over the elements of a sparse
* matrix), or over the elements of individual rows. There is no guarantee
* that the elements of a row are actually traversed in an order in which
* column numbers monotonically increase. See the documentation of the
* SparsityPattern class for more information.
*
* @note This class operates directly on the internal data structures of the
* SparsityPattern class. As a consequence, some operations are cheap and
* some are not. In particular, it is cheap to access the column index of
* the sparsity pattern entry pointed to. On the other hand, it is expensive
* to access the row index (this requires $O(\log(N))$ operations for a
* matrix with $N$ row). As a consequence, when you design algorithms that
* use these iterators, it is common practice to not loop over <i>all</i>
* elements of a sparsity pattern at once, but to have an outer loop over
* all rows and within this loop iterate over the elements of this row. This
* way, you only ever need to dereference the iterator to obtain the column
* indices whereas the (expensive) lookup of the row index can be avoided by
* using the loop index instead.
*/
class Iterator
{
public:
/**
* Constructor. Create an iterator into the sparsity pattern @p sp for the
* given global index (i.e., the index of the given element counting from
* the zeroth row).
*/
Iterator (const SparsityPattern *sp,
const std::size_t index_within_sparsity);
/**
* Prefix increment.
*/
Iterator &operator++ ();
/**
* Postfix increment.
*/
Iterator operator++ (int);
/**
* Dereferencing operator.
*/
const Accessor &operator* () const;
/**
* Dereferencing operator.
*/
const Accessor *operator-> () const;
/**
* Comparison. True, if both iterators point to the same matrix position.
*/
bool operator == (const Iterator &) const;
/**
* Inverse of <tt>==</tt>.
*/
bool operator != (const Iterator &) const;
/**
* Comparison operator. Result is true if either the first row number is
* smaller or if the row numbers are equal and the first index is smaller.
*
* This function is only valid if both iterators point into the same
* matrix.
*/
bool operator < (const Iterator &) const;
/**
* Return the distance between the current iterator and the argument. The
* distance is given by how many times one has to apply operator++ to the
* current iterator to get the argument (for a positive return value), or
* operator-- (for a negative return value).
*/
int operator - (const Iterator &p) const;
private:
/**
* Store an object of the accessor class.
*/
Accessor accessor;
};
}
/**
* A class that can store which elements of a matrix are nonzero (or, in fact,
* <i>may</i> be nonzero) and for which we have to allocate memory to store
* their values. This class is an example of the "static" type of sparsity
* patters (see
* @ref Sparsity).
* It uses the <a
* href="https://en.wikipedia.org/wiki/Sparse_matrix">compressed row storage
* (CSR)</a> format to store data, and is used as the basis for the
* SparseMatrix class.
*
* The elements of a SparsityPattern, corresponding to the places where
* SparseMatrix objects can store nonzero entries, are stored row-by-row.
* Within each row, elements are generally stored left-to-right in increasing
* column index order; the exception to this rule is that if the matrix is
* square (n_rows() == n_columns()), then the diagonal entry is stored as the
* first element in each row to make operations like applying a Jacobi or SSOR
* preconditioner faster. As a consequence, if you traverse the elements of a
* row of a SparsityPattern with the help of iterators into this object (using
* SparsityPattern::begin and SparsityPattern::end) you will find that the
* elements are not sorted by column index within each row whenever the matrix
* is square (the first item will be the diagonal, followed by the other
* entries sorted by column index).
*
* @note While this class forms the basis upon which SparseMatrix objects base
* their storage format, and thus plays a central role in setting up linear
* systems, it is rarely set up directly due to the way it stores its
* information. Rather, one typically goes through an intermediate format
* first, see for example the step-2 tutorial program as well as the
* documentation module
* @ref Sparsity.
*
* @author Wolfgang Bangerth, Guido Kanschat and others
*/
class SparsityPattern : public Subscriptor
{
public:
/**
* Declare type for container size.
*/
typedef types::global_dof_index size_type;
/**
* Typedef an iterator class that allows to walk over all nonzero elements
* of a sparsity pattern.
*/
typedef
SparsityPatternIterators::Iterator
const_iterator;
/**
* Typedef an iterator class that allows to walk over all nonzero elements
* of a sparsity pattern.
*
* Since the iterator does not allow to modify the sparsity pattern, this
* type is the same as that for @p const_iterator.
*/
typedef
SparsityPatternIterators::Iterator
iterator;
/**
* Define a value which is used to indicate that a certain value in the
* #colnums array is unused, i.e. does not represent a certain column number
* index.
*
* Indices with this invalid value are used to insert new entries to the
* sparsity pattern using the add() member function, and are removed when
* calling compress().
*
* You should not assume that the variable declared here has a certain
* value. The initialization is given here only to enable the compiler to
* perform some optimizations, but the actual value of the variable may
* change over time.
