/usr/include/deal.II/lac/solver_cg.h is in libdeal.ii-dev 8.5.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 | // ---------------------------------------------------------------------
//
// Copyright (C) 1998 - 2017 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------
#ifndef dealii__solver_cg_h
#define dealii__solver_cg_h
#include <deal.II/base/config.h>
#include <deal.II/lac/tridiagonal_matrix.h>
#include <deal.II/lac/solver.h>
#include <deal.II/lac/solver_control.h>
#include <deal.II/base/exceptions.h>
#include <deal.II/base/logstream.h>
#include <deal.II/base/subscriptor.h>
#include <cmath>
DEAL_II_NAMESPACE_OPEN
// forward declaration
class PreconditionIdentity;
/*!@addtogroup Solvers */
/*@{*/
/**
* Preconditioned cg method for symmetric positive definite matrices. This
* class is used first in step-3 and step-4, but is used in many other
* tutorial programs as well. Like all other solver classes, it can work on
* any kind of vector and matrix as long as they satisfy certain requirements
* (for the requirements on matrices and vectors in order to work with this
* class, see the documentation of the Solver base class). The type of the
* solution vector must be passed as template argument, and defaults to
* dealii::Vector<double>.
*
* Like all other solver classes, this class has a local structure called @p
* AdditionalData which is used to pass additional parameters to the solver.
* For this class, there is (among other things) a switch allowing for
* additional output for the computation of eigenvalues of the matrix.
*
* @note This version of CG is taken from D. Braess's book "Finite Elements".
* It requires a symmetric preconditioner (i.e., for example, SOR is not a
* possible choice).
*
*
* <h3>Eigenvalue computation</h3>
*
* The cg-method performs an orthogonal projection of the original
* preconditioned linear system to another system of smaller dimension.
* Furthermore, the projected matrix @p T is tri-diagonal. Since the
* projection is orthogonal, the eigenvalues of @p T approximate those of the
* original preconditioned matrix @p PA. In fact, after @p n steps, where @p n
* is the dimension of the original system, the eigenvalues of both matrices
* are equal. But, even for small numbers of iteration steps, the condition
* number of @p T is a good estimate for the one of @p PA.
*
* After @p m steps the matrix T_m can be written in terms of the coefficients
* @p alpha and @p beta as the tri-diagonal matrix with diagonal elements
* <tt>1/alpha_0</tt>, <tt>1/alpha_1 + beta_0/alpha_0</tt>, ...,
* <tt>1/alpha_{m-1</tt>+beta_{m-2}/alpha_{m-2}} and off-diagonal elements
* <tt>sqrt(beta_0)/alpha_0</tt>, ..., <tt>sqrt(beta_{m-2</tt>)/alpha_{m-2}}.
* The eigenvalues of this matrix can be computed by postprocessing.
*
* @see Y. Saad: "Iterative methods for Sparse Linear Systems", section 6.7.3
* for details.
*
* The coefficients, eigenvalues and condition number (computed as the ratio
* of the largest over smallest eigenvalue) can be obtained by connecting a
* function as a slot to the solver using one of the functions @p
* connect_coefficients_slot, @p connect_eigenvalues_slot and @p
* connect_condition_number_slot. These slots will then be called from the
* solver with the estimates as argument.
*
* @deprecated Alternatively these estimates can be written to deallog by
* setting flags in @p AdditionalData.
*
* <h3>Observing the progress of linear solver iterations</h3>
*
* The solve() function of this class uses the mechanism described in the
* Solver base class to determine convergence. This mechanism can also be used
* to observe the progress of the iteration.
*
*
* @author W. Bangerth, G. Kanschat, R. Becker and F.-T. Suttmeier
*/
template <typename VectorType = Vector<double> >
class SolverCG : public Solver<VectorType>
{
public:
/**
* Declare type for container size.
*/
typedef types::global_dof_index size_type;
/**
* Standardized data struct to pipe additional data to the solver.
*/
struct AdditionalData
{
/**
* Write coefficients alpha and beta to the log file for later use in
* eigenvalue estimates.
*/
bool log_coefficients;
/**
* Compute the condition number of the projected matrix.
*
* @note Requires LAPACK support.
*/
bool compute_condition_number;
/**
* Compute the condition number of the projected matrix in each step.
*
* @note Requires LAPACK support.
