/usr/include/deal.II/lac/schur_complement.h is in libdeal.ii-dev 8.5.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 | // ---------------------------------------------------------------------
//
// Copyright (C) 2015 - 2017 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------
#ifndef dealii__schur_complement_h
#define dealii__schur_complement_h
#include <deal.II/base/config.h>
#include <deal.II/base/exceptions.h>
#include <deal.II/lac/vector_memory.h>
#include <deal.II/lac/linear_operator.h>
#include <deal.II/lac/packaged_operation.h>
#ifdef DEAL_II_WITH_CXX11
DEAL_II_NAMESPACE_OPEN
/**
* @name Creation of a LinearOperator related to the Schur Complement
*/
//@{
/**
* @relates LinearOperator
*
* Return a LinearOperator that performs the operations associated with the
* Schur complement. There are two additional helper functions,
* condense_schur_rhs() and postprocess_schur_solution(), that are likely
* necessary to be used in order to perform any useful tasks in linear algebra
* with this operator.
*
* We construct the definition of the Schur complement in the following way:
*
* Consider a general system of linear equations that can be decomposed into
* two major sets of equations:
* @f{eqnarray*}{
* \mathbf{K}\mathbf{d} = \mathbf{f}
* \quad \Rightarrow\quad
* \left(\begin{array}{cc}
* A & B \\ C & D
* \end{array}\right)
* \left(\begin{array}{cc}
* x \\ y
* \end{array}\right)
* =
* \left(\begin{array}{cc}
* f \\ g
* \end{array}\right),
* @f}
* where $ A,B,C,D $ represent general subblocks of the matrix $ \mathbf{K} $
* and, similarly, general subvectors of $ \mathbf{d},\mathbf{f} $ are given
* by $ x,y,f,g $ .
*
* This is equivalent to the following two statements:
* @f{eqnarray*}{
* (1) \quad Ax + By &=& f \\
* (2) \quad Cx + Dy &=& g \quad .
* @f}
*
* Assuming that $ A,D $ are both square and invertible, we could then perform
* one of two possible substitutions,
* @f{eqnarray*}{
* (3) \quad x &=& A^{-1}(f - By) \quad \text{from} \quad (1) \\
* (4) \quad y &=& D^{-1}(g - Cx) \quad \text{from} \quad (2) ,
* @f}
* which amount to performing block Gaussian elimination on this system of
* equations.
*
* For the purpose of the current implementation, we choose to substitute (3)
* into (2)
* @f{eqnarray*}{
* C \: A^{-1}(f - By) + Dy &=& g \\
* -C \: A^{-1} \: By + Dy &=& g - C \: A^{-1} \: f \quad .
* @f}
* This leads to the result
* @f[
* (5) \quad (D - C\: A^{-1} \:B)y = g - C \: A^{-1} f
* \quad \Rightarrow \quad Sy = g'
* @f]
* with $ S = (D - C\: A^{-1} \:B) $ being the Schur complement and the
* modified right-hand side vector $ g' = g - C \: A^{-1} f $ arising from the
* condensation step. Note that for this choice of $ S $, submatrix $ D $ need
* not be invertible and may thus be the null matrix. Ideally $ A $ should be
* well-conditioned.
*
* So for any arbitrary vector $ a $, the Schur complement performs the
* following operation:
* @f[
* (6) \quad Sa = (D - C \: A^{-1} \: B)a
* @f]
*
* A typical set of steps needed the solve a linear system (1),(2) would be:
* 1. Define the inverse matrix @p A_inv (using inverse_operator()).
* 2. Define the Schur complement $ S $ (using schur_complement()).
* 3. Define iterative inverse matrix $ S^{-1} $ such that (6)
* holds. It is necessary to use a solver with a preconditioner to compute the
* approximate inverse operation of $ S $ since we never compute $ S $
* directly, but rather the result of its operation. To achieve this, one may
* again use the inverse_operator() in conjunction with the Schur complement
* that we've just constructed. Observe that the both $ S $ and its
* preconditioner operate over the same space as $ D $.