*/
static const size_type invalid_entry = numbers::invalid_size_type;
/**
* @name Construction and setup Constructors, destructor; functions
* initializing, copying and filling an object.
*/
// @{
/**
* Initialize the matrix empty, that is with no memory allocated. This is
* useful if you want such objects as member variables in other classes. You
* can make the structure usable by calling the reinit() function.
*/
SparsityPattern ();
/**
* Copy constructor. This constructor is only allowed to be called if the
* matrix structure to be copied is empty. This is so in order to prevent
* involuntary copies of objects for temporaries, which can use large
* amounts of computing time. However, copy constructors are needed if one
* wants to place a SparsityPattern in a container, e.g., to write such
* statements like <tt>v.push_back (SparsityPattern());</tt>, with
* <tt>v</tt> a vector of SparsityPattern objects.
*
* Usually, it is sufficient to use the explicit keyword to disallow
* unwanted temporaries, but this does not work for <tt>std::vector</tt>s.
* Since copying a structure like this is not useful anyway because multiple
* matrices can use the same sparsity structure, copies are only allowed for
* empty objects, as described above.
*/
SparsityPattern (const SparsityPattern &);
/**
* Initialize a rectangular pattern of size <tt>m x n</tt>.
*
* @param[in] m The number of rows.
* @param[in] n The number of columns.
* @param[in] max_per_row Maximum number of nonzero entries per row.
*/
SparsityPattern (const size_type m,
const size_type n,
const unsigned int max_per_row);
/**
* Initialize a rectangular pattern of size <tt>m x n</tt>.
*
* @param[in] m The number of rows.
* @param[in] n The number of columns.
* @param[in] row_lengths Possible number of nonzero entries for each row.
* This vector must have one entry for each row.
*/
SparsityPattern (const size_type m,
const size_type n,
const std::vector<unsigned int> &row_lengths);
/**
* Initialize a quadratic pattern of dimension <tt>m</tt> with at most
* <tt>max_per_row</tt> nonzero entries per row.
*
* This constructor automatically enables optimized storage of diagonal
* elements. To avoid this, use the constructor taking row and column
* numbers separately.
*/
SparsityPattern (const size_type m,
const unsigned int max_per_row);
/**
* Initialize a quadratic pattern of size <tt>m x m</tt>.
*
* @param[in] m The number of rows and columns.
* @param[in] row_lengths Maximum number of nonzero entries for each row.
* This vector must have one entry for each row.
*/
SparsityPattern (const size_type m,
const std::vector<unsigned int> &row_lengths);
/**
* Make a copy with extra off-diagonals.
*
* This constructs objects intended for the application of the ILU(n)-method
* or other incomplete decompositions. Therefore, additional to the
* original entry structure, space for <tt>extra_off_diagonals</tt> side-
* diagonals is provided on both sides of the main diagonal.
*
* <tt>max_per_row</tt> is the maximum number of nonzero elements per row
* which this structure is to hold. It is assumed that this number is
* sufficiently large to accommodate both the elements in <tt>original</tt>
* as well as the new off-diagonal elements created by this constructor. You
* will usually want to give the same number as you gave for
* <tt>original</tt> plus the number of side diagonals times two. You may
* however give a larger value if you wish to add further nonzero entries
* for the decomposition based on other criteria than their being on side-
* diagonals.
*
* This function requires that <tt>original</tt> refers to a quadratic
* matrix structure. It must be compressed. The matrix structure is not
* compressed after this function finishes.
*/
SparsityPattern (const SparsityPattern &original,
const unsigned int max_per_row,
const size_type extra_off_diagonals);
/**
* Destructor.
*/
~SparsityPattern ();
/**
* Copy operator. For this the same holds as for the copy constructor: it is
* declared, defined and fine to be called, but the latter only for empty
* objects.
*/
SparsityPattern &operator = (const SparsityPattern &);
/**
* Reallocate memory and set up data structures for a new matrix with <tt>m
* </tt>rows and <tt>n</tt> columns, with at most <tt>max_per_row</tt>
* nonzero entries per row.
*
* This function simply maps its operations to the other <tt>reinit</tt>
* function.
*/
void reinit (const size_type m,
const size_type n,
const unsigned int max_per_row);
/**
* Reallocate memory for a matrix of size <tt>m x n</tt>. The number of
* entries for each row is taken from the array <tt>row_lengths</tt> which
* has to give this number of each row <tt>i=1...m</tt>.
*
* If <tt>m*n==0</tt> all memory is freed, resulting in a total
* reinitialization of the object. If it is nonzero, new memory is only
* allocated if the new size extends the old one. This is done to save time
* and to avoid fragmentation of the heap.