*/
bool compute_all_condition_numbers;
/**
* Compute all eigenvalues of the projected matrix.
*
* @note Requires LAPACK support.
*/
bool compute_eigenvalues;
/**
* Constructor. Initialize data fields. Confer the description of those.
* @deprecated Instead use: connect_coefficients_slot,
* connect_condition_number_slot, and connect_eigenvalues_slot.
*/
explicit
AdditionalData (const bool log_coefficients,
const bool compute_condition_number = false,
const bool compute_all_condition_numbers = false,
const bool compute_eigenvalues = false) DEAL_II_DEPRECATED;
/**
* Constructor. Initializes all data fields to false.
*/
AdditionalData();
};
/**
* Constructor.
*/
SolverCG (SolverControl &cn,
VectorMemory<VectorType> &mem,
const AdditionalData &data = AdditionalData());
/**
* Constructor. Use an object of type GrowingVectorMemory as a default to
* allocate memory.
*/
SolverCG (SolverControl &cn,
const AdditionalData &data=AdditionalData());
/**
* Virtual destructor.
*/
virtual ~SolverCG ();
/**
* Solve the linear system $Ax=b$ for x.
*/
template <typename MatrixType, typename PreconditionerType>
void
solve (const MatrixType &A,
VectorType &x,
const VectorType &b,
const PreconditionerType &precondition);
/**
* Connect a slot to retrieve the CG coefficients. The slot will be called
* with alpha as the first argument and with beta as the second argument,
* where alpha and beta follow the notation in Y. Saad: "Iterative methods
* for Sparse Linear Systems", section 6.7. Called once per iteration
*/
boost::signals2::connection
connect_coefficients_slot(
const std_cxx11::function<void (double,double)> &slot);
/**
* Connect a slot to retrieve the estimated condition number. Called on each
* iteration if every_iteration=true, otherwise called once when iterations
* are ended (i.e., either because convergence has been achieved, or because
* divergence has been detected).
*/
boost::signals2::connection
connect_condition_number_slot(const std_cxx11::function<void (double)> &slot,
const bool every_iteration=false);
/**
* Connect a slot to retrieve the estimated eigenvalues. Called on each
* iteration if every_iteration=true, otherwise called once when iterations
* are ended (i.e., either because convergence has been achieved, or because
* divergence has been detected).
*/
boost::signals2::connection
connect_eigenvalues_slot(
const std_cxx11::function<void (const std::vector<double> &)> &slot,
const bool every_iteration=false);
protected:
/**
* Interface for derived class. This function gets the current iteration
* vector, the residual and the update vector in each step. It can be used
* for a graphical output of the convergence history.
*/
virtual void print_vectors(const unsigned int step,
const VectorType &x,
const VectorType &r,
const VectorType &d) const;
/**
* Estimates the eigenvalues from diagonal and offdiagonal. Uses these
* estimate to compute the condition number. Calls the signals
* eigenvalues_signal and cond_signal with these estimates as arguments.
* Outputs the eigenvalues/condition-number to deallog if
* log_eigenvalues/log_cond is true.
*/
static void
compute_eigs_and_cond(
const std::vector<double> &diagonal,
const std::vector<double> &offdiagonal,
const boost::signals2::signal<void (const std::vector<double> &)> &eigenvalues_signal,
const boost::signals2::signal<void (double)> &cond_signal,
const bool log_eigenvalues,
const bool log_cond);
/**
* Temporary vectors, allocated through the @p VectorMemory object at the
* start of the actual solution process and deallocated at the end.
*/
VectorType *Vr;
VectorType *Vp;
VectorType *Vz;
/**
* Additional parameters.
*/
AdditionalData additional_data;
/**
* Signal used to retrieve the CG coefficients. Called on each iteration.
*/
boost::signals2::signal<void (double,double)> coefficients_signal;
/**
* Signal used to retrieve the estimated condition number. Called once when
* all iterations are ended.
*/
boost::signals2::signal<void (double)> condition_number_signal;
/**
* Signal used to retrieve the estimated condition numbers. Called on each
* iteration.
*/
boost::signals2::signal<void (double)> all_condition_numbers_signal;
/**
* Signal used to retrieve the estimated eigenvalues. Called once when all
* iterations are ended.
*/
boost::signals2::signal<void (const std::vector<double> &)> eigenvalues_signal;
/**
* Signal used to retrieve the estimated eigenvalues. Called on each
* iteration.