* 4. Perform pre-processing step on the RHS of (5) using
* condense_schur_rhs():
* @f[
* g' = g - C \: A^{-1} \: f
* @f]
* 5. Solve for $ y $ in (5):
* @f[
* y = S^{-1} g'
* @f]
* 6. Perform the post-processing step from (3) using
* postprocess_schur_solution():
* @f[
* x = A^{-1} (f - By)
* @f]
*
* An illustration of typical usage of this operator for a fully coupled
* system is given below.
* @code
* #include<deal.II/lac/schur_complement.h>
*
* // Given BlockMatrix K and BlockVectors d,F
*
* // Decomposition of tangent matrix
* const auto A = linear_operator(K.block(0,0));
* const auto B = linear_operator(K.block(0,1));
* const auto C = linear_operator(K.block(1,0));
* const auto D = linear_operator(K.block(1,1));
*
* // Decomposition of solution vector
* auto x = d.block(0);
* auto y = d.block(1);
*
* // Decomposition of RHS vector
* auto f = F.block(0);
* auto g = F.block(1);
*
* // Construction of inverse of Schur complement
* const auto prec_A = PreconditionSelector<...>(A);
* const auto A_inv = inverse_operator<...>(A,prec_A);
* const auto S = schur_complement(A_inv,B,C,D);
* const auto S_prec = PreconditionSelector<...>(D); // D and S operate on same space
* const auto S_inv = inverse_operator<...>(S,...,prec_S);
*
* // Solve reduced block system
* auto rhs = condense_schur_rhs (A_inv,C,f,g); // PackagedOperation that represents the condensed form of g
* y = S_inv * rhs; // Solve for y
* x = postprocess_schur_solution (A_inv,B,y,f); // Compute x using resolved solution y
* @endcode
*
* In the above example, the preconditioner for $ S $ was defined as the
* preconditioner for $ D $, which is valid since they operate on the same
* space. However, if $ D $ and $ S $ are too dissimilar, then this may lead
* to a large number of solver iterations as $ \text{prec}(D) $ is not a good
* approximation for $ S^{-1} $.
*
* A better preconditioner in such a case would be one that provides a more
* representative approximation for $ S^{-1} $. One approach is shown in
* step-22, where $ D $ is the null matrix and the preconditioner for $ S^{-1}
* $ is derived from the mass matrix over this space.
*
* From another viewpoint, a similar result can be achieved by first
* constructing an object that represents an approximation for $ S $ wherein
* expensive operation, namely $ A^{-1} $, is approximated. Thereafter we
* construct the approximate inverse operator $ \tilde{S}^{-1} $ which is then
* used as the preconditioner for computing $ S^{-1} $.
* @code
* // Construction of approximate inverse of Schur complement
* const auto A_inv_approx = linear_operator(preconditioner_A);
* const auto S_approx = schur_complement(A_inv_approx,B,C,D);
* const auto S_approx_prec = PreconditionSelector<...>(D); // D and S_approx operate on same space
* const auto S_inv_approx = inverse_operator(S_approx,...,S_approx_prec); // Inner solver: Typically limited to few iterations using IterationNumberControl
*
* // Construction of exact inverse of Schur complement
* const auto S = schur_complement(A_inv,B,C,D);
* const auto S_inv = inverse_operator(S,...,S_inv_approx); // Outer solver
*
* // Solve reduced block system
* auto rhs = condense_schur_rhs (A_inv,C,f,g);
* y = S_inv * rhs; // Solve for y
* x = postprocess_schur_solution (A_inv,B,y,f);
* @endcode
* Note that due to the construction of @c S_inv_approx and subsequently @c
* S_inv, there are a pair of nested iterative solvers which could
* collectively consume a lot of resources. Therefore care should be taken in
* the choices leading to the construction of the iterative inverse_operators.
* One might consider the use of a IterationNumberControl (or a similar
* mechanism) to limit the number of inner solver iterations. This controls
* the accuracy of the approximate inverse operation $ \tilde{S}^{-1} $ which
* acts only as the preconditioner for $ S^{-1} $. Furthermore, the
* preconditioner to $ \tilde{S}^{-1} $, which in this example is $
* \text{prec}(D) $, should ideally be computationally inexpensive.