*
* If the number of rows equals the number of columns and the last parameter
* is true, diagonal elements are stored first in each row to allow
* optimized access in relaxation methods of SparseMatrix.
*/
void reinit (const size_type m,
const size_type n,
const std::vector<unsigned int> &row_lengths);
/**
* Same as above, but with a VectorSlice argument instead.
*/
void reinit (const size_type m,
const size_type n,
const VectorSlice<const std::vector<unsigned int> > &row_lengths);
/**
* This function compresses the sparsity structure that this object
* represents. It does so by eliminating unused entries and sorting the
* remaining ones to allow faster access by usage of binary search
* algorithms. A special sorting scheme is used for the diagonal entry of
* quadratic matrices, which is always the first entry of each row.
*
* The memory which is no more needed is released.
*
* SparseMatrix objects require the SparsityPattern objects they are
* initialized with to be compressed, to reduce memory requirements.
*/
void compress ();
/**
* This function can be used as a replacement for reinit(), subsequent calls
* to add() and a final call to close() if you know exactly in advance the
* entries that will form the matrix sparsity pattern.
*
* The first two parameters determine the size of the matrix. For the two
* last ones, note that a sparse matrix can be described by a sequence of
* rows, each of which is represented by a sequence of pairs of column
* indices and values. In the present context, the begin() and end()
* parameters designate iterators (of forward iterator type) into a
* container, one representing one row. The distance between begin() and
* end() should therefore be equal to n_rows(). These iterators may be
* iterators of <tt>std::vector</tt>, <tt>std::list</tt>, pointers into a
* C-style array, or any other iterator satisfying the requirements of a
* forward iterator. The objects pointed to by these iterators (i.e. what we
* get after applying <tt>operator*</tt> or <tt>operator-></tt> to one of
* these iterators) must be a container itself that provides functions
* <tt>begin</tt> and <tt>end</tt> designating a range of iterators that
* describe the contents of one line. Dereferencing these inner iterators
* must either yield a pair of an unsigned integer as column index and a
* value of arbitrary type (such a type would be used if we wanted to
* describe a sparse matrix with one such object), or simply an unsigned
* integer (of we only wanted to describe a sparsity pattern). The function
* is able to determine itself whether an unsigned integer or a pair is what
* we get after dereferencing the inner iterators, through some template
* magic.
*
* While the order of the outer iterators denotes the different rows of the
* matrix, the order of the inner iterator denoting the columns does not
* matter, as they are sorted internal to this function anyway.
*
* Since that all sounds very complicated, consider the following example
* code, which may be used to fill a sparsity pattern:
* @code
* std::vector<std::vector<unsigned int> > column_indices (n_rows);
* for (unsigned int row=0; row<n_rows; ++row)
* // generate necessary columns in this row
* fill_row (column_indices[row]);
*
* sparsity.copy_from (n_rows, n_cols,
* column_indices.begin(),
* column_indices.end());
* @endcode
*
* Note that this example works since the iterators dereferenced yield
* containers with functions <tt>begin</tt> and <tt>end</tt> (namely
* <tt>std::vector</tt>s), and the inner iterators dereferenced yield
* unsigned integers as column indices. Note that we could have replaced
* each of the two <tt>std::vector</tt> occurrences by <tt>std::list</tt>,
* and the inner one by <tt>std::set</tt> as well.
*
* Another example would be as follows, where we initialize a whole matrix,
* not only a sparsity pattern:
* @code
* std::vector<std::map<unsigned int,double> > entries (n_rows);
* for (unsigned int row=0; row<n_rows; ++row)
* // generate necessary pairs of columns
* // and corresponding values in this row
* fill_row (entries[row]);
*
* sparsity.copy_from (n_rows, n_cols,
* column_indices.begin(),
* column_indices.end());
* matrix.reinit (sparsity);
* matrix.copy_from (column_indices.begin(),
* column_indices.end());
* @endcode
*
* This example works because dereferencing iterators of the inner type
* yields a pair of unsigned integers and a value, the first of which we
* take as column index. As previously, the outer <tt>std::vector</tt> could
* be replaced by <tt>std::list</tt>, and the inner <tt>std::map<unsigned
* int,double></tt> could be replaced by <tt>std::vector<std::pair<unsigned
* int,double> ></tt>, or a list or set of such pairs, as they all return
* iterators that point to such pairs.
*/
template <typename ForwardIterator>
void copy_from (const size_type n_rows,
const size_type n_cols,
const ForwardIterator begin,
const ForwardIterator end);
/**
* Copy data from an object of type DynamicSparsityPattern. Although not a
* compressed sparsity pattern, this function is also instantiated if the
* argument is of type SparsityPattern (i.e., the current class). Previous
* content of this object is lost, and the sparsity pattern is in compressed
* mode afterwards.