*/
boost::signals2::signal<void (const std::vector<double> &)> all_eigenvalues_signal;
private:
void cleanup();
};
/*@}*/
/*------------------------- Implementation ----------------------------*/
#ifndef DOXYGEN
template <typename VectorType>
inline
SolverCG<VectorType>::AdditionalData::
AdditionalData (const bool log_coefficients,
const bool compute_condition_number,
const bool compute_all_condition_numbers,
const bool compute_eigenvalues)
:
log_coefficients (log_coefficients),
compute_condition_number(compute_condition_number),
compute_all_condition_numbers(compute_all_condition_numbers),
compute_eigenvalues(compute_eigenvalues)
{}
template <typename VectorType>
inline
SolverCG<VectorType>::AdditionalData::
AdditionalData ()
:
log_coefficients (false),
compute_condition_number(false),
compute_all_condition_numbers(false),
compute_eigenvalues(false)
{}
template <typename VectorType>
SolverCG<VectorType>::SolverCG (SolverControl &cn,
VectorMemory<VectorType> &mem,
const AdditionalData &data)
:
Solver<VectorType>(cn,mem),
Vr(NULL),
Vp(NULL),
Vz(NULL),
additional_data(data)
{}
template <typename VectorType>
SolverCG<VectorType>::SolverCG (SolverControl &cn,
const AdditionalData &data)
:
Solver<VectorType>(cn),
Vr(NULL),
Vp(NULL),
Vz(NULL),
additional_data(data)
{}
template <typename VectorType>
SolverCG<VectorType>::~SolverCG ()
{}
template <typename VectorType>
void
SolverCG<VectorType>::cleanup()
{
this->memory.free(Vr);
this->memory.free(Vp);
this->memory.free(Vz);
deallog.pop();
}
template <typename VectorType>
void
SolverCG<VectorType>::print_vectors(const unsigned int,
const VectorType &,
const VectorType &,
const VectorType &) const
{}
template <typename VectorType>
inline void
SolverCG<VectorType>::compute_eigs_and_cond
(const std::vector<double> &diagonal,
const std::vector<double> &offdiagonal,
const boost::signals2::signal<void (const std::vector<double> &)> &eigenvalues_signal,
const boost::signals2::signal<void (double)> &cond_signal,
const bool log_eigenvalues,
const bool log_cond)
{
//Avoid computing eigenvalues unless they are needed.
if (!cond_signal.empty()|| !eigenvalues_signal.empty() || log_cond ||
log_eigenvalues)
{
TridiagonalMatrix<double> T(diagonal.size(), true);
for (size_type i=0; i<diagonal.size(); ++i)
{
T(i,i) = diagonal[i];
if (i< diagonal.size()-1)
T(i,i+1) = offdiagonal[i];
}
T.compute_eigenvalues();
//Need two eigenvalues to estimate the condition number.
if (diagonal.size()>1)
{
double condition_number=T.eigenvalue(T.n()-1)/T.eigenvalue(0);
cond_signal(condition_number);
//Send to deallog
if (log_cond)
{
deallog << "Condition number estimate: " <<
condition_number << std::endl;
}
}
//Avoid copying the eigenvalues of T to a vector unless a signal is
//connected.
if (!eigenvalues_signal.empty())
{
std::vector<double> eigenvalues(T.n());
for (unsigned int j = 0; j < T.n(); ++j)
{
eigenvalues.at(j)=T.eigenvalue(j);
}
eigenvalues_signal(eigenvalues);
}
if (log_eigenvalues)
{
for (size_type i=0; i<T.n(); ++i)
deallog << ' ' << T.eigenvalue(i);
deallog << std::endl;
}
}
}
template <typename VectorType>
template <typename MatrixType, typename PreconditionerType>
void
SolverCG<VectorType>::solve (const MatrixType &A,
VectorType &x,
const VectorType &b,
const PreconditionerType &precondition)
{
SolverControl::State conv=SolverControl::iterate;
deallog.push("cg");
// Memory allocation
Vr = this->memory.alloc();
Vz = this->memory.alloc();
Vp = this->memory.alloc();
// Should we build the matrix for
// eigenvalue computations?