*
* However, if an iterative solver based on IterationNumberControl is used as
* a preconditioner then the preconditioning operation is not a linear
* operation. Here a flexible solver like SolverFGMRES (flexible GMRES) is
* best employed as an outer solver in order to deal with the variable
* behaviour of the preconditioner. Otherwise the iterative solver can
* stagnate somewhere near the tolerance of the preconditioner or generally
* behave erratically. Alternatively, using a ReductionControl would ensure
* that the preconditioner always solves to the same tolerance, thereby
* rendering its behaviour constant.
*
* Further examples of this functionality can be found in the test-suite, such
* as <code>tests/lac/schur_complement_01.cc</code> . The solution of a multi-
* component problem (namely step-22) using the schur_complement can be found
* in <code>tests/lac/schur_complement_03.cc</code> .
*
* @see
* @ref GlossBlockLA "Block (linear algebra)"
* @author Jean-Paul Pelteret, Matthias Maier, Martin Kronbichler, 2015, 2017
*
* @ingroup LAOperators
*/
template <typename Range_1, typename Domain_1,
typename Range_2, typename Domain_2,
typename Payload>
LinearOperator<Range_2, Domain_2, Payload>
schur_complement(const LinearOperator<Domain_1, Range_1, Payload> &A_inv,
const LinearOperator<Range_1, Domain_2, Payload> &B,
const LinearOperator<Range_2, Domain_1, Payload> &C,
const LinearOperator<Range_2, Domain_2, Payload> &D)
{
// We return the result of the compound LinearOperator
// directly, so as to ensure that the underlying Payload
// definition aligns with the operations expressed here.
// All of the memory allocations etc. are taken care of
// internally.
if (D.is_null_operator == false)
return D - C*A_inv*B;
else
return -1.0*C*A_inv*B;
}
//@}
/**
* @name Creation of PackagedOperation objects related to the Schur Complement
*/
//@{
/**
* @relates PackagedOperation
*
* For the system of equations
* @f{eqnarray*}{
* Ax + By &=& f \\
* Cx + Dy &=& g \quad ,
* @f}
* this operation performs the pre-processing (condensation) step on the RHS
* subvector @p g so that the Schur complement can be used to solve this
* system of equations. More specifically, it produces an object that
* represents the condensed form of the subvector @p g, namely
* @f[
* g' = g - C \: A^{-1} \: f
* @f]
*
* @see
* @ref GlossBlockLA "Block (linear algebra)"
* @author Jean-Paul Pelteret, Matthias Maier, 2015, 2017
*
* @ingroup LAOperators
*/
template <typename Range_1, typename Domain_1,
typename Range_2, typename Payload>
PackagedOperation<Range_2>
condense_schur_rhs (const LinearOperator<Range_1, Domain_1, Payload> &A_inv,
const LinearOperator<Range_2, Domain_1, Payload> &C,
const Range_1 &f,
const Range_2 &g)
{
// We return the result of the compound PackagedOperation
// directly, so as to ensure that the underlying Payload
// definition aligns with the operations expressed here.
// All of the memory allocations etc. are taken care of
// internally.
return g - C*A_inv*f;
}
/**
* @relates PackagedOperation
*
* For the system of equations
* @f{eqnarray*}{
* Ax + By &=& f \\
* Cx + Dy &=& g \quad ,
* @f}
* this operation performs the post-processing step of the Schur complement to
* solve for the second subvector @p x once subvector @p y is known, with the
* result that
* @f[
* x = A^{-1}(f - By)
* @f]
*
* @see
* @ref GlossBlockLA "Block (linear algebra)"
* @author Jean-Paul Pelteret, Matthias Maier, 2015, 2017
*
* @ingroup LAOperators
*/
template <typename Range_1, typename Domain_1,
typename Domain_2, typename Payload>
PackagedOperation<Domain_1>
postprocess_schur_solution (const LinearOperator<Range_1, Domain_1, Payload> &A_inv,
const LinearOperator<Range_1, Domain_2, Payload> &B,
const Domain_2 &y,
const Range_1 &f)
{
// We return the result of the compound PackagedOperation
// directly, so as to ensure that the underlying Payload
// definition aligns with the operations expressed here.
// All of the memory allocations etc. are taken care of
// internally.
return A_inv*(f - B*y);
}
//@}
DEAL_II_NAMESPACE_CLOSE
#endif // DEAL_II_WITH_CXX11
#endif
|