*/
template <typename SparsityPatternType>
void copy_from (const SparsityPatternType &dsp);
/**
* Take a full matrix and use its nonzero entries to generate a sparse
* matrix entry pattern for this object.
*
* Previous content of this object is lost, and the sparsity pattern is in
* compressed mode afterwards.
*/
template <typename number>
void copy_from (const FullMatrix<number> &matrix);
/**
* Make the sparsity pattern symmetric by adding the sparsity pattern of the
* transpose object.
*
* This function throws an exception if the sparsity pattern does not
* represent a quadratic matrix.
*/
void symmetrize ();
/**
* Add a nonzero entry to the matrix. This function may only be called for
* non-compressed sparsity patterns.
*
* If the entry already exists, nothing bad happens.
*/
void add (const size_type i,
const size_type j);
/**
* Add several nonzero entries to the specified matrix row. This function
* may only be called for non-compressed sparsity patterns.
*
* If some of the entries already exist, nothing bad happens.
*/
template <typename ForwardIterator>
void add_entries (const size_type row,
ForwardIterator begin,
ForwardIterator end,
const bool indices_are_sorted = false);
// @}
/**
* @name Iterators
*/
// @{
/**
* Iterator starting at the first entry of the matrix. The resulting
* iterator can be used to walk over all nonzero entries of the sparsity
* pattern.
*
* Note the discussion in the general documentation of this class about the
* order in which elements are accessed.
*/
iterator begin () const;
/**
* Final iterator.
*/
iterator end () const;
/**
* Iterator starting at the first entry of row <tt>r</tt>.
*
* Note that if the given row is empty, i.e. does not contain any nonzero
* entries, then the iterator returned by this function equals
* <tt>end(r)</tt>. Note also that the iterator may not be dereferencable in
* that case.
*
* Note also the discussion in the general documentation of this class about
* the order in which elements are accessed.
*/
iterator begin (const size_type r) const;
/**
* Final iterator of row <tt>r</tt>. It points to the first element past the
* end of line @p r, or past the end of the entire sparsity pattern.
*
* Note that the end iterator is not necessarily dereferencable. This is in
* particular the case if it is the end iterator for the last row of a
* matrix.
*/
iterator end (const size_type r) const;
// @}
/**
* @name Querying information
*/
// @{
/**
* Test for equality of two SparsityPatterns.
*/
bool operator == (const SparsityPattern &) const;
/**
* Return whether the object is empty. It is empty if no memory is
* allocated, which is the same as that both dimensions are zero.
*/
bool empty () const;
/**
* Return the maximum number of entries per row. Before compression, this
* equals the number given to the constructor, while after compression, it
* equals the maximum number of entries actually allocated by the user.
*/
size_type max_entries_per_row () const;
/**
* Compute the bandwidth of the matrix represented by this structure. The
* bandwidth is the maximum of $|i-j|$ for which the index pair $(i,j)$
* represents a nonzero entry of the matrix. Consequently, the maximum
* bandwidth a $n\times m$ matrix can have is $\max\{n-1,m-1\}$, a diagonal
* matrix has bandwidth 0, and there are at most $2*q+1$ entries per row if
* the bandwidth is $q$. The returned quantity is sometimes called "half
* bandwidth" in the literature.
*/
size_type bandwidth () const;
/**
* Return the number of nonzero elements of this matrix. Actually, it
* returns the number of entries in the sparsity pattern; if any of the
* entries should happen to be zero, it is counted anyway.
*
* This function may only be called if the matrix struct is compressed. It
* does not make too much sense otherwise anyway.
*/
std::size_t n_nonzero_elements () const;
/**
* Return whether the structure is compressed or not.
*/
bool is_compressed () const;
/**
* Return number of rows of this matrix, which equals the dimension of the
* image space.
*/
size_type n_rows () const;
/**
* Return number of columns of this matrix, which equals the dimension of
* the range space.
*/
size_type n_cols () const;
/**
* Number of entries in a specific row.
*/
unsigned int row_length (const size_type row) const;
/**
* Return whether this object stores only those entries that have been added
* explicitly, or if the sparsity pattern contains elements that have been
* added through other means (implicitly) while building it. For the current
* class, the result is false if and only if it is square because it then
* unconditionally stores the diagonal entries whether they have been added
* explicitly or not.
*
* This function mainly serves the purpose of describing the current class
* in cases where several kinds of sparsity patterns can be passed as
* template arguments.
*/
bool stores_only_added_elements () const;
/**
* Determine an estimate for the memory consumption (in bytes) of this
* object. See MemoryConsumption.
*/
std::size_t memory_consumption () const;
// @}
/**
* @name Accessing entries
*/
// @{
/**
* Return the index of the matrix element with row number <tt>i</tt> and
* column number <tt>j</tt>. If the matrix element is not a nonzero one,
* return SparsityPattern::invalid_entry.