const bool do_eigenvalues = !condition_number_signal.empty()
||!all_condition_numbers_signal.empty()
||!eigenvalues_signal.empty()
||!all_eigenvalues_signal.empty()
|| additional_data.compute_condition_number
|| additional_data.compute_all_condition_numbers
|| additional_data.compute_eigenvalues;
// vectors used for eigenvalue
// computations
std::vector<double> diagonal;
std::vector<double> offdiagonal;
int it=0;
double res = -std::numeric_limits<double>::max();
try
{
double eigen_beta_alpha = 0;
// define some aliases for simpler access
VectorType &g = *Vr;
VectorType &d = *Vz;
VectorType &h = *Vp;
// resize the vectors, but do not set
// the values since they'd be overwritten
// soon anyway.
g.reinit(x, true);
d.reinit(x, true);
h.reinit(x, true);
double gh,beta;
// compute residual. if vector is
// zero, then short-circuit the
// full computation
if (!x.all_zero())
{
A.vmult(g,x);
g.add(-1.,b);
}
else
g.equ(-1.,b);
res = g.l2_norm();
conv = this->iteration_status(0, res, x);
if (conv != SolverControl::iterate)
{
cleanup();
return;
}
if (types_are_equal<PreconditionerType,PreconditionIdentity>::value == false)
{
precondition.vmult(h,g);
d.equ(-1.,h);
gh = g*h;
}
else
{
d.equ(-1.,g);
gh = res*res;
}
while (conv == SolverControl::iterate)
{
it++;
A.vmult(h,d);
double alpha = d*h;
Assert(alpha != 0., ExcDivideByZero());
alpha = gh/alpha;
x.add(alpha,d);
res = std::sqrt(g.add_and_dot(alpha, h, g));
print_vectors(it, x, g, d);
conv = this->iteration_status(it, res, x);
if (conv != SolverControl::iterate)
break;
if (types_are_equal<PreconditionerType,PreconditionIdentity>::value
== false)
{
precondition.vmult(h,g);
beta = gh;
Assert(beta != 0., ExcDivideByZero());
gh = g*h;
beta = gh/beta;
d.sadd(beta,-1.,h);
}
else
{
beta = gh;
gh = res*res;
beta = gh/beta;
d.sadd(beta,-1.,g);
}
this->coefficients_signal(alpha,beta);
if (additional_data.log_coefficients)
deallog << "alpha-beta:" << alpha << '\t' << beta << std::endl;
// set up the vectors
// containing the diagonal
// and the off diagonal of
// the projected matrix.
if (do_eigenvalues)
{
diagonal.push_back(1./alpha + eigen_beta_alpha);
eigen_beta_alpha = beta/alpha;
offdiagonal.push_back(std::sqrt(beta)/alpha);
}
compute_eigs_and_cond(diagonal,offdiagonal,all_eigenvalues_signal,
all_condition_numbers_signal,false,
additional_data.compute_all_condition_numbers);
}
}
catch (...)
{
cleanup();
throw;
}
compute_eigs_and_cond(diagonal,offdiagonal,eigenvalues_signal,
condition_number_signal,
additional_data.compute_eigenvalues,
(additional_data.compute_condition_number &&
!additional_data.compute_all_condition_numbers));
// Deallocate Memory
cleanup();
// in case of failure: throw exception
if (conv != SolverControl::success)
AssertThrow(false, SolverControl::NoConvergence (it, res));
// otherwise exit as normal
}
template<typename VectorType>
boost::signals2::connection
SolverCG<VectorType>::connect_coefficients_slot
(const std_cxx11::function<void(double,double)> &slot)
{
return coefficients_signal.connect(slot);
}
template<typename VectorType>
boost::signals2::connection
SolverCG<VectorType>::connect_condition_number_slot
(const std_cxx11::function<void(double)> &slot,
const bool every_iteration)
{
if (every_iteration)
{
return all_condition_numbers_signal.connect(slot);
}
else
{
return condition_number_signal.connect(slot);
}
}
template<typename VectorType>
boost::signals2::connection
SolverCG<VectorType>::connect_eigenvalues_slot
(const std_cxx11::function<void (const std::vector<double> &)> &slot,
const bool every_iteration)
{
if (every_iteration)
{
return all_eigenvalues_signal.connect(slot);
}
else
{
return eigenvalues_signal.connect(slot);
}
}
#endif // DOXYGEN
DEAL_II_NAMESPACE_CLOSE
#endif
|