/usr/include/deal.II/lac/sparse_mic.h is in libdeal.ii-dev 8.5.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 | // ---------------------------------------------------------------------
//
// Copyright (C) 2002 - 2015 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------
#ifndef dealii__sparse_mic_h
#define dealii__sparse_mic_h
#include <deal.II/lac/sparse_matrix.h>
#include <deal.II/lac/sparse_decomposition.h>
DEAL_II_NAMESPACE_OPEN
/*! @addtogroup Preconditioners
*@{
*/
/**
* Implementation of the Modified Incomplete Cholesky (MIC(0)) preconditioner
* for symmetric matrices. This class conforms to the state and usage
* specification in SparseLUDecomposition.
*
*
* <h3>The decomposition</h3>
*
* Let a symmetric, positive-definite, sparse matrix $A$ be in the form $A = D
* - L - L^T$, where $D$ is the diagonal part of $A$ and $-L$ is a strictly
* lower triangular matrix. The MIC(0) decomposition of the matrix $A$ is
* defined by $B = (X-L)X^{-1}(X-L^T)$, where $X$ is a diagonal matrix defined
* by the condition $\text{rowsum}(A) = \text{rowsum}(B)$.
*
* @author Stephen "Cheffo" Kolaroff, 2002, unified interface: Ralf Hartmann
* 2003; extension for full compatibility with LinearOperator class: Jean-Paul
* Pelteret, 2015.
*/
template <typename number>
class SparseMIC : public SparseLUDecomposition<number>
{
public:
/**
* Declare type for container size.
*/
typedef types::global_dof_index size_type;
/**
* Constructor. Does nothing, so you have to call @p decompose sometimes
* afterwards.
*/
SparseMIC ();
/**
* Destructor.
*/
virtual ~SparseMIC();
/**
* Deletes all member variables. Leaves the class in the state that it had
* directly after calling the constructor
*/
virtual void clear();
/**
* Make the @p AdditionalData type in the base class accessible to this
* class as well.
*/
typedef
typename SparseLUDecomposition<number>::AdditionalData
AdditionalData;
/**
* Perform the incomplete LU factorization of the given matrix.
*
* This function needs to be called before an object of this class is used
* as preconditioner.
*
* For more details about possible parameters, see the class documentation
* of SparseLUDecomposition and the documentation of the @p
* SparseLUDecomposition::AdditionalData class.
*
* According to the @p parameters, this function creates a new
* SparsityPattern or keeps the previous sparsity or takes the sparsity
* given by the user to @p data. Then, this function performs the MIC
* decomposition.
*
* After this function is called the preconditioner is ready to be used.
*/
template <typename somenumber>
void initialize (const SparseMatrix<somenumber> &matrix,
const AdditionalData ¶meters = AdditionalData());
/**
* Apply the incomplete decomposition, i.e. do one forward-backward step
* $dst=(LU)^{-1}src$.
*
* Call @p initialize before calling this function.
*/
template <typename somenumber>
void vmult (Vector<somenumber> &dst,
const Vector<somenumber> &src) const;
/**
* Apply the transpose of the incomplete decomposition, i.e. do one forward-
* backward step $dst=(LU)^{-1}src$.
*
* Call @p initialize before calling this function.
*
* @note This function has not yet been implemented
*
*/
template <typename somenumber>
void Tvmult (Vector<somenumber> &dst,
const Vector<somenumber> &src) const;
/**
* Determine an estimate for the memory consumption (in bytes) of this
* object.
*/
std::size_t memory_consumption () const;
/**
* @addtogroup Exceptions
* @{
*/
/**
* Exception
*/
DeclException0 (ExcStrengthenDiagonalTooSmall);
/**
* Exception
*/
DeclException1 (ExcInvalidStrengthening,
double,
<< "The strengthening parameter " << arg1
<< " is not greater or equal than zero!");
/**
* Exception
*/
DeclException2(ExcDecompositionNotStable, int, double,
<< "The diagonal element (" <<arg1<<","<<arg1<<") is "
<< arg2 <<", but must be positive");
//@}
private:
/**
* Values of the computed diagonal.
*/
std::vector<number> diag;
/**
* Inverses of the the diagonal: precomputed for faster vmult.
*/
std::vector<number> inv_diag;
/**
* Values of the computed "inner sums", i.e. per-row sums of the elements
* laying on the right side of the diagonal.
*/
std::vector<number> inner_sums;
/**
* Compute the row-th "inner sum".
*/
number get_rowsum (const size_type row) const;
};
/*@}*/
DEAL_II_NAMESPACE_CLOSE
#endif // dealii__
|