*
* This function is usually called by the SparseMatrix::operator()(). It may
* only be called for compressed sparsity patterns, since in this case
* searching whether the entry exists can be done quite fast with a binary
* sort algorithm because the column numbers are sorted.
*
* If <tt>m</tt> is the number of entries in <tt>row</tt>, then the
* complexity of this function is <i>log(m)</i> if the sparsity pattern is
* compressed.
*
* @note This function is not cheap since it has to search through all of
* the elements of the given row <tt>i</tt> to find whether index <tt>j</tt>
* exists. Thus, it is more expensive than necessary in cases where you want
* to loop over all of the nonzero elements of this sparsity pattern (or of
* a sparse matrix associated with it) or of a single row. In such cases, it
* is more efficient to use iterators over the elements of the sparsity
* pattern or of the sparse matrix.
*/
size_type operator() (const size_type i,
const size_type j) const;
/**
* This is the inverse operation to operator()(): given a global index, find
* out row and column of the matrix entry to which it belongs. The returned
* value is the pair composed of row and column index.
*
* This function may only be called if the sparsity pattern is closed. The
* global index must then be between zero and n_nonzero_elements().
*
* If <tt>N</tt> is the number of rows of this matrix, then the complexity
* of this function is <i>log(N)</i>.
*/
std::pair<size_type, size_type>
matrix_position (const std::size_t global_index) const;
/**
* Check if a value at a certain position may be non-zero.
*/
bool exists (const size_type i,
const size_type j) const;
/**
* The index of a global matrix entry in its row.
*
* This function is analogous to operator(), but it computes the index not
* with respect to the total field, but only with respect to the row
* <tt>j</tt>.
*/
size_type row_position(const size_type i,
const size_type j) const;
/**
* Access to column number field. Return the column number of the
* <tt>index</tt>th entry in <tt>row</tt>. Note that if diagonal elements
* are optimized, the first element in each row is the diagonal element,
* i.e. <tt>column_number(row,0)==row</tt>.
*
* If the sparsity pattern is already compressed, then (except for the
* diagonal element), the entries are sorted by columns, i.e.
* <tt>column_number(row,i)</tt> <tt><</tt> <tt>column_number(row,i+1)</tt>.
*/
size_type column_number (const size_type row,
const unsigned int index) const;
// @}
/**
* @name Input/Output
*/
// @{
/**
* Write the data of this object en bloc to a file. This is done in a binary
* mode, so the output is neither readable by humans nor (probably) by other
* computers using a different operating system or number format.
*
* The purpose of this function is that you can swap out matrices and
* sparsity pattern if you are short of memory, want to communicate between
* different programs, or allow objects to be persistent across different
* runs of the program.
*/
void block_write (std::ostream &out) const;
/**
* Read data that has previously been written by block_write() from a file.
* This is done using the inverse operations to the above function, so it is
* reasonably fast because the bitstream is not interpreted except for a few
* numbers up front.
*
* The object is resized on this operation, and all previous contents are
* lost.
*
* A primitive form of error checking is performed which will recognize the
* bluntest attempts to interpret some data as a vector stored bitwise to a
* file, but not more.
*/
void block_read (std::istream &in);
/**
* Print the sparsity of the matrix. The output consists of one line per row
* of the format <tt>[i,j1,j2,j3,...]</tt>. <i>i</i> is the row number and
* <i>jn</i> are the allocated columns in this row.
*/
void print (std::ostream &out) const;
/**
* Print the sparsity of the matrix in a format that <tt>gnuplot</tt>
* understands and which can be used to plot the sparsity pattern in a
* graphical way. The format consists of pairs <tt>i j</tt> of nonzero
* elements, each representing one entry of this matrix, one per line of the
* output file. Indices are counted from zero on, as usual. Since sparsity
* patterns are printed in the same way as matrices are displayed, we print
* the negative of the column index, which means that the <tt>(0,0)</tt>
* element is in the top left rather than in the bottom left corner.
*
* Print the sparsity pattern in gnuplot by setting the data style to dots
* or points and use the <tt>plot</tt> command.
*/
void print_gnuplot (std::ostream &out) const;
/**
* Prints the sparsity of the matrix in a .svg file which can be opened in a
* web browser. The .svg file contains squares which correspond to the
* entries in the matrix. An entry in the matrix which contains a non-zero
* value corresponds with a red square while a zero-valued entry in the
* matrix correspond with a white square.
*/
void print_svg (std::ostream &out) const;
/**
* Write the data of this object to a stream for the purpose of
* serialization
*/
template <class Archive>
void save (Archive &ar, const unsigned int version) const;
/**
* Read the data of this object from a stream for the purpose of
* serialization
*/
template <class Archive>
void load (Archive &ar, const unsigned int version);
BOOST_SERIALIZATION_SPLIT_MEMBER()
// @}
/**
* @addtogroup Exceptions
* @{
*/
/**
* You tried to add an element to a row, but there was no space left.
*/
DeclException2 (ExcNotEnoughSpace,
int, int,
<< "Upon entering a new entry to row " << arg1
<< ": there was no free entry any more. " << std::endl
<< "(Maximum number of entries for this row: "
<< arg2 << "; maybe the matrix is already compressed?)");
/**
* The operation is only allowed after the SparsityPattern has been set up
* and compress() was called.
*/
DeclExceptionMsg (ExcNotCompressed,
"The operation you attempted is only allowed after the SparsityPattern "
"has been set up and compress() was called.");
/**
* This operation changes the structure of the SparsityPattern and is not
* possible after compress() has been called.
*/
DeclExceptionMsg (ExcMatrixIsCompressed,
"The operation you attempted changes the structure of the SparsityPattern "
"and is not possible after compress() has been called.");
/**
* Exception
*/
DeclException2 (ExcIteratorRange,
int, int,
<< "The iterators denote a range of " << arg1
<< " elements, but the given number of rows was " << arg2);
/**
* Exception
*/
DeclException1 (ExcInvalidNumberOfPartitions,
int,
<< "The number of partitions you gave is " << arg1
<< ", but must be greater than zero.");
//@}
private:
/**
* Maximum number of rows that can be stored in the #rowstart array. Since
* reallocation of that array only happens if the present one is too small,
* but never when the size of this matrix structure shrinks, #max_dim might
* be larger than #rows and in this case #rowstart has more elements than
* are used.
*/
size_type max_dim;
/**
* Number of rows that this sparsity structure shall represent.
*/
size_type rows;
/**
* Number of columns that this sparsity structure shall represent.
*/
size_type cols;
/**
* Size of the actually allocated array #colnums. Here, the same applies as
* for the #rowstart array, i.e. it may be larger than the actually used
* part of the array.
*/
std::size_t max_vec_len;
/**
* Maximum number of elements per row. This is set to the value given to the
* reinit() function (or to the constructor), or to the maximum row length
* computed from the vectors in case the more flexible constructors or
* reinit versions are called. Its value is more or less meaningless after
* compress() has been called.
*/
unsigned int max_row_length;
/**
* Array which hold for each row which is the first element in #colnums
* belonging to that row. Note that the size of the array is one larger than
* the number of rows, because the last element is used for
* <tt>row</tt>=#rows, i.e. the row past the last used one. The value of
* #rowstart[#rows]} equals the index of the element past the end in
* #colnums; this way, we are able to write loops like <tt>for
* (i=rowstart[k]; i<rowstart[k+1]; ++i)</tt> also for the last row.
*
* Note that the actual size of the allocated memory may be larger than the
* region that is used. The actual number of elements that was allocated is
* stored in #max_dim.
*/
std::size_t *rowstart;
/**
* Array of column numbers. In this array, we store for each non-zero
* element its column number. The column numbers for the elements in row
* <i>r</i> are stored within the index range
* #rowstart[<i>r</i>]...#rowstart[<i>r+1</i>]. Therefore to find out
* whether a given element (<i>r,c</i>) exists, we have to check whether the
* column number <i>c</i> exists in the above-mentioned range within this
* array. If it exists, say at position <i>p</i> within this array, the
* value of the respective element in the sparse matrix will also be at
* position <i>p</i> of the values array of that class.
*
* At the beginning, all elements of this array are set to @p -1 indicating
* invalid (unused) column numbers (diagonal elements are preset if
* optimized storage is requested, though). Now, if nonzero elements are
* added, one column number in the row's respective range after the other is
* set to the column number of the added element. When compress is called,
* unused elements (indicated by column numbers @p -1) are eliminated by
* copying the column number of subsequent rows and the column numbers
* within each row (with possible exception of the diagonal element) are
* sorted, such that finding whether an element exists and determining its
* position can be done by a binary search.
*/
size_type *colnums;
/**
* Store whether the compress() function was called for this object.
*/
bool compressed;
/**
* Is special treatment of diagonals enabled?
*/
bool store_diagonal_first_in_row;
/**
* Make all sparse matrices friends of this class.
*/
template <typename number> friend class SparseMatrix;
template <typename number> friend class SparseLUDecomposition;
template <typename number> friend class SparseILU;
template <typename number> friend class ChunkSparseMatrix;
friend class ChunkSparsityPattern;
/**
* Also give access to internal details to the iterator/accessor classes.
*/
friend class SparsityPatternIterators::Iterator;
friend class SparsityPatternIterators::Accessor;
friend class ChunkSparsityPatternIterators::Accessor;
};
/*@}*/
/*---------------------- Inline functions -----------------------------------*/
#ifndef DOXYGEN
namespace SparsityPatternIterators
{
inline
Accessor::
Accessor (const SparsityPattern *sparsity_pattern,
const std::size_t i)
:
sparsity_pattern(sparsity_pattern),
index_within_sparsity(i)
{}
inline
Accessor::
Accessor (const SparsityPattern *sparsity_pattern)
:
sparsity_pattern(sparsity_pattern),
index_within_sparsity(sparsity_pattern->rowstart[sparsity_pattern->rows])
{}
inline
bool
Accessor::is_valid_entry () const
{
return (index_within_sparsity < sparsity_pattern->rowstart[sparsity_pattern->rows]
&&
sparsity_pattern->colnums[index_within_sparsity]
!= SparsityPattern::invalid_entry);
}
inline
size_type
Accessor::row() const
{
Assert (is_valid_entry() == true, ExcInvalidIterator());
const std::size_t *insert_point =
std::upper_bound(sparsity_pattern->rowstart,
sparsity_pattern->rowstart + sparsity_pattern->rows + 1,
index_within_sparsity);
return insert_point - sparsity_pattern->rowstart - 1;
}
inline
size_type
Accessor::column() const
{
Assert (is_valid_entry() == true, ExcInvalidIterator());
return (sparsity_pattern->colnums[index_within_sparsity]);
}
inline
size_type
Accessor::index() const
{
Assert (is_valid_entry() == true, ExcInvalidIterator());
return index_within_sparsity - sparsity_pattern->rowstart[row()];
}
inline
bool
Accessor::operator == (const Accessor &other) const
{
return (sparsity_pattern == other.sparsity_pattern &&
index_within_sparsity == other.index_within_sparsity);
}
inline
bool
Accessor::operator < (const Accessor &other) const
{
Assert (sparsity_pattern == other.sparsity_pattern,
ExcInternalError());
return index_within_sparsity < other.index_within_sparsity;
}
inline
void
Accessor::advance ()
{
Assert (index_within_sparsity < sparsity_pattern->rowstart[sparsity_pattern->rows],
ExcIteratorPastEnd());
++index_within_sparsity;
}
inline
Iterator::Iterator (const SparsityPattern *sparsity_pattern,
const std::size_t i)
:
accessor(sparsity_pattern, i)
{}
inline
Iterator &
Iterator::operator++ ()
{
accessor.advance ();
return *this;
}
inline
Iterator
Iterator::operator++ (int)
{
const Iterator iter = *this;
accessor.advance ();
return iter;
}
inline
const Accessor &
Iterator::operator* () const
{
return accessor;
}
inline
const Accessor *
Iterator::operator-> () const
{
return &accessor;
}
inline
bool
Iterator::operator == (const Iterator &other) const
{
return (accessor == other.accessor);
}
inline
bool
Iterator::operator != (const Iterator &other) const
{
return ! (*this == other);
}
inline
bool
Iterator::operator < (const Iterator &other) const
{
return accessor < other.accessor;
}
inline
int
Iterator::operator - (const Iterator &other) const
{
Assert (accessor.sparsity_pattern == other.accessor.sparsity_pattern,
ExcInternalError());
return (*this)->index_within_sparsity - other->index_within_sparsity;
}
}
inline
SparsityPattern::iterator
SparsityPattern::begin () const
{
return iterator(this, rowstart[0]);
}
inline
SparsityPattern::iterator
SparsityPattern::end () const
{
return iterator(this, rowstart[rows]);
}
inline
SparsityPattern::iterator
SparsityPattern::begin (const size_type r) const
{
Assert (r<n_rows(), ExcIndexRangeType<size_type>(r,0,n_rows()));
return iterator(this, rowstart[r]);
}
inline
SparsityPattern::iterator
SparsityPattern::end (const size_type r) const
{
Assert (r<n_rows(), ExcIndexRangeType<size_type>(r,0,n_rows()));
return iterator(this, rowstart[r+1]);
}
inline
SparsityPattern::size_type
SparsityPattern::n_rows () const
{
return rows;
}
inline
SparsityPattern::size_type
SparsityPattern::n_cols () const
{
return cols;
}
inline
bool
SparsityPattern::is_compressed () const
{
return compressed;
}
inline
bool
SparsityPattern::stores_only_added_elements () const
{
return (store_diagonal_first_in_row == false);
}
inline
unsigned int
SparsityPattern::row_length (const size_type row) const
{
Assert(row<rows, ExcIndexRangeType<size_type>(row,0,rows));
return rowstart[row+1]-rowstart[row];
}
inline
SparsityPattern::size_type
SparsityPattern::column_number (const size_type row,
const unsigned int index) const
{
Assert(row<rows, ExcIndexRangeType<size_type>(row,0,rows));
Assert(index<row_length(row), ExcIndexRange(index,0,row_length(row)));
return colnums[rowstart[row]+index];
}
inline
std::size_t
SparsityPattern::n_nonzero_elements () const
{
Assert ((rowstart!=0) && (colnums!=0), ExcEmptyObject());
Assert (compressed, ExcNotCompressed());
return rowstart[rows]-rowstart[0];
}
template <class Archive>
inline
void
SparsityPattern::save (Archive &ar, const unsigned int) const
{
// forward to serialization function in the base class.
ar &static_cast<const Subscriptor &>(*this);
ar &max_dim &rows &cols &max_vec_len &max_row_length &compressed &store_diagonal_first_in_row;
ar &boost::serialization::make_array(rowstart, max_dim + 1);
ar &boost::serialization::make_array(colnums, max_vec_len);
}
template <class Archive>
inline
void
SparsityPattern::load (Archive &ar, const unsigned int)
{
// forward to serialization function in the base class.
ar &static_cast<Subscriptor &>(*this);
ar &max_dim &rows &cols &max_vec_len &max_row_length &compressed &store_diagonal_first_in_row;
if (rowstart != 0)
delete[] rowstart;
rowstart = new std::size_t[max_dim + 1];
if (colnums != 0)
delete[] colnums;
colnums = new size_type[max_vec_len];
ar &boost::serialization::make_array(rowstart, max_dim + 1);
ar &boost::serialization::make_array(colnums, max_vec_len);
}
inline
bool
SparsityPattern::operator == (const SparsityPattern &sp2) const
{
// it isn't quite necessary to compare *all* member variables. by only
// comparing the essential ones, we can say that two sparsity patterns are
// equal even if one is compressed and the other is not (in which case some
// of the member variables are not yet set correctly)
if (rows != sp2.rows ||
cols != sp2.cols ||
compressed != sp2.compressed ||
store_diagonal_first_in_row != sp2.store_diagonal_first_in_row)
return false;
for (size_type i = 0; i < rows+1; ++i)
if (rowstart[i] != sp2.rowstart[i])
return false;
for (size_type i = 0; i < rowstart[rows]; ++i)
if (colnums[i] != sp2.colnums[i])
return false;
return true;
}
namespace internal
{
namespace SparsityPatternTools
{
/**
* Declare type for container size.
*/
typedef types::global_dof_index size_type;
inline
size_type
get_column_index_from_iterator (const size_type i)
{
return i;
}
template <typename value>
inline
size_type
get_column_index_from_iterator (const std::pair<size_type, value> &i)
{
return i.first;
}
template <typename value>
inline
size_type
get_column_index_from_iterator (const std::pair<const size_type, value> &i)
{
return i.first;
}
}
}
template <typename ForwardIterator>
void
SparsityPattern::copy_from (const size_type n_rows,
const size_type n_cols,
const ForwardIterator begin,
const ForwardIterator end)
{
Assert (static_cast<size_type>(std::distance (begin, end)) == n_rows,
ExcIteratorRange (std::distance (begin, end), n_rows));
// first determine row lengths for each row. if the matrix is quadratic,
// then we might have to add an additional entry for the diagonal, if that
// is not yet present. as we have to call compress anyway later on, don't
// bother to check whether that diagonal entry is in a certain row or not
const bool is_square = (n_rows == n_cols);
std::vector<unsigned int> row_lengths;
row_lengths.reserve(n_rows);
for (ForwardIterator i=begin; i!=end; ++i)
row_lengths.push_back (std::distance (i->begin(), i->end())
+
(is_square ? 1 : 0));
reinit (n_rows, n_cols, row_lengths);
// now enter all the elements into the matrix. note that if the matrix is
// quadratic, then we already have the diagonal element preallocated
//
// for use in the inner loop, we define a typedef to the type of the inner
// iterators
size_type row = 0;
typedef typename std::iterator_traits<ForwardIterator>::value_type::const_iterator inner_iterator;
for (ForwardIterator i=begin; i!=end; ++i, ++row)
{
size_type *cols = &colnums[rowstart[row]] + (is_square ? 1 : 0);
const inner_iterator end_of_row = i->end();
for (inner_iterator j=i->begin(); j!=end_of_row; ++j)
{
const size_type col
= internal::SparsityPatternTools::get_column_index_from_iterator(*j);
Assert (col < n_cols, ExcIndexRange(col,0,n_cols));
if ((col!=row) || !is_square)
*cols++ = col;
}
}
// finally compress everything. this also sorts the entries within each row
compress ();
}
#endif // DOXYGEN
DEAL_II_NAMESPACE_CLOSE
#endif
|